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Abstract. Collaborative robots that provide anticipatory assistance are able
to help people complete tasks more quickly. As anticipatory assistance is
provided before help is explicitly requested, there is a chance that this action
itself will influence the person’s future decisions in the task. In this work, we
investigate whether a robot’s anticipatory assistance can drive people to make
choices different from those they would otherwise make. Such a study requires
measuring intent, which itself could modify intent, resulting in an observer para-
dox. To combat this, we carefully designed an experiment to avoid this effect.
We considered several mitigations such as the careful choice of which human
behavioral signals we use to measure intent and designing unobtrusive ways to
obtain these signals. We conducted a user study (N =99) in which participants
completed a collaborative object retrieval task: users selected an object and a
robot arm retrieved it for them. The robot predicted the user’s object selection
from eye gaze in advance of their explicit selection, and then provided either
collaborative anticipation (moving toward the predicted object), adversarial
anticipation (moving away from the predicted object), or no anticipation (no
movement, control condition). We found trends and participant comments sug-
gesting people’s decision making changes in the presence of a robot anticipatory
motion and this change differs depending on the robot’s anticipation strategy.

Keywords: Anticipatory Motion·Eye Gaze·Human Robot Interaction·Human
Decision Making.

1 Introduction

Anticipatory assistance is the ability to continuously forecast a person’s actions and
take steps to assist in executing those predicted actions. Anticipation is an important
capability for collaborative human-robot systems to facilitate seamless interactions.

Consider a customer ordering a smoothie from a robot barista in a cafe. The customer
aims to choose ingredients that align with their tastes. The robot barista aims to
maximize customer satisfaction by making the smoothie accurately to the customer’s
choices while maximizing efficiency by acting in anticipation of their choice. Prior
research [11,12] has shown that in such situations the robot can capitalize on human
behaviors exhibited during the interaction (e.g., the customer’s eye gaze) to forecast
customer actions (e.g. smoothie ingredient selections) and use these forecasts to inform
its own action selection. This process increases the fluidity of the overall interaction
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(a) Robot analyzes par-
ticipant’s eye gaze (green
heatmap) to anticipate
candy choice.

(b) Robot takes antic-
ipatory collaborative
motion towards predicted
candy (left) or adversarial
motion (right).

(c) Participant selects
candy with button after
observing anticipatory
motion.

Fig. 1: Can anticipatory robot motions affect a user’s choice?

and reduces the overall smoothie making time. These desirable interaction qualities
are achieved due to the anticipatory assistance delivered by the robot.

Now consider a situation in which the robot has incorrectly predicted the customer’s
desired choice of ingredient. For example, the robot might anticipate the customer
wants to add artificial banana flavoring, while the user is actually deciding to add a
real banana to the smoothie. This creates a decision point for the customer: should they
change their original intent (and thereby their initially proposed action) or hold true to
their original plan? Regardless of the customer’s eventual decision, their action is now
clearly dependent on the robot’s decision to act in anticipation. While prior research has
shown that user actions can influence robot actions in order to engender anticipatory
assistance, we hypothesize that this influence is actually bidirectional, and
that the robot’s actions influence user actions, as well. Additionally, while
this example highlights an explicit decision point for clarity, we hypothesize that this
process can happen implicitly, as well.

To study this hypothesis we conducted a user study with a robot arm that implements
a collaborative 1-among-3 selection task. We designed this study to explore our main
research question: do anticipatory robot actions affect user decision making?
Participants in our study were presented with three bins, each filled with a unique variety
of candy. The robot monitored the participants’ eye gaze and used an online model to
map eye gaze to preferred candy bins. The robot then took no action (i.e. control) or
acted in anticipation of its expectation of the participants’ action, as determined through
their eye gaze. This action was performed in either a collaborative (towards a user’s
predicted choice) or adversarial manner (away from a user’s predicted choice, i.e., a
mistake), depending on the condition. We explore the idea that collaborative anticipation
and adversarial anticipation may lead to differences in the robot’s influence on the user.
Following this, the participant selected their preferred bin by pressing a button prompting
the robot to hand them the corresponding bin. This setup is shown in Figure 1.

