Comparing the Difficulty of Factorization and
Discrete Logarithm: a 240-digit Experiment*

Fabrice Boudot!, Pierrick Gaudry?, Aurore Guillevic?[0000—0002—0824—-7273]
Nadia Heninger?, Emmanuel Thomé?, and
Paul Zimmermann2!0000—0003—0718—4458]

L Université de Limoges, XLIM, UMR 7252, F-87000 Limoges, France
2 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
3 University of California, San Diego, USA

In memory of Peter L. Montgomery

Abstract. We report on two new records: the factorization of RSA-240,
a 795-bit number, and a discrete logarithm computation over a 795-bit
prime field. Previous records were the factorization of RSA-768 in 2009 and
a 768-bit discrete logarithm computation in 2016. Our two computations
at the 795-bit level were done using the same hardware and software,
and show that computing a discrete logarithm is not much harder than a
factorization of the same size. Moreover, thanks to algorithmic variants
and well-chosen parameters, our computations were significantly less
expensive than anticipated based on previous records.

The last page of this paper also reports on the factorization of RSA-250.

1 Introduction

The Diffie-Hellman protocol over finite fields and the RSA cryptosystem were the
first practical building blocks of public-key cryptography. Since then, several other
cryptographic primitives have entered the landscape, and a significant amount of
research has been put into the development, standardization, cryptanalysis, and
optimization of implementations for a large number of cryptographic primitives.
Yet the prevalence of RSA and finite field Diffie-Hellman is still a fact: between
November 11, 2019 and December 11, 2019, the ICSI Certificate Notary [21]
observed that 90% of the TLS certificates used RSA signatures, and 7% of the
TLS connections used RSA for key exchange. This holds despite the much longer
key sizes required by these primitives compared to elliptic curves: based on the
asymptotic formulas for the best known cryptanalysis algorithms, the required
key size for RSA or finite field Diffie-Hellman is roughly estimated to grow as a
cubic function of the security parameter, while the required key size for elliptic
curve cryptosystems grows only as a linear function of the security parameter.?

* ©IACR 2020. This article is the final version submitted by the authors to the
TACR and to Springer-Verlag on 2020-08-04 for CRYPT02020, available on ePrint
at https://eprint.iacr.org/2020/697. The version published by Springer-Verlag
is available at DOI 10.1007/978-3-030-56880-1 3.

4 A security parameter € asserts that cryptanalysis requires 2¢ operations; assuming
Moore’s law, the security parameter could be seen as growing linearly with time.

https://eprint.iacr.org/2020/697
https://doi.org/10.1007/978-3-030-56880-1_3

Over the last few years, the threat posed by quantum computers has been used
as a justification to postpone the impending replacement of RSA and finite field
Diffie-Hellman by alternatives such as elliptic curve cryptography [33], resulting
in implementation choices that seem paradoxical from the perspective of classical
cryptanalysis.

Key sizes for RSA and finite field Diffie-Hellman have become unwieldy.
To meet a 128-bit security strength, it is widely accepted that both schemes
require a key size of approximately 3072 bits (see e.g., the 2018 ECRYPT-CS
Recommendations). While it is easy to deal with such key sizes in environments
where computing power is plentiful (laptop and desktop computers, or cell
phones), a surprising amount of public key cryptography in use employs weak key
strengths. There are two main factors contributing to the use of weak key sizes
in practice. First, implementations may use weak key sizes to ensure backward
compatibility. For example, a crucial component in the FREAK and Logjam
attacks was the widespread support for weakened “export-grade” cipher suites
using 512-bit keys [1]; the Java JDK versions 5-8 originally supported Diffie-
Hellman and DSA primes of at most 1024 bits by default. Second, in embedded
environments, or when very little computational power is allotted to public-key
cryptographic operations, small key sizes are not rare. As an example, in 2018,
an off-the-shelf managed network switch purchased by the authors shipped with
a default RSA ssh host key of 768 bits (despite a $2,000 USD list price), a key
size that has been broken since 2009 in the academic world.

The main goal of this article is to assess the difficulty of the mathematical
problems that underpin the security of RSA and finite field Diffie-Hellman and
DSA, namely integer factorization (IF) and discrete logarithm (DL). We are
interested both in the feasibility of cryptanalysis of these problems as well as
in their relative difficulty. Our targets are RSA-240, from the RSA Factoring
Challenge, and DLP-240, denoting the challenge of computing discrete logarithms
modulo p = RSA-240 + 49204, which is the smallest safe prime above RSA-240
(i.e., (p—1)/2 is also prime). Both previous records were 768-bit keys, with results
dating back to 2009 [27] and 2016 [29]. The total cost of our computation is
about 1000 core-years for RSA-240, and 3200 core-years for DLP-240. Here and
throughout this article, the core-years we mention are relative to the computing
platform that we used most, namely Intel Xeon Gold 6130 CPUs with 16 physical
cores (32 hyperthreaded cores) running at 2.10 GHz. A core-year is the use of
one of these physical cores for a duration of one year. As in the previous records,
our computations used the Number Field Sieve algorithm (NFS for short), which
has variants both for integer factoring and finite field discrete logarithms.

Improvements in cryptanalysis records are to be expected. In this article, our
contribution is not limited to reaching new milestones (and reminding people to
get rid of outdated keys). Rather, it is interesting to report on how we reached
them:

— We developed a testing framework that enabled us to precisely select, among a
wide variety with complex interactions, parameters that influence the running

time of NFS. We were able to accurately predict important measures such as
the matrix size.

— Some folklore ideas that have been known for some time in the NFS community
played a very important role in our computation. In particular the composite
special-q used in relation collection for DLP-240 proved extremely beneficial,
and so did batch smoothness detection, which we used both for RSA-240 and
DLP-240. This is the first time that this latter technique has been used in a
factoring record for general numbers (it was used in [28], in a very specific
context). These techniques, together with our careful parameter selection,
contributed to a significantly faster computation than extrapolation from
the running times of previous records would have suggested. Even on similar
hardware, our relation collection effort for the 795-bit DLP computation
took 25% less time than the reported relation collection effort of the previous
768-bit DLP record.

— Furthermore, we computed two records of the same size, RSA-240 and DLP-
240, at the same time and using hardware of the same generation. This is
completely new and gives a crucial data point for the assessment of the
relative difficulty of IF and DL. While it is commonly believed that DL is
much harder than IF, we show that the hardness ratio is roughly a factor
of 3 for the current 800-bit range for safe primes, much less than previously
thought.

— Last but not least, our computations were performed with the open-source
software Cado-NF'S [36]. Reproducing our results is possible: we have set
up a companion code repository at https://gitlab.inria.fr/cado-nfs/
records that holds the required information to reproduce them.

We complement the present work with another record computation, the
factoring of RSA-250, for which we used parameters similar to RSA-240. Details
for this additional record are given at the end of the paper.

This article is organized as follows. We give a brief introduction to key aspects
of NFS in Sect. 2. In Sects 3 to 7 we detail the main steps of NFS, how we chose
parameters, and how our computations proceeded, both for factoring and discrete
logarithm. Section 8 gives further details on the simulation mechanism that we
used in order to predict the running time. Section 9 concludes with a comparison
with recent computational records, and a discussion on the relative hardness of
the discrete logarithm and factoring problems.

2 Background on the Number Field Sieve

The Number Field Sieve (NFS) is an algorithmic framework that can tackle either
of the two following problems:

— Integer factorization (IF): given a composite integer N, find a non-trivial
factorization of N.

https://gitlab.inria.fr/cado-nfs/records
https://gitlab.inria.fr/cado-nfs/records

— Discrete logarithm in finite fields (DL): given a prime-order finite field®
F, and a subgroup G of prime order ¢ within Fj, compute a non-trivial
homomorphism from G to Z/¢7. By combining information of this kind for
various /, given g,y € [y, one can compute = such that g* = y.

When the need arises, the algorithms for the two problems above are denoted
NFS and NFS-DL, respectively. Most often the acronym NF'S is used for both
cases. Furthermore, in the few cases in this paper where we work with the prime
factors of N, we call them p and ¢. Of course, p here shall not be confused with
the prime p of the DLP case. The context allows to avoid the confusion.

NFS is described in the book [30]. So-called “special” variants of NFS exist as
well, and were historically the first to be developed. These variants apply when
the number N or p has a particular form. Large computations in these special
cases were reported in [2,17,28]. In this work, we are concerned only with the
general case (GNF'S). The time and space complexity can be expressed as

L (1/3,(64/9)"/2) 1) = exp ((64/9)1/3(10g N)'/3(loglog N)*/3(1 + o(l)))

for factoring. For discrete logarithms in a subgroup of Fy, N is substituted by p
in the above formula. In both cases, the presence of (1 + o(1)) in the exponent
reveals a significant lack of accuracy in this complexity estimate, which easily
swallows any speedup or slowdown that would be polynomial in log N.

i N . line: square
polynomlal sieving filtering inear square
selection algebra root

NFS for factoring: given an RSA modulus N, find p, ¢ such that N = pq.

polynomial linear
algebra

N sieving filtering
selection

one-off precomputation per-key computation

NFS for DLP: given g” = y mod p, find z.

Fig. 1. Main steps of NFS and NFS-DL.

The Number Field Sieve is made up of several independent steps, which are
depicted in Fig. 1. The first step of NFS, called polynomial selection, determines

5 Variants for non-prime finite fields also exist, but are not covered here.

a mathematical setup that is well suited to dealing with the input N (or p). That
is, we are searching for two irreducible polynomials fo and f; in Z[z] that define
two algebraic number fields Ky = Q(ap) and K7 = Q(aq) (with fi(a;) = 0),
subject to some compatibility condition. The resulting maps are depicted in the
diagram in Fig. 2.

x»—>a/ \»—>a1

Z[ao Zlo]

o ao'—>m\ %/h o= m

Z/p7, or Z/NZ,

Fig. 2. The mathematical setup of NFS.

