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Abstract

Climate models predict Africa will warm by up to 5◦C in the coming
century, stressing African societies. To provide independent constraints on
model predictions, this study compares two notable reconstructions of East
African temperatures to those predicted by Paleoclimate Model Intercom-
parison Project (PMIP3) and transient TraCE simulations, focusing on the
Mid-Holocene (MH, 5-8 kyr B.P.). Reconstructions of tropical African tem-
perature derived from lake sedimentary archives indicate 1-2.5◦C of warming
during the MH relative to the 20th century, but most climate models do not
replicate the warming observed in these paleoclimate data. We investigate
this discrepancy using a new lake proxy system model, with attention to
the (potentially non-stationary) relationship between lake temperature and
air temperature. We find amplified lake surface temperature changes com-
pared to air temperature during the MH due to heightened seasonality and
precessional forcing. Lacustrine processes account for some of the warm-
ing, and highlight how the lake heat budget leads to a rectification of the
seasonal cycle; however, the simulated lake heating bias is insufficient to
reconcile the full discrepancy between the models and the proxy-derived
MH warming. We find further evidence of changes in mixing depth over
time, potentially driven by changes in cloud cover and shortwave radiative
fluxes penetrating the lake surface. This may confound interpretation for
GDGT compounds which exist in the mixed layer, and suggests a need for
independent constraints on mixed layer depth. This work provides a new
interpretive framework for invaluable paleoclimate records of temperature
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changes over the African continent.
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Key Points1

• African temperature reconstructions suggest 1-2C of warming during2

the Mid-Holocene compared to the modern.3

• Climate models cannot replicate this warming, even in combination4

with a lake proxy system model.5

• Africa is projected to warm more than any other continent; hotter pa-6

leoclimate mean state targets must guide refinement of model physics.7

1. Introduction8

The African continent sustains a population of 1.2 billion people and9

some of the most unique and diverse ecosystems on Earth. Africa’s future is10

made uncertain by climate model projections of severe anthropogenic warm-11

ing over the next several decades and the hydroclimatic change that may12

accompany rising temperatures [IPCC, 2013]. As one example, regional13

droughts in Africa have displaced millions of people and sparked outbreaks14

of civil violence in multiple countries [von Uexkull, 2014, Tierney et al.,15

2015, Detges, 2016, Linke et al., 2018]. Given the myriad geopolitical and16

climatic risks that will accompany climate change impacts on Africa’s de-17

veloping nations, it is crucial to provide robust constraints on climate model18

projections of future warming in Africa.19

To this end, reconstructions of climate change in Africa spanning major20

changes in boundary conditions (i.e. mean state changes in response to ex-21

ternal forcing scenarios) can bolster our understanding of African climate22

dynamics, providing constraints on the rates and patterns of temperature23

and precipitation changes, as well as providing insight toward the drivers of24

those changes. Globally, reconstructions of the last glacial maximum [Wael-25

broeck et al., 2009] and others spanning the last 20kyr [Clark et al., 2012]26

show large changes in mean climate dominated by deglacial warming. This27

warming was initiated by rising summer insolation in the northern hemi-28

sphere and globally synchronized by rising greenhouse gases (GHGs) [Alley29

and Clark, 1999, Ruddiman, 2003, Shakun and Carlson, 2010] (Fig. 1), and30

was further punctuated by abrupt climate change events including Heinrich31

1 and the Younger Dryas [Shakun and Carlson, 2010, Alley, 2000]. While32
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these and other studies document global and high-latitude climate changes33

on centennial-millennial timescales, temperature reconstructions from the34

terrestrial tropics are sparse. In contrast to the robust body of work con-35

straining hydroclimate changes in Africa [e.g. Tierney et al., 2008, 2011,36

Russell et al., 2014, Tierney et al., 2015, and many others], reconstructions37

of African temperature spanning large climate transitions are sparse, and38

much of Africa’s thermal past remains opaque.39

During the last decade, the application of organic geochemical temper-40

ature proxies based upon glycerol dialkyl glycerol tetraethers (GDGTs) in41

lake sediment cores has begun to fill in the gaps in reconstructions of African42

