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Abstract. Parasite transmission is thought to depend on both parasite exposure and host
susceptibility to infection; however, the relative contribution of these two factors to epidemics
remains unclear. We used interactions between an aquatic host and its fungal parasite to evalu-
ate how parasite exposure and host susceptibility interact to drive epidemics. In six lakes, we
tracked the following factors from pre-epidemic to epidemic emergence: (1) parasite exposure
(measured observationally as fungal spores attacking wild-caught hosts), (2) host susceptibility
(measured experimentally as the number of fungal spores required to produce terminal infec-
tion), (3) host susceptibility traits (barrier resistance and internal clearance, both quantified
with experimental assays), and (4) parasite prevalence (measured observationally from wild-
caught hosts). Tracking these factors over 6 months and in almost 7,000 wild-caught hosts pro-
vided key information on the drivers of epidemics. We found that epidemics depended critically
on the interaction of exposure and susceptibility; epidemics only emerged when a host popula-
tion’s level of exposure exceeded its individuals’ capacity for recovery. Additionally, we found
that host internal clearance traits (the hemocyte response) were critical in regulating epidemics.
Our study provides an empirical demonstration of how parasite exposure and host susceptibil-
ity interact to inhibit or drive disease in natural systems and demonstrates that epidemics can
be delayed by asynchronicity in the two processes. Finally, our results highlight how individual

host traits can scale up to influence broad epidemiological patterns.
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INTRODUCTION

Disease epidemics, parasite invasions, and emerging
infections have long plagued humans and wildlife, and
continue to cause illness and mortality today. These
three ecological phenomena share a common theme: a
parasite that was once rare or absent proliferates to
infect many hosts. Disease epidemics, in particular, show
rapid spread of infection to many individuals over a
short period of time. But what ignites this rapid spread?
When considering the origin of epidemics, ecologists
often focus on the introduction of a novel parasite or on
a shift in the health and susceptibility of a host popula-
tion. In reality, both of these processes—changes in
exposure and susceptibility—likely work in concert to
promote transmission.

Theory predicts that disease emerges when two criteria
are met: (1) infective propagules are present in the envi-
ronment and (2) hosts can support and transmit
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infection (Combes 2001, Gilbert and Parker 2006).
These criteria can be thought of as exposure and suscep-
tibility filters that open or close the pathway to parasite
transmission (Combes 2001; Fig. la). With an open
exposure filter, hosts acquire parasite infective stages
necessary for infection. Then, with an open susceptibil-
ity filter, hosts support infection and subsequent trans-
mission. Although closure of the exposure filter
precludes infection, closure of the susceptibility filter
can produce a transmission bottleneck that terminates
parasite spread (even with an open exposure filter).
Accordingly, disease should fail to emerge when either
filter is closed.

Broad-scale environmental changes are thought to
impact both exposure and susceptibility for wildlife (and
people), and therefore motivate tests of exposure-sus-
ceptibility theory. Parasite exposure is changing with
global transportation networks, habitat modification,
and shifts in species ranges (Tatem et al. 2006). More-
over, susceptibility of wildlife is predicted to increase
with anthropogenic stressors, like climate change and
environmental contamination (Martin et al. 2010).
These changes can influence the emergence of disease
(Harvell et al. 1999, Daszak et al. 2000, Lafferty 2009,
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Theoretical links between exposure, susceptibility, and epidemics. (a) Epidemic requirements: For an epidemic to

emerge, a population must be exposed and susceptible to a parasite. That is, parasite exposure and host susceptibility filters must be
open. Closure of either filter inhibits transmission. Epidemics cannot occur without exposure (parasite exposure = 0), and parasites
meet a transmission bottleneck when the susceptibility filter is closed. But how is susceptibility quantified? (b) Interconnectedness
of exposure and susceptibility: By evaluating probability of terminal infection as a function of parasite exposure, the shape of the
exposure-response curve defines susceptibility. More susceptible hosts (gray curve) succumb to terminal infection at low exposure
(low susceptibility threshold; where curve intersects 50% line). Less susceptible hosts (black curve) withstand high exposure before
succumbing to terminal infection (high susceptibility threshold). Uniting epidemic requirements (a) with their interconnectedness
(b), epidemics may become more likely as a population’s exposure meets or exceeds its susceptibility threshold.

Altizer et al. 2013), including the frequency and size of
epidemics. Despite these predictions, few empirical stud-
ies link exposure and susceptibility to the failure or suc-
cess of epidemics. One reason for this gap is observation
bias: wildlife disease is typically studied after epidemics
start (i.e., when both exposure and susceptibility filters
are open). Without pre-epidemic data, we cannot
observe which filter(s) caused epidemic failures and
determine why both filters opened to enable epidemic
success (Harvell et al. 1999, Plowright et al. 2008).
Another reason hinges on measurement of exposure and
susceptibility. Commonly used proxies for exposure (like
infection prevalence) can dramatically underestimate
actual exposure. Conversely, susceptibility is typically
neglected in wildlife disease research, because tools to
measure it can be costly, complicated, and uninformative
(Boughton et al. 2011). Hence, despite the pressing need
to test key epidemic filters, much remains empirically
underexamined.