Our study was designed to limit measurements that would influence user intent
outside of the robot’s anticipatory action. Such measurements included survey questions
requiring the user to explicitly articulate their intent and questions or prompts revealing
that the user’s choices would be closely monitored. This restriction prohibited us
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from obtaining ground truth measurements for initial user intent. We thus designed,
implemented, and tested a method to measure user intent before its explicit expression.
In line with previous research, we use a model of the user’s eye gaze in order to measure
this unarticulated intent [11,12,14].
With this study we address the following research questions:
Robot action-based intent re-shaping: Can a robot making anticipatory move-
ments (movement towards/away from a participant’s intended goal) affect a participant’s
eventual decision?
Unarticulated intent prediction through eye gaze: Does participant eye gaze
preceding an explicit decision accurately predict that decision?

We hypothesize that a user’s decision making process can be affected by a robot’s
anticipatory actions. We then present a user study that continuously measures the
development of user intent using eye gaze naturally exhibited during a selection task
and investigate if user intent can be altered by displaying anticipatory robot motions.
We find quantitative trends and qualitative results suggesting the bidirectional nature
of human robot interactions in anticipatory systems as well as differing responses to
different types of anticipatory systems. Finally, we discuss challenges we encountered
during our study and propose strategies to mitigate these challenges in future studies.

2 Related Work

Anticipatory robot behavior in human-robot interactions Robots utilizing
anticipatory actions have been shown to improve user engagement during human-robot
interactions. Previous work suggests that participants working with an anticipatory
robot attribute more human qualities to the robot [10] than robots that do not antic-
ipate a user’s actions. Modelling human behavior explicitly can even lead to beneficial
outcomes as evidenced by robots that explore more safely [3] and learn more effective
policies [6, 19] as compared to robots that do not model their human counterparts.
Especially relevant to our own study is work that used eye gaze as a signal of a user’s
intent, and thus as the input into an anticipatory robot system. This work showed that
interactions such as our smoothie making example can be accelerated when compared
to reactive systems [12]. Our inquiry, to understand whether anticipatory robot motions
have an effect on user choice, was not considered in this previous work.
Anticipation is not the only factor at play in these types of interactions, however,

as the quality of the expression of the robot’s anticipation can shape the success of
the collaboration. For example, an anticipatory action that is not correctly perceived
(i.e., is not legible) by the user can prove to be counter-productive [4]. One conclusion
of this work is that a robot has the potential to disrupt a person’s intentions by
deliberately choosing legible or illegible actions at opportune moments during the
interaction. Even when this expression is not intentional, research on human teams
show that team members adapt to each other during collaborative tasks, and that
this mutual adaptation leads to improved team performance [15]. This effect has even
been shown to translate to human-robot teams [16], where the robot models a user’s
adaptability and changes its actions based upon this estimation.

Furthermore prior work in human intent reshaping has shown that intentional robot
movement can cause a person to change their initial course of action when acting
independently in a room [5]. The authors infer human intent by using a hidden Markov
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Fig. 2: Typical trial timeline. In this case, the participant saw the collaborative condition
and accepted the robot’s suggestion. Video here.

model based on the human’s location and posture. They observe that robots were able
to reshape the intention of 68% of the 15 study participants. This work also reports
that the robot’s potential to reshape a user’s intention decreases as the user interacts
and becomes more familiar with the system.

Collaborative and adversarial actions have been studied in the context of how obedient
and rebellious robots affect a participant’s cooperation during task completion [20]. This
research reports that working with robotic systems that make collaborative actions can
lead to enhanced human robot cooperation when compared to rebellious, or adversarial,
robotic systems. In this prior work, the user had a stated, explicit goal. Our work explores
the effects of anticipatory actions in tasks where the user has no specific objective.
Predicting user intent from human behavior Robots can infer intent by sensing
a range of verbal and non-verbal signals exhibited by people. For example, existing
work has shown that a person’s desired target object can be inferred from the history
of user control inputs on a joystick [13] during a human-robot joint teleoperation task.
Similarly, the handover intention of a participant can be inferred from a combination
of wearable sensors and natural language commands [21].
Other work has shown that by leveraging these types of patterns in a user’s past

actions, robots can further improve collaborations by anticipating future user actions [19].
Additional research in human-robot teaming shows that if a robot disregards a human’s
preference it can lose the human’s trust, leading to a deterioration in team performance.
This shows that anticipating and adapting to a user’s evolving preferences throughout
a task is crucial to effective human-robot collaboration [8].

Most relevant to our own study, natural eye gaze is highly predictive of user goals,
future actions, and mental states - particularly in unaccompanied human manipulation
tasks [9,14,17]. Eye gaze has been used as a supplementary modality to infer human
intent primarily alongside head-hand tracking [7,22,23]. Recent research shows great
promise of integrating eye gaze with joystick control for shared manipulation tasks [1,2].
For simple collaboration tasks such as our smoothie making example, eye gaze has
also been shown to be a strong stand-alone modality for intent prediction using a
support-vector machine on handcrafted features [11]. In our work, we use spatial binning
on a moving exponential average over a temporal sequence of natural eye gaze as a
heuristic measure for anticipating human intent as depicted in Figure 1a.

