Pseudorandom Black Swans:
Cache Attacks on CTR DRBG

Shaanan Cohneyl, Andrew KwongQ, Shahar Paz3, Daniel Genkin2, Nadia Heninger4, Eyal Ronen®, Yuval Yarom®
YUniversity of Pennsylvania, shaananc @seas.upenn.edu
2University of Michigan, {ankwong,genkin} @umich.edu
3Tel Aviv University, shaharps @tau.ac.il
4University of California, San Diego, nadiah@cs.ucsd.edu
STel Aviv University and COSIC (KU Leuven), er@eyalro.net
6 University of Adelaide and Data61, yval@cs.adelaide.edu.au

Abstract—Modern cryptography requires the ability to se-
curely generate pseudorandom numbers. However, despite
decades of work on side-channel attacks, there is little discussion
of their application to pseudorandom number generators (PRGs).
In this work we set out to address this gap, empirically evaluating
the side channel resistance of common PRG implementations.

We find that hard-learned lessons about side channel leakage
from encryption primitives have not been applied to PRGs, at all
levels of abstraction. At the design level, the NIST-recommended
CTR_DRBG design does not have forward security if an attacker
is able to compromise the state via a side-channel attack. At the
primitive level, popular implementations of CTR_DRBG such
as OpenSSL’s FIPS module and NetBSD’s kernel use leaky T-
table AES as their underlying block cipher, enabling cache side-
channel attacks. Finally, we find that many implementations
make parameter choices that enable an attacker to fully exploit
the side-channel attack in a realistic scenario and recover secret
keys from TLS connections.

We empirically demonstrate our attack in two scenarios. In the
first, we carry out an asynchronous cache attack that recovers
the private state from vulnerable CTR_DRBG implementations
under realistic conditions to recover long-term authentication
keys when the attacker is a party in the TLS connection.
In the second scenario, we show that an attacker can exploit
the high temporal resolution provided by Intel SGX to carry
out a blind attack to recover CTR_DRBG’s state within three
AES encryptions, without viewing output, and thus to decrypt
passively collected TLS connections from the victim.

I. INTRODUCTION

It is a truth universally acknowledged, that a securely
implemented cryptographic primitive must be in want of a
cryptographically secure pseudorandom number generator [3].
Modern cryptography relies on randomness to prevent an
attacker from predicting secret values generated by parties in a
cryptographic protocol. Indeed, random values are universally
used to ensure security properties for nearly all cryptographic
data, including secret keys for confidentiality or integrity,
secret keys for public-key encryption, key exchange, or signa-
tures, as well as for protocol nonces to prevent replay attacks.

Thus, a cryptographically secure Pseudorandom Generator
(PRG) is one of the fundamental primitives of modern cryp-
tography, both in theory and in practice.

The simplest theoretical PRG construction is an algorithm
that expands a smaller seed into a longer output sequence
that is computationally indistinguishable from a true sequence
of random bits. However, the practical security demands for
random number generation are somewhat more complex; in
real systems, these pseudorandom number generator construc-
tions are often multi-stage algorithms that collect inputs from
environmental entropy sources or hardware into an “entropy
pool”. The pool is then used to seed a PRG that generates
cryptographically secure output. Real world PRGs must also
meet additional security guarantees, including recovery from
state compromise.

A number of academic works and practical security failures
have illustrated the disastrous effects on real-world cryptogra-
phy from flawed random number generation implementations
or designs in the wild. These have ranged from unintentional
flaws such as failure to properly seed PRGs [34, 45, 52,
94], to designs prone to implementation mistakes [19], to a
suspected intentional back door in the now “deprecated and
disgraced” [62] Dual EC DRBG design, which appears to have
been repurposed and exploited in the wild [17, 18].

Since their introduction in the seminal works of [5, 64, 65],
microarchitectural attacks that exploit contention on internal
components to leak information have been used to violate
nearly every security guarantee offered by computer systems.
Indeed, in recent years there have numerous examples of side-
channel attacks with diverse targets and vectors. These range
from attacks that extract cryptographic keys from keystroke
timing [28, 92] via CPU caches, attacks that exploit tran-
sient execution for breaking fundamental OS isolation guar-
antees [16, 46, 51, 81, 85], and even attacks that exploit
limitations in memory hardware to change or read the contents
of stored data [14, 42, 44, 47, 48]. Side-channel resistance is
among the key security properties demanded of implementa-
tions.

Much less is known, however, about the security of PRGs
in the presence of side-channel leakage. While backtracking
resistance and prediction resistance are stated to be among the
main security goals of the designs in NIST’s PRG recommen-

dations (NIST SP 800-90A), the standard does not consider
the impact of side channel attacks on these goals. Although
some initial evidence [97] already indicates the possibility
of exploiting side-channel vulnerabilities in PRG seeding, a
systematic exploration of side channel leakage from PRG
implementations has not been performed. Thus, in this paper
we set out to explore the following main question:

Are common PRG designs susceptible to microarchitectural
side channel attacks? What are the security implications of
such leakage and how can the attacker exploit it?

A. Our Contribution

Unfortunately, in this paper we give a positive answer to

the above questions. CTR_DRBG is the most popular PRG
design out of those recommended in NIST SP 800-90A, and
is supported by 68% of validated implementations in NIST’s
Cryptographic Module Validation Program (CMVP). On the
first question, we show that CTR_DRBG is vulnerable to state
compromise attacks because some popular implementations
still use a non-side-channel-resistant implementation of the
underlying block cipher. On the second question, we show that
several popular CTR_DRBG implementations fail to properly
reseed the PRG in many situations, enabling feasible attacks
against prediction resistance. Furthermore, we demonstrate
that Intel SGX allows a very strong blind state recovery attack
in as few as three encryptions, without the attacker having
access to PRG output. We demonstrate end-to-end attacks on
the CTR_DRBG implementations used by OpenSSL’s FIPS
module, NetBSD, and FortiOS, allowing an attacker targeting
TLS connections to recover session secrets and long-term
ECDSA keys used for client authentication, and under SGX,
to passively decrypt connections.
The Use of T-Table AES. T-table AES is a performance-
oriented AES implementation that uses table lookups to com-
pute the state transitions between individual encryption rounds.
Unfortunately, because these lookups are key-dependent, T-
table AES has become the canonical example of cache side
channel leakage [10, 58, 64].

While the use of T-table AES for encryption and decryption
operations has been greatly reduced in light of the threat posed
by side channels and the availability of AES-NI hardware,
similar lessons do not seem to have been learned for the case
of random number generation. Remarkably, even after more
than a decade of attacks, [5, 13, 31, 57, 64] we show that
unprotected and leaky T-tables are still used for encrypting
the counter inside CTR_DRBG by the following popular
implementations:

o The OpenSSL 1.0.2 FIPS Module uses T-Table AES for
CTR_DRBG. We note that use of this library is the only way
to obtain U.S government certification for a cryptographic
module without submitting to the expensive and time-
consuming validation process.

e The NetBSD kernel uses CTR_DRBG with a T-Table AES
implementation as the system-wide random number gener-
ator.

o The FortiOSv5 network device operating system uses the
same vulnerable CTR_DRBG implementation as NetBSD.

o mbedTLS-SGX, a port of the popular mbedTLS cryptogra-
phy library to SGX [95].

o The nist_rng library [39], which is a library for random
number generation used by open source projects such as
libuntu (a C implementation of NTRUEncrypt), the XMHF
hypervisor, as well as others.

CTR_DRBG State Recovery. By adapting previous work
on AES encryption [58] to the PRG setting, we extend the
work of Woodage and Shumow [86] to show how an attacker
who observes the cache access patterns of CTR_DRBG-based
random number generation can recover the PRG’s state using
about 2000 bytes of the PRG’s output. We then empirically
demonstrate how a client that connects to a malicious TLS
sever can be coerced to provide enough PRG output that
an attacker can recover the PRG state used during the TLS
handshake by concurrently observing the PRG’s cache access
patterns.

Extracting the Client’s TLS Authentication Keys. Next,
we show that NetBSD’s kernel, OpenSSL’s FIPS module and
FortiOS fail to reseed the PRG with a sufficient amount of
entropy. Thus, by using a moderate amount of brute forcing for
the client entropy, the attacker can wind forward the client’s
PRG and recover the ECDSA nonce used by the client to
authenticate herself to the malicious TLS server. Finally, using
the recovered ECDSA nonce and the signature produced by
the client during the TLS handshake, the attacker can recover
the client’s long term authentication keys. With authentication
key in hand, the attacker can impersonate the client in future
TLS connections.

State Recovery Without a Malicious TLS Server. The
above attack on TLS requires the victim client to connect
to a malicious TLS server, allowing the attacker to ob-
serve sufficient output generated by the client’s CTR_DRBG
implementation while simultaneously observing the client’s
cache access patterns across many AES encryption operations.
Tackling this limitation, we perform a a novel differential
cryptanalysis attack exploiting side channel leakage from T-
table based CTR_DRBG running inside an SGX enclave.
This attack leverages the fact that CTR_DRBG encrypts an
incrementing counter. Our technique is capable of extracting
the PRG’s state from only three AES encryption operations,
without requiring the attacker to observe the PRG’s output.
Thus, we eliminate the need for the TLS client to connect to
an attacker-controlled server. We also note that this type of
attack might also be applicable to other settings with similar
constraints such as GCM-SIV [30].

Breaking TLS Connections With High-Entropy PRG Re-
seeding. Finally, we note that any call to CTR_DRBG
for random byte generation must use at least three AES
encryption operations, and thereby produce the cache access
information required by our differential cryptanalysis state-
recovery technique. Since we no longer require the TLS client
to connect to an attacker-controlled server, this results in

an attack that recovers the PRG state on any request for

random bytes, regardless of how the implementation reseeds

the PRG. We demonstrate recovery of the premaster secret,
master secret, and symmetric encryption keys for any TLS
connection made by mbedTLS-SGX (a port of mbedTLS to

SGX [95]) to any TLS server. In particular, we are able

to passively decrypt the session by observing cache access

patterns made by mbedTLS-SGX.

Summary of Contributions. In this work we study the

implications of side channel analysis on random number

generation. Our contributions can be summarized as follows.

« We present the first security analysis of CTR_DRBG in the
presence of side-channel leakage, showing that the PRG
state of many popular implementations can be recovered
via cache attacks (Section IV).

e We show that PRG reseeding algorithms in popular im-
plementations are sometimes insecure. Combined with the
above state recovery attack, we empirically demonstrate an
end-to-end attack on TLS that recovers long-term client
authentication keys if the TLS client connects to an attacker-
controlled TLS server (Section VI).

« We present a novel differential cryptanalysis technique that
exploits side-channel leakage from CTR_DRBG running
inside an SGX enclave to recover the PRG state within three
AES encryption operations (Section VII-B).

« We demonstrate and end-to-end attack on an enclaved TLS
client that is capable of passively decrypting the TLS
connections regardless of PRG reseeding (Section VII-D).

« Finally, we evaluate CTR_DRBG’s popularity by scraping
NIST’s Cryptographic Module Validation Program database.
We show that CTR_DRBG was the most popular design,
supported by 68% of the implementations (Section VIII).

B. Coordinated Disclosure

We disclosed the vulnerabilities we discovered to the secu-
rity teams of OpenSSL, Fortinet, and NetBSD in May 2019.
OpenSSL responded that these attacks are outside their threat
model. Both NetBSD and Fortinet have since shared advisories
and remediations for their customers. The DRBG flaw in
FortiOS was assigned CVE-2019-15703.

II. BACKGROUND
A. Pseduorandom Generators

The term “DRBG” does not seem to be widely used outside
of the government context, so for the purposes of this paper,
we will use the term pseudorandom generator (PRG). We
begin by providing basic background regarding pseudorandom
generators and their security properties. Informally, a PRG is
an algorithm that, given an initial seed, produces a stream
of random bits such that an attacker cannot distinguish the
produced stream from a truly uniform random bit stream with
probability better than some negligible bound.

PRG Definition. Following Dodis et al. [21] and Woodage
and Shumow [86], a PRG with input is a triplet of polynomial
time deterministic algorithms {instantiate, generate, reseed}.
The PRG is instantiated by calling instantiate on an entropy

sample [and a nonce N, and outputs initial state Sy. Next,
generate gets as input a state .S, a number of bits to output
nbits, an additional input addin, and outputs new state S’ and
bits R € {0, 1} Finally, reseed gets as input a state S,
an entropy sample I, an additional input addin, and outputs
a new state S’.