To be compatible, fo and f; should have a common root m modulo p (or,
likewise, modulo N), used in the maps 19 and v in Fig. 2. This condition is
difficult to ensure modulo a composite integer IV, and most efficient constructions
are limited to choosing fy as a linear polynomial, so that Z[ag] is a subring of
Q. This leads to commonly used terminology that distinguishes between the
“rational side” (fo) and the “algebraic side” (f;). When dealing with IF-related
considerations, we also use this terminology. In contrast, for NFS-DL, other
constructions exist that take advantage of the ability to find roots modulo p.

Based on the mathematical setup above, the most time-consuming phase
of NFS consists of collecting relations. We search for elements a — bz € Z[z],
preferably with small coefficients, such that the two integers® Res(a — bz, fo)
and Res(a — bx, f1) are smooth, i.e., factor into small prime numbers below
some chosen large prime bound. This ensures that the ideals (@ — bag)Ok, and
(a — ba1)Of, both factor into ideals within finite sets called Fy and F;.”

The main mathematical obstacle to understanding NFS is that we cannot
expect a — ba; for i € {0,1} to factor into elements of Z[ay;]. Only factorization
into prime ideals, within the maximal orders O, holds. As such, even given
known ideal factorizations of the form (a—ba;)O; = [],¢ 7, p =, it is impossible
to use the diagram in Fig. 2 to write a relation of the following kind (in either
Z/N7, or Z/pZ, depending on the context):

IT voteerer) “= TT waperer). (1)

pEFo pEF

5 A common abuse of terminology is to use the term “norm” to denote Res(a — bz, f3),
while in fact the latter coincides with the norm of a — ba; only when f; is monic.

" The terms smoothness bound and factor base are fairly standard, but lead to ambigu-
ous interpretations as we dive into the technical details of how relation collection is
performed. Both are therefore avoided here, on purpose.

Indeed the maps v; are defined on elements, not ideals. A prime ideal, or a
factorization into prime ideals, does not uniquely identify an element of Kj,
because of obstructions related to the unit group and the class group of the
number field K;. To make an equality similar to (1) work, additional data is
needed, called quadratic characters in the context of factoring [10, §6] and
Schirokauer maps in the discrete logarithm context [35]. With this additional
information, relations that are functionally equivalent to Eq. (1) can be obtained.
The general goal of NFS, once relations have been collected, is:

— in the IF context, to combine (multiply) many relations together so as to
form an equality of squares in Z/NZ. To achieve this goal, it suffices to only
keep track of the valuations e 4, modulo 2. The right combination can be
obtained by searching for a left nullspace element of a binary matrix;

— in the DL context, to view the multiplicative relations as additive relations
involving unknown logarithms of the elements in Fy and F7, and to solve the
corresponding linear system for these unknowns. These logarithms, and the
linear system, are defined modulo ¢, which is the order of the subgroup of 7
that we are working in. (If the system were homogeneous, solving it would
require a right nullspace element of a matrix defined modulo £.)

In both cases (factoring and discrete logarithm), we need a linear algebra
calculation. The matrix rows are vectors of valuations, which are by construction
very sparse. Note however that record-size computations with NFS typically
collect billions of relations, which is a rather awkward data set to deal with. The
linear algebra step therefore begins with a preprocessing step called filtering,
which carries out some preliminary steps of Gaussian elimination with the aim of
reducing the matrix size significantly while keeping it relatively sparse.

The linear algebra step that follows is the second most expensive computa-
tional step of NFS. Once the solution to the linear algebra problem has been
found, the final task is to factor IV given an equality of squares modulo N, or to
compute arbitrary discrete logarithms based on a database of known logarithms
derived from the solution of the linear system. This final result is obtained via
some additional steps which, while nontrivial, are computationally insignificant
compared to the rest of the computation.

NFS can be implemented in software. Our computation was carried out
exclusively with the Cado-NFS implementation [36]. In Sects. 3 to 7, we examine
the underlying algorithms as well as the computational specifics of the different
steps of NFS.

3 Polynomial Selection

Polynomial selection can be done using a variety of algorithms, both in the
factoring context [25,26,32,3] or in the discrete logarithm context, which allows
additional constructions such as [22]. Not all choices of polynomials (fo, f1) that
permit the structure in the diagram in Fig. 2 perform equally well. Hence, it is

useful to try many different pairs (fo, f1) until a good one is found. The main
optimization criteria are meant to ensure that on the one hand Res(a — bz, fo)
and Res(a — bz, f1) are somewhat small, and on the other hand they are likely
to have many small prime factors.

As detailed in [25], the most important task in polynomial selection is to
quickly discard the less promising pairs, and efficiently rank the promising ones
with a sequence of estimators, from coarse-grained estimators to finer-grained
ones. Finally, a small-scale sieving test can be run in order to select the polynomial
pair to use for the rest of the computation among the final set of candidates.

We followed exactly this approach, using the Murphy-E value from [32] as
well as the modified estimator E’ suggested in [14] as estimators. We performed
sample sieving for a few dozen of the best candidates. Cado-NFS can do this
easily with the random-sample option.

3.1 Computational Data

RSA-240. We used Kleinjung’s algorithm [25,26], with improvements from [3],
and searched for a polynomial pair with deg fo = 1 and deg f; = 6. We forced the
leading coeflicient f; ¢ of f1 to be divisible by 110880, to ensure higher divisibility
by 2,3,5,7,11. The parameter P used (see [26]) was P = 2-107 and we searched
up to f175 =2 1012.

The cost of the search was about 76 core-years. It was distributed over
many computer clusters, and took only 12 days of calendar time. We kept 40
polynomial pairs: the top 20 with the best Murphy-E values, and the top 20 with
the modified E’ value [14]. After some sample sieving, two clear winners emerged,

and distinguishing between both was actually quite hard. In the end we chose
the one optimized for the classical Murphy-E value, with |Res(fo, f1)| = 120N

f1 = 10853204947200 z° — 221175588842299117590564542609977016567191860
— 4763683724115259920 2° 4 1595712553369335430496125795083146688523
— 6381744461279867941961670 2" 4+ 179200573533665721310210640738061170 2.
+ 974448934853864807690675067037 z°

fo = 17780390513045005995253 = — 105487753732969860223795041295860517380

For each polynomial f;(x), we denote by Fj(x,y) = y°&fi fi(z/y) the corre-
sponding homogeneous bivariate polynomial.

DLP-240. Asin [29], we used the Joux-Lercier selection algorithm [22], searching
for a pair (fo, f1) with f1 of degree d with small coefficients, and fy of degree
d — 1 with coefficients of order p*/¢. As in [29], we used d = 4 which is optimal
for this size, with coefficients of f; bounded by 150 in absolute value, compared
to 165 in [29].

The cost of the search was about 152 core-years, and only about 18 days of
calendar time. We kept the 100 best pairs according to their Murphy-FE value,
and chose the winning polynomial pair based on the results of sample sieving.

As in the RSA-240 case, the very best handful of polynomials provided almost
identical yields. We ended up using the following pair, with |Res(fo, f1)| = 540p:

f1 = 392" + 1262° + 2% + 62z + 120

fo = 2865121727006754119869668463943599248745765364087863680562°
+ 249088203007157661364751159824397355165818886038172555398902:
— 1876369756001301656440395392832712103558040945994485465273 7
— 236610408827000256250190838220824122997878994595785432202599

Note that although there is a clear correlation between the efficiency of a
polynomial pair and its Murphy-E value, the ranking is definitely not perfect
[14]; in particular, the top scoring polynomial pair according to Murphy-E finds
10% fewer relations than the above one.

4 Relation Collection

The relation collection uses a technique called lattice sieving [34]. Lattice sieving
borrows from the terminology of special-q sieving [15]. We call special-q ideals
a large set of ideals of one of the two number fields®. For each such special-q,
the search for relations is done among the pairs (a,b) such that the prime ideals
dividing q appear in the factorization® of (a — bag)Of, (or (a —ba1)Ok,). These
(a,b) pairs form a lattice £, in Z2, which depends on q. Let (@, 7) be a Gauss-
reduced basis of £;. To enumerate small points in £,, we consider small linear
combinations of the form (a,b) = i@ + j¥. In order to search for good pairs (a, b)
in £,, we use the change of basis given by (#,?), and instead search for good
pairs (i,) such that both Res(a — bz, fy) and Res(a — bz, f1) are smooth.

The set of explored pairs (4, 7) is called the sieve area, which we commonly
denote by A. For performance it is best to have A of the form [—1/2,1/2) x [0, J)
for some integers I and J, and I a power of two. This implies that as we consider
multiple special-gs, the sieved rectangles drawn in Fig. 3(a) (whose intersections
with Z2 most often have very few common points, since divisibility conditions
are distinct) lead us to implicitly consider (a,b) pairs that generally have small
norm, but are not constrained to some area that has been defined a priori. In
fact, various strategies can be used to make small adjustments to the sieve area
depending on g in order to limit the spread of the zones reached in Fig. 3(a).

Relation collection finds pairs (a,b) (or, equivalently, pairs (i, 7)) such that
two smoothness conditions hold simultaneously (see §2). We thus have two sides
to consider. In the description below, we use F to denote either Fy or Fi, as

8 Tt is possible to mix special-q ideals from both number fields, as done in [17], or even
hybrid special-q involving contributions from both sides.