3 Methods

To answer our research questions, we conducted a user study in which participants
interacted with a robot arm in a handover game. Participants were asked to select a

https://drive.google.com/file/d/1U4G3Urq7LRd9oGZWZN6IkE1mZcKg9X4E/view?usp=sharing
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target object from among three options located on a table in front of them. The robot
used participant eye gaze behavior to model their preferences among the objects, then
asked for their selection and finally handed them their selected object. We examined
whether participants’ object selections, decision-making process and perceptions of the
robot would be affected if the robot took anticipatory actions. These actions were either
collaborative or adversarial (toward the most or least likely object respectively). A
typical trial is illustrated in Figure 2 and in a video here.

3.1 Study design

Anticipation model Human signals used to estimate intent prior to its explicit
expression must be natural and measurable. Eye gaze has been shown to be correlated
with intent in similar settings [11]. Due to this correlation, we map user eye gaze to
predicted user choice in the following way.
We model the relationship between a user’s eye gaze and their eventual choice as

an exponentially decaying moving average of the temporal history of their eye gaze.
Our model takes as input a sequence of planar eye gaze locations and classifies each
eye gaze measurement into one of the four segments shown in Figure 1a. The model
then filters out the eye gaze in the top segment, which is considered robot-viewing gaze,
and applies a temporal, exponentially decaying moving average over counts in each of
the remaining three segments. This creates temporally evolving probability distribution
that maps to the expected probability of a user’s choice.
Experimental variables Our study uses a between subjects design with one indepen-
dent variable, “robot suggestion,” and three conditions. In each condition, participant
preference is determined by the aforementioned anticipation model: collaborative: robot
moves toward the most preferred bin; adversarial: robot moves toward the least
preferred bin; no-movement: control, in which the robot takes no action.

All participants first saw two trials of no-movement, followed by a single experimental
trial in which one of the three conditions above was randomly applied. This design
allows participants to become familiar with the study procedure and robot operation
in the first trial. This trial is treated as practice, and therefore these data were not
included in analysis. In total, each participant experienced 3 trials in the following
manner: practice, control, and experimental.

3.2 Procedure

Participants were seated across the table from the robot with three bins, filled with
unique candy types (Figure 1a). Bins were initially hidden from participant view.
Participants were told that once the candy was revealed, they would be given some
time to decide between the candies and choose one, which they could keep. In the
practice and control trials, after the candy was revealed, participants were given 5
seconds to decide, after which the buttons lit up prompting participants to make a
selection (Figure 1a). In the experimental trials, the anticipatory motion began at 5
seconds, preceding the illumination of the selection buttons. Once participants pressed
the button indicating their selection, the robot retrieved the corresponding bin, offered
it to them, and allowed them to take a candy (Figure 2).

All participants saw the same candies, in the same locations, in the first two trials.
For the experimental trial, we discarded the two types of candy previously selected and

https://drive.google.com/file/d/1U4G3Urq7LRd9oGZWZN6IkE1mZcKg9X4E/view?usp=sharing
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randomly replaced from the four remaining types and randomized all candy locations.
This randomization and replacement ensured that participants had not previously
expressed preference for the types of candy present in the experimental trial. We recorded
the Predicted Bin (bin our anticipation model predicts the user will eventually choose,
Selected Bin (bin selected by the user), Suggested Bin (target bin of the robot’s
anticipatory motion), as well as survey data following each trial (Sec. 4.3).

Materials and Participants We used a Kinova MICO 6-DOF manipulator (Figure
1) robot with pre-computed trajectories for all actions. Participant eye gaze was mea-
sured using a Tobii 4C eye tracker bar, typically used for 2D planar eye tracking. We
adapt it for use in this 3D setting by segmenting the user viewing plane into sections
corresponding to three candy segments and one robot segment (Figure 1a). The stimuli
used were 6 flavors of an international candy, each with a distinct label. These stimuli
were chosen to be unfamiliar to the majority of the participant pool, consistent in shape
and size, have little correlation between wrapper patterns and flavor, and have intricate
labels. Thus, the stimuli required attentive viewing before being chosen and would not
be chosen due to prior familiarity or preference with the candies’ brand or flavor.