Random Number Generation. The PRG is instantiated by
a single call to instantiate. A user can then repeatedly request
up to r random bits through a call to generate, which also
outputs a new state for the PRG. Finally, both the user and
the generate function can also call update, which updates
the state of the PRG to a new state.

PRG Security. = Woodage and Shumow [86] define three
security properties for a PRG: robustness, backtracking resis-
tance, and prediction resistance. Backtracking resistance is the
property that if the generator is compromised at time ¢;, an ad-
versary remains unable to distinguish outputs generated prior
to t; from random. Similarly, prediction resistance ensures that
there is some time o after t; when no further outputs can be
distinguished from random. Robustness incorporates both of
these guarantees into a single property.

Next, while the model of Dodis et al. [21] and Woodage and
Shumow [86] includes an attacker that is able to compromise
the entropy distribution used for sampling entropy to the PRG,
we consider a weaker attacker who is unable to do so.!

We instead assume that the PRG correctly receives entropy
samples drawn uniformly at random from the entropy space,
better matching our real-world scenario.

Finally, as our attack targets the prediction resistance guar-
antee of CTR_DRBG, we now provide a more formal defini-
tion for prediction resistance, from Dodis et al. [21].
Prediction Resistance. As mentioned above, prediction
resistance models a PRG’s ability to recover from state
compromise. We begin by modeling an adversary capable of
compromising the PRG state by allowing the adversary to
execute the following procedures on the PRG.

« get-output. Models an attacker’s ability to query the PRG
for output. Calls generate(S, nbits, addin) where S is the
current state, nbits is the number of bits to output, and
addin is known by the attacker, and returns the output R.

o set-state. Models an attacker who compromises the state
of the PRG. Gets as input an attacker-chosen value S* and
sets the PRG state S < S™.

« next-ror. Tests an attacker’s ability to distinguish output
from the PRG from uniformly random output. Sets Ry <
generate(S, nbits, addin) with S as the PRG state, nbits
the number of bits in Ry, and addin known by the attacker.
It then sets R; to a value drawn uniformly at random from
the same domain as Ry and picks a uniform choice bit b «*
{0,1}. The procedure returns Ry to the adversary which
outputs a bit b’

An adversary’s advantage, and therefore the security strength

of the PRG, is parameterized by the number of calls an

'We therefore obtain a stronger result as our weaker attacker is able break
the PRG despite her inability to corrupt the entropy source.

adversary makes to the above procedures along with the
adversary’s probability of successfully guessing the challenge
bit in the next-ror game. We use the following formal security
definition for a PRG:

Definition 1 (PRG with Input Security). A PRG with input G
is called a (t,qp, qr), 0—prediction-resistant PRG if for any
adversary A running in time at most t, making at most qp
calls to update with qr calls to next-ror/get-output, and one
call to get-state, which is the last call A is allowed to make
prior to calling next-ror, it holds that

[Pr[b=0"|V « A (qp.qr)] —1/2| <6
where OP = {next-ror, set-state, get-state, get-output}.

B. NIST SP 800-90 and Related Standards

NIST Special Publication (SP) 800-90 is entitled “Recom-
mendation for Random Number Generation Using Determin-
istic Random Bit Generators” and is the de facto standard
for algorithms for generating random numbers. The document
was first published in 2006 and has undergone three revisions:
“800-90 Revised”, published in 2007, “800-90 A”, published in
2012, and “800-90A Rev. 17, published in 2015. The first three
publications contained four pseudorandom number generator
designs, while the last publication contained only three. The
missing design was the infamous DualEC DRBG, which was
removed from the publication after Shumow and Ferguson dis-
covered a design flaw that enabled a backdoor [77] which was
later confirmed by Snowden [66]. The three remaining designs
in NIST 800-90A Rev. 1 are HMAC_DRBG, HASH_DRBG
and CTR_DRBG, which are based on HMAC, hash, and block
cipher primitives respectively. For the remainder of this paper,
we will refer to the 2015 publication as SP 800-90A.

C. AES

AES encryptions and decryptions can be decomposed into
four operations (ADDROUNDKEY, SUBBYTES, SHIFTROWS,
and MIXCOLUMNS). Performance-optimized software imple-
mentations usually use a series of lookup tables known as “T-
tables” to combine the latter three operations. AES encryptions
and decryptions can be decomposed into rounds, which use
round keys derived from the secret key to transform the
input into a sequence of states. The state at each round is
used to index into the T-tables, and the results are XORed
with the round key to produce the state for the next round.
The final round of AES uses a different T-table from earlier
rounds as there is no MIXCOLUMNS operation in that round.
Unfortunately, by observing the memory access patterns to
these tables, an attacker can recover the cipher’s secret key
within only a few encryptions. Indeed, starting from [64], there
has been a large body of work on attacking table-based AES
implementations [28, 31, 37, 78, 96].

Most modern processors include CPU instructions that
perform AES encryptions and decryptions in hardware. In ad-
dition to improving performance, these instructions do not rely
on table lookups from system memory, thereby mitigating side

channel risks. Although hardware AES is widely implemented
in modern desktop processors, many cryptographic libraries
still use software-only implementations of AES in a variety of
cases.

D. Cache Attacks

Our work contributes to a long line of cache-based side-
channel attacks. These attacks have yielded varied and robust
mechanisms [20, 29, 79] for breaking cryptographic schemes
using information leakage from cache timings. Popular targets
have included digital signature schemes [4, 27] and symmetric
ciphers [64, 68, 92], despite the inclusion of countermeasures
in popular cryptographic implementation libraries [23, 70].
Recent literature has also begun to examine side-channel
vulnerabilities in environments provided by trusted processor
enclaves, particularly Intel SGX [11, 49, 55, 81, 88, 89], which
are designed to be more secure against even local attackers
who are able to run unprivileged code.

Flush+Reload. Flush+Reload is a side-channel attack
technique that consists of three steps. In the first step, the
attacker flushes or evicts a memory location from the cache.
The attacker then waits a while, allowing the victim to execute.
Finally, in the third step, the attacker reloads the monitored
memory location and measures the reload time. If the victim
has accessed the memory location between the flush and
the reload steps, the location will be cached, and the reload
will be fast. Otherwise, the memory will not be cached and
the reload will be slow. Flush+Reload has been used to
attack symmetric [37] and public key [4, 22, 27, 67, 92]
cryptography, as well as for non-cryptographic and speculative
execution attacks [28, 46, 51, 54, 81, 82, 85, 90] attacks.
Prime+Probe. While powerful, Flush+Reload relies on the
victim and the attacker accessing the same memory location
and is thus typically applied to OS-deduplicated pages in
binaries and shared libraries. When shared memory is not
available (e.g., for SGX), we use a different cache attack
technique called Prime+Probe [64, 79].

A Prime+Probe attack consists of three steps. In the first, the
attacker primes the monitored cache lines by making enough
memory accesses so that each way (group of cache lines
fetched together) of the targeted cache sets is occupied by
the attacker’s memory value. In the second step, the attacker
yields control to the victim process. In the final step, the
attacker probes those same cache lines by reading from the
corresponding memory locations and measuring their access
times. If the victim accessed memory that mapped to the same
cache lines, then the attacker will measure larger latencies for
probes corresponding to those evicted cache lines.

III. CTR_DRBG

CTR_DRBG is a PRG design described in NIST SP 800-
90A. It uses the encryption of an incrementing counter under
a block cipher to generate outputs. The block cipher may be
either 3DES with a 64-bit key or AES with a key of length
128, 192, or 256 bits. The design mixes in additional data
at various stages. A derivation function (commonly the same

Algorithm 1 Update. The update routine is called by the
other routines and passes the current state (and potentially
additional input) into the underlying block cipher. It outputs
new state S = (K, V') composed of key K and counter V.

1: function UPDATE(K, V, addin)

2 temp < null
3 while len(temp) < seedlen do
4 V < (V 4+ 1) mod 2blecklen
5: output_block « encrypt(K,V)
6
7
8
9

temp + templ|output_block

temp « temp @ addin
K’ + leftmost(temp, keylen)
: V' « rightmost(temp, blocklen)
10: return K', V'

block cipher under a different key) can optionally be used to
extract entropy from the additional data. The implementations
we examined all used a derivation function.

Private State and Length Parameters.
of the PRG is composed of the following:

o A key K € {0,1}*¥!" with bit length keylen matching
that of the underlying cipher.

o Acounter V € {0, 1}="°*“" that is incremented after each
call to the block cipher, where blocklen is the output length
of the underlying block cipher.

The private state S

« A reseed counter c that indicates when a reseed is required.

The PRG’s nonce space N is {0,1}**“““" and the entropy
space is {0, 1}°°“"“" where seedlen = keylen + blocklen.
PRG Instantiation. CTR_DRBG’s instantiate function
takes as input an entropy sample I and an arbitrary nonce [N
chosen by the implementation, of equal length. It computes
a temporary value ¢ as the output for the derivation function
applied to I and N. It then calls a subroutine update, outlined
in Algorithm 1, with inputs K = V' = 0 and ¢ as the additional
input. The initial state Sy = (K, V,c) consists of the outputs
(K, V) from update, and reseed counter ¢ = 1.

State Update. Each of CTR_DRBG’s functions call a
subroutine update, outlined in Algorithm 1, that updates the
internal state. The routine’s input is a key K, counter V, and
additional data addin. In Lines 4-6 the function increments
the counter V' and appends the encryption of V' under key K
to a buffer temp. This process is repeated until temp contains
seedlen bytes. The resulting buffer is then XORed with addin
(Line 7). Finally, in Lines 8-9 the function outputs the new
key K’ as the leftmost keylen bits of the buffer, and new
counter value V' as the rightmost blocklen bits of the buffer,
where blocklen is the block length of the cipher.
Generating a Random Stream. A user generates output
from the PRG by calling the generate function outlined in
Algorithm 2. It takes as input the state .S, the number of bits
requested nbits, and a string addin, and outputs a string nbits
in length and an updated state S’. According to SP 800-90A,
the addin parameter “may be a means of providing more

Vit Vi K No Vi addin Ki

v v y vy v

V= V+1% Encrypt % Yes
B, V) P

Virr Kina

Fig. 1: The central loop of the generate function increments
the counter V, encrypts V' under K, and adds the output to a
buffer temp, repeating until nbits have been generated. The
function then updates the key and state before returning the
contents of the buffer.

entropy for the DRBG internal state”. This additional input
is allowed to be public or private and may contain secrets if
private. The specification notes that “if the additional input is
kept secret and has sufficient entropy, the input can provide
more assurance when recovering from the compromise of the
entropy input, the seed or one or more DRBG internal states”.
However, the specification does not include requirements for
either secrecy or entropy for addin.

The generate function first checks if a reseed is needed,
and if so, throws an error®> (Lines 3—4).

If the call included additional data addin, this data is first
whitened by running it through the derivation function, and
then it is used to update K and V' through a call to update
(Lines 5-7). Otherwise, addin is set to a string of zeros
(Line 9). On each iteration of the loop on Lines 11-14, the
counter V' is incremented. V' is then encrypted under K and
the result is appended to the output buffer. This process is
repeated until enough output has been collected. On Line 16
the function calls update with addin to update K and V'
again before the reseed counter c¢ is incremented (Line 17).
The function returns the new key, state, reseed counter, and
output.

If the attacker compromises the key K and counter V'
between Lines 11-14 and is able to guess addin, she can
predict the new key K’ and counter V’. She can then predict
future PRG outputs as well as future values of K and V. Note
that the same symmetric key is used to generate all of the
requested output, and the key is only changed at Line 16 after
all blocks have been generated. This observation is a crucial
element of our attack, since a long output buffer gives the
attacker many opportunities to extract K via a side channel.
Indeed, SP 800-90A specifies that at most 65KB can be
requested from the generator in a single call before a key
change. This is presumably intended to limit a single state’s
exposure to an attacker. However, our work demonstrates that
state recovery attacks within this limit are still viable.

Reseeding. The reseed function is intended to ensure
that high quality entropy is mixed into the state as required.

2While the inclusion of an error message does not strictly adhere to our
PRG definition, following Woodage and Shumow [86] we assume inputs are
valid and omit consideration of errors from our analysis.

Algorithm 2 Generate. The generate function begins by
throwing an error if the reseed counter exceeds the limit, and
otherwise updates the state with the optional additional input,
produces output by encrypting V under K, then increments
V. The encryption and increment steps are repeated until the
specified length of output has been produced. The state is then
updated again, and the reseed counter is incremented.

