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ABSTRACT. This paper is concerned with a numerical solution of the acoustic
scattering by a bounded impenetrable obstacle in three dimensions. The obsta-
cle scattering problem is formulated as a boundary value problem in a bounded
domain by using a Dirichlet-to-Neumann (DtN) operator. An a posteriori er-
ror estimate is derived for the finite element method with the truncated DtN
operator. The a posteriori error estimate consists of the finite element approx-
imation error and the truncation error of the DtN operator, where the latter
is shown to decay exponentially with respect to the truncation parameter.
Based on the a posteriori error estimate, an adaptive finite element method
is developed for the obstacle scattering problem. The truncation parameter is
determined by the truncation error of the DtN operator and the mesh elements
for local refinement are marked through the finite element approximation error.
Numerical experiments are presented to demonstrate the effectiveness of the
proposed method.

1. Introduction. Wave scattering by bounded impenetrable media is usually re-
ferred to as the obstacle scattering problem. It has played an important role in
many scientific areas such as radar and sonar, non-destructive testing, medical
imaging, geophysical exploration, and nano-optics [2, 13]. Due to the significant
applications, the obstacle scattering problem has been extensively studied in the
past several decades. Consequently, a variety of methods have been developed to
solve the scattering problem mathematically and numerically such as the method
of boundary integral equations [12, 29] and the finite element method [24, 28]. This
paper concerns a numerical solution of the acoustic wave scattering by an obstacle
in three dimensions.

As an exterior boundary value problem, the obstacle scattering problem is formu-
lated in an open domain, which needs to be truncated into a bounded computational
domain when applying numerical methods such as the finite element method. It
is indispensable to impose a boundary condition on the boundary of the truncated
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domain. The ideal boundary condition is to completely avoid artificial wave reflec-
tion by mimicking the wave propagation as if the boundary did not exist [7]. Such
a boundary condition is called an absorbing boundary condition [14], a nonreflect-
ing boundary condition [17], or a transparent boundary condition (TBC) [18]. Tt
still remains as an active research topic in computational wave propagation [19],
especially for time-domain scattering problems [3]. Since Berenger proposed the
perfectly matched layer (PML) technique for the time-domain Maxwell equations
[8], the PML method has been extensively studied for various wave propagation
problems [6, 11, 31]. As an effective approach for the domain truncation, the basic
idea of the PML technique is to surround the domain of interest by a layer of fi-
nite thickness with specially designed artificial medium that would attenuate all the
waves coming from inside of the domain. Combined with the PML technique, the
a posteriori error estimate based adaptive finite element methods were developed
for the diffraction grating problems [10, 5] and the obstacle scattering problems [9].
It was shown that the estimates consist of the finite element discretization error
and the PML truncation error which has an exponential rate of convergence with
respect to the PML parameters.

Recently, an alternative adaptive finite element method was developed for solving
the two-dimensional acoustic obstacle scattering problem [23] and the open cavity
scattering problem [33], where the PML was replaced by the TBC to truncate the
open domain. Since the TBC is exact, it can be imposed on the boundary which
could be put as close as possible to the obstacle. Hence it does not require an extra
absorbing layer of artificial medium to enclose the domain of interest. Based on
a nonlocal Dirichlet-to-Neumann (DtN) operator, the TBC is given as an infinite
Fourier series. Practically, the series needs to be truncated into a sum of finitely
many, say N, terms, where N is an appropriately chosen positive integer. In [23],
an a posteriori error estimate was derived for the finite element discretization but it
did not include the truncation error of the DtN operator. The complete a posteriori
error estimate was obtained in [22]. The new estimate takes into account both the
finite element discretization error and the DtN operator truncation error. It was
shown that the truncation error decays exponentially with respect to the truncation
parameter N. The adaptive finite element DtN method has also been applied to
solve the diffraction grating problems [32] as well as the elastic wave equation in
periodic structures [26]. The numerical results show that the adaptive finite element
DtN method is competitive with the adaptive finite element PML method. We
refer to [27] for a continuous interior penalty finite element method (CIP-FEM)
for solving high frequency scattering problems with the truncated DtN boundary
condition.