9 By factorization, we implicitly mean “numerator of the factorization”. Furthermore
we factor ideals such as (a — ba)Ok, yet the maximal order Ok is generally too
expensive to compute. It turns out that if Res(a — bz, f) is smooth and fully factored,
then it is easy to do. How to deal with these technicalities is well known, and not
discussed here (see [12, chapters 4 and 6]).

Fig. 3. (a): Examples of (4, j) rectangles for various lattices £q within the (a,b) plane.
(b): Sieving for a prime p in the (3, j) rectangle. (c): Sieved locations can be quite far
apart, and accessing them naively can incur a significant memory access penalty.

the same processing can be applied to both sides. Likewise, we use f and « to
denote either fy and agp, or f1 and a;.

One of the efficient ways to find the good pairs (i,7) is to use a sieving
procedure. Let p be a moderate-size prime ideal in F, subject to limits on [Norm p|
that will be detailed later. Identify the locations (i,) such that p | (a — ba).
These locations again form a lattice in the (4,j) coordinate space, as seen in
Figs. 3(b)—(c) and hence implicitly a sub-lattice of £4. Record the corresponding
contribution in an array cell indexed by (4,7). Repeat this process for many
(not necessarily all) prime ideals in F, and keep the array cells whose recorded
contribution is closest to the value |Res(a — bz, f)|: those are the most promising,
i.e., the most likely to be smooth on the side being sieved. Proceed similarly for
the other side, and check the few remaining (a,b) pairs for smoothness. Note
that as p varies, the set of locations where p divides (a — bar) becomes sparser
(see Fig. 3(c)), and dedicated techniques must be used to avoid large memory
access penalties.

An alternative approach is to identify the good pairs (¢, j) with product trees,
using “batch smoothness detection” as explained in [6]. Among a given set of
norms, determine their smooth part by computing their gcd with the product of
the norms of all elements of F at once. This is efficient because it can be done
while taking advantage of asymptotically fast algorithms for multiplying integers.
This approach was used profitably for the previous 768-bit DLP record [29].

Among the mind-boggling number of parameters that influence the sieving
procedure, the most important choices are the following.

— The large prime bound that determines the set F. These bounds (one on
each side) define the “quality” of the relations we are looking for. Cado-NFS
uses the notation 1pb for these bounds.

— The g-range and the size of the sieve area #.4. This controls how many special-
gs we consider, and how much work is done for each. The amount of work can
also vary depending on the norm of ¢q. The ratio between the norms of the
smallest and largest special-q is important to examine: a large ratio increases
the likelihood that the same relations are obtained from several different
special-q (called duplicates), and causes diminishing returns. Enlarging the
sieve area increases the yield per special-q, but also with diminishing returns

for the larger area, and costs extra memory. In order to collect the expected
number of relations, it is necessary to tune these parameters.

— The size of the prime ideals p € F being sieved for, and more generally how
(and if) these ideals are sieved. Cado-NFS uses the notation lim for this
upper bound, and we refer to it as the sieving (upper) bound. As a rule of
thumb, we should sieve with prime ideals that are no larger than the size of
the sieve area, so that sieving actually makes sense. The inner details of the
lattice sieving implementation also define how sieving is performed, e.g., how
we transition between algorithms in different situations like those depicted in
Figs. 3(b) and 3(c), along with more subtle distinctions. This has a significant
impact on the amount of memory that is necessary for sieving.

When sieving is replaced by batch smoothness detection, we also use the
notation lim to denote the maximum size of primes that are detected with
product trees.

— Which criteria are used to decide that (a,b) are “promising” after sieving, and
the further processing that is applied to them. Typically, sieving identifies a
smooth part of Res(a — ba, f), and a remaining unfactored part (cofactor).
Based on the cofactor size, one must decide whether it makes sense to seek
its complete factorization into elements of F. In this case Cado-NF'S uses the
Bouvier-Imbert mixed representation [9]. Any prime ideal that appears in
this “cofactorization” is called a large prime. By construction, large primes
are between the sieving bound and the large prime bound.

4.1 Details of Our Relation Search

One of the key new techniques we adopt in our experiments is how we organize the
relation search. The picture is quite different in the two cases. For IF, this phase
is the most costly, and can therefore be optimized more or less independently of
the others. On the other hand for DL, the linear algebra becomes the bottleneck
by a large margin if the parameters of the relation search are chosen without
considering the size of the matrix they produce.

The first component that we adjust is the family of special-gqs that we consider.
In the DL case, a good strategy to help the filtering and have a smaller matrix is to
try to limit the number of large ideals involved in each relation as much as possible.
The approach taken in [29] was to have special-qs that stay small, and therefore
to increase the sieve area #.A4, which comes at a cost. We instead chose to use
composite special-qs (special-q ideals with composite norm), reviving an idea that
was originally proposed in [24] in the factoring case to give estimates for factoring
RSA-1024. This idea was extended in [7, Sect. 4.4] to the discrete logarithm case,
but to our knowledge it was never used in any practical computation. We pick
composite special-gs that are larger than the large prime bound, but whose prime
factors are small, and do not negatively influence the filtering. Because there are
many of them, this no longer requires a large sieve area, so that we can tune it
according to other tradeoffs.

In the context of IF, we chose the special-qs more classically, some of them
below 1im, and some of them between 1im and 1pb.

10

Another important idea is to adapt the relation search strategy depending on
the type of special-q we are dealing with and on the quality of the relations that
are sought. A graphical representation of these strategies is given in Fig. 4.

In the DL case, we want to limit as much as possible the size of the matrix
and the cost of the linear algebra. To this end, we used small sieving bounds,
and allowed only two large primes on each side, with rather small large prime
bounds. These choices have additional advantages: a very small number of (3, j)
candidates survive the sieving on the fy-side (the side leading to the largest
norms), so that following [29], we skipped sieving on the fi-side entirely and
used factorization trees to handle the survivors, thus saving time and memory by
about a factor of 2 compared to sieving on both sides.

In the IF case, the same idea can also be used, at least to some extent.
The first option would be to have large prime bounds and allowed number of
large primes that follow the trend of previous factorization records. Then the
number of survivors of sieving on one side is so large that it is not possible to
use factorization trees on the other side, and we have to sieve on both sides. The
other option is to reduce the number of large primes on the algebraic side (the
more difficult side), so that after sieving on this side there are fewer survivors and
we can use factorization trees. Of course, the number of relations per special-q
will be reduced, but on the other hand the cost of finding them is reduced by
about a factor of 2. In our RSA-240 computation, we found that neither option
appeared to be definitively optimal, and after numerous simulations, we chose
to apply the traditional strategy for the small gs (below the sieving bound 1im)
and the new strategy for the larger ones.

4.2 Distribution and Parallelization

For large computations such as the ones reported in this article, the relation
collection step is a formidable computing effort, and it is also embarrassingly
parallel: as computations for different special-gs are independent, a large number
of jobs can run simultaneously, and need no inter-process communication. A large
amount of computing power must be harnessed in order to complete this task in
a reasonable amount of time. To this end, several aspects are crucially important.

Distribution. First, the distribution of the work is seemingly straightforward.
We may divide the interval [¢min, gmax) into sub-intervals of any size we see fit,
and have independent jobs process special-qs whose norm lie in these sub-intervals.
This approach, however, needs to be refined if we use multiple computing facilities
with inconsistent software (no common job scheduler, for instance), inconsistent
hardware, and intermittent availability, possibly resulting in jobs frequently failing
to complete. On several of the computing platforms we had access to, we used
so-called best-effort jobs, that can be killed anytime by other users’ jobs. This
approach means that it is necessary to keep track of all “work units” that have
been assigned at any given point in time, and reliably collect all results from
clients. For the computations reported in this article, the machinery implemented

11

RSA-240:
20 929.6

232.8 2367237

:5\) | q
~

lim1

|[Norm q| < 1im;: we allow
2 large primes on side 0,
3 large primes on side 1.

We sieve on both sides.

1pby (prime)
|[Norm ¢| > 1lim;:

we allow 2 large primes on each side.

(g counts as an additional large prime on side 1.)

We sieve on side 1 and batch on side 0.

DLP-240:

90 913 926.5 929 928 935 9371 938.1

— —— .
qi, q; limg,; 1pb, , q = qiqy (composite)

(prime factors of q) We allow 2 large primes on each side.
(The factors of ¢ are not large primes.)

We sieve on side 0 and batch on side 1.

Fig. 4. Position of special-q ranges with respect to the sieving bounds 1im and the large
prime bounds 1pb (values not to scale). For RSA-240, there are 2 distinct sub-ranges
with different kinds of relations that are sought, with different strategies. For DLP-240,
the special-q range is well beyond the large prime bound, thanks to the use of composite
special-gs.

in Cado-NF'S was sufficient. It consists of a standalone server where each work
unit follows a state machine with the following states: AVAILABLE (a fresh
work unit submitted for processing), ASSIGNED (when a client has asked for
work), OK (result successfully uploaded to server), ERROR (result failed a
sanity check on server, or client error), and CANCELED (work unit timed out,
presumably because the client went offline). Work units that reach states ERROR
or CANCELED are resubmitted up to a few times, to guard against potential
infinite loops caused by software bugs. This approach was sufficient to deal with
most computation mishaps, and the few remaining “holes” were filled manually.

Parallelization. The second crucial aspect is parallelism. The lattice sieving
algorithm that we use in relation collection is not, in itself, easy to parallelize.
Furthermore, it is a memory-intensive computation that is quite demanding in
terms of both required memory and memory throughput. In the most extreme
case, having many CPU cores is of little help if the memory throughput is the
limiting factor. The following (simplified) strategy was used to run the lattice
sieving program at the whole machine level.