temperature change [Powers et al., 2010, Tierney et al., 2010c]. In particu-43

lar, recent work has demonstrated that multiple paleoclimate proxy records44

(GDGTs and others) show evidence for warmer temperatures during the45

Mid-Holocene (MH hereafter), ∼6 ka [Powers et al., 2005, Tierney et al.,46

2008, Berke et al., 2012b]. Reconstructions from multiple sites in Africa47

indicate warming of 1-3◦C [Tierney et al., 2008, Powers et al., 2005] relative48

to the pre-industrial (PI) period. Remarkably, this reconstructed period49

of African warming occurred when insolation and greenhouse gas forcing50

were near their Holocene minima (Figure 1) [Joos and Spahni, 2008]. Thus,51

various hypotheses have been proposed to explain these observations, from52

teleconnections between tropical Africa and the high latitudes, to biases53

in the temperature proxies introduced by lake processes such as mixing.54

Indeed, this large, sustained warming event (the largest after the glacial55

termination on the African continent) occurred near the end of the African56

Humid Period, potentially invoking feedbacks between temperature and the57

hydrological cycle [Gasse, 2000]. To date, however, little attempt has been58

made to examine the energy transfers required to produce the observed high59

temperatures during the MH.60

What are the drivers and processes that could explain prolonged tem-61

perature change on a tropical land mass? Via joint evaluation of climate62

model simulations and proxy system biases, this work seeks to deconvolve63

the relationships between reconstructed lake surface and GCM-simulated air64

temperature during the 6 ka thermal maximum inferred from lake records.65

The GDGT proxy records lake temperature rather than the primary variable66

of interest (simulated by climate models): air temperature. The relation-67

ship between lake and air temperatures is potentially nonstationary, and68

depends on lake heat budget and mixing regimes [Dee et al., 2018]. To diag-69

nose the dynamics and sensitivity of tropical African temperature changes70

during the MH warming event, this work pursues a novel, integrated data-71

model comparison study to evaluate air and lake temperatures over the last72
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10 kyr. Focusing on geochemical reconstructions of temperature from equa-73

torial African lakes Malawi and Tanganyika [Tierney et al., 2008, Powers74

et al., 2005], reconstructions are compared to coupled general circulation75

model (GCM) simulations spanning 100 years of the mid-Holocene (MH),76

pre-industrial (PI) and the historical period (HIST). Note that MH and77

PI experiments are driven with an annual cycle of external forcing with78

boundary conditions consistent with the target time period, and do not79

span ‘real’ time in years (similar to a control simulation). Full analysis of80

the multi-model spread is used to probe the mechanisms that control the81

rate and amplitude of simulated temperature changes in the MH. To quantify82

uncertainties related to the lake system impacts on proxy reconstructions83

(e.g. lake energy balance and temperature profile, mixing, sedimentation,84

and bioturbation), we apply a new Proxy System Model (PSM) for lakes85

to translate climate model output to lake surface temperature and mixing86

depth reconstructions and better quantify proxy system uncertainties [Dee87

et al., 2018]. Comparison of geochemical proxy records with PSM output88

and transient and time-slice paleoclimate simulations from GCMs reveals89

large discrepancies between simulated and reconstructed temperatures; the90

potential causes of these discrepancies are evaluated in succession.91

2. Methods92

2.1. GDGT Temperature Reconstructions from African Lakes93

The development and application of glycerol dialkyl glycerol tetraether94

(GDGTs) temperature proxies have provided invaluable time-continuous95

records of tropical continental temperature changes. GDGTs are membrane-96

spanning lipids that include isoprenoidal GDGTs (iGDGTs), produced by97

Thaumarchaeota and which comprise the TetraEther indeX of tetraethers98

with 86 carbon atoms (TEX86), and branched GDGTs (brGDGTs) thought99

to be produced by Acidobacteria that form the basis for the Methylation100

of Branched Tetraether (MBT) and the Cyclisation of Branched Tetraether101

(CBT) MBT-CBT proxy [Schouten et al., 2002, Weijers et al., 2007]. The102

proxies are based on the fact that microbes vary the number of ring struc-103

tures and/or methyl branches in GDGT alkyl chains in response to envi-104

ronmental conditions, including temperature [Schouten et al., 2012, Russell105

et al., 2018]. The use of TEX86 as a temperature proxy is restricted to large106

lakes because iGDGTs in small lakes tend to be contaminated with com-107

pounds from surrounding shoreline soils [Castañeda and Schouten, 2011,108

Powers et al., 2010].109
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Site Lat/Long Elevation (m a.s.l.) Time-span (ka) Resolution (yr/sample) Calibration Uncertainty Analytical Uncertainty Data Source