In this work, we extend the analysis in [22] to the three-dimensional obstacle
scattering problem. It is worthy to mention that the extension is nontrivial since
more complex spherical Hankel functions need to be considered and the computation
is more challenging in three dimensions. Specifically, we consider the acoustic wave
scattering by a sound hard obstacle. Based on a TBC, the exterior problem is
formulated equivalently into a boundary value problem in a bounded domain for
the three-dimensional Helmholtz equation. Using a duality argument, we derive the
a posteriori error estimate which includes the finite element discretization error and
the DtN operator truncation error. Moreover, we show that the truncation error
has an exponential rate of convergence with respect to the truncation parameter N.
The a posteriori estimate is used to design the adaptive finite element algorithm
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to choose elements for refinements and to determine the truncation parameter N.
In addition, we present a technique to deal with adaptive mesh refinements of the
surface. Numerical experiments are included to demonstrate the effectiveness of the
proposed method.

This paper is organized as follows. In Section 2, we introduce the model problem
of the acoustic wave scattering by an obstacle in three dimensions. The variational
formulation is given for the boundary value problem by using the DtN operator.
In Section 3, we present the finite element approximation with the truncated DtN
operator. Section 4 is devoted to the a posteriori error analysis by using a duality
argument. In Section 5, we discuss the numerical implementation and the adaptive
finite element DtN method, and present two numerical examples to demonstrate the
effectiveness of the proposed method. The paper is concluded with some general
remarks and directions for future work in Section 6.

2. Problem formulation. Consider a bounded sound-hard obstacle D with Lip-
schitz continuous boundary D in R®. Denote by B, = {x € R3 : || < r} the ball
which is centered at the origin and has a radius r. Let R and R’ be two positive
constants such that R > R’ > 0 and D C B C Bg. Denote Q = Bg\D. The
obstacle scattering problem for acoustic waves can be modeled by the following
exterior boundary value problem:

A’U,—'-KJQ'U/:O inR?’\ﬁ,
Ou=—g on 0D, (1)
lim r(9pu —iku) =0, =z,

where k > 0 is the wavenumber and v is the unit outward normal vector to dD.
Although the results are given for the sound-hard boundary condition in this paper,
the method can be applied to other types of boundary conditions, such as the sound-
soft and impedance boundary conditions.

Let #; = sinfcosyp, 2 = sinfsiny, £3 = cosd, 0 € [0,7] and ¢ € [0,27].
Introduce the spherical harmonic functions

(2n+1)(n — |m|

! :
) PI™l(cos §)e™?,

Y (2) =Y, (0, 0) :\/

4w (n + |m])!
where m = —n,...,n,n=0,1,..., and
gy m d™
e m
PPt =1 -8)2 2o B(t), —1<t<l,
are called the associated Legendre functions and P, are the Legendre polynomials.
It is known that the spherical harmonic functions {Y;* : m = —n,...,n,n =

0,1,...} form an orthonormal system in L*(S?), where S* = {x € R : |z| = 1} is
the unit sphere in R®. For any function u € L?(0Bg), it admits the Fourier series
expansion

oo m=n

u(z) =u(R, &)=Y > arR)Y,"(&), anm:/ w(R, &)Y (2)dz.

n=0m=-—n §?

Using the Fourier coefficients, we may define an equivalent L?(0Br) norm of u

as N
oo n 2
lullz20m5) = (Z > 1At$|2> :

n=0m=-—n
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The trace space H*(0BpR) is defined by
H*(0Bgr) = {u € L*(8Bg) : |ullm-@05r) <},

where the norm may be characterized by

oo Mm=n

lallfreommy =D D (L+nn+1)" o (2)

n=0m=—n

Clearly, the dual space of H*(0Bpg) is H*(0Bgr) with respect to the scalar product

in L?(0BR) defined by
(u,v)oBg :/ uvds.
0BR

In the exterior domain R3\ By, the solution of the Helmholtz equation in (1) can
be written as

n (1 )
ha,
Ej S o (rr) Y™(#), r> R, (3)
n=0m=—n h R)

where h(l) is the spherical Hankel function of the first kind with order n and is

defined as (cf. [20])
WO = 7, )

Here HT(LQ 1 (+) is the Hankel function of the first kind with order n + 1.
2
Define the DtN operator T': Hz (9Br) — H~2(0Bg) by

(Tw)(R RZ@ (kR) > ayy(d), (4)

where )
hi (2)
0,(2) = z2———+,
(2) 2D (2)
which satisfies (cf. [15, 20]):
1
RO, (2) < —3 80,(2) >0, On(z) ~n, n— oo. (5)