— Given the program parameters, determine the amount of memory m that
is needed to process one special-q. On a machine with v virtual cores and
memory M, determine the maximal number s of sub-processes and the

12

number of threads t per sub-process such that sm < M, st = v, and t is
a meaningful subdivision of the machine. This strategy of maximizing s is
meant to take advantage of coarse-grained parallelism.

— Each of the s sub-processes is bound to a given set of ¢ (virtual) cores of the
machine, and handles one special-q at a time.

For each special-q, sub-processes function as follows. First divide the set of
p € F for which we sieve (that is, whose norm is less than 1im) into many slices
based on several criteria (bounded slice size, constant value for |log [Normp|],
same number of conjugate ideals of p). The largest sieved prime ideals in Fy
have somewhat rare hits (as in Fig. 3(c)). We handle them with so-called “bucket
sieving”, which proceeds in two phases that are parallelized differently:

— “fill buckets”: slices are processed in parallel, and “updates” are precomputed
and appended to several lists, one for each “region” of the sieve area. These
lists are called “buckets”’. A region is typically 64kB in size. In order to avoid
costly concurrent writes, several independent sets of buckets can be written
to by threads working on different slices.

— “apply buckets”: regions are processed in parallel. This entails reading the
information from “fill buckets”, that is, the updates stored in the different
lists. Together with this second phase of the computation, we do everything
that is easy to do at the region level: sieve small prime ideals, compute
log |Res(a — bz, fo)|, and determine whether the remaining cofactor is worth
further examination.

A rough approximation of the memory required by the above procedure is
as follows, with #.A4 denoting the size of the sieve area, and bounds 2! and 1im
being the two ends of the bucket-sieved range, as represented in Fig. 5.

. 1
memory required ~ #.A4 x E —_
|Norm p|
pEF)
p bucket-sieved

~ #A X (log log1im — loglog 21) .

The formula above shows that if bucket sieving is used as described above
for prime ideals around 2!, which is not very large, the number of updates to
store before applying them becomes a burden. To alleviate this, and deal with
(comparatively) low-memory hardware, Cado-NFS can be instructed to do the
“fill buckets” step above in several stages. Medium-size prime ideals (below a
bound called bkthreshl, mentioned in Fig. 5) are actually considered for only
up to 256 buckets at a time. Updates for prime ideals above bkthreshi, on the
other hand, are handled in two passes. This leads to:

memory required & #A4 x (loglog lim — log log bkthresh1)
#A

+ 556 (log log bkthreshl — log log 21) .

13

20 2t bkthreshi lim 1pb

[

=3

[[
I ' I VT
small | 1-level 2-level ! ECM
size @ucket sieve bucket sieve Y extracted
~"
bucket sieve
20 lim 1pb
| | | .
- - —
~ ~
product tree ECM
extracted

Fig. 5. Bucket sieve and product-tree sieve.

Interaction with batch smoothness detection. If the algorithms inspired
by [6] are used, the impact on distribution and parallelization must be considered.
The cost analysis assumes that the product of the primes to be extracted has
roughly the same size as the product of survivors to be tested. Only then can
we claim a quasi-linear asymptotic complexity. In this context, a survivor is an
(a,b) pair for which the sieving done on one side reveals a smooth or promising
enough norm so that the norm on the other side will enter the batch smoothness
detection. The situation depends on the number of survivors per special-q.

In the DLP-240 case, the sieving parameters are chosen to reduce the size of
the matrix. This has the consequence that the desired relations that are “high
quality” relations are rare, so that the number of survivors per special-q is small
(about 7000 per special-q, for #.4 = 23!). In this setting, it makes sense to
accumulate all the survivors corresponding to all the special-q of a work unit in
memory, and handle them at the end. There are so few survivors that the cost
of the batch smoothness detection remains small. This strategy deviates from
the asymptotic analysis but works well enough, and does not interfere with the
distribution techniques used by Cado-NFS.

In the RSA-240 case, the situation is quite different. The number of survivors
per special-q is high, so that the relative cost of the batch smoothness detection
is non-negligible. It is therefore important to accumulate the correct number
of survivors before starting to build the product trees. In our setting, this
corresponds to between 100 and 200 special-gqs, depending on their size. In order
to keep the implementation robust to these variations and to a non-predefined
work unit size, we had the sieving software print the survivors to files. A new
file is started after a given number of survivors have been printed. This way, the
processing can be handled asynchronously by other independent jobs. Again with
simplicity and robustness in mind, we preferred to have the production and the
processing of the survivors running on the same node, so as to avoid network
transfers. Therefore the survivor files were stored on a local disk (or even on a
RAM-disk for disk-less nodes). The next question is how to share the resources

14

on a single node, taking into account the fact that the top level of the product
tree involves large integer multiplications, which do not parallelize efficiently, and
yet consume a large amount of memory. After running some experiments, we
found that nodes with at least 4 GB of RAM per physical core could smoothly
and efficiently accommodate the following setting:

— One main job does the sieving on one side and continuously produces survivor
files, each of them containing about 16M survivors. It uses as many threads
as the number of logical cores on the node. In the parallelization strategy
mentioned on page 12, only half of the RAM is considered available.

— About half a dozen parallel jobs wait for survivor files to be ready, and then
run the batch smoothness detection followed by the final steps required to
write relations. Each of these jobs has an upper limit of (for example) 8
threads. The parallelization allows us to treat product trees and ECM curves
in parallel, but each multiplication is single-threaded.

We rely on the task scheduler of the operating system to take care of the competing
jobs: in our setting the total number of threads that could in principle be used
is larger than the number of logical cores. But since the jobs that process the
survivors are restricted to just one thread when performing a long multiplication,
it is important that the sieving makes full use of the cores during these potentially
long periods of time.

4.3 Choosing Parameters

There are so many parameters controlling the relation collection, each of which
can be tuned and that interact in complex ways, that it is tempting to choose
them according to previous work and educated guesses based on what is known to
be efficient for smaller sizes where many full experiments can be done. However,
techniques like batch smooth detection might only be relevant for large enough
sizes. We attempted as much as possible to be rigorous in our parameter selection,
and for this we developed dedicated tools on top of Cado-NFS to analyze a given
set of parameters. First, we carried out sample sieving over a wide g-range to
deduce the projected yield, with duplicate relations removed on the fly. Second,
we developed a simulator that could infer the corresponding matrix size with
good accuracy, given some of the sample relations generated above. Both tools
are detailed in §8.

Equipped with these tools, there was still a wide range of parameters to
explore. We give some general ideas about how we narrowed our focus to a subset
of the parameter ranges. This is different for the case of DL and IF.

For RSA-240, we first looked for appropriate parameters in the classical
setting where we sieve on both sides and can then allow as many large primes on
each side as we wish. It quickly became clear that a sieving bound of 23! was
perhaps not optimal but close to it. Since 23! is also the current implementation
limit of Cado-NFS, this settled the question. Then the sieve area A has to be
at least around this size, so that sieving is amortized. The range of special-gs is

15

then taken around the sieving bound. We can use the following rules to choose
good large prime bounds. When doubling the large prime bounds, the number of
required relations roughly doubles. Therefore the number of (unique) relations per
special-q should more than double to compensate for this increased need. When
this stops to be the case, we are around the optimal value for the large prime
bounds. These considerations gave us a first set of parameters. We estimated
that we were not too far from the optimal. Then we explored around it using our
tools, also adding the possibility of having a different choice of parameters to
allow batch smoothness detection for the large special-q.

In the DLP-240 case, the choices of the sieving and large prime bounds were
dictated by constraints on the size of the resulting matrix. The general idea
we used for this is that when the relations include at most 2 large primes on
each side, the matrix size after filtering depends mostly on the sieving bound,
which bounds the number of dense columns in the matrix that will be hard to
eliminate during the filtering. Keeping the large prime bound small was also
important to reduce the number of survivors that enter the batch smoothness
detection. We used another empirical rule that helped us look for appropriate
parameters. In the case of composite special-q where the number of duplicate
relations could quickly increase, keeping a g-range whose upper bound is twice
the lower bound is a safe way to ensure that the duplicate rate stays under
control. In order to have enough gs in the range, the consequence of this was
then to have them beyond the large prime bound, which might look surprising at
first. Our simulation tools were crucial to validate these unusual choices before
running the large-scale computation.

4.4 Computational Data

RSA-240. The relation collection for RSA-240 was carried out with large prime
bounds of 36 bits on side 0 (the “rational side™ fj is the linear polynomial) and
37 bits on side 1 (the “algebraic side™ f; has degree 6). We used two parameter
sets, both with sieve area size #.4 = 232. We considered special-gs on side 1.

For special-qs whose norm is within 0.8G-2.1G, we sieved on both sides, with
sieving bounds 1img = 1.8G and 1im; = 2.1G. We permitted cofactors no larger
than 72 bits on side 0 and 111 bits on side 1, which allowed for up to two 36-bit
large primes on side 0 and three 37-bit large primes on side 1.

For special-gs whose norm is within 2.1G-7.4G, we sieved only on side 1 using
lim; = 2.1G as above, and used “batch smoothness detection” on side 0, as done
in [29] (albeit the other way around). We allowed one fewer large prime than
above on side 1, which accounts for the contribution of the special-q (see Fig. 4).
The “classical sieving” took 280 core-years, while “sieving + batch smoothness
detection” took 514 core-years, for a total of 794 core-years.

DLP-240. For DLP-240, we allowed large primes of up to 35 bits on both sides.
We used composite special-gs on side 0, within 150G-300G, and prime factors
between puin = 8192 and prax = 108 (see also Fig. 4). Since puax < 150 G and
p3. > 300 G this forced special-gs with two factors. We had 3.67G of these.