One hundred and eighteen participants (72 Female/44 Male/2 Other) were recruited
through an online subject pool, mailing lists, and word-of-mouth. Twenty one partic-
ipants were excluded due to eye gaze sensor drop out or participant non-compliance.
Our analyses were performed on N =99 (33 for each experimental condition). The
research was approved by an institutional review board. Participants were compensated
for their time with 5 USD, for an average of 15 minutes.

Design considerations Investigating whether or not anticipatory robot motions
affect human decision making is challenging due to the observer’s paradox. Attempts
to measure intent in a human decision making task can result in altered behavior,
especially if participants are aware of the observation [18].

First, we take care to capture the user’s eye gaze in a subtle manner. Accurate eye gaze
data is typically obtained by instrumenting participants with wearable eye-trackers [11,
12]. However, an implied social presence via a worn eye-tracker has been shown to change
looking behavior [18]. We minimized this interference by avoiding the instrumentation of
participants, instead adapting a discreet, screen-based eye tracker (Section 3.2) for use in
this study (Figure 1). Second, we diverted the focus of the study away from the anticipa-
tory motions by advertising our study as a “handover game” indicating to potential partic-
ipants that we were interested in the robot’s handover mechanics. We also ran a between
subjects experiment with only one experimental trial, so that anticipatory motions are
always novel when participants encounter them. Further, we incentivized participants to
select their true preferences by instructing them that could keep the candies they selected.
This differentiates our work from previous studies using collaborative or adversarial
robots [20] in which participants received virtual rewards. Finally, we avoided priming par-
ticipants during the study by not asking them for explanations of their thought processes
before the termination of the experiment. Asking for this information prior to the last
trial would potentially prime them to be conscious of their decisions in subsequent trials.
Asking for it after they view the anticipatory motion would encourage post hoc rational-
ization. Instead of using these explicit measures, we provide participants with an opportu-
nity to provide free-form feedback at the end of the experiment, which some participants
used to share their internal decision making processes with us unprompted (Sec 4.3).
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4 Results & Discussion

4.1 Intent prediction

The accuracy of the intent prediction algorithm is the number of times our algorithm
predicted the user’s selected the bin out of all users. The algorithm uses the eye
gaze from the beginning of the trial until the buttons light up in order to make this
prediction. We report this accuracy against uniform random chance, the expected
baseline value. Figure 3 reports these results for the control (n=99) and experimental
(n=33, participants in the no-movement condition) trials. A binomial test (2-sided)
showed that our algorithm performed significantly better than chance at predicting the
correct target (ours: 44% versus chance: 33%, p=0.025), though the overall accuracy of
our top 1 model shows the difficulty of forecasting user choice from historical eye gaze.

From Figure 4 we see that users shown collaborative motion are significantly more
likely to choose the bin suggested by the robot than those who see the adversarial
condition, as determined by a χ-squared test, χ2=0.242,p=0.028, showing that our
manipulation is valid.

Figure 5 shows the continuous (anytime) accuracy of the intent predictor across all
participants during the ‘control’ trial. We see qualitative evidence for a choice hierarchy
in that the predicted first choice bin has higher accuracy than the predicted second
choice bin which has a higher accuracy than the predicted third choice bin. Additionally,
we can see that people cycled between their top two choices after the 3s mark. Combining
these results with those from Figures 3 and 4, we show that we can generate predictions
about a user’s choice hierarchy before they have explicitly made a decision.

Our results also suggest that our anticipation model can predict a user’s least preferred
choice. Figure 3 shows our model predicted top 2 accuracy significantly above chance,
with a respectable accuracy (ours: 80% versus chance: 66%, p= 0.005), indicating
historical eye gaze might be a better indicator of those items a user does not show a
preference toward. It is further supported by qualitative evidence in the evolution of
participant intent, Figure 5. As time progresses, the top 2 accuracy rises consistently,
implying that we are increasingly sure of which bin the participant does not want. The
“cycling” between 1st and 2nd choices suggests people quickly (around 3s) eliminate
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Fig. 6: Anytime intent prediction accuracy
across all participants in the control trial,
using the SVM model (Sec. 4.1)

one option and spend their remaining time making their decision amongst the other
two options. These trends also held in the experimental trial.