The DtN operator has the following properties. The proof is similar to that of
[23, Lemma 1.2] and is omitted here for brevity.
Lemma 2.1. The DiN operator T : Hz (OBg) — H~2(0Bg) is continuous, i.c.,

<
Tl o S Tl o
Moreover, it satisfies
*§R<TU,U> Z Hu||2LQ(8BR)7 S<TU,U> > 0.
Here a < b or a 2 b stands for a < Cb or a > Cb, where C' is a positive constant

whose specific value is not required and may be different in the context.
It follows from (3)—(4) that we have the transparent boundary condition

Oru=Tu on OBg. (6)
The weak formulation of (1) is to find u € H'(Q) such that
a(u,v) = (g,v)op Vv € HY(Q), (7)
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where the sesquilinear form a : H(Q) x H}(Q) — C is defined by

a(u,v) = / Vu - Vodx — I€2/ uvdr — (T'u,v)oB,
Q Q

and the linear functional

<9’U>6D=/ guds.
oD

Theorem 2.2. The variational problem (7) has at most one solution.

Proof. Tt suffices to show that u =0 if g = 0. By (7), we have
/(|Vu|2 — K2|u)?)dx — (Tu,u)op, = 0.
Q

Taking the imaginary part of the above equation yields

S(Tu,u)op, =R D SO (kR)|ay|* =0,
n=0m=-n
which gives that 4" = 0 by (5). Thus we have from (3) and (6) that v = 0 and
Oyu = 0 on 9BRr. We conclude from the Holmgren uniqueness theorem and the
unique continuation [21] that v = 0 on €. O

The following result concerns the well-posedness and stability of the variational
problem (7). The proof is almost the same as that of [23, Theorem 2.2] and is
omitted here for brevity.

Theorem 2.3. The variational problem (7) admits a unique weak solution u in
HY(Q). Furthermore, there is a positive constant C depending on x and R such
that

lull 72y < Cllgllzzap)-

By the general theory in Babuska and Aziz [1], there exists a constant v > 0
depending on x and R such that the following inf-sup condition holds:

a(u,v
sup lalu, v)] > Yullm YueHY Q).

ozvert (@) lVlla (@)

3. Finite element approximation. In this section, we introduce the finite ele-
ment approximation of (7) and present the a posteriori error estimate, which plays
an important role in the adaptive finite element method.

Let M}, be a regular tetrahedral mesh of the domain 2, where h represents
the maximum diameter of all the elements in Mjy. In order to avoid using the
isoparametric finite element space and discussing the approximation error of the
boundaries 9D and 0Bg, we assume for simplicity that 9D and 0B are polyhedral.
Thus any face F' € My, is a subset of 02 if it has three boundary vertices.

Let Vi, C H'(2) be a conforming finite element space, i.e.,

Vi = {v, € C(Q) : vn|x € Pn(K) VK € My},

where m is a positive integer and P,,(K) denotes the set of all polynomials of
degree no more than m. The finite element approximation to (7) is to seek uy, € Vj,
satisfying
a(un,vn) = (g,vn)op Yvp € Vi
The above variational problem involves the DtN operator 1" defined by an infinite
series in (4). Practically, it is necessary to truncate the infinite series by taking
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finitely many terms of the expansion in order to apply the finite element method.
Given a positive integer N, we define the truncated DtN operator

N m=n
(Twu)(R,#) = 5 30 Ou(sR) 3. V(2.
n=0 m=—n

Using the truncated DtN operator Ty, we have the truncated finite element ap-
proximation to the problem (7): Find u} € V}, such that

aN(uthvh) = <gv’U}]zV>8D Vop € Vi, (8)

where the sesquilinear form ay : Vj, x V, — C is defined by

an(u,v) = [ Vu-Vuodz — HQ/ utde — (Tnu, v)oBy,- (9)
Q Q

By the argument of Schatz [30], the discrete inf-sup condition of the sesquilinear
form ay may be established for sufficiently large N and sufficiently small h. It
follows from the general theory in [1] that the truncated variational problem ()
admits a unique solution. In this work, our goal is to obtain the a posteriori error
estimate and develop the associated adaptive algorithm. Thus we assume that the
discrete problem (8) has a unique solution u}Y € V.