16

The sieve area size was #.4 = 231, We sieved on side 0 only, with a sieving
bound of 227, We used batch smoothness detection on side 1 to detect ideals of
norm below 228, Up to two 35-bit large primes were allowed on each side. This
relation collection task took a total of 2400 core-years.

5 Filtering

Prior to entering the linear algebra phase, the preprocessing step called filtering
is mostly hampered by the size of the data set that it is dealing with. Overall this
phase takes negligible time, but it needs a significant amount of core memory,
and the quality of the filtering matters. As filtering proceeds, the number of
rows of the matrix decreases, and its density (number of non-zero elements per
row) increases slightly. Filtering can be stopped at any point, which we choose
to minimize the cost of the linear algebra computation that follows.

Filtering starts with “singleton” and “clique” removal [11]. This reduces the
excess (difference between the number of relations and the number of ideals
appearing in them) to almost zero. Then follows another step, called merge in
Cado-NFS, which does some preliminary steps of Gaussian elimination to reduce
the matrix size, while increasing its density as little as possible.

Section 8 describes simulations that were performed before the real filtering,
to estimate the final matrix size. Filtering was done on a dual-socket, 56-core
Intel Xeon E7-4850 machine with 1.5 TB of main memory. The merge step was
performed with the parallel algorithm from [8].

RSA-240. For special-gs in 0.8G-7.4G, we collected a total of 8.9G relations
which gave 6.0G unique relations. See Table 1 for exact figures. After singleton
removal (note that the initial excess was negative, with 6.3G ideals), we had
2.6G relations on 2.4G ideals. After “clique removal”, 1.2G relations remained,
with an excess of 160 relations. The merge step took about 110 min of wall-clock
time, plus 40 min of I/O time. It produced a 282M-dimensional matrix with
200 non-zero elements per row on average. We forgot to include around 4M free
relations, which would have decreased the matrix size by 0.1%.

DLP-240. For special-gs in 150G-300G, we collected a total of 3.8G relations,
which gave 2.4G unique relations. After singleton removal, we had 1.3G relations
on 1.0G ideals, and therefore had an enormous excess of around 30%. After
“clique removal”, 150M relations remained, with an excess of 3 more relations
than ideals, so we reduced the matrix size by a factor of almost 9. The merge step
took less than 20 min, plus 8 min of I/O. It produced a 36M-dimensional matrix,
with an average of 253 non-zero elements per row. We generated several other
matrices, with target density ranging from 200 to 275, but the overall expected
time for linear algebra did not vary much between these matrices.

17

6 Linear Algebra

We used the block Wiedemann algorithm [13] for linear algebra. In the short
description below, we let M be the sparse matrix that defines the linear system,
and #M denotes its number of rows and columns. We choose two integers m
and n called blocking factors. We also choose x and y, which are blocks of m
and n vectors. The main ingredient in the block Wiedemann algorithm is the
sequence of m x n matrices (x7 M “y)i>0. We look at these matrices column-wise,
and form several sequences, n in the DLP case, and n/64 in the factoring case,
since for the latter it is worthwhile to handle 64 columns at a time because the
base field is Fy. The algorithm proceeds as follows.

— The Krylov step computes the sequences. For each of the n sequences, this
involves (1/m + 1/n) - #M matrix-times-vector operations. In the factoring
case, the basic operation is the multiplication of M by a block of 64 binary
vectors, in a single-instruction, multiple-data manner. Note that sequences
can be computed independently.

— The Lingen step computes a matrix linear generator [5,37,18].

— The Mksol step “makes the solution” from the previously computed data.
This requires 1/n - #M matrix-times-vector operations [23, §7].

6.1 Main Aspects of the Block Wiedemann Steps

In order to make good use of a computer cluster for the block Wiedemann
algorithm, several aspects must be considered. These are intended to serve as a
guide to the choice of blocking factors m and n, along with other implementation
choices. To simplify the exposition, we assume below that the ratio m/n is
constant. It is fairly typical to have m = 2n.

First, the matrix-times-vector operation often must be done on several ma-
chines in parallel, as the matrix itself does not fit in RAM. Furthermore, vectors
that must be kept around also have a significant memory footprint. This opens
up a wealth of MPI-level and thread-level parallelization opportunities, which
are supported by the Cado-NFS software. Two optimization criteria matter: the
time per iteration, and the aggregated time over all nodes considered. Since the
computation pattern is very regular, it is easy to obtain projected timings from
a small number of matrix-times-vector iterations. Note that the scaling is not
perfect here: while having a larger number of nodes participating in matrix-times-
vector operation usually decreases the time per operation, the decrease is not
linear, since it is impeded by the communication cost.

Since no communication is needed between sequences in the Krylov step, it
is tempting to increase the parameter n in order to use more coarse-grained
parallelism. If n increases (together with m, since we assumed constant m/n), the
aggregate Krylov time over all nodes does not change, but the time to completion
does. In other words, the scaling is perfect. On the other hand, large blocking
factors impact the complexity of the Lingen step. It is therefore important to
predict the time and memory usage of the Lingen step.

18

The input data of the Lingen step consists of (m + n)#M elements of the
base field (either F,, or Fy). The space complexity of the quasi-linear algorithms
described in [5,37,18] is linear in the input size, with an effectively computable
ratio. Their main operations are multiplications and middle products of matrices
with large polynomial entries [20]. This calls for FFT transform caching: for
example, in order to multiply two n x n matrices, one can compute transforms for
2n? entries, compute n® pointwise products and accumulate them to n? transforms,
which are finally converted back to entries of the resulting product. However
this technique must be used with care. As described above, it needs memory for
3n? transforms. With no change in the running time, mindful scheduling of the
allocation and deallocation of transforms leads to only n? + n + 1 transforms
that are needed in memory, and it is fairly clear that it is possible to trade a
leaner memory footprint with a moderately larger run time.

Another property of the Lingen step is that its most expensive operations
(multiplications and middle products of matrices with large polynomial entries)
parallelize well over many nodes and cores. This aspect was key to the success of
the block Wiedemann computation in the reported computations.

The Mksol step represents only a fraction of the computational cost of
the Krylov step. It is also straightforward to distribute, provided that some
intermediate checkpoints are saved in the Krylov step. In order to allow K-way
distribution of the Mksol step, it is sufficient to store checkpoints every #M/(nK)
iterations during the Krylov step, for a total storage cost of Kn - #M base field
elements, typically stored on disk.

6.2 Choosing Parameters

In line with the observations above, we used the following roadmap in order to
find appropriate parameters for linear algebra.

— Run sample timings of the matrix-times-vector iterations with a variety of
possible choices that the implementation offers: number of nodes participating
in iterations, number of threads per node, and binding of threads to CPU
cores. While it is possible to identify sensible choices via some rules of thumb,
the experience varies significantly with the hardware. We chose to pursue
a simple-minded exploratory approach over an overly complex automated
approach, whose benefit was unclear to us.

— Estimate the running time of the Lingen step with a simulated run. All internal
steps of the algorithm used for the computation of the linear generator are well-
identified tasks. Their individual cost is often tiny, but they must be repeated
a large number of times. For example, for DLP-240 this involved 2'® repeated
multiplications of polynomials of degree 1.1 x 10° over F,. Obtaining a
reasonable estimate of the timings is therefore fairly straightforward, although
it is made somewhat more complex by including multithreading, parallelism
at the node level, and memory constraints.

— Estimate timings for the Mksol step, using techniques similar to the Krylov
step. The wall-clock time also depends on the number of checkpoints that
are saved during the Krylov step, as it governs the distribution of the work.

19

— The collected data gives expected wall-clock time and aggregated CPU time
for the different steps as functions of the parameter choices. Then the only
remaining step was to choose an optimum. Ultimately, the optimal choice very
much depends on criteria visible only to an end user, or that are platform-
specific. For example we had to take into account fixed compute budgets on
one of the clusters that we used, as well as limits on the number of different
jobs that can run simultaneously.

6.3 Checkpoints

Checkpoints have a number of uses in the computation. They allowed us to
parallelize the Mksol step, to recover from failures, and in addition, they allow
offline verification of the computation. All of the checks described in [16] are im-
plemented in Cado-NFS. This helped us diagnose problems with the intermediary
data that were caused by transient storage array failures.

As it turned out, there were mishaps during the linear algebra computation,
because some data files were affected by transient errors from the storage servers,
which thus affected the resulting computations on them. The ability to verify the
data offline more than saved our day.

6.4 Computational Data

RSA-240. We ran the block Wiedemann algorithm with parameters m = 512,
n = 256. The Krylov step used best-effort jobs, using n/64 = 4 sequences, 8
nodes per sequence, with two Intel Xeon Gold 6130 processors on each node
and 64 virtual cores per node. The nodes were connected with Intel Omni-Path
hardware. The cost per matrix-times-vector product was 1.3 s, roughly 30% of
which was spent in communications. This cost 69 core-years in total, and the
computation took 37 days of wall-clock time. Despite the best-effort mode, we
were able to use the (otherwise busy) cluster more than 66% of the time. The
Lingen step was run on 16 similar nodes, and took 13 h (0.8 core-year). The
Mksol step was divided into 34 independent 8-node jobs, and took 13 core-years.

DLP-240. We ran the block Wiedemann algorithm with parameters m = 48,
n = 16. The Krylov step used 4 nodes per sequence, with two Intel Xeon Platinum
8168 processors (96 virtual cores per node). The nodes were connected with
Mellanox EDR hardware. The cost per matrix-times-vector product was about
2.4 s, roughly 35% of which was spent on communication. We used 16 x 4 = 64
nodes almost full time for 100 days, for an aggregated cost of 700 core-years.
The Lingen step was run on 36 nodes, and took 62 h (12 core-years). The Mksol
step was divided into 70 independent 8-node jobs running simultaneously, and
was completed in slightly more than one day (70 core-years). Note that these
timings were obtained on slightly different hardware than used elsewhere in this
document. Table 1 reports our measurements with respect to the Xeon Gold 6130
processors that we used as a reference, leading to a slightly smaller aggregate
cost (close to 650 core-years).