L. Malawi 12.5◦S, 36◦E 500 25 - present 600 3.6◦C < 1◦C [Powers et al., 2005, 2010]
L. Tanganyika 6.5◦S, 30◦E 773 60 - present 250 3.7◦C 0.3◦C [Tierney et al., 2008]

Table 1: Details of the GDGT temperature reconstructions from tropical Africa examined
in this work: site, location, time span, temporal resolution, calibration uncertainty (from
original publications), and analytical uncertainty. Note that calibration + analytical un-
certainties applied to analysis in this paper is based on updated calibration uncertainty
estimation presented in Tierney et al. [2010a].

GDGTs have been applied to multiple sites in Africa and have produced110

reproducible temperature histories (Fig. 2), including reconstructions that111

span the MH. The two records we draw from in this paper are detailed in112

Table 1, and reconstructed temperature anomalies across the Holocene are113

shown in Fig. 2b. We focus on these records in particular because both114

sites have well documented limnological data, and the Tanganyika record in115

particular is considered ‘emblematic’ of climate changes in equatorial Africa116

[Tierney et al., 2008, Powers et al., 2005]. In general, reconstructions from117

these two sites have yielded some of the most complete, time-continuous118

temperature records from the continental tropics, and have provided many119

fundamentally important inferences [Berke et al., 2012b,a, Castañeda and120

Schouten, 2011, Weijers et al., 2007, Loomis et al., 2012, 2017, Morrissey121

et al., 2017, Powers et al., 2005, Tierney et al., 2008].122

Lake Malawi records a Holocene thermal maximum at 5 ka, followed by123

∼1.5◦C cooling to the PI (Fig. 2b). Despite substantial differences between124

the two records during the earlier Holocene, a 60-ka record from Lake Tan-125

ganyika, SE Africa replicates many features of Lake Malawi, including the126

MH thermal maximum at 5 ka (Tierney et al., 2008). Both lakes indicate127

the MH was ∼1.5-2.5◦C warmer than the PI and thus likely ∼1-2◦C warmer128

than the historical period, considering anthropogenic warming). However,129

the reconstructed warming exhibits differences in timing and amplitude be-130

tween the two records (e.g. Fig. 2b., see evolution of reconstructions across131

the 6 ka time horizon). This could indicate that either: 1) the climate signal132

is regionally heterogeneous, or 2) the lake system influences the amplitude133

and trajectory of the recorded warming. For 2), the lake proxy system model134

is able to partition the lake heat budget contribution to the overall recon-135

structed temperature signal, and evaluate seasonal biases. These tests are136

discussed in Section 3. Lake reconstruction sites are evaluated relative to137

climate model simulations to diagnose large-scale temperature changes in138

Africa.139
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2.2. Climate Model Experiments140

To diagnose the drivers of temperature signals across the MH inferred141

from lake sedimentary archives, we employ climate model simulations from142

the Paleoclimate Modelling Intercomparison Project (PMIP3) [Braconnot143

et al., 2012, Meinshausen et al., 2011]. We employ PMIP3 models that ran144

MH, PI, and HIST simulations (n = 13, details in Table 2) in this work145

to examine African temperatures during the MH period compared to the146

historical period and the PI. PMIP3 MH and PI simulations are equilibrium147

simulations with uniform forcing from which we obtained 100 years of out-148

put; the historical simulations are transient runs spanning the period 1850149

to 2005. We calculated both [MH - PIcontrol] and [MH-HIST] anomalies150

for each simulation in the ensemble (Sec. 3). Multi-model HIST-PI air tem-151

perature differences are approximately 0.3◦C and 0.2◦C for Tanganyika and152

Malawi, respectively. We additionally applied a calendar-correction to the153

MH simulations per the methodology described in Bartlein and Shafer [2019]154

to account for changes in month length and seasonality over time forced by155

changes in eccentricity and precession (SI Fig. S2, S3). The multi-model156

ensemble of PMIP time slice experiments is used to identify differences in157

radiation and heat transport, surface energy balance forcings and feedbacks.158

Climate fields were extracted for the grid cells which cover Lakes Tanganyika159

and Malawi, and post-processed to drive the lake proxy system model (Sec.160

2.3). (Note that we used all grid cells intersecting with lake area rather than161