1: function GENERATE(S, nbits, addin)

2: parse (K,V,c) from S

3 if ¢ > reseed_interval then

4 return reseed_required

5: if addin # Null then

6: addin <+ df(addin)

7 (K,V) < update(K, V, addin)
8 else

9: addin <« Qseedlen

10 temp <+ Null

11: while len(temp) < nbits do

12: V < (V 4+ 1) mod 2blecklen
13: output_block « encrypt(K,V)
14: temp + templ|output_block
15: out + leftmost(temp, nbits)

16: (K', V") + update(addin, K, V)
17: d+—c+1

18: return S = (K', V'), out

The reseed function takes as input additional input addin,
an entropy sample I, and a state S that consists of the key
K, counter V, and reseed counter c. It calls the update
subroutine on a derivation function taken over I and addin,
which updates K and V. Finally, it resets the reseed counter
c to 1 and returns the new key, counter, and reseed counter.

A. Cryptanalysis of CTR_DRBG

DRBG Security Proofs. Woodage and Shumow [86] note that
historical analyses of the security claims in SP 800-90A [15,
35, 41, 75, 76, 93] were limited by simplifying assumptions
that were believed to be necessary due to nonstandard ele-
ments of the designs. Their analysis evaluated the standard’s
claims that the designs in the standard are both “backtracking
resistant” and “prediction resistant”. They provide robustness
proofs that include backtracking and prediction resistance for
both the HMAC and hash constructions, but were unable to
do so for CTR_DRBG and instead identified an attack against
the prediction resistance property.

Attacking CTR_DRBG. Bernstein [6] notes that to obtain
prediction resistance after every random bit, the generate
process must be called with only a single bit, incurring massive
performance costs. Furthermore, SP 800-90A notes that “For
large generate requests, CTR_DRBG produces outputs at the
same speed as the underlying block cipher algorithm encrypts
data”. Woodage and Shumow [86] use this observation to pro-
pose an attack scenario where large amounts of CTR_DRBG
output is buffered, setting the stage for a side channel attack

on the block cipher key. They give the following procedure
for recovering output at ¢ + 1 from output r; and key K that
was compromised at time ¢:

1) Counter Recovery From Output. Attacker computes
the state prior to the last update as V; = decrypt(K;,)

2) Generating S; 1. The attacker winds the generator for-
ward by computing Ky 1, V1 = update(Ky, V/, adding)

3) Generating PRG Output r, ;. This state is now used
to compute r;1 = generate(K1, Vi1, adding)

Overall Attack Complexity. Assuming that the attacker has
access to K, the complexity of this attack depends only on
the difficulty of the attacker guessing addin, and adding, .
While a naive attacker might attempt to enumerate the en-
tire space of 2%¢°¥e™ possibilities, we show that in practice
implementations use low-entropy or predictable data such as
timestamps for this parameter. We observed implementations
that required as little as 22! work to find the correct values
for both addin values.

We next evaluate the practicality of this attack in the
context of cache side channel attacks on popular CTR_DRBG
implementations and evaluate the impact of these attacks on
the security of TLS.

IV. STATE RECOVERY ATTACK

We show that the attack described by Woodage and Shu-
mow [86] is practical by recovering the CTR_DRBG state
variables K and V via a cache side-channel attack against the
underlying AES implementation. We begin with an overview
of the popular implementations we analyze in this section.

A. Implementation Deep Dives

We examined the CTR_DRBG parameter choices of four
implementations representing diverse use cases: the NetBSD
operating system, the Fortinet FortiVM virtualized network de-
vice, and two versions of the OpenSSL cryptographic library.
FortiOS.

We analyzed FortiOS version 5, the second-most recent
major release of Fortinet’s network operating system for their
hardware and virtual appliances. The operating system is an
embedded Linux distribution with proprietary kernel modules
that perform device-specific functionality. The software is used
both on embedded devices and to operate VMs that perform
virtualized network functions.

After reverse-engineering the operating system binaries, we
discovered that FortiOSv5 replaces Linux’s default implemen-
tation of /dev/urandom with the nist_rng library [39]. We
note that Cohney et al. [19] analyzed FortiOSv4 and found that
it behaved similarly, replacing the system’s default PRG with a
FIPS certified design. Both FortiOS v4 and v5 use OpenSSL to
provide basic cryptographic functionality, which in turn relies
on /dev/urandom. While the original OpenSSL will use
an AES hardware implementation if it is available, Fortinet’s
override makes OpenSSL fall back to an unprotected T-table-
based AES implementation based on the nist_rng library.

Finally, the FortiOS CTR_DRBG implementation does not

use additional entropy on each update and has no explicit re-
seeding. It returns an error code if more than 99,999 blocks are
cumulatively requested from the instantiated DRBG over the
course of its lifetime. It therefore lacks meaningful protection
against state compromise.
NetBSD. The NetBSD operating system uses CTR_DRBG
as the default source of system randomness. The kernel uses
the nist_rng library with 128-bit AES as the default underlying
cipher. We examined the kernel source code and single-stepped
through a running kernel to verify our findings. As in the
FortiOS case, the AES implementation is software-based with
unprotected T-Table accesses, based on the nist_rng library.

On each generate call, the state is updated using additional
entropy from rdt sc, a high resolution CPU counter. NetBSD
schedules a reseed after 239 calls to the PRG. Notably, the
reseed counter is incremented after each request to the PRG,
rather than after generation of each block. This provides an
opportunity for the attacker to gather a large quantity of
PRG output and leakage traces with the same key, before
CTR_DRBG is reseeded.

OpenSSL FIPS Module. We examined the OpenSSL FIPS
module, which supports only OpenSSL 1.0.2. This implemen-
tation is one of a small number of libraries that a manufacturer
can use to be FIPS compliant without submitting the entire
product for certification [24]. The module uses CTR_DRBG
with a user configurable key length. Notably, while OpenSSL
1.0.2 FIPS uses hardware instructions for AES encryption, the
CTR_DRBG implementation uses a lower-level interface for
AES. Instead of selecting the best implementation available (as
the AES interface used for encryption does), the lower-level
interface used by CTR_DRBG uses a hand-coded T-Table AES
implementation. On each generate call, the state is updated
using the time in microseconds, a counter, and the PID. The
FIPS module reseeds the PRG after 224 calls to generate.
OpenSSL 1.1.1. The default PRG in OpenSSL 1.1.1, the
most recent major release as of this writing, is a CTR_DRBG
implementation forked from the OpenSSL FIPS code base.
It defaults to 256-bit AES with user-configurable support for
128-bit and 192-bit AES. Unlike version 1.0.2 it does default
to using hardware instructions for AES, so it is not vulnerable
to our side-channel attack.

B. Side Channel Attacks on AES-128

T-Table AES is the canonical target for cache side channel
attacks. Starting from Bernstein [5] many works [28, 31, 37,
64, 96] have demonstrated key extraction from cache access
patterns of table-based implementations.

Since CTR_DRBG uses T-Table AES as its underlying
cryptographic primitive, we implemented the attack of Neve
and Seifert [58] on the last encryption round of AES in order
to extract the AES key from the CTR_DRBG’s cache access
pattern.

V. CACHE ATTACK DETAILS

In this section, we present the details of our state recovery
attack. In the synchronous model of Osvik et al. [64], an

attacker observes the plaintext and is able to probe the cache
state immediately before triggering an encryption with an
unknown key. The attacker is also able to probe the cache
state immediately after each encryption. Observing the cache
access patterns caused by the first round of AES during a few
encryption operations is sufficient to recover the key [64].

Attacking the Last Round of AES. Working in the
synchronous model of [10, 58, 64] we target the final round of
AES, with attacker-observed ciphertext, rather than plaintext.

Implementations commonly use a different T-Table for the
final round of encryption, allowing us to measure last round
table accesses independently of earlier round accesses. Let g;
be the ith byte within the T-table, c; be the ¢th ciphertext
byte, and let k; be the ith byte of the last round key. From the
definition of T-table AES we know that ¢; = T'[q;] @ k; where
T is the final round table. Thus, an attacker who observes c;
and determines ¢; by monitoring the cache for accesses can
solve this equation for the key byte, yielding k; = ¢; & T[q;].
Handling Missing Information. While the attack outlined
above works when the attacker has perfect visibility over g;
and 7, on a real system the attacker does not directly observe g;.
Instead, she identifies a contiguous set of bytes that are fetched
into the cache together (a cache line, typically 64 bytes) and
thus loses information about some of the least significant bits
of g;. On our test machine, each access corresponded to sixteen
different possible values for ¢;, as each final T-Table byte is
stored four times, in a 4-byte integer, sixteen of which are in
each cache line. Further, the attacker does not know 7, as she
does not know which cache access produced which ciphertext
byte. Thus, in order to obtain a candidate key byte k;, the
attacker must somehow guess the value of ¢; from the table
indexes accessed in the last round as well as guess the missing
4 bits from g;. As we expect about 11 distinct indexes to
be accessed in the last round [58], this results in about 11 -
2% = 176 candidate values for each k;, out of 256 possible
candidates.

We notice however, that across many independent encryp-
tions of different plaintexts under the same key, the correct
value for every k;, i = 0,---,16 should always appear
in the list of candidates. In contrast, we expect incorrect
candidates to be uniformly distributed. Thus, if an attacker
sees a large number of encryptions, she can combine the
information obtained from them to retrieve the AES key. Let

.) 1 if g-th cache line accessed in j-th trace
hit(q, j) = .
0 otherwise
Following [58], the attacker counts cache hits that could
correspond to each possible key byte value k& from 0x00 to
OxFF for each position ¢ and stores the count in a table S:

n £
Sk =Y

=0 q=0

m

D

b=0
T[2™ q+b|®ci=k

hit(q,)

with £ the number of cache lines, m the number of bytes per
cache line, and n the number of traces. As analyzed by [10,

58], the i-th byte of the last round key is then the value of &
such that S [¢] [k] is maximal.

A. Obtaining Trace Data

We describe how we mount Flush+Reload against
CTR_DRBG. We begin by recalling that the attack of [58]
outlined in Section IV-B requires the attacker to gather ci-
phertexts paired with the corresponding traces of the cache
state following the encryption operation that produced that
ciphertext.

Matching PRG Output. To recover the AES key, an attacker
must match each ciphertext to a trace taken in the interval
following the encryption that produced it, but before the sub-
sequent encryption. In the synchronous model of Osvik et al.
[64] where the attacker triggers encryption operations directly,
this matching is trivial. However, in our setting, a request for
random bytes initiates a rapid series of encryptions. If the
attacker’s probes take a long time compared to an encryption
operation, the attacker cannot easily interleave probes. This
difficulty is exacerbated by the fact that encryptions vary in
duration due to other system activity, making the naive strategy
of probing at evenly spaced intervals fail to produce matching
traces and ciphertext pairs.

Tickers. In order to use the synchronous setting analysis of
Osvik et al. [64], we align traces and ciphertexts by using
what we term “tickers”. Tickers are frequent cache probes
that measure how long it takes to access cache lines that
contain program instructions. A cache hit on a ticker gives the
attacker a signal she can use to determine whether to probe
the cache lines containing the T-Table used in the last AES
encryption round. In our case, we set two tickers. The first
ticker queries instructions at the start of the encryption code
(as loaded into the process’ address space), and the second
queries instructions at the end of the encryption code. When
either ticker is triggered, we probe the T-Table cache lines,
ideally measuring cache state before and after encryptions.
Handling Drift. While tickers provide some signal, as
depicted in Figure 2, variations in how the probe process
is scheduled with respect to the victim process introduce
imperfections in the signal provided by the tickers. Therefore,
we also use timing heuristics to match traces to corresponding
ciphertexts. More specifically, we iterate through the traces we
collect, and keep a counter identifying the next ciphertext to be
matched to a trace. Then, for each trace, we either match it to
the current ciphertext and increment the counter or discard it.
We base this decision on the accompanying ticker and timing
data.

Our default case is to match the trace and ciphertext only if
the ticker indicating a recent end-of-encryption event was trig-
gered for that trace. However, to account for false negatives,
the ticker indicating a recent start-of-encryption event is used if
the interval between the last matched trace’s timestamp and the
current trace’s timestamp exceeds a threshold we determined
empirically. Similarly, if neither ticker was triggered, but the
elapsed time is greater than another empirically-determined
threshold, we match the trace and ciphertext.