Our model’s ability to predict user decisions disappears in the no-movement group of
the experimental trial, Figure 3. This indicates user’s in this condition base their decisions
on external factors. One possibility is that these users believe this to be a simple handover
task, and are testing to the robot’s handover capabilities, (e.g., whether it is able to reach
all three bins). In this scenario, the user’s choice is made through a process of elimination,
thus disentangling their gaze from their choice, as suggested by the following quotes:

“MICO had an easier time reaching and holding onto the right and left positions than the center

one. I purposely chose a candy in each location to test that.” • “..watched the robot go through it’s

full range of motion before selecting a button. I selected the item on my left because I wanted to

see the robot pick up each box.”

SVM model To check if the necessarily simplistic nature of our zero-data anticipation
model was the reason for limited intent prediction accuracy, we explored a data-driven
model. After collecting the data by doing this study, we trained a modified version of the
SVM intent predictor from [11], which uses four features for each bin: number of glances,
duration of first glance, total duration of all glances, if the bin was the most recently
glanced at. We add a fifth feature, a unique identifier for each bin, and then use the same
testing and training paradigm as [11]. This SVM model gives us a validation accuracy
of 54% on the control trial and 45% on the no-movement condition in the experimental
trial. While this is better than our heuristic based model (44% and 33% respectively),
the SVM is only able to be trained after collecting eye gaze data on a large population.

We explored remapping our conditions in the experimental trial to match the SVM
model’s classification by comparing the robot’s bin suggestion to a post-hoc SVM predic-
tion. If a participant originally in the adversarial condition saw the robot move toward
their 1st choice bin, as predicted by the heuristic model, but the SVM predicted this
bin to be the user’s last choice, then we reassign this user to the collaborative condition.
Under this remapping, we obtained 20 Anticipatory and 26 Adversarial trials. Ad-

ditionally, 20 participants moved to a new condition, Adversarial+, where the robot
moved to the user’s 2nd choice as predicted by the SVM. Most participants remained
in their original condition, but about a third from both collaborative and adversarial
conditions remapped to the new condition. Under the new remapping, we did not see a
significant change in the distribution of user choice vs model-ranked preferences (Table
2), and consequently in the statistical results throughout this paper.
Discriminating unarticulated intent using eye gaze Our results show that gaze
most accurately predicts user intent close to a user’s explicit selection. Figure 5 shows
anytime intent prediction accuracy through the entire trial. This accuracy increases
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Ant. Adv. Cont. Adv.+

Ant. 17 7 0 9
Adv. 3 19 0 11
Cont. 0 0 33 0

Table 1: Confusion matrix of remap-
ping shifts between conditions in the
experimental trial. Old labels (Rows)
vs New labels (Columns)

Original Remapped
1st pref 0.424 0.515

2nd pref 0.364 0.242

3rd pref 0.212 0.242

Table 2: Proportion of users that
selected their model-ranked Nth choice
bin in the Anticipatory condition in
the experimental trial
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Fig. 7: Anytime intent prediction accuracy across participants in the ‘experimental’
trial, during the time from buttons lighting up to when the decision was finally made.

monotonically as time progresses towards the user’s explicit decision, after the buttons
light up and a decision is prompter. Additionally, following the evaluation method
in [11], we see the modified SVM method behaving similarly (Fig. 6), achieving 90.4%
accuracy, on average about 1.48 seconds before explicit choices are made by users
(in [11], accuracy is 76%, 1.8s prior). Users in our study made their choice 3.93 seconds
after the buttons lit up on average. Any gaze after the buttons lit up was not available
to the predictor for anticipation actions.

Both models yielding these results indicates not enough information is present to make
accurate predictions as early as 4 seconds before the users made their decision. This
was hinted at by [11], but the curves in Figure 5 and Figure 6 provide more evidence
that eye gaze reveals intent accurately under 2 seconds before intent is expressed. In
our study, we did not want to enforce a strict time limit so as to get the most natural
eye gaze and decision making behavior, so we allowed users to take as much time as
they needed after the buttons lit up to make their selection.

4.2 Intent reshaping

Exploring aggregated anytime prediction accuracy can inform our understanding of
the robot’s ability to influence user decisions (Figures 7a & 7b). Since user preferences
are accurately predicted towards the end of the trial (as we saw in Sec. 4.1), we
see how user intent becomes clearer as the trial draws to a close. (Note that in the
collaborative/adversarial condition, the buttons light up only after the robot completes
its anticipatory motion, so the gaze is not associated with tracking robot movement)

In Fig. 7a, the accuracy of the user’s (predicted) 1st choice reduces dramatically after
robot motion occurs before finally recovering towards the end. This indicates robot
motion induces users to reconsider their decision, suggesting a restart of the decision
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making process, which is supported by user comments (Sec. 4.3). Contrast this to the no-
movement condition, Fig. 7b, where the estimate of user 1st choice becomes increasingly
accurate as the time to decision decreases. Further, we see that user intent becomes appar-
ent earlier, during trials in the no-movement condition than in the adversarial condition.