a single grid cell corresponding to core sites. However, comparing the grid162

cells used to the maps from each model, grid cells with negligible lake area163

were not included; only grid cells that collectively covered the majority of164

the lake area are selected).165

Second, we used the TraCE-21ka (Transient Climate Evolution of the166

last 21,000 years) simulation for an additional comparison of a simulated167

surface air temperature time series with temperature reconstructions from168

Tanganyika and Malawi (see Fig. 2). The TraCE-21ka simulation was com-169

pleted with the fully-coupled Community Climate System Model, version170

3 (CCSM3), run without time acceleration at the T31 gx3 resolution [Liu171

et al., 2009, He, 2011]. The prescribed, time-varying forcings for this simula-172

tion are orbitally-forced insolation and atmospheric greenhouse gas concen-173

trations. Specified boundary conditions include ice sheet extent and height174

from the ICE-5G reconstruction, coastline changes resulting from rising sea175

levels, and freshwater forcing from retreating ice sheets to the North Atlantic176

and Southern Oceans [Liu et al., 2009, He, 2011].177
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Model name Atm. resolution
lat x lon (levels)

Ocn. resolution
lat x lon (levels)

Model years
(MH)

HIST ensemble
members

Tanganyika
Grid Cells

Malawi
Grid Cells

Reference

BCC CSM1.1 64 x 128 (26) 232 x 360 (30) 1-100 3 2 2 Wu et al. (2013)
CCSM4 192 x 288 (26) 384 x 320 (40) 1000-1099 3 4 5 Gent et al. (2011)
CNRM-CM5 128 x 256 (31) 292 x 362 (42) 1950-2049 3 4 3 Voldoire et al. (2013)
CSIRO Mk3.6.0 96 x 192 (18) 189 x 192 (31) 1-100 3 3 3 Rotstayn et al. (2010)
FGOALS-g2 60 x 128 (26) 196 x 360 (30) 920-1019 3 2 2 Li et al. (2013)
FGOALS-s2 108 x 128 (26) 196 x 360 (30) 1-100 2 3 4 Bao et al. (2013)
GISS-E2-R 90 x 144 (40) 180 x 288 (32) 2500-2599 3 3 2 Schmidt et al. (2014)
HadGEM2-ES 145 x 192 (38) 216 x 360 (40) 2061-2160 3 4 4 Johns et al. (2006)
IPSL-CM5A-LR 95 x 96 (39) 149 x 182 (31) 2301-2400 3 3 3 Kageyama et al. (2013)
MIROC-ESM 64 x 128 (80) 192 x 256 (44) 2330-2429 3 2 2 Watanabe et al. (2011)
MPI-ESM-P p1 96 x 192 (47) 220 x 256 (40) 1850-1949 2 3 3 Giorgetta et al. (2013)
MPI-ESM-P p2 96 x 192 (47) 220 x 256 (40) 1850-1949 2 3 3 Giorgetta et al. (2013)
MRI-CGCM3 160 x 320 (48) 368 x 364 (51) 1951-2050 3 5 4 Yukimoto et al. (2012)

Table 2: PMIP3 simulation details for models used in this study. Columns from left
to right: model name, atmospheric resolution (lat, lon, levels), ocean resolution (lat,
lon, levels), model simulation years for the Mid-Holocene run, number of HIST ensemble
members, number of model grid cells spanning Lake Tanganyika, number of model grid
cells spanning Lake Malawi, and reference. The ‘model years’ do not refer to calendar
years C.E. or B.P.; rather, these are simply arbitrary run years chosen for the PMIP3
submission, and are provided here for reproducibility.