Finally, using a ticker to determine when to start collecting

traces may cause the attacker miss some traces belonging to
the initial encryptions. We overcome this by running the key
recovery algorithm with each possible set of matchings, for a
small number of potential initial matches.
Overcoming Prefetching. Modern CPUs attempt to learn
a program’s cache access pattern and fetch data into caches
before this data is actually needed. This data prefetching
frustrates cache side channel attacks against T-Table AES by
reducing the extent to which a recorded cache hit corresponds
to an actual-rather than predicted—access. If an entire AES
T-Table is preemptively fetched into memory, a naive cache
side channel attack will not succeed because the attacker will
record cache hits for every memory line.

We mitigated the effect of the prefetcher by accessing cache

lines in an irregular order, using the pointer chasing technique
of Osvik et al. [64]. This reduces the ability of the prefetcher to
predict our cache accesses and therefore prefetch those lines.
Performance Degradation. If the time it takes to probe
the cache state is too long relative to the duration of an
encryption, an attacker will not be able to generate traces
that accurately capture the state of the cache after each
encryption. Allan e al. [1] showed that this difficulty could
be mitigated by continuously flushing cache lines containing
victim program instructions, so that the victim process was
significantly slowed down. Flushing cache lines requires the
victim to repeatedly fetch code from main memory, increasing
access times. On our system, this slowed down the average
duration of an encryption from 2 usec to 32 usec, giving us
a large 34usec window between successive last AES rounds
for cache probing.
Validating Key Candidates. In our setting, plaintexts
encrypted within a single call to the CTR_DRBG generate
function are sequential integers, providing a simple test to
determine the correctness of a recovered key. Given a series
of ciphertexts and a candidate key, we validate the key by
decrypting the PRG output and checking if the plaintexts form
a successive series of integers. The final integer in the sequence
is the last counter value before the state is updated at the end
of the procedure. Given the recovered key K, counter value
V', and a valid guess for addin (if any is used), the subsequent
state and output of CTR_DRBG can be computed by executing
the update subroutine.

B. Evaluation of State Recovery

Attack Scenario. Our attack scenario is as follows. First,
we assume an attacker who can execute unprivileged code
on a target machine. Next, a victim process on the same
machine uses CTR_DRBG and makes a call to generate,
requesting about 2 KB of pseudorandom output. The attacker
then uses Flush+Reload to monitor cache accesses during the
AES operations inside the CTR_DRBG, and recovers the PRG
state using the techniques described above. Our experimental
setup instantiates this scenario in a concrete setting.

Targeted Software. We targeted OpenSSL 1.0.2 configured to
use the nist_rng library with AES128 as the underlying block

Encryptions

Probe w/start encryption ticker

4+ Probe w/end encryption ticker

+X + X X

0 200 400

+ X

+X % +

600 800 1000

Time (microseconds)

Fig. 2: Probes do not perfectly align with the start and end of encryptions. Ideally, the start and end of an encryption probe
should follow shortly after the start and end of an encryption. However, fluctuations in encryption duration and ticker timing
accuracy cause misalignments. The problem is illustrated at ~ 380us, where no end encryption ticker is visible, and at ~ 900us
where the end encryption ticker appears past the start of the next iteration.

Count
=

5
0 m_H _mm ..IIIIII

012345 6 78 910111213141516
Bytes Correctly Recovered

Fig. 3: With the prefetcher enabled, our state recovery tech-
nique often recovers only a subset of the full 16-byte AES
key. We here depict the frequency with which a given number
of bytes were recovered, across 100 trials.

cipher for the PRG. Beyond the implementations mentioned
in Section IV-A, the nist_rng library is used by libuntu (a
C implementation of NTRUEncrypt), the XMHF hypervisor,
among others. As mentioned before, the nist_rng library uses a
leaky T-table based AES implementation and does not support
AES-NI hardware instructions.

Hardware. = We performed our experiments on a desktop
equipped with an Intel i7-3770 Quad Core CPU, with 8GB
of RAM and 8MB last level cache. The machine was running
Ubuntu 17.10 (Linux Kernel 4.13.0). To ensure fair compari-
son, we fixed the initial state of the random number generator
to be the same uniformly sampled state for all the experiments
descried in this subsection.

Empirical Results. In 100 trials with the prefetcher disabled
we were always able to recover the state, with an average false
positive rate of 4.58% and false negative rate of 5.01%. As
in Figure 3, with the prefetcher enabled our attack succeeded
in 12.0% of trials with average false positive rate 28.5% and
false negative rate 1.94%. State recovery took an average of
19s in both cases, with hardware as above.

VI. ATTACKING TLS

In this section, we put our side-channel attack in context
and show how recovering the PRG state from CTR_DRBG
leads to the attacker being able to compromise long-term TLS
authentication keys. We begin with necessary background on
TLS and cryptographic primitives.

loo]o2 | Padding [o] 48-hyte PMS

Fig. 4: PKCS#1vl.5 RSA encryption padding appends a
pseudorandom padding string to the message, together with
some fixed bytes. The padding block is filled with £k —3 — ¢
non-zero bytes that are generated by a pseudorandom number
generator, where k is the byte-length of the modulus and / is
the byte-length of the message to be encrypted.

A. RSA Background

RSA is a public-key encryption method that can be used as
a key exchange method in TLS 1.2 and earlier. RSA is not
included as a key exchange mechanism in TLS 1.3.

RSA Cryptosystem. An RSA public key consists of a public
encryption exponent e and an encryption modulus N. The
private key is the decryption exponent d, which satisfies d =
e~ ! mod ¢(IN), where ¢(N) = (p — 1)(q — 1) is the totient
function for an RSA modulus N = pq.

RSA Padding. An RSA-encrypted key exchange message
begins by padding the message using PKCS#1 v1.5 [40]
padding as depicted in Figure 4. PKCS#1 v1.5 padding is not
CCA-secure and has led to numerous cryptographic attacks
against RSA in practice [9, 26]. Yet, it remains by far the
most common padding method where RSA encryption is still
used, including versions of TLS prior to 1.3.

Let m be a message to be encrypted, and pad(m) be the
message with PKCS#1v1.5 padding applied. The encryption
m is the value ¢ = (pad(m))¢ mod N. The padded message
pad(m) can be recovered by the decrypter by computing
pad(m) = ¢ mod N. In normal RSA usage, the decrypter
then verifies that the padding is correctly formatted, and strips
it off to recover the original message m.

RSA-PSS. RSA-PSS is a probabilistic signature scheme with
a formal security proof [53]. The padding scheme is designed
to avoid the flaws in PKCS#1 v1.5 padding. The scheme uses a
sequence of hashing operations and mask generation functions
to generate a padded message from a salt s and the input
message m. The salt can in general be a maximum of len(m)+
hLen bytes in length, where hLen is the length of the hash
function output. RFC8446 (August 2018) [72] updates TLS
1.2, adding optional support for RSA-PSS signatures [56], but

specifies that “the length of the Salt MUST be equal to the
length of the [digest] output”.

B. ECDSA

ECDSA is a standardized public key signature algorithm
[43]. The global parameters for an ECDSA key pair include
a pre-specified elliptic curve C' with base point G of order n.
The signer’s private key is a random integer 1 < d4 < n and
the public key is @ = daG.

To sign a message m, the signer generates a random integer
nonce 1 < k < n. The signature is the pair r = (kG)x mod n
and s = k=1 (H(m)+rd4) mod n, where x represents the x-
coordinate of an elliptic curve point, and H(m) is the hash
of the message m using a collision-resistant hash function
H. Next, if an attacker learns the value of the nonce k, she
can compute the private key d4 from the signature as d4 =
(sk — H(m))r~! mod n. We omit the details of the signature
verification procedure, as they are orthogonal to our attacks.

C. TLS Handshake Protocol

We describe the TLS 1.0, 1.1, and 1.2 handshake protocols
necessary for our attack. A TLS handshake begins with a
ClientHello message containing a 32-byte nonce along with
a list of supported cipher suites. The standard specifies that
the nonce should consist of a four-byte timestamp and 28
bytes of raw output from a pseudorandom number generator.
The ServerHello message contains a similar nonce and the
server’s choice of cipher suite. We specialize to the case of
RSA key exchange with mutual authentication, an option that
is enabled for higher-security deployments, for VPN-over-
TLS, and other instances where the server needs assurance
of the client’s identity. For these cipher suites, the server
then sends a Certificate message with its certificate chain, a
CertificateRequest message, and a ServerHelloDone message.
The client checks the server certificate, generates a 48-byte
premaster secret (PMS) and encrypts it to the server’s public
key from the certificate. The PMS and padding formatting are
shown above in Figure 4.

The client then sends the RSA-encrypted premaster secret
in a ClientKeyExchange message, sends its own certificate in a
Certificate message, and a CertificateVerify message contain-
ing a signature computed over a transcript of the handshake
thus far, that proves it possesses the relevant private key.

Upon receiving the encrypted ClientKeyExchange, the
server decrypts the message, verifies that the padding has the
correct structure, and then extracts the premaster secret. After
the server obtains the PMS, it verifies the client certificate.
Both client and server then derive symmetric encryption and
authentication keys by applying a key derivation function to
the premaster secret and the client and server nonces. Both
sides exchange messages to authenticate the handshake, then
begin transmitting encrypted traffic.

D. Finding Randomness in TLS

The state recovery attack described in Section IV required
1996 bytes of output from the random number generator. Thus,

10

for our cache side-channel attack to work at the protocol
level, we needed to find places in the handshake where a
single random number generator call would request enough
output for an attacker to feasibly carry out state recovery. We
evaluated the TLS protocol for potential sources of large or
variable length randomness and settled on three possibilities:
the ExtendedRandom TLS extension, RSASSA-PSS padding,
and RSA PKCS#1 v1.5 padding.

ExtendedRandom TLS Extension. ExtendedRandom is
a non-standard extension to TLS that was proposed to the
IETF [25] to permit clients to request up to 2! — 1 bytes
of randomness from the server. While our attacks (as well as
those of Checkoway et al. [18] and Cohney et al. [19]) may
have been able to make use of the increased output from the
server’s generator to recover secret information, there are no
known implementations with a functional implementation of
this extension [25].

RSA-PSS. We evaluated whether the generation of the
random salt for RSA-PSS signatures provided a viable attack
vector. Under the PSS specification, for a message of 24
bytes, the maximum salt length allowed is 2016 bytes, or
126 blocks of PRG output, sufficient for our state recovery
attack. However, since RFC8446 [72] restricts the salt length
when PSS is used in TLS1.2, an attacker in this context cannot
observe enough encryptions from calls to the underlying PRG.
PKCS#1 v1.5 Padding in TLS. When a TLS handshake is
performed with an RSA cipher suite, the client generates the
32-byte premaster secret and encrypts it to the server’s RSA
public key, transmitting it in the ClientKeyExchangeMessage.
If the malicious sever uses a 16384-bit RSA modulus, the
client must generate 2,013 padding bytes, equivalent to 126
blocks of PRG output. This is a sufficient number of blocks
for us to mount the state recovery attack. We thus target this
mode of TLS.

E. Targeting TLS Clients

Unlike the attacks in [17-19], which compromise the
server’s PRG, we compromise the state of the PRG used by
the TLS client, since the client is the party that generates the
encrypted key exchange message. However, similar to those
works, we use the recovered state to predict future outputs of
the PRG. In our case, this allows us to recover the client’s
long-term authentication key.

Attack Overview. We assume the client connects to a
malicious attacker-controlled server supporting TLS 1.0, 1.1,
or 1.2 that uses RSA for key exchange, and that the client uses
ECDSA for digital signatures. We also assume that the attacker
is capable of running unprivileged code on the client. Next,
since the RSA PKCS padding generation procedure requires
the client to generate pseudorandom bytes, the attacker can
use the cache leakage traces collected during the generation
of the PKCS padding to recover the client’s PRG state via the
method described in Section IV. With the client’s PRG state
successfully recovered, the attacker predicts the subsequent
PRG output and thus is able to compute the ECDSA nonce
that the client generates in the course of producing the digital

signature for the CertificateVerify message. As outlined in
Section VI-B, an attacker who knows the nonce used to
generate an ECDSA signature can trivially recover the long-
term private key used for client authentication, even if that
key was generated in a secure manner. Recovering the signing
key allows the attacker to impersonate the client. This may
allow the attacker to access TLS-protected resources that are
served only to an authenticated client. Our attack proceeds as
follows:

1) Victim Client Connects to an Attacker-Controlled
Server. A client with an ECDSA certificate is manipulated
into visiting a web page with an attacker controlled script.
The script initiates TLS handshakes with RSA cipher
suites, to an attacker-controlled server. The server transmits
an RSA certificate and requests mutual authentication.
Recovering PRG State. The client’s software encrypts
the TLS premaster secret to the server’s RSA public key,
generating PKCS#1v1.5 padding proportional to the size
of the certificate. The attacker simultaneously conducts the
state recovery attack explored in Section IV.