4. A posteriori error analysis. First, we collect some relevant results from [25]
on the Hankel functions. Let j,(t) and y,(¢) be the spherical Bessel functions of
the first and second kind with order n, respectively. The spherical Hankel functions
are

hg)(t) :jn(t)iiyn(t)v J=12.
For fixed ¢, the spherical Bessel functions admit the asymptotic expressions (cf. [25,
Theorem 2.31])

n (2n — 1)l
yn(t) ~ = pn+l , N — 00,

n®~ G

which give that
B0 ~ (-1t

For any K € My, let Br represent the set of all the faces of K. Denote by
hx and hp the sizes of element K and face F', respectively. For any interior face
F which is the common part of elements K7 and K5, we define the jump residual
across I as

, N — o0. (10)

Tr = =(Vuy |k, - 1+ Vuy |k, - 1),
where v; is the unit normal vector to the boundary of K, j = 1, 2. For any boundary
face F' € 0Bg, we define the jump residual

Jr = 2(Tup) + Vul) -v),
where v is the unit outward normal on dBg. For any boundary face F' € 0D, we
define the jump residual
Jr =2(Vup -v+g),
where v is the unit outward normal on D pointing toward €. For any K € My,
denote by ng the local error estimator, which is defined by

1
nk = hi||(A + £2)uy || L2ox) + (5 > hF||JF||2L2(F)>
FeOK

W=
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We now state the main result, which plays an important role for the numerical
experiments.

Theorem 4.1. Let u and ulY be the solutions of (7) and (8), respectively. There
exists a positive integer Ny independent of h such that the following a posteriori
error estimate holds for N > Ny:

3 A\
=l (3 o)+ () oo

KeMy

It can be seen from Theorem 4.1 that the a posteriori error consists of two parts:
the first part comes from the finite element discretization error and the second part
accounts for the truncation error of the DtN operator, which decays exponentially
with respect to N since R' < R. We point out that the constant in the estimate
may depend on k, R and R’, but does not depend on the truncation parameter of
the DtN operator N or the mesh size of the triangulation h.

In the rest part of this section, we prove the a posteriori error estimator in
Theorem 4.1 by using a duality argument.

Denote the error € := u—u . Introduce a dual problem to the original scattering
problem: Find w € H(Q) such that

a(v,w) = (v,€) Yo e HY(Q). (11)
It is easy to verify that w satisfies the following boundary value problem:

Aw+rk*w=-¢ inR3\ D,
O, w =0 on 0D, (12)
Opw—T*w=0 on JBg,

where the adjoint operator 7™ is defined by

m=n

(T*u)(R, &) = éz Bu(kR) Y amYI(d).
n=0

m=—n

We may follow the same proof as that for the original scattering problem (1) and
show that the dual problem (12) has a unique weak solution w € H'(), which
satisfies

[wllmr @) < ||5HL2(Q)~

The following lemma gives the error representation formulas and is the basis for
the a posteriori error analysis.

Lemma 4.2. Let u, ul} and w be the solutions of the problems (7), (8) and (11),
respectively. The following identities hold:
1€l171 ) = R (a(&,€) + (T = Tn)E, Eany) + R(INE, €)opy (13)
+(5* + 1)]|€]1 22 (14)
€720y = a(é,w) + (T = Tn)& wopn — (T = Tn)E whops,  (15)
a(&, ) + (T — Tn)& V)osy = (9:% — Yn)ap — an(up ¥ — ¥p)
+((T — Tn)u, Yo, Vb € H'(Q), ¢ € Vi (16)
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Proof. The equality (14) follows directly from the definition of the sesquilinear form
a in (7). The identity (15) can be easily deduced by taking v = £ in (11). It remains
to prove (16). It follows from (7) and (8) that
a(f,z/)) = @(U_UhNa¢—¢h) +a’(u_uhNawh)
(9. % — Yn)ap — alup v — ¥n) + alu —up )
= (9,9 —¥n)op — an(up , ¥ — Py)
Fan (up s ¥ — n) — aluy s —¥n) + alu, ¥n) — alug), ).
Since a(u,¥n) = (g, %n)op = an(ulY ,1n), we have
a(ga ¢) = <ga 1/1 - wh>3D - O,N(UhN, ¢ - ql}h) + aN(uth w) - a’(u}]zv7 w)
={(g,% —¥n)op — an(up , ¥ — ¥p) + (T — T )up , V) ops
=(g,% — ¥n)ap — an(up ;1 — ) — (T — Tn)&, V)oBx
+ <(T - TN)”? 1/1>BBR7

which implies (16) and completes the proof. O

It is necessary to estimate (16) and the last term in (15) in order to prove Theorem
4.1. We begin with a standard trace regularity result. The proof is straightforward
and is omitted here for brevity.