2.3. Lake Proxy System Model178

Proxy system models (PSMs) are now widely used tools for translating179

climate model variables (e.g. temperature or precipitation) to a paleocli-180

mate archive signal (e.g. oxygen isotopes in ice cores), placing model data181

in the same units or reference frame as the measured proxy data [and see182

Evans et al., 2013, Dee et al., 2015, 2018, for a review]. PSM simulations183

translate GCM output into quantities directly comparable to proxy mea-184

surements, more completely quantifying proxy uncertainty. The lake proxy185

system model (PSM) bridges climate model output with the proxy data by186

modeling the lake system itself. Here, we use a recently developed full lake187

PSM from the PRYSM framework [Dee et al., 2018]. The PSM is fully de-188

scribed in Dee et al. [2018]; briefly, the PSM simulates physical processes189

that impact the lake energy and water balance and thus temperature, but190

also integrates and compounds multiple sources of uncertainty related to191

how proxy signals settle in sediments (e.g., bioturbation), dating, and proxy192

calibration.193

The proxy system model requires several inputs including air tempera-194

ture, humidity, wind speed, downward long/shortwave radiation, and surface195

pressure; a schematic of the heat budget of the Lake PSM is given in Fig-196

ure 3. To simulate changes between the MH and HIST periods, we first197

calibrated several lake-specific parameters in the lake model by driving the198

model for both Tanganyika and Malawi with reanalysis data spanning 1979-199

2005 (ERA-Interim Reanalysis) [Dee et al., 2011] and comparing simulated200

lake temperature, evaporation, and mixing depth to modern observations.201
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Model parameters calibrated include the neutral drag coefficient (CD) and202

the shortwave radiation penetration depth parameter (η) [and see Dee et al.,203

2018, for more detail]. The historical period in this paper is thus defined204

as the years spanned by the reanalysis product. The annual cycle was then205

computed using the PSM output to produce an average historical year. To206

simulate changes in the MH, the 12-month annual cycle for the PMIP3-207

defined HIST and MH time slice data were extracted for all 13 models.208

For the MH simulations, we averaged 100 years of model output, and for209

the CMIP HIST experiments, we averaged across multiple realizations for210

each model in order to improve the statistical representation of the rela-211

tively short 1979-2005 time period (specifics of the PMIP3 simulations are212

detailed in Tab. 2). We scaled the lake model input fields by computing213

either the direct MH-HIST anomalies (temperature), or the percent change214

in the MH compared to HIST time slices, [(MH −HIST )/HIST · 100] (all215

other input fields). We then applied those anomalies or percent changes216

to the average seasonal cycle in ERA-Interim (sometimes referred to as a δ217

method). Specifically, we computed the annual climatology of the reanalysis218

data, taking the average for each individual calendar month, and applied the219

[MH-HIST] δ’s of each model-simulated month to the modern climatology.220

This procedure generates one MH input file for the LakePSM from each of221

the 13 PMIP3 model simulations. Each of the resulting 13 MH LakePSM222

simulations share the same modern control simulation (i.e., the LakePSM223

forced with ERA-Interim inputs). (Note that this process is designed to224

maintain consistency in the calibrated model averages during the historical225

period; the requirement of calibration of the lake model simulation using ob-226

servations motivates comparison of MH vs. HIST as opposed to MH vs. PI).227

Scaling modern reanalysis data to the simulated [Paleo-Modern] anomalies228

circumnavigates the climatological biases in the PMIP3 models [e.g. Lorenz229

et al., 2016].230

2.4. Model Performance231

The lake proxy system model simulates variables including water tem-232

peratures, lake mixing depth, and evaporation rate. We first assessed the233

performance of the model forced with ERA-Interim fields for both lakes [and234

see Dee et al., 2018]. Modeled and observed (in-situ [G Kumambala and235

Ervine, 2010, Eccles, 1974, Kumar et al., 2019] and satellite-derived [Krae-236

mer et al., 2015, Wooster et al., 2001]) lake surface temperatures, evapo-237

ration rates, and mixing depths over the historical period are compared in238

Table 3. Note that for both lakes, the general climatology consists of a wet239

season during austral summer (∼ONDJFM) and a dry season during austral240
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Climate/Lake Variable Observed Wet Season (ONDJFM) Modeled Wet Season Observed Dry Season (AMJJAS) Modeled Dry Season