Fortunately, insight into these filters can come from
the developmental trajectory of parasites inside hosts.
Many parasites transition through within-host develop-
mental stages that signal exposure and then susceptibil-
ity. For instance, trematode miracidia enter snails during
exposure, develop into sporocysts and rediae (if the snail
does not clear the infection), and ultimately produce
infective cercariac (Esch and Fernandez 1994). The
within-host temporal dynamics hold key information:
earliest developmental stages manifest exposure, and
final (terminal) stages reflect susceptibility. More mecha-
nistically, these stages can be used to quantify exposure-
response curves (Fig. 1b), which provide measurement
and interpretation of both exposure and susceptibility.

Exposure is measured as the number of early develop-
mental stages a host contacts. Then, the probability of
terminal infection is determined by measuring the suc-
cessful development of parasites into terminal stages.
From these axes, susceptibility emerges as the shape of
the exposure-response curve, which tells us how suscepti-
ble a host may be to a particular level of exposure.
Because exposure and susceptibility are intrinsically
linked, epidemics should become predictable from both
the magnitude of exposure a host population faces and
the shape of the population’s exposure-response curve.
The start of epidemics may also depend on variation
in parasite exposure, that is, unequal distribution of
exposure within a population. Parasites generally exhibit
aggregated distributions, where a few hosts are infected
with many parasites, and many hosts have few parasites
or are parasite free (Crofton 1971, Poulin 2007). Expo-
sure may be similarly aggregated, with consequences for
transmission (Woolhouse et al. 1997, Lloyd-Smith et al.
2005, Martin et al. 2019). With strongly aggregated
exposure, some individuals may face high levels of expo-
sure from which they cannot recover, thereby producing
the first generation of infections in an epidemic. Con-
versely, with homogeneous exposure, the per-individual
exposure level may remain too low to result in infection
and transmission (however, more uniform exposure
could provide more opportunity for infection and subse-
quent epidemic emergence). One simple way to capture
exposure heterogeneity is to quantify a population’s
average exposure and its maximum. These two values
will become increasingly dissimilar as heterogeneity
increases. Predicting epidemics with one metric or the
other can therefore inform whether epidemics are more
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likely to result from a few heavily exposed individuals or
many, less exposed individuals.

Variation in susceptibility is a direct outcome of host
traits (Stewart Merrill 2019, Stutz et al. 2019). Following
exposure, hosts attempt to prevent parasite entry using
physical, chemical or immunological barriers, or barrier
resistance traits. If parasites successfully enter the host,
hosts can use immune defense, or internal clearance
traits, to eliminate an infection before it achieves its ter-
minal state. Individual-level variation in these traits,
owing to genetic or environmental factors, may produce
variation among host populations and through time.
Hence, measurement of barrier resistance and internal
clearance traits may reveal how host defenses, by open-
ing or closing the susceptibility filter, contribute to the
inhibition of epidemics or their start.

In this study, we connect traits governing exposure
and susceptibility to the inhibition and start of epi-
demics in an aquatic system. The zooplankton host,
Daphnia dentifera, and its fungal parasite, Metschniko-
wia bicuspidata, offer tractability for two reasons. First,
Metschnikowia produces annual epidemics, starting in
summer or autumn, that replicate disease emergence
among lakes (Céceres et al. 2014). Therefore, in replicate
populations we can track exposure and susceptibility
before epidemics emerge, then evaluate subsequent fail-
ures and successes of epidemic emergence. Second, we
can readily measure within-host developmental stages of
the parasite, as well as barrier resistance and internal
clearance traits that comprise susceptibility, in hosts col-
lected from the wild (Stewart Merrill and Caceres 2018;
Stewart Merrill et al. 2019). Together, these elements
provide a powerful system to test empirically how expo-
sure and susceptibility filters influence the emergence of
epidemics.

With this system, we examine the relative contribu-
tions of parasite exposure and host susceptibility to the
emergence of fungal epidemics. We delineate among
three possibilities: (1) if exposure regulates epidemics,
epidemics will become more likely as fungal spores
become more abundant; (2) if susceptibility regulates
epidemics, epidemics will become more likely if/when
hosts become more susceptible; (3) if exposure and sus-
ceptibility jointly regulate epidemics (i.e., both filters are
open), then epidemics should emerge when host suscep-
tibility matches the current level of exposure. This third
possibility means that we could observe epidemic fail-
ures in the face of high exposure (but closed susceptibil-
ity filter) or high susceptibility (but closed exposure
filter). To test these predictions, we tracked (1) popula-
tion-level exposure, with prevalence of early develop-
mental stage infections in field-collected hosts and
abundance of naturally occurring fungal spores; (2) sus-
ceptibility, using prevalence of terminal infections in
field-collected hosts, and experimental exposure-re-
sponse curves; and (3) timing of the start of epidemics.
Using this combination of field and laboratory data, we
found that epidemic emergence depended on a critical
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interaction between parasite exposure and host suscepti-
bility: epidemics only began when a population’s level of
exposure met or exceeded the population’s susceptibility
threshold (see Fig. 1b). We further unpacked the impor-
tance of susceptibility for epidemics by comparing host
barrier resistance and internal clearance traits during
transmission bottlenecks (susceptibility filter closed) and
during epidemic emergence (both filters open). We
observed consistent declines in Daphnia internal clear-
ance traits (hemocyte response) from bottleneck to
emergence, indicating that increases in exposure—
paired with declines in the effectiveness of host defenses
—1lead to the emergence of epidemics.