20

7 Final Steps: Square Root and Descent

In the factoring context, from the combination found by linear algebra we
have a congruence of the form z? = 3?2 mod N, but we only know z2, not
z. By computing two square roots we can write the potential factorization
(x —y)(x +y) =0 mod N. This square root computation can be done with
Montgomery’s square root algorithm [31], but a simple approach based on p-adic
lifting also works and has quasi-linear complexity [38].

In the discrete logarithm context, the output of linear algebra consists of
a large database of known logarithms. To answer a query for the logarithm of
an arbitrary element, the descent procedure needs to search for relations that
establish the link between the queried element and the known logarithms. This
requires a specially adapted version of the relation collection software.

RSA-240. The final computations for RSA-240 were performed on the same
hardware that was used for the filtering step (§5). After reading the 1.2G relations
that survived the clique removal, and taking the quadratic characters into account,
we obtained 21 dependencies in a little more than one hour.

For the square root step, we used the direct (lifting) approach described
in [38]. Each dependency had about 588M relations. On the rational side, we
simply multiplied the corresponding Fy(a,b) values, which gave an integer of
about 11 GB; we then computed its square root using the Gnu MP library [19],
and reduced it modulo N. As usual, we were eager to get the factors as soon as
possible. This square root step therefore prompted some development effort to
have a program with a high degree of parallelism. The rational square roots of the
first four dependencies were obtained on November 22 in the end of the afternoon;
each one took less than two hours of wall-clock time, with a peak memory of 116
GB. The first algebraic square root was computed in 17 h wall-clock time, and
finished at 02:38 am on November 24. Further code improvements reduced the
wall-clock time to only 5 h. We were a bit lucky, since this first square root led
to the factors of RSA-240.

DLP-240. The individual logarithm step (called “descent” for short) is dominated
by the first smoothing step, after which subsequent descent trees must be built.
We followed a practical strategy similar to the one described in [17], but since
there is no rational side, sieving is not available during the smoothing step.
Therefore, for a target element z, we tried many randomizations z’ = z¢ for
random exponents e, each of them being lifted to the f;-side, LLL-reduced to get
a small representative modulo the prime ideal above p used in the diagram of
Fig. 2, and then tested for smoothness with a chain of ECMs. In fact, we handled
a pool of candidates simultaneously, keeping only the most promising ones along
the chain of ECM they go through. This strategy, which has been implemented
in Cado-NFS, can be viewed as a practical version of the admissibility strategy
described in [4, Chapter 4], which yields the best known complexity for this step.
The chain of ECMs that we used is tuned to be able to extract with a high

21

probability all prime factors up to 75 bits. But of course, many non-promising
candidates are discarded early in the chain. We enter the descent step when we
find a candidate which is 100-bit smooth.

The descent step itself consists of rewriting all prime ideals of unknown
logarithm in terms of ideals of smaller norms, so that we can ultimately deduce
the discrete logarithms from the ones that were computed after the linear algebra
phase. As predicted by the theory, these descent trees take a short amount of time
compared to the smoothing. Although this last step can be handled automatically
by the general Cado-NFS machinery, we used some custom (and less robust)
tools written to avoid lengthy I/0O, and to reduce the wall clock time because,
then again, we were eager to get the result.

No effort was made to optimize the CPU-time of this step which took a
few thousand core-hours, mostly taken by the smoothing phase that was run
on thousands of cores in parallel. (This resulted in us finding several smooth
elements, while only one was necessary).

8 NFS Simulation

The goal of an NFS simulation is, given a set of parameters, to predict the
running times of the main phases of the algorithm together with relevant data
like the size of the matrix. In this section, we give some details about the tools
that we developed and used before running the computations.

We assume that we are given the number N to factor (or the prime p, in the
DLP case), together with a pair of polynomials, maybe not the final optimal
choice, but reasonably close to the best we expect to find. We also have a set of
NF'S parameters that we want to test.

The general idea is to let the sieving program run for a few special-qs and use
the resulting relations as models, to produce at very high speed fake relations
corresponding to the full range of special-q. Then the filtering programs are
applied to these relations, in order to produce a fake matrix. By timing a few
matrix-times-vector operations, we can also estimate the linear algebra cost.

Sampling relations. For a set of special-qs evenly sampled in the target special-q
range, we run the sieving program with the target parameters and keep the
corresponding relations for future use. The relations that would be found as
duplicates in the real filtering step are removed. These can be detected quickly
as follows: for each prime ideal in the factorization of the relation that belongs
to the special-q range and is less than the current special-q, we analyze whether
the relation would have been found when sieving for this smaller special-q. In
Cado-NFS, this online duplicate removal option has almost no impact on the
sieving time and is almost perfect.

Producing fake relations. Let I be a special-q ideal for which we want to produce

fake relations. We start by looking at a set Sy of special-gs of about the same size
that were sieved during the sampling phase. The number of fake relations that

22

RSA-240 DLP-240

polynomial selection 76 core-years 152 core-years
deg fo,deg f1 1,6 3,4
relation collection
large prime bounds 1pb, = 236, lpb, = 257 lpb, = 1pb, = 235
type of special-gqs prime (side 1) composite (q1qz, side 0)
method a: lattice sieving for fy and fi, lattice sieving for fo

|[Norm q| € [0.8G, 2.1G] and factorization tree for fi
b: lattice sieving for f; and |[Norm q| € [150G, 300G]

factorization tree for fo,

|[Normq| € [2.1G, 7.4G]

sieving bounds a: limp = 1.8G, 1lim; = 2.1G limg ~ 540M
b: 1lim; = 2.1G
product tree bound b: limg = 23! lim; = 228
large primes per side a: (2,3), b: (2,2) (2,2)
sieve area A 232 28t
raw relations 8936 812502 3824 340698
unique relations 6011911051 2380725637
total time 794 core-years 2400 core-years
filtering

after singleton removal 2603459110 x 2383461671 1304822186 x 1000258769
after clique removal 1175353278 x 1175353118 149898 095 x 149 898 092

after merge 282M rows, density 200 36M rows, density 253
linear algebra
blocking factors m =512, n = 256 m =48, n =16
Krylov 4 x 8 nodes, 69 core-years 16 X 4 nodes, 544 core-years
Lingen 16 nodes, 0.8 core-years 36 nodes, 12 core-years
Mksol 34 x 8 nodes, 13 core-years 70 X 8 nodes, 69 core-years
total time 83 core-years 625 core-years

Table 1. Comparison of 795-bit factoring and computing 795-bit prime field discrete
logarithm. “x X y nodes” means that x independent jobs, each using y nodes simultane-
ously, were run, either in parallel (most often) or sequentially (at times). All timings
are scaled to physical cores of Intel Xeon Gold 6130 processors.

will be produced for I is chosen by picking a random element I’ in S; and taking
as many relations as for I’. Then, for each relation to be produced, we pick a
random relation R among all the relations of all the special-gs in S; and modify
it: replace the special-q by I, and replace each of the other ideals by another one
picked randomly among the ideals of norm £20% of the original norm on the
same side. We therefore keep the general statistical properties of the relations
(distribution of the number of large primes on each side, weight of the columns
taking into account the special-gs, etc.).

Emulating the filtering. The filtering step can be run as if the relations were
genuine. The only difference is that the duplicate removal must be skipped, since
our relation set is based on a sample in which duplicate relations have been

23

removed. This produces a matrix whose characteristics resemble the ones of the
true matrix, and which can be used to anticipate the cost of linear algebra.

A mini-filter approach. The simulation technique we have sketched takes a tiny
fraction of the total time of the real computation. However, in terms of disk
and memory space, it has the same requirements and this might be prohibitive
when exploring many different parameters. We propose a strategy to faithfully
simulate the whole computation with all the data being reduced by a shrink
factor, denoted o. Typical values will be between 10 and 100 depending on the
size of the experiment that has to be simulated and the expected precision.

For each special-q, the number of fake relations we produce is divided by o.
If this number is close to or smaller than 1, this is done in a probabilistic way;
for instance if we have to produce 0.2 relations for the current special-q, then
we produce one relation with probability 0.2 and zero otherwise. This reduces
the number of relations (rows of the matrix before filtering) by a factor o, as
expected. In order to also reduce the number of columns, we divide the index of
each ideal in the relation by o, keeping each side independent of the other one.
This simultaneous shrinking of rows and columns has the following properties:

— The average weight per row and per column is preserved (not divided by o);

— More generally the row- and column-weight distributions are preserved;

— The effects of the special-gs are preserved: the average weight of the columns
corresponding to special-qs will be increased by the average number of
relations per special-q of that size;

— The variations of the weight distribution of the columns that depend on their
size and on whether they are above or below the sieving bound are preserved.

The filtering step can then be applied to these shrunk fake relations. The final
matrix is expected to be o times smaller than the true matrix. Of course, this
matrix cannot be used to directly estimate the running time of the linear algebra
step: it needs to be expanded again. But often, already being able to compare
the size of the matrices can help discard some bad parameter choices before only
a few of the most promising ones can be simulated again, perhaps with a smaller
value of ¢ or no shrink at all.

This very simple and easy-to-implement technique produces good results as
long as the shrink factor ¢ is not too large. In our still very partial experiments, if
the final shrunk matrix has at least a few tens of thousands of rows and columns,
then the result is meaningful.