ECDSA Signature Generation. The client transmits
its certificate and generates a random nonce to sign the
CertificateVerify message using ECDSA. The client then
transmits the signed CertificateVerify message to the server.
Recovering the Client’s Nonce. The attacker conducts an
offline search for entropy and additional input parameters
used by the PRG to generate the client’s ECDSA nonce.
The attacker checks the nonce candidates by recomputing
the ECDSA signature and validating it against the signature
transmitted by the client.

Key Recovery. Finally, once the attacker successfully
recovers the nonce, she is able to compute the client’s
ECDSA private key and can impersonate the client.

2)

3)

4)

5)

Performing Nonce Recovery. In order to perform Item 4,
the state of the client’s PRG must be advanced to the point
at which ECDSA nonce generation occurs. As the attacker
can only wind the generator forward, and at each call to the
generate and reseed functions the attacker must guess the
entropy and additional input parameters. Thus, the attacker
must pay close attention to implementation-specific details
surrounding the ordering of calls to the PRG.

We illustrate this challenge using OpenSSL 1.0.2, which
we use as our baseline implementation for the nonce-recovery
attacks described in this and following sections.

F. Using PKCS#1 v1.5 in OpenSSL 1.0.2 for Nonce Recovery

We begin by describing the steps performed by OpenSSL
during the establishment of a TLS connection to generate the
random PKCS#1 v1.5 padding and ECDSA nonce. For ease
of reference, we label each step of these processes. We then
describe our end-to-end attack on OpenSSL 1.0.2.

1. Initial Padding Generation. The output of the PRG is fed
into an n-byte buffer to be used for PKCS#1 v1.5 padding,
where n is the length of padding required (in our case n =
1996). The state is updated twice, once before the bytes are

11

generated and once after. State compromise occurs after the
first call to update, but prior to the second.
Padding Zero-Fill. PKCS#1 v1.5 does not allow 0x00
bytes to be present in the random padding, so if there are z
0x00 bytes present in the PKCS output buffer, OpenSSL
makes at minimum z more requests for output from the
PRG, one for each byte. If any of these additional requests
also result in a 0x00 byte, OpenSSL makes repeated
requests to the PRG until the output is non-zero. The output
from these requests is used to replace the null bytes in the
padding to produce a valid non-null padding string under
PKCS#1 v1.5. Within each request for random bytes, the
PRG state is advanced twice. Both updates use the same
underlying additional input.
RAND_seed. The ECDSA signing routine tries to reseed
OpenSSL’s RNG via RAND_seed. The SHA256 hash of
the TLS handshake transcript is used as external entropy.
RAND_add. A call to RAND_add is made as part of
bnrand, which is used to generate a random integer in
a given range. Time in seconds is used as external entropy.
GenNonce. OpenSSL then generates the ECDSA nonce.
Within the call to the CTR_DRBG generate function, the
state is updated before the nonce value is finally produced.
Notably, Steps 3 and 4 call functions from the OpenSSL’s
PRG API, which as discussed in Section VI-G do not al-
ways perform the expected function of reseeding or updating
CTR_DRBG.
Causing a Large Number of Random Byte Generations.
To perform the attack, the attacker must observe side channel
leakage during the generation of a large amount of random-
ness. Moreover, to recover the RNG’s state, the attacker must
learn the values of the victim-generated randomness. In our
attack scenario, the attacker could cause a victim client to
connect to the attack server using a malicious script served by
an ad network on a website the user would otherwise normally
visit. The attacker’s malicious server is configured to support
only RSA key exchange, and deliberately serves a 16534-bit
RSA certificate, which is the maximum size that OpenSSL
will support without throwing an error during the handshake.’
Next, while encrypting the premaster secret to the server’s
16534-bit RSA public key to generate the ClientKeyEx-
change message for the TLS handshake, the client generates
1,996 bytes of PKCS#1v1.5 padding output, which, if using
CTR_DRBG, gives the server an opportunity to conduct a
side-channel attack against 125 AES encryptions. The attack
server learns the value of the padding generated by the client
by decrypting the padded RSA-encrypted message using its
private key. The attacker then recovers the PRG state via the
method described in Section IV, using the decrypted padding
as the ciphertexts.
The Problem of Padding Zero-Fill. As noted above, to
comply with the PKCS standard, there must be no 0x00
bytes in this padding. OpenSSL complies by first generating

3This is due to deliberate, hard-coded limits on message sizes that OpenSSL
will accept, in the interest of preventing denial of service attacks [61, 63].

padding of the total length required, and then replacing each
null byte with output from further calls to the PRG, each used
to byte. To encrypt to the malicious server’s large certificate,
OpenSSL generates 1,996 bytes of output for padding used as
per Figure 4. In expectation, a ciphertext will have eight such
0x00 bytes that need to be replaced.

Next, for each 0x00 byte in the padding, the generator
will have advanced an additional time. Since the attacker must
brute force over the additional entropy added at each step, this
increases the search space exponentially in the number of bytes
generated in Step 2 to recover the final PRG state.
Bypassing RAND_add. However, as the initial 1996
padding bytes (generated during the initial Padding Genera-
tion step) have a uniform distribution over the 256 possible
byte values, the probability of the padding not containing
0x00 is (255/256)199. We therefore expect that once every
2470 ~ 2'1-3 TLS handshakes, the padding generated after the
Padding 1 step will not require additional calls to CTR_DRBG
in the Padding 2 step to produce a valid PKCS#1 v1.5 padding
string. Combining this with our success rate for state recovery
in Section V-B, an attacker can be expected to recover PRG
state once in every 2'® handshakes.

Nonce Recovery. With the PRG state recovered, the attacker
proceeds to recover the client’s ECDSA nonce. Since the
nonce is generated in a new call to the PRG, the PRG
is reseeded between our state recovery attack and nonce
generation. An attacker must therefore obtain the values used
during RAND_seed and RAND_add (Steps 3 and 4). The exact
strategy of recovering these values is implementation-specific.

G. Implementation Choices and Nonce Recovery

In this section we describe how implementations use the

addin parameter, and how they explicitly reseed the generator.
We describe how this impacts our ability to recover the
value of addin and entropy used during RAND_seed and
RAND_add (Steps 3 and 4) in Section VI-F.
FortiOS. FortiOS does not implement RAND_seed and
RAND_ add, and instead relies on the nist_drbg library’s inter-
nal reseed counter. As a result, RAND seed and RAND_add
do not cause a state update, reducing the attack complexity.

Furthermore, as FortiOS does not not use the optional
additional input for calls to generate, the PRG can be wound
forward without the offline search for additional input.
Custom Parameters for FortiOS. We modify the For-
tiOS implementation to illustrate that even if it were to
improve its reseeding and updating strategies, the implemen-
tation can be attacked in the absence of sufficiently high-
quality entropy input. To evaluate this, we modified the
FortiOS RAND_METHOD behavior to cause it to reseed during
RAND_seed and RAND_add. Moreover, we added support
for the additional data parameter, filling it with a microsecond
timestamp to emulate OpenSSL FIPS.

OpenSSL FIPS. The OpenSSL 1.0.2 FIPS module also
does not reseed the CTR_DRBG during RAND_seed and
RAND_add. Instead, these calls add the entropy to a general
entropy pool from which the PRG can later be reseeded with a

12

call to reseed in compliance with SP 800-90A. We estimated
the amount of entropy added during generate calls to be 12
bits.

OpenSSL 1.1.1. In OpenSSL 1.1.1 (the latest version at the
time of writing) the maintainers rewrote much of the random
number generation APIL. Due to the significant changes, this
code was professionally audited twice [2, 71], both times
finding only minor flaws with the PRG implementation. The
implementation gathers additional input from a variety of
sources and feeds it into an entropy pool. These include system
event timing data, time, thread ids and output from the OS or
hardware random number generators. Given this complexity,
we did not estimate the entropy added in reseeding.

The ECDSA nonce generation mechanism in OpenSSL

1.1.1 was also improved. The nonce is generated from a hash
of the private key, along with the transcript, and PRG output.
The inclusion of secret data ensures that even if the PRG is
compromised, the nonce cannot be recovered. Together, these
measures preclude both state and nonce recovery.
NetBSD. The NetBSD kernel provides a source of random
numbers that can be used by a TLS implementation. We
consider an implementation that, like FortiOS, chooses to
source random numbers for OpenSSL from the system PRG
without modification. NetBSD provides additional data in to
CTR_DRBG in the form of the least significant 32 bits of
the rdtsc cpu counter. If this counter is not available, NetBSD
uses the kernel’s current time in microseconds, and further falls
back to an integer counter if the kernel clock is not yet running.
It is not possible for applications to add further entropy as
NetBSD does not externally expose the reseed and update
functions, and thus we do not model any additional entropy
introduced by RAND_seed and RAND_ add.

H. Evaluation

In this section, we empirically evaluate the difficulty of
extracting ECDSA signing keys from TLS clients given the
different implementation choices described in Section VI-G.
In order to evaluate the effects of different parameter choices
on attack complexity, we reverse-engineered the FortiOS
CTR_DRBG implementation and reimplemented it ourselves
using the nist_rng library, so that we could easily adjust
parameters and hook it into implementations. We modeled
attack difficulty against the other implementations by adjusting
addin and reseeding behaviors to match the descriptions in
Section VI-G of each implementation.

The Victim. For our victim TLS client, we used the sample
TLS client code available in the OpenSSL documentation [60],
configured to use mutual authentication and the nist_rng
library with our choice of modeling parameters. We configured
the client to authenticate using an ECDSA certificate with
NIST P-256. For the ECDSA nonce, we used the raw PRG
output, which matches the behavior of all implementations
considered in Section VI-G, except OpenSSL 1.1.1.

The Malicious TLS Server. Our malicious server was the
default OpenSSL tool, instrumented to dump TLS transcripts
and ECDSA signatures to the filesystem, and configured to

Target Sources Search Reduced CPU
Space Space Time
OpenSSL FIPS time, PID 2% 22 30 minutes
counter
NetBSD rdtsc 264 246 2000 years
FortiOS none 0 0 N/A
Custom Params time 248 243 200 years

TABLE I: Nonce Recovery Search. We calculated the search
space for the attack described in Section VI-G. Timings
were extrapolated from smaller timings on our test machine.
OpenSSL 1.1.1 is excluded from experimental evaluation
due to its non-vulnerable nonce generation mechanism. The
full search space corresponds to the search complexity of
all possible timestamps of that size, and the reduced space
corresponds to a search of one standard deviation from the
mean required search, starting from the approximate timing of
the encryption operation we gained from our timing tattacks,
calculated across 100 trials.

support only RSA key exchange cipher suites with a 16384-
bit RSA certificate, the largest allowed key size as discussed
in Section VI-F.

PRG State Recovery for Winding Forward. After a
TLS connect to the malicious server, we use Flush+Reload
to recover the PRG state, as described in Section IV. We
then brute forced addin and additional entropy to recover the
ECDSA nonce, which consists of raw PRG output.

Our ability to wind the generator forward largely depends
on the quantity of entropy injected between state recovery and
nonce generation. Table I summarizes the entropy sources and
brute force search space for each implementation.

Using Side-Channel Information for Space Reduction. We
note that the attacker can use the same cache side channel
used for state recovery to reduce the search space over the
additional entropy sources. By placing additional tickers and
using timing data acquired during the state recovery process,
we narrow down the set of timestamps or CPU counter values
that we need to search. We empirically evaluate the amount
of data that can gained through the instrumentation already in
place for conducting state recovery in Table I as well. We note
the entropy brute forcing is highly parallelizable, because after
the SSL/TLS handshake has been performed, each element of
the search space can be tested independently.

Empirical Results. Our attack succeeded against FortiOS
in negligible time (following state recovery) and against
OpenSSL FIPS after thirty minutes (22! work) using the
hardware setup from Section V-B. For NetBSD and the custom
parameters the search space was beyond our computational
capabilities, and we terminated our search after approximately
one hour of searching in both cases. We tabulate our results
in Table I. While our experimental results are limited by our
CPU'’s speed of ~ 222 elliptic curve scalar mutiplications per
hour, Vanhoef and Ronen [83] achieve a rate of 23° operations
per hour using a commodity GPU. We therefore anticipate that

13

using their setup, the custom parameters search (2*3 work)

would be completed within two weeks. The attack on NetBSD
(2% work) would likewise be completed in about 4 months
on a single GPU.