METHODS

Study system

Metschnikowia bicuspidata is an ascomycete fungal
parasite of the freshwater zooplankter, Daphnia denti-
fera. Daphnia hosts are exposed to Metschnikowia spores
while filter-feeding. Once consumed, spores must pene-
trate the Daphnia gut and enter the body cavity to initi-
ate infection. Hence, the gut forms a resistant barrier
(the first susceptibility trait). If Metschnikowia spores
breach the gut, they progress through a series of within-
host developmental stages (Stewart Merrill and Céceres
2018). Daphnia can clear early developmental stages of
Metschnikowia with hemocytes (the second susceptibility
trait; Stewart Merrill et al. 2019). If Metschnikowia sur-
vives internal clearance and produces asci (infective
spores), the fungus kills its host. Host death releases
spores into the water to continue environmental trans-
mission (Ebert 2005).

We sought to explain variation in timing of fungal epi-
demics using three assays on field-collected adult Daph-
nia. Metschnikowia epidemics tend to emerge in late
August and early September, but there is variation in the
timing of emergence (Caceres et al. 2006, Shocket et al.
2018). To capture this variation, we sampled six Daphnia
populations in central Indiana every 2 weeks over 6
months spanning the pre-epidemic and epidemic periods
(June-December 2017). We examined 6,781 Daphnia
hosts. Below, we sketch key methods; see Appendix S1
Section S1 for extended methods and a complete
description of the sampling regime.

Assay 1: Infection states of field-collected animals

With field-collected Daphnia, we identified natural
infection patterns of Metschnikowia. Fifty Daphnia per
lake and time point were examined for presence of
Metschnikowia within the body. If Metschnikowia was
absent, the host was recorded as unexposed. If present,
we categorized hosts by the most advanced developmen-
tal stage possessed. These stages progress from spore I,
spore II, hypha, sporocyst, conidium, to ascus (Stewart
Merrill and Caceres 2018). In the spore I stage, hosts
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have fungal spores which failed to penetrate the gut. The
subsequent developmental stages are those occurring
inside the host’s body cavity; spore II are spores that
successfully entered the body cavity, which can then pro-
duce fungal hyphae, before developing sequentially into
sporocysts, conidia, and asci. Based on presence of the
most advanced stage possessed, Daphnia were classified
into infection states (Table 1: Assay 1). Hosts in the
early interaction state had only those developmental
stages from which the host could recover using barrier
resistance or internal clearance (spore I-sporocyst).
Hosts with within-host infections had developmental
stages inside the body cavity (spore Il-ascus). Finally,
hosts with terminal infections included hosts full of coni-
dia or asci leading to host death (i.e., internal clearance
was no longer possible; see analyses for further explana-
tion).

Assay 2: Mechanistic exposure and susceptibility

We measured each population’s exposure by counting
fungal spores in field-collected Daphnia. For each Daph-
nia (N = 50 per lake and time point), we counted the
number of spores embedded in the gut barrier (spore I

TABLE 1.
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stage) as well as those that successfully crossed into the
body cavity (spore II stage). We label the sum of these
categories as attacking spores; they represent a measure
of exposure at the level of the individual. Using attack-
ing spore counts, we calculated three summary metrics
for Metschnikowia exposure (Table 1: Assay 2). Expo-
sure risk is the average number of attacking spores
among all sampled Daphnia, both exposed and unex-
posed (analogous to parasite abundance; Bush et al.
1997). Exposure intensity is the average number of
attacking spores among only exposed Daphnia (analo-
gous to parasite intensity; Bush et al. 1997). Exposure
maximum is the highest count of attacking spores
observed among individuals. Deviations between these
metrics provide an indication of how exposure is dis-
tributed. When all hosts experience equal exposure, the
three metrics converge, but as exposure becomes more
aggregated (unequal), the three metrics deviate.

We measured each population’s susceptibility with
experimental infections and exposure-response curves of
field-collected Daphnia (Table 1: Assay 2). On a monthly
basis (every second sampling event) we inoculated Daph-
nia (N = 25 per lake) with a standard spore dose and
counted their attacking spores 24 h later to estimate

A comprehensive data set allows connections between parasite exposure, host susceptibility, and epidemics. Infection

states of field-collected animals (Assay 1) contains parasitological data, in which we classified Daphnia by their Metschnikowia
developmental stage. Stages, in progressing order, are spore I (Spl), spore II (SpIl), hypha (H), sporocyst (SC), conidium (C), and
ascus (A) (columns). Presence of any stage (x symbols) determined whether hosts were unexposed or exposed, and whether hosts
had early interactions, within-host infections, and/or terminal infections. The distinction between these latter three categories is
whether and how Daphnia recover. Mechanistic exposure and susceptibility (Assay 2) contains exposure, measured as number of
attacking spores (spore I and II) in field-collected Daphnia (abundance, intensity, and maximum values), and susceptibility,
experimentally quantified using susceptibility thresholds from exposure-response curves (with terminal infections or hyphae).
Host traits that influence the probability of infection (Assay 3) were also measured during experimental infections.