Estimates for RSA-240 and DLP-240. For DLP-240, we used such a set of fake
relations in August 2018, i.e., at the very start of the relation collection. The
set contained 2244M unique relations. After singleton and clique removal we
obtained a matrix of size 144M, and after merge we obtained a matrix of size
37.1M with average density 200.

The closest run with real relations was carried out in the end of February 2019,
with 2298M unique relations, giving a matrix of size 159M after singleton and
clique removal, and a matrix of size about 40.7M with average density 200 after

24

merge. In comparison, our actual computation collected a few more relations,
and would have led to a matrix with 38.9M rows if we had stopped the filtering
at density 200, while we ultimately chose to use the matrix with density 250
instead, which had 36.2M rows. Hence our technique allowed us to obtain an
early precise estimate—with error below 10%—for the final matrix size.

For RSA-240 we also used the mini-filter approach, with a shrink factor of
100. In December 2018 we started with a matrix of size 66M, which gave a matrix
of size 15.7M after singleton and clique removal, and a matrix of size 3.3M after
merge. This is within 17% of the size of the real matrix we obtained in mid-2019,
taking into account the shrink factor of 100.

Prospects for more precise simulations. Our simulation machinery is still ex-
perimental, but allowed us to be sure beforehand that we would be able to run
the linear algebra with our available resources. This was especially relevant for
DLP-240, where the sieving parameters are chosen with the aim of reducing the
size of the matrix.

A more systematic study is needed to validate this simulator and improve its
precision. In particular, we expect better results from taking a more sophisticated
strategy for building fake relations based on a sample of real ones. Also, with the
shrink factor, a better handling of the columns corresponding to small very dense
ideals would probably help, with if possible a different algorithm for discrete
logarithm and integer factorization.

9 Conclusion

It is natural to ask how our computational records compare to previous ones,
and how much of our achievement can be attributed to hardware progress. A
comparison with RSA-768, which was factored 10 years before the present work,
would have very limited meaning. Instead, we prefer to compare to the DLP-768
record from 2017. Extrapolations based on the L(1/3,¢) formula suggest that
DLP-240 is about 2.25 times harder than DLP-768. The article [29] reports that
the DLP-768 computation required 5300 (physical) core-years on Intel Xeon
E5-2660 processors, and further details indicate that the relation collection time
was about 4000 core-years. We ran the Cado-NFS relation collection code with
our parameters on exactly identical processors that we happened to have available.
The outcome is that on these processors, we would have been able to complete
the DLP-240 relation collection in only about 3100 core-years. So our parameter
choice allowed us to do more work in less time.

The timeline of previous records is misleading: RSA-768 was factored in 2009,
and DLP-768 was solved in 2016. Furthermore, the latter required more resources
than the former (a raw ratio of core-years gives a factor of 3.5, but this would
be amplified significantly if we used identical hardware). This contributes to
the idea that for similar size problems, finite field discrete logarithm is much
harder than integer factoring. Our experiments show that this difference is not
as striking as commonly thought. Based on the data in Table 1, the ratio is

25

only 3.3 with identical hardware: 3177 versus 953 core-years. Furthermore, this
ratio only holds if we consider the DLP modulo “safe primes”, which leads to
more difficult linear algebra. In the so-called “DSA-like” situation where we seek
discrete logarithms in a small subgroup of Fy, the linear algebra becomes easier,
which leads to trade-offs between relation collection and linear algebra: the ratio
is likely to drop, perhaps close to or maybe even below a factor of two.

Another reason that finite field discrete logarithm is considered to be much
harder than integer factoring is that the linear algebra step is believed to be
a major bottleneck. It is true to some extent: in our computation, as well as
in previous ones, the balance in aggregated CPU time is shifted towards less
expensive linear algebra, because more infrastructure (in particular, interconnect
and storage) is required for linear algebra than for sieving. However, it is important
to notice that with adequate parameter choices, large sparse linear systems
occurring in NFS computations can be handled, and at this point we are not
facing a technology barrier.

Acknowledgements. We thank Gérald Monard and the support team of the
EXPLOR computing center for their help, the engineers of the Grid’5000 platform,
and Joshua Fried, Luke Valenta, and Rafi Rubin for sysadmin help at the
University of Pennsylvania.

Funding. This work was possible thanks to a 32M-hour allocation on the Juwels
super-computer from the PRACE research infrastructure. Experiments presented
in this paper were carried out using the Grid’5000 testbed, supported by a scientific
interest group hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations (see https://www.grid5000.fr).
This work was supported by the French “Ministére de I’Enseignement Supérieur
et de la Recherche”, by the “Conseil Régional de Lorraine”, by the European
Union, through the “Cyber-Entreprises” project, and by the US National Science
Foundation under grant no. 1651344. High Performance Computing resources were
partially provided by the EXPLOR centre hosted by the University de Lorraine.
Computations carried out at the University of Pennsylvania were performed on
Cisco UCS servers donated by Cisco.

References

1. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman, J.A.,
Heninger, N., Springall, D., Thomé, E., Valenta, L., Vandersloot, B., Wustrow,
E., Zanella-Béguelin, S., Zimmermann, P.: Imperfect forward secrecy: How Diffie-
Hellman fails in practice. Communications of the ACM 62(1), 106-114 (2018).
doi:10.1145/3292035

2. Aoki, K., Franke, J., Kleinjung, T., Lenstra, A.K., Osvik, D.A.: A kilobit special
number field sieve factorization. In: Kurosawa, K. (ed.) ASTACRYPT 2007. LNCS,
vol. 4833, pp. 1-12. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76900-2_1

3. Bai, S., Bouvier, C., Kruppa, A., Zimmermann, P.: Better polynomials for GNFS.
Math. Comput. 85(298), 861-873 (2016). doi:10.1090/mcom3048

26

https://www.grid5000.fr
http://dx.doi.org/10.1145/3292035
http://dx.doi.org/10.1007/978-3-540-76900-2_1
http://dx.doi.org/10.1090/mcom3048

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Barbulescu, R.: Algorithmes de logarithmes discrets dans les corps finis. thése de
doctorat, Université de Lorraine, France (2013), https://tel.archives-ouvertes.
fr/tel-00925228

Beckerman, B., Labahn, G.: A uniform approach for the fast computation of matrix-
type Padé approximants. STAM J. Matrix Anal. Appl. 15(3), 804-823 (1994).
doi:10.1137/S0895479892230031

Bernstein, D.J.: How to find small factors of integers (2002), http://cr.yp.to/
papers.html#sf

Boudot, F.: On improving integer factorization and discrete logarithm computation
using partial triangulation. Cryptology ePrint Archive, Report 2017/758 (2017),
https://eprint.iacr.org/2017/758

Bouillaguet, C., Zimmermann, P.: Parallel Structured Gaussian Elimination for the
Number Field Sieve (2019), https://hal.inria.fr/hal-02098114, preprint
Bouvier, C., Imbert, L.: Faster cofactorization with ECM using mixed rep-
resentations. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.)
PKC 2020, Part II. LNCS, vol. 12111, pp. 483-504. Springer, Heidelberg (2020).
doi:10.1007/978-3-030-45388-6_17

Buhler, J.P., Lenstra, Jr., H-W., Pomerance, C.: Factoring integers with the number
field sieve. In: Lenstra and Lenstra, Jr. [30], pp. 50-94. doi:10.1007/BFb0091539
Cavallar, S.: Strategies in filtering in the number field sieve. In: Bosma,
W. (ed.) ANTS-IV. LNCS, vol. 1838, p. 209-231. Springer—Verlag (2000).
doi:10.1007/10722028_11

Cohen, H.: A course in computational algebraic number theory, Grad. Texts in
Math., vol. 138. Springer—Verlag (1993). doi:10.1007/978-3-662-02945-9
Coppersmith, D.: Solving linear equations over GF(2) via block
Wiedemann algorithm. Math. Comput. 62(205), 333-350 (1994).
d0i:10.1090/50025-5718-1994-1192970-7

David, N., Zimmermann, P.: A New Ranking Function for Polynomial Selection
in the Number Field Sieve. Contemporary Mathematics 754, 315-325 (2020).
doi:10.1090/conm/754, https://hal.inria.fr/hal-02151093

Davis, J.A., Holdridge, D.B.: Factorization using the quadratic sieve algorithm. In:
Chaum, D. (ed.) CRYPTO’83. pp. 103-113. Plenum Press, New York, USA (1983).
doi:10.1007/978-1-4684-4730-9_9

Dumas, J., Kaltofen, E., Thomé, E., Villard, G.: Linear time interactive certifi-
cates for the minimal polynomial and the determinant of a sparse matrix. In:
Abramov, S.A., Zima, E.V., Gao, X. (eds.) ISSAC 2016. pp. 199-206. ACM (2016).
doi:10.1145/2930889.2930908

Fried, J., Gaudry, P., Heninger, N., Thomé, E.: A kilobit hidden SNFS dis-
crete logarithm computation. In: Coron, J.S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017, Part I. LNCS, vol. 10210, pp. 202-231. Springer, Heidelberg (2017).
d0i:10.1007/978-3-319-56620-7_8

Giorgi, P., Lebreton, R.: Online order basis algorithm and its impact on the block
Wiedemann algorithm. In: Nabeshima, K., Nagasaka, K., Winkler, F., Szant6, A.
(eds.) ISSAC’14. pp. 202-209. ACM (2014). doi:10.1145/2608628 . 2608647
Granlund, T., the GMP development team: GNU MP: The GNU Multiple Precision
Arithmetic Library, version 6.1.2 (2016), http://gmplib.org/

Hanrot, G., Quercia, M., Zimmermann, P.: The middle product algorithm I. AAECC
14(6), 415-438 (2004). doi:10.1007/500200-003-0144-2