Handling AES-256. To demonstrate key recovery under
the constrained set of known ciphertexts available in the TLS
setting of Section VI, we implemented our attack using AES-
128. In Section VII, we handle AES-256 in the SGX setting.

VII. ATTACKING FULL ENTROPY IMPLEMENTATIONS

The attack in Section VI relies on both the ability to observe
the output of the PRG and brute force the limited entropy
of the state update. These are not fundamental requirements,
however, as by carrying out a higher-resolution cache attack,
we can remove these limitations, and develop a blind attack
in which the attacker can observe the victim’s cache access
patterns but not the PRG output. Furthermore, our attack only
requires observing two AES encryptions and thus is feasible
even when the update entropy is too high to brute force.

However, to achieve this, we require a stronger side-channel
adversary, one who can observe the cache accesses during AES
encryption at a high temporal resolution. Such an attacker can
be achieved, for example, in the setting where the victim runs
within an SGX enclave on a host with an attacker-controlled
operating system. This scenario is within the threat model
for SGX enclaves, and past research has demonstrated that
it enables high resolution side-channel attacks [33, 80, 84].

We begin with background on SGX, cache attacks on SGX,
and the SGX threat model (Section VII-A). We then present
our novel differential cryptanalysis technique for exploiting
side-channel information (Section VII-B). Finally, we evaluate
our attack on an SGX port of the mbedTLS library (Sec-
tion VII-D).

A. Secure Enclave Technology

Intel Software Guard Extensions (SGX) [32] is an extension
of the x86 instruction set that supports private regions of
memory called enclaves. The contents of these enclaves cannot
be read by any code running outside the enclave, including
kernel and hypervisor code. This in theory allows a user-level
process to protect its code and data from a highly privileged
adversary, such as a malicious operating system or hypervisor.
Cache Attacks on AES Inside SGX. Although SGX protects
the enclave from a malicious OS, it renders enclaved code
more vulnerable to side channel attacks. Specifically, the cache
attack of Section IV can only observe the overall access pattern
over an entire encryption. However, when the victim runs in an
SGX enclave, a malicious operating system can obtain much
finer temporal resolution. This allows us to observe cache
accesses after each of the 16 accesses to the AES T-tables
in each of the encryption rounds [33, 80].

Threat Model. Following previous work [11, 55, 81,
89], in this section we assume a root-privileged attacker who
controls the entire OS. This is in agreement with Intel SGX’s
threat model, where an enclave guarantees confidentiality and
integrity, even against a malicious OS and hypervisor. Unlike

the attack described in Section VI, we do not assume that
the enclaved TLS client is willing to connect to a malicious
attacker-controlled server, or uses imperfect PRG reseeding.

B. Differential Cryptanalysis of CTR_DRBG in the Presence
of Side Channel Leakage

We provide the additional details about AES required for the
differential attack. AES is a substitution-permutation cipher [8]
that operates in a sequence of rounds on a 128-bit internal state
S. Each round mixes the state and combines the mixed state
with a round key. For a plaintext x, the initial state is 5o = &
K. Each consecutive round calculates S; 11 = P(S;) B K41,
where P is the state mixing function and K is the key for the
4™ round. For efficient software implementation, the mixing
step is implemented using four T-tables. Each byte of the state
selects one entry from a T-table and, since the T-table entries
are 32 bits wide, each state bytes affects four consecutive bytes
in the mixed state. For example, we can calculate the first four
bytes of state S;41 by:

Sit+1,0..3 = To[S;,0]®T1[S;,5]8T2[S},10]8T3[S;15]|BKj11,0..3
1
As before, our cache attack targets accesses to these T-
tables. Because we cannot distinguish between entries in the
same cache line, the cache leaks only the four most significant
bits (MSBs) of each byte of the state in each round. Let ()¢
denote setting the four least significant bits of each byte to
zero, then the leakage on byte k is L = (Sjx)v. With a
known plaintext x, we can use L; j to recover the 4 MSBs of
every byte of Ky because (Ko r)u = (zx)v © Lo k-
Unfortunately, in our blind attack we do not know z.
Consequently, we cannot learn information on K, from the
leakage of the first round. Instead, we use the known difference
between the plaintexts used in consecutive rounds of AES-
CTR to recover the AES state. From the state, we can
recover the keys, plaintexts, and ciphertexts. This is in close
correspondence to the changes targeted in differential fault
attacks [7]. We combine a closely related analysis with our
side channel leakage to form the basis of our attack.
Notation. We use the following notation:

1) Tp..T5 is the array of 4 AES T-Tables, where T;[j] is the
value in location j of Table .

2) (x)y denotes the value of x with the lower four bits
(nibble) in each byte set to 0.

3) L; is the value leaked from the cache attack for byte
k of round j in trace ¢. The leaked value is only the 4
MSBs and the lower nibble is always 0.

4) S; j is the real value of the state byte k of round j in
trace . G; ;1 is our current guess for this byte.

5) RA;) the value of the differential Sp ;; @ S1 %, and
A j; is our current guess for this value.

6) LA, = Lok ® L1 (lower nibble is always 0).

7) Kj 1 is the key value of byte £ of round j.

Differential Analysis. By analyzing the difference between

the state of two encryptions, we can recover state information
that is independent of the round keys. In AES-CTR, for two

14

Algorithm 3 Find possible guesses for the last state 0 byte

1: function LASTSTATEOBYTE(Lg 0,15, No,15, LA1,0..3)
2 GuessList0 < Empty

3 for Nibble + 0 to 2* — 1 do

4 Go,0,15 = Lo,0,15@ Nibble

5: Ay 9.3 =T5[Go0,15] ® T3]Go,0,15 B Ao 15]

6 if <A1,0..3>U = LA170__3 then

7 GuessList0.append(Go 0,15, A1,0..3)

8

return GuessListO

consecutive plaintexts 0 and x1 we know that x1 = 20 + 1,
so with probability (255/256) the two plaintexts only differ in
the last byte by some value A... As the state of round 0 is
simply the plaintext XOR with K, the plaintext difference is
preserved and RAg 15 = A, Using Equation (1) we get:

50.1,0..3 =T0[50,0,0) ® T1[50,0,5] ® T2[S0,0,10]
© T3[S0,0,15] © Kiy1,0.3
S1.1,0..3 =T0[S1,0,0) ® T1[51,0,5] © T2[S1,0,10]
® T5[51,0,15] ® Kit1,0.3
=T0[50,0,0] ® T1[50,0,5] ® T2[S0,0,10]
® T5[50,0,15 B RAo,15] © Kit1.0.3
LA10.3=L0,1,0.3® Li,1,0.3 = (50,1,0.3® 51,1,0.3)U
=(T3[S0,0,15] ® T3[S0,0,15 ® RAo15])u)

As (So,015)v = Lo,0,15 we only need to try the 16 options
for the lower four bits until we find a value that satisfies
Equation (2) and recover Spo,15 (see Algorithm 3). As
RAy,15 is unknown, we run Algorithm 3 with each possible
value to retrieve the full set of candidates. However, as
RAp15 = 2o ® z9 + 1 only eight candidates are possible.
The full key and plaintext recovery procedures are described
in Appendix A.
Using Three or More Traces. The above attack requires only
two traces to compromise the CTR_DRBG state. However, any
request for PRG output causes at least three encryptions, and
four when AES-256 is used as the underlying block cipher.
Our attack can be trivially extended to use the extra encryp-
tions to more efficiently eliminate candidates, which aids in
reducing the impact of noisy measurements.

C. Fine Grained Cache Attack

To generate the required traces, an attacker with OS level
privileges (root) monitors cache access through Prime+Probe.
The attack obtains fine-grained temporal resolution through
a controlled-channel [89] attack. A controlled-channel attack
involves disabling the present bit on the enclave’s page tables,
which by necessity are handled by the OS. By marking the
page containing the T-Tables as not-present, the attacker forces
an asynchronous enclave exit upon access to the table, thereby
transferring control to the attacker controlled OS.

Since all of the T-Tables lie in the same page, the at-
tacker must ‘toggle’ between the accesses by performing a
controlled-channel attack on a page access that occurs in

between each T-Table access. We use the page containing
the topmost frame of the stack for this, as the mbedTLS
implementation must first read the index into the T-Table from
the stack before each access.

Unlike the T-Table addresses, however, the location of the
stack is randomized by the SGX loader. We overcome this by
first using a controlled-channel attack to force an enclave exit
upon entrance to the AES function. We then mark all pages
in the enclave, except for the thread control structure (TCS),
saved state area (SSA), and the pages containing code, as not-
present. We then resume execution within the enclave; since
the first instruction of the function prologue is push_rbp,
control immediately returns to our segmentation fault handler.
Within the handler, we can determine which page caused
the segmentation fault, which in this case will be the page
containing the top of the stack.

In this manner, we learn the location of the stack for use in
our controlled-channel attack. Then, by forcing enclave exits
upon each access to the T-Tables, we use a last-level cache
(LCC) Prime+Probe attack to measure each T-Table access
separately.

To reduce the amount of noise in the attack, we used Intel’s

cache allocation technology to partition a single way of the
LLC to both the victim and attacking process, and used the
isolcpus kernel boot parameter to isolate them on a single
physical core.
Related Attacks. Roche et al. [73] also demonstrate a
blind attack on AES. However, they consider a particularly
powerful attacker who is able to generate arbitrary faults in
the key schedule. Jaffe [38] attacked counter mode encryption
with an unknown nonce, but required 216 consecutive block
encryptions. Ronen et al. [74] also showed a blind attack on
counter mode encryption targeting the authentication MAC.

D. Evaluation

The Victim. We performed our experiments on a Lenovo P50
laptop equipped with 16 GB of RAM and an Intel i7-6820HQ
CPU clocked at 2.7GHZ with a 8MB L3 cache. The laptop
was running Ubuntu 16.04.

Similar to [88], we demonstrate the viability of the differ-
ential attack against mbedtls-SGX [95], an SGX port of the
widely-used mbedtls library. To the best of our knowledge,
mbedtls-SGX is the only library currently available that fea-
tures a function SGX-based HTTPS client.

Attack Procedure. We demonstrate an end-to-end attack
on a connection between the TLS client and www.cia.gov,
with all of the client’s cryptographic operations taking place
within the enclave. We first mount a Prime+Probe attack to
recover the CTR_DRBG state used to generate the 256 bits
of the ECDH ephemeral private key (a total of five AES256
encryptions of an incrementing counter). Using the recovered
private key, we were able to calculate the premaster key and
subsequently decrypt the HTTPS communication. The details
of the side channel attack are left to Section VII-C.

Results. Due to high noise levels in some traces, our attack
successfully recovered the enclave’s CTR_DRBG state in

~
~

15

Design Certificates
CTR_DRBG 1694 (67.8%)
Hash_DRBG 906 (36.3%)
HMAC_DRBG 922 (37.0%)

Total implementations 2498

TABLE II: CMVP-Certified Uses of DRBG Designs.

36% of our 1000 trials. The online phase, during which we
mount the LCC Prime+Probe, takes less than two seconds.
The offline phase in which we recover the state of the PRG
and decrypt the TLS stream took negligible time.

After recovering the PRG state, we recovered the TLS

symmetric encryption keys and GCM 1Vs, and subsequently
decryped the HTTPS request.
Attack Complexity. The complexity of the attack is
dominated by calculating the set of key candidates. Generating
each candidate requires 4 - 2! T-Table look-ups for each
trace. Eliminating candidates by decryption required negligible
work.

We tested the number of remaining candidates in each step
experimentally; both in the noise free case (using a simulation
over 500 random keys) and in the noisy case (1000 SGX
attacks). Performing the attack with two traces yields 1.13-2°
and 1.52 - 2! key candidates for the noise free and noisy
cases respectively. Running the analysis with three traces
immediately yields the single candidate correct in each list in
the simulated environment. However, noise in the real-world
setting required us to provide an extra fourth trace to narrow
the analysis to a single candidate.

VIII. IMPACT

In order to evaluate the impact of our findings, we scraped a
public database of security certificates released under NIST’s
Cryptographic Module Validation Program (CMVP).
Government Certification. The CMVP allows vendors to
certify that their cryptographic modules meet minimal require-
ments to sell to the United States and Canadian governments.

In order to comply with FIPS 140-2, implementations must
use one of the PRGs described in SP 800-90A.