Variable Description Spl Spll H SC C A
Assay 1: Infection states of field-collected animals
Unexposed Absence of any Metschnikowia developmental stage within a Daphnia host
Exposed Presence of any Metschnikowia developmental stage within a Daphnia host X X X X X X
Early Early phase of the host—parasite interaction. Daphnia can recover by resisting X X X X
interaction attack at the gut barrier and/or by clearing a within-host infection
Within-host Fungus has successfully crossed host resistance barriers. Daphnia can only X X X X X
infection recover by clearing a within-host infection
Terminal Late phase of the host—parasite interaction. Daphnia are full of conidia or asci X X
infection and have reached the point of no recovery (i.e. infection is lethal)

Assay 2: Mechanistic exposure and susceptibility

Exposure risk
unexposed hosts)

Exposure
intensity
Exposure
maximum
Susceptibility
threshold infection
Assay 3: Host traits that influence the probability of infection
Exposure
trait
Barrier
resistance trait
Internal
clearance trait

exposed hosts)

spore II)

Average number of attacking spores (spore I and II) per Daphnia (denominator includes exposed and
Average number of attacking spores (spore I and II) per exposed Dap/hnia (denominator includes only
Maximum number of attacking spores (spore I and II) in all examined Daphnia

Average number of attacking spores (spore I and II) required to produce a 50% probability of terminal

Spore consumption, or the number of spores a Daphnia consumes following inoculation
Gut resistance, or likelihood that attacking spores will be blocked by the gut barrier

Hemocyte defense, or likelihood that hemocytes will defend against spores infecting the body cavity (stage
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exposure. Inoculated hosts were then held for 9 d to
determine their infection fate (i.e., whether they recov-
ered or succumbed to terminal infection). Using attack-
ing spores and infection fate, we constructed exposure-
response curves (binomial distribution, logit-link) and
extracted their susceptibility thresholds, or the number
of attacking spores producing 50% probability of termi-
nal infection (Fig. 1b). Higher susceptibility thresholds
indicate lower susceptibility, as more attacking spores
are required to produce terminal infection.

Our monthly assessment of infection fates meant that
Daphnia susceptibility was assessed over a coarser time-
scale than Metschnikowia exposure (assessed twice
monthly). Additionally, exposure-response curves were
only constructed using a subset of experimental Daphnia
(we had 50 total experimental Daphnia for each lake and
time point that were measured for susceptibility traits).
To capitalize on the larger sample of experimental Daph-
nia, we used presence of fungal hyphae to calculate sus-
ceptibility thresholds. Growth of hyphae is a good early
indicator of future terminal infection: one hypha consis-
tently results in a >50% probability of terminal infec-
tion. So, we could also estimate susceptibility thresholds
by determining the number of attacking spores necessary
to produce one hypha. Thresholds measured with
hyphae were measured twice monthly and had greater
sample sizes (N = 50 per lake).

Assay 3: Host traits that influence the probability of
infection

We used experimental infections of field-collected
Daphnia to measure three traits that mediate infection.
Following inoculation with a standard spore dose, we
measured Daphnia exposure, barrier resistance, and
internal clearance traits (N = 50 per lake and time point;
Table 1: Assay 3). The exposure trait represents a snap-
shot of spore consumption and was quantified as the
number of inoculated spores observed inside the host
gut lumen (spores passing through the gut with food).
The barrier resistance trait was assessed as the propor-
tion of attacking spores that failed to penetrate the gut
barrier (spore I/attacking). Gut resistance ranged from 0
(no resistance) to 1 (complete barrier resistance). Finally,
the internal clearance trait was assessed as the propor-
tion of spores in the body cavity (spore II) that were
defended against by hemocytes (0 = no hemocytes, 1 =
hemocytes recruited to all spores). Lower barrier resis-
tance and internal clearance values indicate higher sus-
ceptibility.

Pinpointing epidemic emergence

We characterized epidemics by evaluating prevalence
of terminal infections in field-collected hosts (Table 1:
Assay 1). With these data, epidemic emergence date was
estimated when terminal infection prevalence exceeded
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background rates and continually increased toward its
maximum (vertical dashed lines in Fig. 3).

Analyses

Testing drivers of epidemics with infection states.— We
examined exposure and susceptibility as drivers of epi-
demic emergence by decomposing exposed hosts into
nonoverlapping early interaction and terminal infection
states (Table 1: Assay 1). During the early interaction
(SpI-SC), Daphnia can recover with barrier resistance or
internal clearance. In a terminal infection, Daphnia con-
tain conidia and asci (C and A) from which they cannot
recover. If epidemics are driven solely by exposure, they
should emerge whenever early interactions are present
(because exposure >0; Fig. 1a). However, when we
observe exposure (early interactions), but not terminal
infections, low Daphnia susceptibility may be inhibiting
epidemics (transmission bottleneck; Fig. 1la). We com-
pared prevalence of early interactions and terminal
infections through time to test these predictions qualita-
tively.