Lemma 4.3. For any u € H*(Q), the following estimates hold:

loll 3 oy S Nellinscor el o ) S Il

Lemma 4.4. Let u be the solution to (7). Then the following estimate holds:

) < () )]

Proof. Tt is known that the solution of the scattering problem (1) admits the series
expansion

2N N ) vy Ry - oy
rd) =30 3 o6 BN @, w ) = [ oy (x)dj |
17

for all » > R’. Evaluating (17) at r = R yields
oo n hgll) (FLR)
u(R, &) = —, o (R)Y" (),
22 e

which implies

(1)
. hWY(kR)
i (R) = 2 P o
WY (kR)
Using the asymptotic expression in (10), we obtain

. h(kR) | RA\" .
()| = |2 D gy < () )

hi (kR') R

which completes the proof. O
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Lemma 4.5. For any v € HY(Q), the following estimate holds:

b RN
&) + (T =T honal 5 (5 )" + () lollzon) ) Wl

KeMy

Proof. Define

Jio= (g, —vn)ap —an(up 3 — ¥p),
Jo = (T —Tn)u,¢¥)oBg,

where 1y, € V3. It follows from (16) that
a(§, ) + (T = Tn)& opr = J1 + Jo.

Using (9) and the integration by parts, we obtain

ERD </K<Au£7+m SICESUSIEE /JFw ¥n)d )

KeMy FeoK

69

Now we take ¢ = II,¥ € V},, where 11 is the Scott—Zhang interpolation operator

and has the approximation properties

1
[v=Tavl[2(x) S hiclVUll L2y, v = pvllzzry S AEIVYI L2,

Here K and Kp are the union of all the elements in M),, which have nonempty

intersection with element K and the face F, respectively.
By the Cauchy—Schwarz inequality, we have

EARED S (N (PRt Pt P
KeM,

£ X Snbelm 9l g, )

FedK

1
1 2
S % [l g+ (X ghelelie) | Wl
KeMy, FedK
2
s (X k) Ilm.
KeMy

It follows from the definitions of T, Ty and Lemma 4.4 that

Bl = (T = Tw)u )onal = |R ZMZ O, (kR)i! (R)U (R)
s ZMZ Ou Rl (B ()
s Zle ©uteR)I| (22 5 () ()
< (Y'Y eawmlap@ie)

n>N |m|<n
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Using (5), the Cauchy—Schwarz inequality, and Lemma 4.3 yields

a2 ()T S el )y )

n>N |m|<n
< ( >N (1+n(n+1)) Z lam (R)| |¢m R)|
n>N misn
R\N 2 2)? )’
< (= 1+n n+1))2 [ ij
R'\N :
< (X 1+n n+1)) |
() (St 5 )
- 1
(S om0t 5 )]
n>N Imi<n
R'\N
& ) s s
I\ N
< (%) ||u||H1(Q)||1/JHH%(aBR)'

Combining the above estimates gives

1 /
41l s (5 )"+ (5) loleon ) 1wl

KeMy
which completes the proof. O

Lemma 4.6. Let w be the solution to the dual problem (11). Then the following
estimate holds:

(T = Tn)é w)onal S N72lIEll7 o)-

K
Proof. It follows from (5), Lemma 4.3 and the Cauchy—Schwarz inequality that we
have

(T = Tn)Ewhoss S D D 1On(kR)|IEMR)| [0y (R)]

n>N |m|<n

Yo Y WllErR)a ()

n>N |m|<n
= D (@+nin®) 7 Y (14 )i N (R)||w) (R)]

n>N Im|<n

N723T ST (1 +n?)ind €8 (R)|[wr (R)]

n>N |m|<n

2(2 Z(1+n(n+1) & (R >é(z Z )

n>N |m|<n n>N |m|<n

= Ny (XX )

n>N |m|<n

N2|§|H1<m< D> nsmz’f(mﬁ)

n>N |m|<n

A

IN

N

IN

N

A
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To estimate W' (R), we consider the dual problem (12) in the annulus Br \ Bg:

Aw+n2w:f§ in BR\ER/,

w=w(R,z) on OR/,

Orw—T*w=20 on JBg,
which reduces to the second order equation for the coeflicients ;" in the Fourier
domain

4y (r)

+2dwT(r) + (k2 7n("+1))w (r)=—Em(r), R <r<R,

dr2
dw™ (R m
dr() 6( ) n(R)_Ov T:R,
wr(R) = w(R), r=R.
By the method of the variation of parameters, we obtain the solution of the above
equation

ik

Sy (R) + 5 [ W0t

S)
3
—~
3
N~—
I

iK

R
+5 [ ES.OWLR DO, (18)
where
hg)(ﬁzr)
hD (kR')
Taking r = R in (18), we get

Sp(r) =

Wi, ) = det [hm( wr) h%”(m)]

h(l)(,«;t) hg?)(nt)

1K

W (R) = Sy(R)a (R) +

/ R#&(R)W (R, )& (t)dt.

Using the asymptotic expression (10) yields

S"(R) ~ (%’)”7 n — 0o
and
v = semwen (- 28)
- _(2714—211%}%’((1;)” N (f)nH)a n — oo.
Hence

surn < (5" e (5)"

Combining the above estimates, we obtain

R
(R < |Su(R)lam (R + © /R 215, (R) W (R, 8)[ | (1) dt,

(Y ot + o7 () bt Ol e /;ﬁ(}’;)”dt

R\n Am —2||fm
(F) 1w (RO + n 210 @)l o vy

AN

N
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which gives

§ § n5 W

n>N |m|<n
R'\" . ’
s ¥ 3w ((F) e a1 Ol
n>N |m|<n
< 5 R'\2n ~m(pl |2 —4) ém 2
< Z Z n (E) ' (RO[F+ 07 NE O Loe (117, )
n>N |m|<n
= I]_ —‘rIQ

Here

= (B e

n>N |m|<n

=Y D nllEr O r .y

n>N |m|<n

A simple calculation yields

L5 meent (Y S g EIPE Y Y m
n> n>N |m|<n n>N |m|<n
S Y aEnE Y @R <ol o S Wl
n>N |m|<n

By [22, Lemma 5], we have
Fm 2 Fm —1fm/
€T O oo ((rr Yy < (g +")H§n O Z2(mmp + 77T ON72(rr R)»
where § = R — R’. Following a similar proof of Lemma 4.2 yields

S obS / (2 4+ nn+ D)E I + 1€ ()] dr

n=0|m|<n
>Z.Z/ (R 4nln + D)) + R ()] ar,

which gives

Iy = Z Z n”énm(t)H%OC([R’,R]) S 1€ (g)-

n>N |m|<n

ST WP (R S €1 o).

n>N |m|<n

Therefore, we obtain

which completes the proof.
Now we prove the main theorem.

Proof. We conclude from (4)—(5) that

R(TNE, E)opy = RZ > R(O(kR))IE < 0.

n=0|m|<n
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It follows from (14) and Lemma 4.4 that there exist two positive constants C; and
C5 independent of h and N satisfying

SR
||§|%{1(Q)§Cl(( Z 77%) +(§) ||9||L2(3D)>||5|H1(Q)+02||§|L2(Q)~

KeMy,
Using (15) and Lemmas 4.4-4.5, we obtain

2 2\ ? RN —2
el < Cs( (X0 nk)" + () Mallezon) )I€lzei + CoN~2lEllin o),
KeMy
where C3 and C} are positive constants independent of h and N. Combining the

above estimates yields
1

3 R'\N
et < Cs(( 5 )"+ (5) lalon €l + CoNlelna
KeMy
where C5 and Cg are positive constants independent of A and N. We may choose a
sufficiently large integer Ng such that Cs N, 2<1 /2, which completes the proof by
taking N > Np. O

5. Numerical experiments. In this section, we discuss the implementation of
the adaptive finite element algorithm with the truncated DtN boundary condition
and present two numerical examples to demonstrate the competitive performance
of the proposed method. There are two components which need to be designed
carefully in order to efficiently implement the h-adaptive method. The first one is
an effective management mechanism of the mesh grids. The other one is an effective
indicator for the adaptivity. The a posteriori error estimate from Theorem 4.1 is
used to generate the indicator in our algorithm.