Certification can apply narrowly to a specific product model,
or apply to a product line. Most major vendors of network
devices and operating systems certify their products.
Database Scraping. We scraped a public facing database of
CMVP certifications on May 13, 2019 to assess the potential
impact of our findings. Our results are tabulated in Tables II-
III. CTR_DRBG was the most popular design, supported by
67.8% of the implementations in the database. Of 2498 im-
plementations present, 1694 (67.8%) supported CTR_DRBG.
Of these 461 (25%) exclusively supported AES-128, 1163
(69%) supported AES-128 along with other ciphers, and 1227
(72%) supported AES-256. The CMVP database also permits
modules to certify whether prediction resistance is enabled for
the DRBG implementation. Of the 1694 total implementations

Cipher Certificates
3DES 19 (1%)
AES-128 1163 (69%)
AES-192 598 (35%)
AES-256 1227 (72%)
CTR_DRBG 1694

TABLE III: Counter DRBG Certificates. A majority of the
1694 certified implementations using CTR_DRBG use either
AES-128 or AES-256. An implementation may support more
than one of these modes.

that supported CTR_DRBG, 66 provided no information about
prediction resistance, 618 supported use of the DRBG in either
mode with the default unspecified, 433 explicitly enabled
prediction resistance, and 577 did not support prediction
resistance. Among the CTR_DRBG implementations, 85 did
not use a derivation function and 1137 did not support an
alternate DRBG algorithm.

IX. DISCUSSION

Limitations. Our results rely on a victim’s use of T-Table
AES, which has long been known to leak information via
side channels. However, as illustrated in this work T-Table
AES is still used by many modern implementations. In the
non-SGX setting, our TLS attack requires code execution
on the client, and further succeeds only after thousands of
handshakes. This potentially allows for detection of an on-
going attack. While we demonstrate our SGX attack against
the only library that provides a working end-to-end example of
an HTTPS client, the Intel-supported SGX-SSL cryptographic
library [36] (which does not provide support for TLS) uses
SGX’s hardware-based RDRAND PRG and therefore is not
vulnerable to a T-Table based attack.

Countermeasures. CTR_DRBG’s flaws, both theoretical
and practical, suggest that implementations need to take great
care when choosing this design. Where FIPS compliance is
required, HASH_DRBG and HMAC_DRBG give better secu-
rity guarantees [86]. Where CTR_DRBG cannot be replaced,
implementers should use AES hardware instructions, limit the
quantity of data that can be requested in a single call, reseed
frequently, and populate addin with high quality entropy,
to provide defense in depth against our attacks. In general,
constant-time code should be used for all cryptographic appli-
cations, unless hardware support (e.g., AES-NI) is available.
Mismatches Between Theory and Practice. Significant
effort has been dedicated to formalizing PRG security prop-
erties and designing provably secure constructions. However,
theoretical analyses of many of the most commonly-used de-
signs in practice (the Linux RNG [21], CTR_DRBG [86]) have
found that these designs do not meet basic security properties
such as robustness against state compromise. Unfortunately,
implementers are often hesitant to adopt countermeasures
without a concrete demonstration of vulnerability.

16

The Fragility of ECDSA. The fragility of DSA and ECDSA
in the face of random number generation and implementation
flaws has been repeatedly demonstrated in the literature [12,
91]. It is inevitable that a random number generation fail-
ure would compromise a single session or a signature, but
DSA/ECDSA are particularly vulnerable to compromise of
long-term secrets. Deterministic ECDSA, defined in RFC6979
[69], is the recommended countermeasure.

Future of FIPS. FIPS 140-3 is expected to contain
requirements for side channel mitigations from the inclusion
of NIST SP 800-140F, which has yet to be issued and becomes
effective in September 2019. FIPS 140-2 CMVP certifications
will be continue to be issued at least through 2021 [59].
This is a promising step towards widespread deployment of
side-channel-resistant cryptography; however, it remains to be
seen how improved requirements for certifying modules will
feed back into the design and standardization of more secure
primitives.

Using RDRAND without a PRG. Using the built-in CPU PRG
to mitigate concerns with software PRGs is not a panacea.
In several SGX ports we have reviewed (including Intel’s
official port for OpenSSL [36]) the software PRG was replaced
with calls to the RDRAND instruction. While using the CPU’s
generator avoids software side channels, the existence of hard-
to-discover bugs in PRGs integrated into CPUs [50, 87] mean
this feature is better used as one of many sources of entropy
for a provably secure software PRG.

ACKNOWLEDGEMENTS

This work was supported by the National Science Founda-
tion under grant no. CNS-1651344, by the ISF under grant
number 1523/14, by gifts from Intel and AMD corporations,
and by the Defense Advanced Research Projects Agency
(DARPA) under contract FA8750-19-C-0531. Eyal Ronen is a
member of CPIIS.

REFERENCES

T. Allan, B. B. Brumley, K. Falkner, J. van de Pol, and
Y. Yarom, “Amplifying side channels through perfor-
mance degradation,” in ACSAC, 2016.

J.-P. Aumasson and A. Vennard, Audit of OpenSSL’s
randomness generation, 2018. [Online]. Available: ostif.
org/wp - content/uploads/2018/09/opensslrng - audit -
report.pdf.

J. Austen, Pride and Prejudice. 1813.

N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom,
“““Ooh aah... just a little bit” : A small amount of side
channel can go a long way,” in CHES, 2014.

D. J. Bernstein, Cache-timing attacks on AES, 2005.
——, Fast-key-erasure random-number generators,
2017. [Online]. Available: blog.cr.yp.to/20170723 -
random.html.

E. Biham and A. Shamir, “Differential fault analysis of
secret key cryptosystems,” in CRYPTO, 1997.

(1]

(2]

ostif.org/wp-content/uploads/2018/09/opensslrng-audit-report.pdf
blog.cr.yp.to/20170723-random.html

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

A. Biryukov, “Substitution—permutation (sp) network,”
in Encyclopedia of Cryptography and Security, H. C. A.
van Tilborg and S. Jajodia, Eds. Boston, MA: Springer
US, 2011, pp. 1268-1268. [Online]. Available: https:
//doi.org/10.1007/978-1-4419-5906-5_619.

D. Bleichenbacher, “Chosen ciphertext attacks against
protocols based on the RSA encryption standard pkcs#
1,” in CRYPTO, 1998.

J. Bonneau, Robust final-round cache-trace attacks
against AES, TACR ePrint archive 2006/374, 2006.

F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen, S.
Capkun, and A.-R. Sadeghi, “Software grand exposure:
SGX cache attacks are practical,” in WOOT, 2017.

J. Breitner and N. Heninger, “Biased nonce sense:
Lattice attacks against weak ECDSA signatures in cryp-
tocurrencies,” in FC, 2019.

S. Briongos, P. Malagén, J.-M. de Goyeneche, and J.
Moya, “Cache misses and the recovery of the full AES
256 key,” Applied Sciences, no. 5, 2019.

Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and
E. F. Haratsch, “Vulnerabilities in MLC NAND flash
memory programming: Experimental analysis, exploits,
and mitigation techniques,” in HPCA, 2017.

M. J. Campagna, “Security bounds for the NIST
codebook-based deterministic random bit generator.,”
2006.

C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B.
von Berg, P. Ortner, F. Piessens, D. Evtyushkin, and
D. Gruss, A systematic evaluation of transient execution
attacks and defenses, arxiv:1811.05441, 2018.

S. Checkoway, R. Niederhagen, A. Everspaugh, M.
Green, T. Lange, T. Ristenpart, D. J. Bernstein, J.
Maskiewicz, H. Shacham, and M. Fredrikson, “On the
practical exploitability of dual EC in TLS implementa-
tions,” in USENIX Security, 2014.

S. Checkoway, J. Maskiewicz, C. Garman, J. Fried, S.
Cohney, M. Green, N. Heninger, R.-P. Weinmann, E.
Rescorla, and H. Shacham, “A systematic analysis of
the Juniper dual EC incident,” in CCS, 2016.

S. N. Cohney, M. D. Green, and N. Heninger, “Practical
state recovery attacks against legacy RNG implementa-
tions,” in CCS.

C. Disselkoen, D. Kohlbrenner, L. Porter, and D. M.
Tullsen, “Prime+Abort: A timer-free high-precision L3
cache attack using Intel TSX,” in USENIX Security,
2017.

Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergniaud, and
D. Wichs, “Security analysis of pseudo-random number
generators with input,” in CCS, 2013.

C. Garcia and B. Brumley, “Constant-time callees with
variable-time callers,” in USENIX Security, 2017.
GnuPG Project, Gnupg, 2019. [Online]. Available: ww
w.gnupg.org.

M. D. Green, Twitter thread on openssl. [Online].
Available: \url{https://twitter.com/matthew_d_green/
status/1115013260783255558?s=12}.

17

[27]

——, The strange story of “extended random”, 2017.
[Online]. Available: blog.cryptographyengineering.com/
2017/12/19/the-strange-story-of-extended-random/.

, Wonk post: Chosen ciphertext security in public-
key encryption (part 2), 2018. [Online]. Available: blog.
cryptographyengineering.com/2018/07/20/wonk- post-
chosen- ciphertext- security- in- public-key- encryption-
part-2/.

L. Groot Bruinderink, A. Hiilsing, T. Lange, and Y.
Yarom, ‘“Flush, Gauss, and reload — a cache attack
on the BLISS lattice-based signature scheme,” in CCS,
2016.

D. Gruss, R. Spreitzer, and S. Mangard, “Cache tem-
plate attacks: Automating attacks on inclusive last-level
caches,” in USENIX Security, 2015.

D. Gruss, C. Maurice, K. Wagner, and S. Mangard,
“Flush+Flush: A fast and stealthy cache attack,” in
DIMVA, 2016.

S. Gueron and Y. Lindell, “GCM-SIV,” in CCS, 2015.
D. Gullasch, E. Bangerter, and S. Krenn, “Cache games
- bringing access-based cache attacks on AES to prac-
tice,” in IEEE S&P, 2011.

M. H., Intel SGX for dummies (intel SGX design objec-
tives), 2013. [Online]. Available: software.intel.com/en-
us/blogs/2013/09/26/protecting - application - secrets -
with-intel-sgx.

M. Hihnel, W. Cui, M. Peinado, and T. Dresden,
“High-resolution side channels for untrusted operating
systems,” in USENIX ATC, 2017.

N. Heninger, Z. Durumeric, E. Wustrow, and J. A.
Halderman, “Mining your Ps and Qs: Detection of
widespread weak keys in network devices,” in USENIX
Security, 2012.

S. Hirose, “Security analysis of DRBG using HMAC in
NIST SP 800-90,” in WISA, 2009.

Intel, Intel software guard extensions SSL, 2017. [On-
line]. Available: github.com/intel/intel-sgx-ssl.

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar,
“Wait a minute! A fast, cross-VM attack on AES,” in
RAID, 2014.

J. Jaffe, “A First-Order DPA Attack Against AES
in Counter Mode with Unknown Initial Counter,” in
CHES, 2007.

H. Jungheim, 2019. [Online]. Available: henric.org/ran
dom/#nistrng.

B. Kaliski, “PKCS #1: RSA encryption version 1.5,”
RFC 2313, 1998.

W. Kan, “Analysis of underlying assumptions in NIST
DRBGs,” 2007.

N. Karimi, A. K. Kanuparthi, X. Wang, O. Sinanoglu,
and R. Karri, “MAGIC: Malicious aging in circuits/-
cores,” TACO, vol. 12, no. 1, p. 5, 2015.

C. F. Kerry, A. Secretary, and C. R. Director, FIPS pub
186-4: Digital signature standard (DSS), 2013.

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu, “Flipping bits

https://doi.org/10.1007/978-1-4419-5906-5_619
www.gnupg.org
blog.cryptographyengineering.com/2017/12/19/the-strange-story-of-extended-random/
blog.cryptographyengineering.com/2018/07/20/wonk-post-chosen-ciphertext-security-in-public-key-encryption-part-2/
software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
github.com/intel/intel-sgx-ssl
henric.org/random/#nistrng

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

in memory without accessing them: An experimental
study of dram disturbance errors,” in ACM SIGARCH
Computer Architecture News, 2014.

A. Klyubin, Some SecureRandom thoughts, 2013. [On-
line]. Available: android-developers.googleblog.com/
2013/08/some-securerandom-thoughts.html.

P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom, “Spectre attacks: Exploiting speculative
execution,” in /[EEE S&P, 2018.

A. Kurmus, N. Ioannou, N. Papandreou, and T. P.
Parnell, “From random block corruption to privilege
escalation: A filesystem attack vector for Rowhammer-
like attacks,” in WOOT, 2017.