Testing drivers of epidemics with mechanistic exposure
and susceptibility.— We tested the mechanistic measures
of exposure and susceptibility (Table 1: Assay 2) as dri-
vers of epidemic emergence using an information theo-
retic approach (Burnham and Anderson 2002). For each
lake and time point, we coded epidemic emergence as 0
or 1, then fit generalized linear models (binomial distri-
bution, logit-link) testing the effects of different predic-
tors on epidemic emergence. We competed four model
types: (1) null; (2) exposure only; (3) susceptibility only;
and (4) exposure and susceptibility. The null model esti-
mated only an intercept. The exposure-only models con-
tained any of the exposure metrics as predictors
(exposure risk, intensity, or maximum). Competing these
exposure models allowed us to ask whether a few heavily
exposed individuals (indicated by exposure maximum
and to a lesser extent, exposure intensity) better
explained epidemics than many, less exposed individuals
(exposure risk). The susceptibility-only models con-
tained the susceptibility threshold as a predictor (quanti-
fied monthly with terminal infections or twice monthly
with hyphae). Finally, the exposure and susceptibility
models used the difference (A) of each exposure metric
and the susceptibility threshold (which share common
units of spores). When A < 0, exposure falls below the
susceptibility threshold, and epidemics should fail. Con-
versely, when A > 0, exposure exceeds the susceptibility
threshold, (potentially) permitting epidemic emergence.
For each model, we calculated Akaike’s information
criterion (AIC) values and ranked models from lowest to
highest AIC. The lowest AIC value represents the most
likely model given the data. We compared model fits
based on performance relative to the best-ranked model
(AAIC), where AAIC of two or greater represents
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substantially better fit. Finally, we compared models
based on model weights (w;), which represent the proba-
bility that a model fits best, given the suite of models
considered (Burnham and Anderson 2002). We initially
included lake as a random effect in all models. However,
lake did not alter AIC rankings or qualitative results, so
it was removed to simplify model structure.

Identifying transmission bottlenecks.— We used infection
states to identify transmission bottlenecks. With obser-
vational data from the field (Table 1; Assay 1), we asked:
at what point in the infection process does exposure lead
to a transmission bottleneck? To make this determina-
tion, we plotted prevalence of hosts in the exposed,
within-host infection, and terminal infection states
against each population’s exposure risk (average number
of attacking spores per host). Then, we fit saturating
rectangular hyperbolae to each infection state and com-
pared half-saturation constants (K,,,). If the susceptibil-
ity filter is open, all three curves should converge on the
same shape (similar K,,): positively saturating with
exposure up to a maximum prevalence. If host barrier
resistance produces a bottleneck, then the within-host
infection and terminal infection curves should deviate
from the exposed curve; that is, their prevalence should
grow more slowly. If host internal clearance produces a
bottleneck, the terminal infection curve should deviate
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from the exposed and within-host infection curves, grow-
ing even more slowly to its maximum prevalence.

Connecting Daphnia traits to transmission bottlenecks.—
We connected host traits to transmission bottlenecks by
comparing them among two time periods. We evaluated
experimentally measured traits for exposure, barrier
resistance, and internal clearance (Table 1: Assay 3)
when lakes experienced a bottleneck (Fig. 3; purple
points) and when epidemics emerged (Fig. 3; vertical
lines). We identified bottlenecks as times when parasite
exposure was high, but terminal infections were low at
the subsequent sampling event (indicated in Appendix
S1: Table S2). Host traits were compared using general
linear models. All analyses were conducted in R version
3.3.3.

REsuLTs

Testing drivers of epidemics with infection states

Terminal infections are the tip of the iceberg for
Metschnikowia infection prevalence. Before epidemics,
10% of Daphnia were exposed (on average), while during
epidemics, prevalence of exposure averaged approxi-
mately 75% and could achieve 100%. Prevalence of the
latest, conspicuous stage of infection (ascus [A]; Fig. 2a)

)
0.8
Ascus (A)
0.6
- Earlier stages
(Spl-C)
0.4

Prevalence of all stages of infection

0.2
0.0
T T T T T T T T
C WO S PO RKRSS S S F
505\)3)3\5\)%91%@0000@
M RSP SRASANARS

Sampling date

Fic. 2. Disease is just the tip of the iceberg. In late October, 26% of Daphnia had spore-producing Metschnikowia infections,
and 55% hosted earlier developmental stages. These patterns convey that final stages of infection (ascus, A) dramatically underesti-
mate actual parasite prevalence. (a) Average prevalence of ascus infections (white A) across six lakes in central Indiana from June to
December 2017 (see image for readily detected ascus infection). (b) Average prevalence of all developmental stages of Metschniko-
wia in the same six lakes (these stages are not detectable without high magnification, as shown in “Earlier stages” image). Each
shaded region represents a developmental stage, from the earliest (bottom) to the latest (top). Stages: Spl = spore I (not penetrating
body cavity), SpIl = spore II (infecting body cavity), H = hypha, SC = sporocyst, C = conidium, A = ascus (see also Table 1:
Assay 1 for information about hosts having these developmental stages).
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was five times lower, on average, than prevalence of
more encompassing exposure (spore I [Spl] through
ascus [A] stages; Fig. 2b). Exposure alone could not
explain epidemic emergence. An index of exposure—
prevalence of early interactions—consistently preceded
epidemics and never resulted in epidemic emergence in
one lake (Beaver Dam; Fig. 3).