ICSI certificate notary (2019), https://notary.icsi.berkeley.edu/

27

https://tel.archives-ouvertes.fr/tel-00925228
https://tel.archives-ouvertes.fr/tel-00925228
http://dx.doi.org/10.1137/S0895479892230031
http://cr.yp.to/papers.html#sf
http://cr.yp.to/papers.html#sf
https://eprint.iacr.org/2017/758
https://hal.inria.fr/hal-02098114
http://dx.doi.org/10.1007/978-3-030-45388-6_17
http://dx.doi.org/10.1007/BFb0091539
http://dx.doi.org/10.1007/10722028_11
http://dx.doi.org/10.1007/978-3-662-02945-9
http://dx.doi.org/10.1090/S0025-5718-1994-1192970-7
http://dx.doi.org/10.1090/conm/754
https://hal.inria.fr/hal-02151093
http://dx.doi.org/10.1007/978-1-4684-4730-9_9
http://dx.doi.org/10.1145/2930889.2930908
http://dx.doi.org/10.1007/978-3-319-56620-7_8
http://dx.doi.org/10.1145/2608628.2608647
http://gmplib.org/
http://dx.doi.org/10.1007/s00200-003-0144-2
https://notary.icsi.berkeley.edu/

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Joux, A., Lercier, R.: Improvements to the general number field sieve for discrete
logarithms in prime fields. A comparison with the Gaussian integer method. Math.
Comput. 72(242), 953-967 (2003). doi:10.1090/50025-5718-02-01482-5
Kaltofen, E.: Analysis of Coppersmith’s block Wiedemann algorithm for the par-
allel solution of sparse linear systems. Math. Comput. 64(210), 777-806 (1995).
doi:10.1090/S0025-5718-1995-1270621-1

Kleinjung, T.: Cofactorisation strategies for the number field sieve and an estimate
for the sieving step for factoring 1024-bit integers. In: Proceedings of SHARCS’06
(2006), http://www.hyperelliptic.org/tanja/SHARCS/slides06.html
Kleinjung, T.: On polynomial selection for the general number field sieve. Math.
Comput. 75(256), 2037-2047 (2006). doi:10.1090/S0025-5718-06-01870-9
Kleinjung, T.: Polynomial selection. Slides presented at the CADO workshop on
integer factorization (2008), http://cado.gforge.inria.fr/workshop/abstracts.
html

Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H.J.J., Timofeev, A.,
Zimmermann, P.: Factorization of a 768-bit RSA modulus. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 333-350. Springer, Heidelberg (2010).
d0i:10.1007/978-3-642-14623-7_18

Kleinjung, T., Bos, J.W., Lenstra, A.K.: Mersenne factorization factory. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 358-377.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45611-8_19

Kleinjung, T., Diem, C., Lenstra, A.K., Priplata, C., Stahlke, C.: Computation
of a 768-bit prime field discrete logarithm. In: Coron, J.S., Nielsen, J.B. (eds.)
EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 185-201. Springer, Heidelberg
(2017). doi:10.1007/978-3-319-56620-7_7

Lenstra, A.K., Lenstra, Jr., H'W. (eds.): The development of the number field sieve,
LNM, vol. 1554. Springer—Verlag (1993). doi:10.1007/BFb0091534

Montgomery, P.L.: Square roots of products of algebraic numbers. In: Gautschi, W.
(ed.) Mathematics of Computation 1943-1993 : a Half-Century of Computational
Mathematics. Proc. Sympos. Appl. Math., vol. 48, p. 567-571. Amer. Math. Soc.
(1994), complemented by two later unpublished drafts in 1995 and 1997

Murphy, B.A.: Polynomial Selection for the Number Field Sieve Integer Fac-
torisation Algorithm. PhD thesis, Australian National University (1999), http:
//maths-people.anu.edu.au/ brent/pd/Murphy-thesis.pdf

National Security Agency: Commercial national security algorithm suite (2015),
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.
cfm

Pollard, J.M.: The lattice sieve. In: Lenstra and Lenstra, Jr. [30], pp. 43-49.
doi:10.1007/BFb0091538

Schirokauer, O.: Discrete logarithms and local units. Philos. Trans. Roy. Soc. London
Ser. A 345(1676), 409-423 (1993). doi:10.1098/rsta.1993.0139

The CADO-NFS Development Team: CADO-NFS, an implementation of the num-
ber field sieve algorithm (2019), https://gitlab.inria.fr/cado-nfs/cado-nfs,
development version

Thomé, E.: Subquadratic computation of vector generating polynomials and im-
provement of the block Wiedemann algorithm. J. Symb. Comput. 33(5), 757-775
(2002). doi:10.1006/jsco.2002.0533

Thomé, E.: Square root algorithms for the number field sieve. In: Ozbudak, F.,
Rodriguez-Henriquez, F. (eds.) WAIFI 2012. LNCS, vol. 7369, pp. 208-224. Springer
(2012). doi:10.1007/978-3-642-31662-3_15

28

http://dx.doi.org/10.1090/S0025-5718-02-01482-5
http://dx.doi.org/10.1090/S0025-5718-1995-1270621-1
http://www.hyperelliptic.org/tanja/SHARCS/slides06.html
http://dx.doi.org/10.1090/S0025-5718-06-01870-9
http://cado.gforge.inria.fr/workshop/abstracts.html
http://cado.gforge.inria.fr/workshop/abstracts.html
http://dx.doi.org/10.1007/978-3-642-14623-7_18
http://dx.doi.org/10.1007/978-3-662-45611-8_19
http://dx.doi.org/10.1007/978-3-319-56620-7_7
http://dx.doi.org/10.1007/BFb0091534
http://maths-people.anu.edu.au/~brent/pd/Murphy-thesis.pdf
http://maths-people.anu.edu.au/~brent/pd/Murphy-thesis.pdf
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm
http://dx.doi.org/10.1007/BFb0091538
http://dx.doi.org/10.1098/rsta.1993.0139
https://gitlab.inria.fr/cado-nfs/cado-nfs
http://dx.doi.org/10.1006/jsco.2002.0533
http://dx.doi.org/10.1007/978-3-642-31662-3_15

A Challenge results

To prove that we have computed discrete logarithms modulo p = RSA-240+49204,
we consider the integer y whose hexadecimal expansion corresponds to the ASCII
encoding of the sentence “The magic words are still Squeamish Ossifrage” (without
newline, and with big-endian convention, i.e., y = 0x54. . .65). In IF;, the discrete
logarithm of y to base g =5 is

10g5 Y = 926031359281441953630949553317328555029610991914376116167294
204758987445623653667881005480990720934875482587528029233264
473672441500961216292648092075981950622133668898591866811269

28982506005127728321426751244111412371767375547225045851716
With respect to RSA-240, the factors are given by RSA-240 = p x ¢, with

RSA-240 = 124620366781718784065835044608106590434820374651678805754818
788883289666801188210855036039570272508747509864768438458621
054865537970253930571891217684318286362846948405301614416430
468066875699415246993185704183030512549594371372159029236099,

P = 509435952285839914555051023580843714132648382024111473186660
296521821206469746700620316443478873837606252372049619334517,
q = 244624208838318150567813139024002896653802092578931401452041

221336558477095178155258218897735030590669041302045908071447.

B RSA-250 details

We selected the following polynomial pair, with Res(fo, f1) = 48 x RSA-250:

f1 = 86130508464000 z° — 81583513076429048837733781438376984122961112000
— 66689953322631501408 z° — 1721614429538740120011760034829385792019395
— 52733221034966333966198 z* — 3113627253613202265126907420550648326 x>
+ 46262124564021437136744523465879 2°

fo = 185112968818638292881913 = — 3256571715934047438664355774734330386901

We used the following important parameters: 1img; = 23!, 1pb, = 23¢, 1pb, =
237, We used lattice sieving for fy and f; when [Norm q| € [1G,4G] with 2 large
primes for fy and 3 large primes for f1, and lattice sieving for f; and factorization
tree for fy when |Normq| € [4G, 12G], with 2 large primes for both fy and f.
The sieve area was 233.

Sieving gave a total of 8 745268 073 raw relations, of which 6.1G were unique
(70.1%). After the singleton removal, there were 2.7G relations remaining on 2.6G
ideals. After clique removal, there were 1.8G relations remaining, with an excess
of 160. The merge step produced a matrix of about 405M rows, with average

29

density 252 (about 100G non-zero elements). We computed 64 dependencies with

the block Wiedemann algorithm, with parameters m = 1024 and n = 512. For

each dependency, the square root step took about 2.3 h on the rational side (on

a dual-socket, 56-core Intel Xeon E7-4850), and 10.5 h on the algebraic side.
We obtained the factorization RSA-250 = p x ¢, with

RSA-250 = 214032465024074496126442307283933356300861471514475501779775492
088141802344714013664334551909580467961099285187247091458768739
626192155736304745477052080511905649310668769159001975940569345
7452230589325976697471681738069364894699871578494975937497937,

P = 641352894770715802787901901705773890848250147429434472081168596
32024532344630238623598752668347708737661925585694639798853367
q = 333720275949781565562260106053551142279407603447675546667845209

87023841729210037080257448673296881877565718986258036932062711

Using the same reference (Intel Xeon Gold 6130 at 2.10 GHz) as elsewhere in
this paper, the total computation time for RSA-250 was roughly 2700 core-years,
including 2450 core-years for the sieving step and 250 core-years for the linear
algebra step.

Complete details of the RSA-240, DLP-240, and RSA-250 computations can
be found in

https://gitlab.inria.fr/cado-nfs/records

30

https://gitlab.inria.fr/cado-nfs/records

	Comparing the Difficulty of Factorization and Discrete Logarithm: a 240-digit Experiment