Tanganyika

In Situ Surface Temperature (◦C) 27.8 ± 0.7◦C 28.7◦C 23 ± 0.9 ◦C 23.0◦C
Satellite-Derived Surface Temperature (◦C) 28.5◦C 28.7◦C 23.5◦C 23.0◦C

Evaporation (mm/day) 3 mm/day 4 mm/day 6 mm/day 4 mm/day
Mixing Depth (m) 50 ± 10m 30m 90± 10m 85m

Malawi

In Situ Surface Temperature (◦C) 28◦C 30◦C 22.6◦C 22◦C
Satellite-Derived Surface Temperature (◦C) 28◦C 30◦C 23◦C 22◦C

Evaporation (mm/day) (see caption) 2 mm/day (see caption) 5 mm/day
Mixing Depth (m) 50 m 14m 200m 41m

Table 3: Comparison between observations from Lake Tanganyika vs. Lake PSM-
simulated conditions, forcing the lake model with ERA-Interim reanalysis data for the
region. Available observations spanning the last few decades for Lake Tanganyika include
surface temperature, evaporation, and mixing depths [Eccles, 1974, Kumar et al., 2019,
Kraemer et al., 2015]. Previous work documents in-situ annual average evaporation rates
at Malawi of approximately 4.5-5.2 mm/day [G Kumambala and Ervine, 2010, Eccles,
1974]. Seasonal temperature variability is documented for Malawi in [Wooster et al.,
2001]. Note that wet season months span (ONDJFM); dry season months (AMJJAS).

winter (∼AMJJAS). The PSM simulates seasonal variations in lake surface241

temperatures in general agreement with modern observations, though the242

simulated seasonal cycles in both evaporation and mixing depth in the wet243

season are underestimated (and this bias is larger for relatively shallow sim-244

ulated mixing depths in Lake Malawi). The large mixing depth bias for245

Lake Malawi is potentially driven in part by the fact that the LakePSM246

used in this paper [Dee et al., 2018] is a one-dimensional model, and does247

not simulate lake dynamics such as wind-driven, north-south oscillations in248

thermocline depth in narrow lakes such as Malawi and Tanganyika, a key249

control on observed mixing depths [Naithani et al., 2003, Eccles, 1974]. In250

particular, observations of mixing depth and lake surface temperature for251

Malawi given in Table 3 were taken at the north side of the the lake; the 1D252

model does not capture lake seiches that may be more prevalent at the north253

end of Malawi than in central Lake Tanganyika. Finally, it is also possible254

that ERA-Interim input values are biased for Malawi, where fewer meteoro-255

logical station observations are available, limiting our ability to accurately256

tune model parameters over the historical period.257

3. Results258

The warming temperatures across 6ka reconstructed from GDGTs in259

Lake Tanganyika and Lake Malawi could result from a variety of processes,260

including regional feedbacks that influence the local radiation balance, or261

changes in heat export from the tropics related to high latitude warming or262

cooling. We disentangle the impacts of both climate and proxy system (lake263

system) processes in the analyses that follow.264
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3.1. Data-Model Comparison265