Testing drivers of epidemics with mechanistic exposure
and susceptibility

Epidemics emerged when Metschnikowia exposure
matched or surpassed a population’s susceptibility
threshold. From the monthly susceptibility data (thresh-
olds estimated using terminal infections), the best model
included the difference of exposure maximum and Daph-
nia susceptibility (w; = 0.58; Table S5). As this difference
(A) approached zero, epidemic emergence became more
likely (Fig. 4a). Additionally, all three of the A models
were most highly ranked (cumulative w; of 0.86; the best
susceptibility-only model [Fig. 4b] had w; = 0.14 and
the best exposure-only model was worse [Fig. 4c];
Table S5). With hyphae-estimated susceptibility thresh-
olds (measured twice monthly), the exposure and suscep-
tibility (A) model still best predicted epidemics
(Appendix S1: Table S5; Fig. 4d). Once again, the three
A models outperformed all others (cumulative w; of
0.64), and the model containing exposure maximum was
highest ranked. However, in this set, exposure maximum
was less competitive with the other exposure metrics (all
AAIC < 2). In fact, all of the models were generally
more competitive with one another, including the sus-
ceptibility-only (Fig. 4¢) and exposure-only models
(Fig. 4f; see Appendix S1: Table S3 for details). Across
all models, exposure maximum generally outperformed
exposure intensity and always outperformed exposure
risk, indicating that the exposure level of heavily exposed
individuals better predicted epidemics than the average
level of exposure among all individuals.

Identifying transmission bottlenecks

Attacking spores in the field encountered a transmis-
sion bottleneck inside of their Daphnia hosts because of
internal clearance (Fig. 5a—d provides predictions, with
empirical data in e). Prevalence of the exposed state was
well predicted by exposure risk (K,, [half-saturation con-
stant] = 1.04, SE = 0.08, P < 0.001; Fig. Se, blue), as
was prevalence of within-host infections (K,, = 1.76,
SE = 0.18, P < 0.001; Fig. Se, purple). The exposed and
within-host infection curves shared similar shapes and
half-saturation constants, suggesting that host barrier
resistance did not produce a transmission bottleneck. In
contrast, the terminal infection curve sat below the
exposed and within-host infection curves (K,, = 6.12,
SE = 1.86, P = 0.002; Fig. Se, red). Due to this decou-
pling of terminal infections from exposure risk, we infer
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that Metschnikowia meets a transmission bottleneck dur-
ing its within-host development.

Connecting Daphnia traits to transmission bottlenecks

The experimentally measured internal clearance trait
proved most important for creating transmission bottle-
necks. First, we can rule out one possibility: epidemics
did not start because hosts began consuming more
spores (elevating exposure). The exposure trait (spore
consumption) did not increase between greatest bottle-
neck and epidemic emergence (F = 1.35, P = 0.246;
Appendix S1: Fig. S1). Spore consumption varied by
lake (F = 5.111, P < 0.001) and by a lake-time interac-
tion (F = 5.80, P < 0.001; Appendix S1: Fig. S1). Rul-
ing out exposure, one or both of the susceptibility traits
must have ended the transmission bottlenecks. The bar-
rier resistance trait (gut resistance) represents penetrabil-
ity of the gut to attacking spores; low values mean
higher susceptibility and declines in gut resistance may
therefore lead to epidemics. However, gut resistance was
not uniformly lower when epidemics emerged (F = 1.27,
P = 0.261; Appendix S1: Fig. S1), and was in some cases
higher at epidemic emergence. Therefore, resistance was
almost certainly not creating the bottleneck. Gut resis-
tance varied by lake (F = 11.02, P < 0.001), and by a
lake-time interaction (F = 3.00, P = 0.019). The inter-
nal clearance trait appeared to be the most likely trait
regulating the change from bottleneck to epidemic. This
trait was indexed as the proportion of infecting spores
that were defended against by host hemocytes; lower val-
ues signal higher susceptibility. Hemocyte defense
declined overall as epidemics emerged (F = 19.76,
P < 0.001; Appendix S1: Fig. S1). Hemocyte defense
varied by lake (F = 11.32, P < 0.001) with no lake-time
interaction (F = 1.50, P = 0.203). The drop in hemo-
cytes with epidemic emergence provides evidence that
internal clearance traits created the transmission bottle-
neck.

Discussion

Our study demonstrates that parasite exposure and
host susceptibility, together, play critical roles in epi-
demic emergence. We found that exposure to fungal par-
asites (Metschnikowia) was common among populations
of a zooplankton host (Daphnia). However, epidemics
often started long after exposure occurred. In support of
general epidemiological theory (Gilbert and Parker
2006; Combes 2001), epidemic timing depended on the
appropriate alignment of exposure and susceptibility:
epidemics emerged when a population’s exposure to
spores matched or exceeded its susceptibility threshold.
We further evaluated transmission bottlenecks, or those
instances when the exposure filter was open, but the sus-
ceptibility filter was closed. By decomposing Daphnia—
Metschnikowia interactions into three stages (early
interaction, within-host infection, and terminal
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Fic. 3. Testing drivers of epidemics with infection states. Qualitative evidence that parasite exposure alone does not explain epi-
demic emergence in the Daphnia—Metschnikowia system. In the left column: epidemic emergence (vertical dashed line) happens
when terminal infection prevalence (red line) begins to increase to its peak (maximal) value, while exceeding background rates. Pur-
ple points represent bottlenecks for each lake (see Appendix S1: Table S2). The right column shows prevalence of early interactions
from which hosts can recover (purple; spore I through sporocyst stages [SpI-SC]; Table 1, Fig. 2) and terminal infections from
which hosts cannot recover (red; conidium and ascus [C and A]; Table 1, Fig. 2). Early interactions were often present without ter-
minal infections, suggesting low susceptibility. Metschnikowia exposure clearly preceded emergence of epidemics (vertical dashed
lines) in all lake populations (rows; note: Beaver Dam experienced exposure at low levels, but not an epidemic).
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Fic. 4. Testing drivers of epidemics with mechanistic exposure and susceptibility. Plots contain raw data (points), predictions