To further study intent reshaping we can measure the percentage of time users chose
the robot’s suggested bin in the collaborative and adversarial conditions, Figures 8
and 9. We see that participants did not choose the robot’s suggested bin significantly
more frequently in the collaborative condition (χ2=1.47,p=0.612) or the adversarial
conditions (χ2=0.663,p=0.751).

4.3 Qualitative analysis

In a post-experiment survey, we asked users about differences between the first two and
the final trials, to determine if they were aware of the anticipatory motion. Eight out
of 66 participants who saw motion reported either not noticing or seeing only minor
differences (e.g., “the candies were different”), with the rest identifying robot movement
as the difference. We conjecture that this is due to these participants not ascribing
intent to the anticipatory actions. An optional free-response section revealed further
themes related to our hypotheses:
Several users reported negative feelings associated with the robot or its movement in
the adversarial condition. No such comments were present in the no-movement and
collaborative conditions:

“After I chose the container on the left, the robot arm went up and there was a pause before it

reached for the container I chose. Like it was annoyed with my choice.” • “It moved a lot unnec-

essarily.” • “Somehow robot was waiting to pick up the left side box before I pressed the button,

actually it was the most different side of my desire (I wanted right side candy)”

Several users reported positive feelings associated with the robot or its movement
in the collaborative condition:

“The robot prepared to select the candy which I was looking at. The robot was more intelligent in

the last trial.” • “As soon as I made the decision in my head, I noticed the robot move directly

in front of the candy I wanted.” • “The robot seemed guess my choice well in the last trial. The

more I have interfaced with the robot the more it has understood me”



Examining the Effects of Anticipatory Robot Assistance 11

Additionally, several users revealed their thought processes, which indicated that an-
ticipatory motion can influence participant decision making in both the collaborative
and adversarial conditions, but not no-movement:

“I felt like the robot ‘wanted’ me to choose the middle bin after moving there the third trial. I

picked a different bin after the one I originally wanted due to this.” • “The robot moved and kinda

guess the candy I wanted ... decision that the robot made definitely influenced my decision however

I was going to choose the candy either way. I was surprised.” • “While I noticed the robot move

its arm in front of the candy I wanted, I thought about picking a different candy for a split second.

I did not end up doing it because I figured it would make its job easier even though it’s a robot.” •

“Robot moved to be close to one box, I guess if I wanted the robot to work less I would have chosen

that box but the wrapper color wasn’t appealing to me.”

From these responses, we see that the robot action can create an inflection point
during the interaction causing some users to reconsider their original intention. This
reconsideration results in a variety of outcomes including users changing their original
decision to match the robot’s suggestion, users explicitly disavowing the robot’s choice
even if it aligned with their own, as well as users acting without regard to the robot’s
motion. The specific factors that contribute to these various outcomes is out of scope
for our work, but should be studied in the future.

5 Conclusion and Future Work

In this paper, we explored whether anticipatory robot motion displayed during a
collaborative handover interaction can influence the choices people make during that
interaction. Our study found several small quantitative effects suggesting distinct types
of anticipatory motions (collaborative and adversarial) can cause users to reconsider
their decisions. Qualitative data show further support for this claim. Future work
can consider more targeted studies focusing on one particular aspect of the effect of
anticipatory robot behavior on human robot interactions such as how specific task
context may amplify or diminish this effect.

We showed evidence supporting previous work that eye gaze is indeed indicative of user
preferences in selection tasks. We provided detailed analysis of this correlation over the
duration of such tasks, indicating that eye gaze is most effective in predicting user choice
only a few seconds before it is made explicit, rather than a percentage of overall task time.
Taken together, our findings suggest that robot paradigms designed to anticipate

user choice should model the effects of this anticipation during task execution or
else anticipatory models may end up changing the very behaviors they are intended
to anticipate. Future efforts should explore how this effect changes during complex,
sequential tasks, long term interactions with a single robot in a particular task, with
a change in the subtlety or timing of the robot’s motions, or the perceived expertise
or authority of the robot partner. In summary, our work shows initial evidence that
human-robot interactions are bidirectional, meaning that researchers need to consider
how robot motions designed to anticipate user actions may in turn affect those actions.
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