To assess the agreement between proxy reconstructions and available266

GCM simulations, [Fig. 2] shows the mean temperature reconstruction267

for Lakes Tanganyika and Malawi superposed on two transient simulations268

spanning the Holocene: the Community Climate System Model (CCSM3)269

Simulation of the Transient Climate of the Last 21,000 Years (TraCE-21ka)270

[Liu et al., 2009], as well as the PMIP3 time slice estimates of annual-mean271

temperature anomalies (boxplots). Temperature anomalies for all data pre-272

sented in [Fig. 2] were computed relative to the PI mean. Note the choice273

to compute anomalies relative to the PI is due to the fact that lake recon-274

structions (GDGT records) do not extend into the historical period. The275

reconstructions are coarse temporally compared to the model simulations.276

The two PI time periods for the reconstructions were taken (based on the277

most recent measurement points) as the average of 1750 B.P. (200 C.E.) to278

250 B.P. (1700 C.E.) for Malawi (n = 3) and 2818 B.P. (-868 CE) to 1313279

B.P. (637 C.E.) for Tanganyika (n = 6). Given the differences in dating280

resolution in the two reconstructions as well as their top-most dates (given281

above), these two time periods were taken as reasonable choices to repre-282

sent PI climate. Similarly, for the Mid-Holocene averages, we restricted the283

calculation to times falling in the interval 4500:6800 B.P. (Tanganyika n =284

10 data points, Malawi n = 5 data points). The MH average temperatures285

are extracted from each record over a 2000-year interval of core spanning286

multiple 14C ages within each section. Dating uncertainties for both sites287

are on the order of ±200 years [Tierney et al., 2008, Johnson et al., 2002].288

Each interval is bracketed by several dates with uncertainties much smaller289

than the averaging period length, making it unlikely that age uncertainties290

affect the analysis presented here.291

The lake reconstructions and model simulations notably diverge due to292

the lack of simulated MH warming in model experiments compared to the293

GDGT reconstructions. The models do not capture the magnitude nor the294

trend of MH warming observed in Lakes Tanganyika and Malawi across this295

boundary, though this assertion is contingent upon calibration uncertainties296

in the GDGT reconstructions (Table 1). Quantifying this difference, Ta-297

ble 4 lists [MH minus HIST] annual average air temperature anomalies for298

model grid cells centered over both lakes in the PMIP3 ensemble alongside299

GDGT-derived estimates, including uncertainties; [MH-PI] values for the300

proxy records are also given for reference. Of the 13 PMIP3 simulations we301

analyzed, 12 simulate colder MH temperatures compared to the historical302

simulations at both lake sites; all 13 indicate a colder MH compared to PI.303

This contrasts with the lake temperature reconstructions (Fig. 2b), which304
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indicate MH temperatures in equatorial Africa 1-2.5◦ warmer than the pre-305

industrial (Tab. 4). The one notable exception is HadGEM-2; the average306

air temperatures over Tanganyika are equal to those of the historical time307

slices in the MH, and hotter over Lake Malawi. HadGEM-2 is thus the308

only PMIP3 model showing MH temperatures similar to or warmer than309

the historical period.310

It is important to explicitly consider uncertainties for all data types in311

the comparison. Uncertainty bounds for the proxy estimates of MH-HIST312

temperature changes were derived using bootstrapped re-sampling of the313

calibration uncertainty (resulting in a value of σ = ±0.4◦C) as computed314

in Tierney et al. [2010a]. PMIP3 model uncertainties are computed by cal-315

culating the standard deviation of the [MH-PI] and [MH-HIST] differences316

for the model ensemble (in terms of mean annual air temperature), and are317

approximately equal to ±0.3◦C (Table 4). Finally, the LakePSM uncer-318

tainty was calculated using a perturbed-parameter ensemble (Sec. S2) and319

repeating the same method used for the PMIP3 simulations, calculating the320

standard deviation of the [MH-PI] and [MH-HIST] differences for the model321

ensemble of mean annual lake surface temperatures. The PSM uncertainties322

associated with selection of parameter value are small, ∼ ±0.04◦C.323

3.2. Impact of Lake System Biases324

While the lack of data-model agreement could be attributed to short-325

comings in climate model physics, it is also necessarily to evaluate biases326

imparted by the lake system. While GDGT proxies are potentially an unbi-327

ased indicator of lake temperature, issues may arise when lake temperature328

is assumed equal to air temperature. In particular, changes in lake water329

column surface energy fluxes or mixing can alter the air-lake temperature re-330

lationship: lake temperatures may be damped or amplified compared to air331

temperature changes due to mixing (e.g. changes in thermocline depth) and332

the high specific heat capacity of water [Dee et al., 2018]. Furthermore, Sup-333

plementary Table S0 indicates that while most of the African Great Lakes334

measured surface temperatures are systematically higher than reanalysis air335

temperatures, there is large regional heterogeneity in the lake-air tempera-336

ture offset in the modern [Green, 2009, Turner et al., 1996, Minale, 2020,337

Spigel and Coulter, 2019]. Air-lake temperature relationships may also be338

non-stationary. Taken together, these uncertainties beg the question: how339

much (if at all) are lake temperature reconstructions biased relative to air340

temperature?341

Reconstructed lake temperatures at ∼6 ka coincide with enhanced fall342

insolation during the MH. In the model simulations, the enhanced JJASON343
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PMIP3 MODEL [MH-HIST] MAAT
(◦C) (Tanganyika)