A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “Ram-
bleed: Reading bits in memory without accessing them,”
in 41st IEEE Symposium on Security and Privacy
(S&P), 2020.

S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and
M. Peinado, “Inferring fine-grained control flow inside
SGX enclaves with branch shadowing,” in USENIX
Security, 2016.

H.-T. Leung, Redhat bug 1150286 - rdrand instruction
fails after resume on AMD CPU, 2019. [Online]. Avail-
able: bugzilla.kernel.org/show_bug.cgi?1d=85911.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y.
Yarom, and M. Hamburg, “Meltdown: Reading Kernel
Memory from User Space,” in USENIX Security, 2018.
K. Michaelis, C. Meyer, and J. Schwenk, “Randomly
failed! The state of randomness in current Java imple-
mentations,” in CT-RSA, 2013.

P. R. Mihir Bellare, PSS: Provably secure encoding
method for digital signatures, 1998.

M. Minkin, D. Moghimi, M. Lipp, M. Schwarz, J. V.
Bulck, D. Genkin, D. Gruss, F. Piessens, B. Sunar, and
Y. Yarom, Fallout: Reading kernel writes from user
space, 2019.

A. Moghimi, G. Irazoqui, and T. Eisenbarth,
“Cachezoom: How SGX amplifies the power of
cache attacks,” in CHES, 2017.

K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch,
“PKCS #1: RSA cryptography specifications version
2.2, RFC 8017, 2016.

K. Mowery, S. Keelveedhi, and H. Shacham, “Are AES
x86 cache timing attacks still feasible?” In CCSW, 2012.
M. Neve and J.-P. Seifert, “Advances on Access-Driven
Cache Attacks on AES,” in Selected Areas in Cryptog-
raphy, 2007.

NIST, “Announcing issuance of federal information
processing standard (FIPS) 140-3, security requirements
for cryptographic modules,” 2019.

OpenSSL, SSL/TLS Client, 2018. [Online]. Available:
wiki.openssl.org/index.php/SSL/TLS_Client.

18

Openssl software failure for RSA 16K modulus, 2016.
[Online]. Available: mta.openssl.org/pipermail/openssl-
users/2016-July/004056.html.

OpenSSL Software Foundation, User Guide for the
OpenSSL FIPS Object Module v2.0, 2013.
[openssl.org #4063] re: Client hello longer than 2'*
bytes are rejected, 2015. [Online]. Available: mta.open
ssl.org/pipermail/openssl-dev/2015-September/002860.
html.

D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks
and counter-measures: The case of AES,” in CT-RSA,
2006.

C. Percival, Cache missing for fun and profit, 2005.
N. Perlroth, Government announces steps to restore
confidence on encryption standards, 2013. [Online].
Available: bits . blogs . nytimes . com /2013 /09 /10 /
government - announces - steps - to - restore - confidence -
on-encryption-standards.

P. Pessl, L. Groot Bruinderink, and Y. Yarom, “To
BLISS-B or not to be: Attacking strongSwan’s imple-
mentation of post-quantum signatures,” in CCS, 2017.
R. Poddar, A. Datta, and C. Rebeiro, “A cache trace
attack on CAMELLIA,” in InfoSecHiComNet, 2011.

T. Pornin, “Deterministic Usage of the Digital Signature
Algorithm (DSA) and Elliptic Curve Digital Signature
Algorithm (ECDSA),” RFC 6979, 2013.

T. O. Project, OpenSSL: The open source toolkit for
SSL/TLS, 2003.

Quarkslab SAS, Openssl security assessment, 2019.
[Online]. Available: ostif.org/wp-content/uploads/2019/
01/18-04-720-REP_v1.2.pdf.

E. Rescorla, “The transport layer security (TLS) proto-
col version 1.3,” RFC 8446, 2018.

T. Roche, V. Lomné, and K. Khalfallah, “Combined
fault and side-channel attack on protected implemen-
tations of AES,” in CARDIS, 2011.

E. Ronen, A. Shamir, A. O. Weingarten, and C. Oflynn,
“IoT goes nuclear: Creating a Zigbee chain reaction,”
in I[EEE S&P, 2018.

S. Ruhault, “SoK: Security models for pseudo-random
number generators,” FSE, 2017.

T. Shrimpton and R. S. Terashima, “Salvaging weak
security bounds for blockcipher-based constructions,” in
ASIACRYPT, 2016.

D. Shumow and N. Ferguson, “On the possibility of a
back door in the NIST sp800-90 dual EC PRNG,” in
CRYPTO, 2007.

R. Spreitzer and T. Plos, “Cache-access pattern attack
on disaligned AES T-Tables,” in Constructive Side-
Channel Analysis and Secure Design, 2013.

E. Tromer, D. A. Osvik, and A. Shamir, “Efficient
cache attacks on AES, and countermeasures,” Journal
of Cryptology, no. 1, 2010.

J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step,”
in SysTEX, 2017.

android-developers.googleblog.com/2013/08/some-securerandom-thoughts.html
bugzilla.kernel.org/show_bug.cgi?id=85911
wiki.openssl.org/index.php/SSL/TLS_Client
mta.openssl.org/pipermail/openssl-users/2016-July/004056.html
mta.openssl.org/pipermail/openssl-dev/2015-September/002860.html
bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards
ostif.org/wp-content/uploads/2019/01/18-04-720-REP_v1.2.pdf

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]
[95]

[96]

[97]

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B.
Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch, Y.
Yarom, and R. Strackx, “Foreshadow: Extracting the
keys to the Intel SGX kingdom with transient out-of-
order execution,” in USENIX Sec, 2018.

S. Van Schaik, A. Milburn, S. Osterlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida,
“RIDL: Rogue in-flight data load,” in IEEE S&P, 2019.
M. Vanhoef and E. Ronen, “Dragonblood: A security
analysis of wpa3’s sae handshake.,” eprint, 2019.

W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V.
Bindschaedler, H. Tang, and C. A. Gunter, “Leaky
cauldron on the dark land: Understanding memory side-
channel hazards in SGX,” in CCS, 2017.

O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B.
Kasikci, F. Piessens, M. Silberstein, R. Strackx, T. F.
Wenisch, and Y. Yarom, Foreshadow-NG: Breaking the
virtual memory abstraction with transient out-of-order
execution, 2018.

J. Woodage and D. Shumow, “An Analysis of the NIST
SP 800-90A Standard.,” in EUROCRYPT, 2019.
Wtdrog, Systemd Issue #11810 - Can’t suspend again
after suspending one time, 2019. [Online]. Available:
github.com/systemd/systemd/issues/11810.

Y. Xiao, M. Li, S. Chen, and Y. Zhang, “Stacco: Dif-
ferentially analyzing side-channel traces for detecting
SSL/TLS vulnerabilities in secure enclaves,” in CCS,
2017.

Y. Xu, W. Cui, and M. Peinado, “Controlled-channel
attacks: Deterministic side channels for untrusted oper-
ating systems,” in [EEE S&P, 2015.

M. Yan, C. Fletcher, and J. Torrellas, Cache telepathy:
Leveraging shared resource attacks to learn DNN ar-
chitectures, arxiv:1808.04761, 2018.

Y. Yarom and N. Benger, Recovering OpenSSL ECDSA
nonces using the Flush+Reload cache side-channel
attack, IACR ePrint archive 2014/140, 2014.

Y. Yarom and K. Falkner, “textsc Flush+Reload : a high
resolution, low noise, L3 cache side-channel attack,” in
USENIX Security, 2014.

K. Q. Ye, M. Green, N. Sanguansin, L. Beringer, A.
Petcher, and A. W. Appel, “Verified correctness and
security of mbedTLS HMAC-DRBG,” in CCS, 2017.
S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S.
Savage, “When private keys are public,” in IMC, 2009.
F. Zhang, mbedtls-SGX, 2018. [Online]. Available: gith
ub.com/bl4ck5un/mbedtls-SGX.

N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou,
“TruSpy: Cache side-channel information leakage from
the secure world on ARM devices,” ePrint, 2016.

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Cross-tenant side-channel attacks in PaaS clouds,” in
CCS, 2014.

19

01 2 3 45 6 7 8 9 101112 13 14 15

N
Rowndi[*[* 5[] [[[][]]]]

Byte:
Round 0| | | |

Rond2f * [«][« fe=[e]*]-]]=[]*["]*]"]

Romds[e[e[« [=[-]=]=[-]=]=[]*]"]]"]"]

Fig. 5: Single byte differential propagation in AES state

Algorithm 4 Find possible guesses for byte 0 of Round 1

1: function BYTEOROUND](LmLo, Al,o’ LA2)0.,3)
2 GuessList] <— Empty

3 for Nibble < 0 to 2* — 1 do

4 GO,l,O = LO,l,OEB Nibble

5: Do 0.3 = Tp[Go,1,0] ® To[Go1,0 ® Ai o]
6 if <A2,0..3>U = LAQ)O',g then

7 GuessList1.append(Go, 1,0, A20..3)

8

return GuessListl

APPENDIX A
THE FULL DIFFERENTIAL CRYPTANALYSIS

Differential Propagation. In a differential attack we can
only recover state bytes that differ in the two encryptions. Our
attacks thus follows the “differential propagation” in the AES
rounds as shown in Figure 5. This will allow us to recover
one byte of state of round 0, 4 bytes of the state of round 1,
and the entire states from round 2 and above.

From State to Key and Plaintext Recovery. Assuming we
were able to recover the full values of the states in rounds j
and j + 1, we can now recover the key for round j + 1:

Sij+1=Kj11®P(S;;) and Kjy1 = 8ij+1©P(S5; ;)

As the AES key schedule for deriving the round keys is

invertible, we can use any 128 bit round keys to recover the
original 128 bit AES key (we need two consecutive round keys
for 256 bit AES keys). From the recovered key and state we
can calculate both the plaintext and ciphertext.
Iterative State Guess Elimination. In the beginning of
step 7 of our attack we have one or more possible guesses
for the values of the state bytes of round j. For each guess
we enumerate all possible guesses for state bytes in round
7+ 1, and efficiently eliminating guesses that does not satisfy
the above equations for the “differential propagation”. The
remaining guess are used as input for the next step of the
attack. When we have a guess for the state of two full rounds
we can try to recover the plaintext of the traces and verify that
they are indeed a part of an incriminating counter.

Note that using 3 or more traces helps in eliminating wrong
guesses, usually leaving just a single guess after each step.
The Full Attack. As we have seen we can retrieve
GuessListO that contains all possible guess for G 15 and
A1 .3 using Algorithm 3. For each guess in GuessList0 we

github.com/systemd/systemd/issues/11810
github.com/bl4ck5un/mbedtls-SGX

Algorithm 5 Find possible guesses for byte 0, 5, 10 and 15
of round 2
1: function BYTEO-5-10-15-ROUND2(Lyg 2 (0,5,10,15)»
As (0,5,10,15)> LA30..3)
GuessList2 <— Empty
IndxzList < [0,5,10,15]
for Guess < 0 to 2'6 — 1 do
A3z0.3=0
for i < 0to 3 do
Nibble = (Guess >> (i x 4))&0z f
Go,2,1ndzList[i] = Lo,2,IndeList[)® Nibble
Az .3 ©= Ti[Go 2, 1ndzList]i])
A3z .3 = Ti[Go 2, 1ndwList[i] © D2, ndeList[i]]
if <A3,0.,3>U = LA370”3 then
GuessListZ.append(Goz’(0’5710715), As.3)

R A S o

_ = =
N e

return GuessList2

—_
[95]

now try to recover 4 bytes from round 1 using a similar
method. As each of the 4 bytes affect different 4 bytes in
round 2, we run the same algorithm as in step 1 using different
values. In Algorithm 4 we show how to find the possible
guesses for G 1,0. A similar function will find the possible
guesses for Go1,1, Go,1,2 and Gp13. As we may have
more than one guess for each byte value, the full guess list
GuessListl is all the possible combinations of the different
guesses for each of the bytes.

In the third phase of our attack, we try to generate all of
the possible guesses for the entire state of round 2. Due to
the “Shift Row” transformation of AES, the value of each of
the 4 bytes in round 1 affect the values of distinct 4 bytes
in round 2 (see Figure 5). The same guessing logic as before
allows us to create the new guess list (see Algorithm 5 for
example). The guess list GuessList2 is created from all the
possible combinations of the guess for each 4 byte group (this
is done separately for each guess in GuessList1). We can repeat
the same process to use GuessList2 to create the guess list
GuessList3 for the state of round 3 (and in the case of AES
256 continue another round to get GuessList4).

20