5.1. The hierarchy geometry tree. In our algorithm, we use the hierarchy ge-
ometry tree (HGT) or the hierarchical grids to manage the data structure of the
mesh grids [4]. The structure of the grids is described hierarchically. For example,
the element such as a point for 0-dimension, an edge for 1-dimension, a triangle for
2-dimension, a tetrahedron for 3-dimension is called a geometry. If a triangle is one
of the faces of a tetrahedron, then it belongs to this tetrahedron. Similarly, if an
edge is one of the edges of a triangle, then it belongs to this triangle. Hence all
geometries in the tetrahedrons have belonging-to relationship.

A tetrahedron Ty can be uniformly divided into eight small sub-tetrahedrons
{T6,0,To,1---To,7}. In this refinement operation, every face of the tetrahedron is
divided into four smaller triangles. This procedure can be managed by the octree
data structure which is given by Figure 1, which shows that the sub-tetrahedrons
Tv,0 and Ty 6 are further divided into eight smaller sub-tetrahedrons. In the octree,
we name Tp as the root node and those nodes without further subdivision like T 1
and Tpo,0 as the leaf nodes. Obviously, a set of root nodes {T;},i = 0,1,--- can
form a three-dimensional initial mesh for a domain €2 and a set of all the leaf nodes
of the HGTs also form a mesh.

By using the HGT, the refinement and even the coarsening of a mesh can be
done efficiently. However, it may cause the hanging points in the direct neigh-
bors of the refined tetrahedrons. In order to remove these hanging points, two
kinds of geometries may be introduced: twin-tetrahedron and four-tetrahedron.
For the twin-tetrahedron geometry as shown in Figure 2 (left), it has five degrees
of freedom (DoF') and consists of two standard tetrahedrons. To conform the finite
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FIGURE 1. A schematic of octree data structure.

element space, the following strategy is used to construct the basis function in twin-
tetrahedron geometry. For each basis function, the value is 1 at the corresponding
interpolation point and the value is 0 at the other interpolation points. For the
common point of the two sub-tetrahedrons in the twin-tetrahedron like A, D and
E, the support of the basis function is the whole twin-tetrahedron. For the points
B and C, the support of their corresponding basis function is only the tetrahedron
ABED and the tetrahedron AECD, respectively. For the four-tetrahedron as shown
in Figure 2 (right), the similar strategy is used. With the twin-tetrahedron geom-
etry and the four-tetrahedron geometry, the local refinement can be implemented
easily.

FIGURE 2. Two geometries to avoid hanging points. (left) Twin-
tetrahedron geometry. (right) Four-tetrahedron geometry.

In practice, we use a polyhedral surface to approximate D and dBg. Since the
TBC operator is represented by the spherical harmonic functions whose accuracy
depends on how good the approximation is. Obviously, a rough approximation
could not satisfy the computational requirement. Based on the element geometry
introduced above, we present a method to deal with the surface refinement. Sup-
pose that the domain €2 has a curved boundary and the initial mesh is given by a
rough polygon. The traditional surface refinement is performed by taking the mid-
point of each side of the tetrahedron. Hence the shape of the boundary cannot be
well approximated. To resolve this issue, a very simple method is adopted. When
the boundary elements of the mesh need to be refined, we redefine the midpoint
through projecting vertically to the desired curved boundary, as shown in Figure 3.
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Thanks to the HGTs, it does not spend much time at all to find these boundary el-
ements. This method works efficiently in two-dimensions. But in three-dimensions,
it may cause the neighbors to become non-standard twin-tetrahedron geometry or
four-tetrahedrons geometry. To handle this problem, these special tetrahedrons,
whose neighbors do not need refinement, should not redefine the midpoint. So the
marked boundary tetrahedron will not be refined until the neighboring boundary
tetrahedrons are marked in order to keep the mesh structure.

Zs3

=

T2

x1

FIGURE 3. Mesh refinement on the surface (red points are rede-
fined midpoints on the boundary).

5.2. The adaptive algorithm. The numerical simulations are implemented with
a C++ library: Adaptive Finite Element Package (AFEPack). The initial mesh
is generated by GMSH][16]. The resulting sparse linear systems are solved by the
solver called Eigen. The simulations are implemented on a HP workstation and are
accelerated by using OpenMP. The a posteriori error estimate from Theorem 4.1 is
adopted to generate the indicators in our algorithm.