(curves), and AIC weights (w;) from a subset of models (Appendix S1: Table S3). Panels (a)—(c) show susceptibility data estimated
with terminal infections (on a monthly basis), and panels (d)—(f) show susceptibility data estimated with hyphae (twice-monthly
basis). In both data sets, the combination of Metschnikowia exposure and Daphnia susceptibility (exposure maximum — susceptibil-
ity threshold) best predicted epidemics [(a) and (d)]. Positive A means exposure exceeded susceptibility thresholds. Higher suscepti-
bility thresholds (spores required to produce infection) decreased the likelihood of epidemics but was a relatively weak predictor (b)
and (e). Higher exposure (maximum count of attacking spores) increased likelihood of epidemics but was also a weak predictor (c)
and (f). Each point represents a unique lake-by-date sample from pre-epidemic to epidemic emergence (vertical lines in Fig. 3). Ver-

tical jitter added for visualization. Gray shading represents standard error.

infection), we determined that bottlenecks occur inside
the host, likely because of internal clearance by hemo-
cytes. Therefore, changes in susceptibility can create or
remove transmission bottlenecks, governing the success
and timing of epidemics.

Disease (the pathogenic manifestation of an infection)
was just the tip of the iceberg in terms of actual infec-
tion. By observing early, less conspicuous infections, we
documented higher prevalences and earlier appearances
of Metschnikowia than past estimates (Caceres et al.
2006, Penczykowski et al. 2014). Moreover, we found

that every host could be infected during epidemics, high-
lighting how observable disease can vastly underestimate
parasite abundance. Similar underestimates have been
suspected in systems that target only patent stages of
infection (Stewart et al. 2018). In invertebrate vectors,
for instance, prevalence of infective stages is typically
lower than expected based on biting rates (Sloan and
Ligoxygakis 2017). Likewise, exposure—disease regres-
sions in invertebrate-helminth systems commonly pos-
sess considerable unexplained variation (Smith 2007,
Thieltges 2007). Our results suggest that these
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Identifying transmission bottlenecks. Evaluating how exposure risk (average attacking spores per host) relates to preva-

lence of progressing infection stages reveals the step of infection at which the susceptibility filter is closed. Theoretical predictions
are plotted for (a) whether the susceptibility filter is open or (b) whether a transmission bottleneck is produced by barrier resistance,
(c) internal clearance, or (d) both. In (e) empirical data, each point represents a unique lake-by-date sample. Blue—purple: Exposure
risk results in similar prevalences of exposure (blue; Table 1) and within-host infection (purple; Table 1). Similarity of these curves
suggests that host barrier resistance does not produce a bottleneck. Purple-red: A bottleneck occurs as individuals move from
within-host infections to terminal infections (red; Table 1). The large gap between these curves indicates that the same levels of
exposure result in far fewer terminal infections than within-host infections. Hence, host internal clearance may be closing the sus-

ceptibility filter.

underestimates may stem from undetected early infec-
tions or transmission bottlenecks and reinforce that dis-
ease prevalence is not indicative of parasite exposure.
Early infections are often underappreciated in field stud-
ies but have much to offer in disease ecology. Early
developmental stages represent a marker for host expo-
sure (a notoriously difficult factor to measure; McCal-
lum et al. 2017) and can be leveraged to detect
transmission bottlenecks. By comparing prevalence of
exposure to prevalence of terminal infections, we identi-
fied points in time at which the susceptibility filter
appeared closed, which then served as targets for nar-
rowing in on host traits that regulate parasites.

The repeated emergence of pandemics in humans
and wildlife is a stark reminder that it is only a mat-
ter of time before a novel pathogen will spread. Our
results support the idea that epidemics may be

largely inevitable (as we observed them in 5 of 6
lakes) but can be significantly delayed by asyn-
chronous exposure and susceptibility filters. With our
mechanistic assays, we observed several instances
where Metschnikowia exposure was high or where
Daphnia susceptibility was high, but epidemics failed
to emerge. In other words, the asynchronous open-
ings and closures of both exposure and susceptibility
filters routinely inhibited epidemics. Only in a small
subset of time points, when both processes were
matched (indicated with A), could an epidemic take
hold. Key to interpreting this finding is the linking
of exposure and susceptibility through the exposure-
response curve. One particular level of exposure did
not necessarily produce consistent outcomes; it could
trigger an epidemic in one lake, but not in another.
The determining factor was then each lake’s
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susceptibility threshold, which established whether the
level of exposure could result in infection and trans-
mission.