The error consists of two parts: the finite element discretization error e, and the
DtN operator truncation error €y which depends on IN. Specifically,

1 /'« N
o= (X ) = o= () lollieony (19)
KeMy

In the implementation, we can choose R/, R, and N based on (19) such that finite
element discretization error is not contaminated by the truncation error, i.e., ey is
required to be very small compared with ¢, for example, ey < 1078, For simplicity,
in the following numerical experiments, R’ is chosen such that the scatterer lies
exactly in the circle B and N is taken to be the smallest positive integer satisfying
ey < 1078 Table 1 shows the adaptive finite element algorithm with the DtN
boundary condition for solving the scattering problem.

5.3. Numerical examples. We present two numerical examples to illustrate the
performance of the proposed method. In the implementation, the wavenumber is
k = 7, which accounts for the wavelength A = 27 /k = 2.

Exampleﬁl. Let the obstacle D = By be the ball with a radius of 0.5 and
Q) = By \ Bos be the computational domain. The boundary condition g is chosen
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TABLE 1. The adaptive FEM-DtN algorithm.

Given a tolerance € > 0;
Choose R, R and N such that ey < 1078,
Construct an initial tetrahedral partition M} over 2 and compute error estimators;
While ng > ¢, do
mark K, refine Mj,, and obtain a new mesh Mh.
solve the discrete problem on the M h-
compute the corresponding error estimators;
End while.

W 3O U = W=

such that the exact solution is
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FIGURE 4. Example 1: (left) initial mesh on the zjzo-plane.
(right) adaptive mesh on the x;z5-plane.

102 T T T
—#— posteriori error
priori error
slope -1/3
101 + 4
8
b5
100F 1
10! . . .
10° 102 103 104 10°

FIGURE 5. Example 1: quasi-optimality of the a priori and a pos-
teriori error estimates.
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The initial mesh and an adaptive mesh is shown in Figure 4. Figure 5 displays
the curves of log ej, and log e}, versus log DoF}, for our adaptive DtN method, where
en = |[V(u — up))||r2(0) is the a priori error, € is the a posteriori error given
in (19), and Dof}, denotes the degree of freedom or the number of nodal points
of the mesh My, in the domain €. It indicates that the meshes and as§ociated
numerical complexity are quasi-optimal, i.e., [|[V(u—u}) )| r2(0) = O(DoF, *) holds
asymptotically.

Example 2. This example concerns the scattering of the plane wave ui"® = e'%®s by
a U-shaped obstacle D which is contained in the box {x € R?: —0.25 < 21, 29,73 <
0.25}. There is no analytical solution for this example and the solution contains
singularity around the corners of the obstacle. The Neumann boundary condition
is set by g = 9,u'™ on dD. We take R =1, R' = @ for the adaptive DtN method.
Figure 6 shows the cross section of the obstacle and the adaptive mesh of 63898
elements, and the curve of logej, versus log DoF,. It implies that the decay of the

a posteriori error estimate is O(DOF;I/ %), which is optimal.

:\H\‘H\“‘I‘\H‘HH‘HH 427 . ‘ —
- Ak 1 ==
= R ¥ |
E N o s

E NN vl

F A Em .-

N
0y

< 1

T
A
A

10% 10° 10% 10°
dof

FIGURE 6. Example 2: (left) an adaptively refined mesh with
63898 elements. (right) quasi-optimality of the a posteriori error
estimate.

6. Conclusion. In this paper, we have presented an adaptive finite element method
with the transparent boundary condition for the three-dimensional acoustic obsta-
cle scattering problem. The truncated DtN operator was considered for the discrete
problem. A dual argument was developed in order to derive the a posteriori error
estimate. The error consists of the finite element approximation error and the DtN
operator truncation error which was shown to exponentially decay with respect to
the truncation parameter N. Numerical results show that the method is effective
to solve the three-dimensional acoustic obstacle scattering problem. Possible future
work is to extend the adaptive FEM-DtN method for solving the three-dimensional
electromagnetic and elastic obstacle scattering problems, where the wave propaga-
tion is governed by the Maxwell equations and the Navier equation, respectively.
We hope to report the progress on solving these problems elsewhere in the future.
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