The mutual dependence of epidemics on exposure and
susceptibility supports Combes’ (2001) conceptual para-
digm, as well as assumptions of epidemiological models,
in which transmission (p) is a function of an exposure
parameter (f) and susceptibility parameter (p; Bertram
et al. 2013). But although conceptual and theoretical
models make clear the importance of exposure and sus-
ceptibility for disease, these two processes are rarely
investigated jointly. Recent and notable exceptions
include Gibson et al. (2016), which used exposure and
susceptibility of Potamopyrgus snails to Microphallus
trematodes to explain spatial variation in trematode
prevalence. In mesocosms with controlled exposure,
Strauss et al. (2018) demonstrated that Daphnia suscep-
tibility directly fuels large Metschnikowia epidemics.
Finally, by tracking chytrid zoospores and amphibian
susceptibility to chytrid, Voyles et al. (2018) demon-
strated how increased host resistance enabled the
rebound of Central American frog populations. Our
study adds to this growing body of empirical research
and reaffirms that parasites and the disease they cause
are regulated by both environmental and within-host
processes.

Disentangling epidemiological mechanisms to reveal
their relative strengths is a new frontier in disease ecol-
ogy (Luis et al. 2018, Rohr et al. 2019). Although our
study has demonstrated that both exposure and suscep-
tibility are required for epidemics, future work could go
beyond their simple pairing and explore the strength of
each process across diverse host—parasite systems. In
some systems, one process alone might more strongly
regulate epidemics if it is in flux, and the other process
remains stable and homogeneous. For instance, if sus-
ceptibility is fixed and constant, but exposure changes
through time, then exposure may be the critical factor
that determines whether or not disease emerges. We
should therefore ask: in what proportion of systems is
parasite exposure stable versus fluctuating? And do host
species more generally exhibit fixed or shifting levels of
susceptibility? Developing creative metrics for exposure
and susceptibility is key. Fortunately, there is a growing
menu of empirical methods that can be leveraged to
quantify exposure (e.g., antibody tracking, eDNA, and
radio frequency identification; Huver et al. 2015, Man-
love et al. 2017), as well as new computational methods
that can estimate susceptibility traits and additional epi-
demiological parameters from host data (Borremans
et al. 2016, Plowright et al. 2016, Stewart Merrill and
Johnson 2020). These mechanistic tools will be powerful
for extending the exposure—susceptibility framework to
systems less tractable than Daphnia.

Exposure varied among lakes and through time, but
also among host individuals. The exposure maximum
was, on average, two spores greater than exposure risk
before epidemics started, indicating uneven distribution
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of exposure within populations (range of difference:
0.85-7.82 spores [Appendix S1: Table S2]). Theoretical
models predict that exposure heterogeneity can have
strong consequences for parasite transmission (Wool-
house et al. 1997). Specifically, populations with highly
aggregated exposure are predicted to experience rarer,
but more explosive, outbreaks (Lloyd-Smith et al. 2005).
Although degree of aggregation was beyond the scope of
our analyses, we did find differences in predictive power
among exposure metrics. Models that incorporated the
exposure maximum were generally more competitive in
predicting epidemics than those with exposure intensity
(average among exposed individuals) or exposure risk
(average among all individuals, exposed and unexposed).
The consistent higher ranking of exposure maximum
suggests that a few heavily exposed individuals can trig-
ger epidemics, by pushing their level of exposure beyond
a population’s corresponding susceptibility threshold.

Looking into the within-host environment, we found
strong connections between host susceptibility traits and
epidemic onset. Susceptibility traits involve those that
inhibit or promote an individual infection, and recent
work in ecological immunology has suggested that such
traits may contribute to parasite dynamics (Hawley and
Altizer 2011, Becker et al. 2019). In support of this
hypothesis, Halliday et al. (2018) provided evidence that
plant defenses (immune signaling hormones) regulate
transmission of an aggressive fungal pathogen. In prior
work, we found that Daphnia barrier resistance and
internal clearance traits acted in concert to explain indi-
vidual infections (Stewart Merrill et al. 2019). We won-
dered: do these same traits scale up to influence
epidemics? In the field, prevalence of terminal infections
was greatly decoupled from attacking spores, suggesting
that within-host processes were inhibiting Metschnikowia
development and transmission. In accordance with this
finding, our Daphnia internal clearance trait (hemocytes)
was high during transmission bottlenecks (when Metsch-
nikowia was not spreading) but declined at epidemic
emergence (when Metschnikowia was spreading rapidly).
Taken together, these findings suggest that host
immunological defenses are responsible for the observed
shifts in population-level susceptibility. The internal
clearance trait we measured, defense by hemocytes,
encompasses the recognition, location, and attack of
spores infecting the body cavity. Variation in this trait
could therefore emerge from differences in a suite of
immunological factors, including surveillance proteins,
upstream regulators of hemocyte production, and the
hemocytes themselves (Loker et al. 2004). Further
research into the basis and extent of this variation
should illuminate the environmental contexts under
which we expect susceptibility to increase.

Our results provide compelling empirical evidence that
disease represents only a subset of parasite invasion
attempts and that it is the combination of host suscepti-
bility and parasite exposure that together dictate epi-
demic emergence. Additional study of whether changes
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to exposure and susceptibility are predictable or stochas-
tic may allow us to identify the environmental conditions
under which these key processes align.
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