[MH-HIST] MAAT
(◦C) (Malawi)

BCC -0.70 -0.45
CCSM -0.51 -0.37
CNRM -0.64 -0.49
CSIRO -0.44 -0.39
FGOALS-g2 -0.80 -0.71
FGOALS-s2 -0.91 -0.63
GISS -1.28 -0.51
HADGEM-2 0.0 +0.37
IPSL -0.76 -0.59
MIROC -0.34 -0.21
MPIp1 -0.70 -0.42
MPIp2 -0.79 -0.37
MRI -0.51 -0.29

PMIP3 [MH-HIST] MEAN -0.7 ± 0.31 -0.4 ±0.27

PMIP3 [MH-PI] MEAN -0.3 ±0.34 -0.2 ±0.13

GDGT MH-PI +1.4 ±0.4 +1.9 ±0.4

Table 4: PMIP3 Mid Holocene Air Temperature Anomalies. PMIP3 MidHolocene
minus Historical Mean Annual Air Temperature at Lakes Tanganyika & Malawi. Top 14
rows show the change in PMIP3 model estimates for the difference in MH and HIST
air temperatures and the PMIP3 multi-model mean; bottom row indicates the estimated
warming during the MH compared to the pre-industrial (PI) and observed historical period
from GDGT reconstructions of both lakes. The GDGT reconstruction anomalies are
reported for MH relative to PI; the proxy data does not extend through the modern period.
Note GDGT difference is given with calibration uncertainty (σ = ±0.4◦C) as computed
in Tierney et al. [2010a]; the PMIP3 model uncertainties are computed by calculating the
standard deviation of the [MH-PI] and [MH-HIST] differences for the model ensemble (in
terms of mean annual air temperature). For reference, the PMIP3 HIST-PI multi-model
air temperature mean is approximately 0.3◦C for Tanganyika, and 0.2◦C for Malawi.
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insolation results in elevated SON temperatures throughout the MH. This344

result is consistent for PSM simulations using both the calendar-corrected345

and un-corrected input data, indicating the correction is negligible in the346

context of this analysis (Figs. S2, S3). Figure 4 shows seasonal temperature347

anomalies across the African continent (MH minus historical), using the348

warmest MH PMIP3 simulation (HadGEM2). The stronger seasonality of349

air temperature during MH is apparent, with much colder temperatures over350

much of Africa during DJF and MAM, and warmer temperatures (by up to351

3◦C) during JJA and SON, especially in the great lakes regions.352

These lakes gain most of their annual heat budget during austral spring353

(SON) after winter mixing (when lake heat budgets are sensitive to tempera-354

ture fluxes), and thus several studies have invoked the increase in SON inso-355

lation to explain the elevated MH lake warming signal, focusing on processes356

such as mixing internal to the lake [Tierney et al., 2010b, Berke et al., 2012b,357

and see Section 3.3]. Testing this directly, Figure 5 shows the seasonal cycle358

of both air temperatures and lake surface temperatures (generated using359

the lake PSM forced with HadGEM2 inputs) for both the MH and histori-360

cal periods at Lake Tanganyika. The calendar-corrected MH data are also361

reproduced in all four panels of Fig. 5 (red curve). Comparison with ERA-362

interim reanalysis air temperatures (dashed line, superimposed on Fig. 5)363

indicates that despite bias in HadGEM2 air temperatures, which are higher364

than observations during winter months (November-March), the model does365

accurately simulate the observed seasonal cycle for lake surface temperature366

(Table 2).367

Annual average temperature changes for HadGEM2 are summarized in368

Table 5. The annual average HadGEM2 air temperatures simulated during369

both the historical and mid Holocene time slices are equivalent, ∼ 22◦C.370

However, as shown in Fig. 5a., there is enhanced seasonality over equatorial371

Africa due to precessional forcing during the MH, and the region received372

more solar radiation in JJA/SON. Conversely, Fig. 5b. shows that lake373

surface temperatures [are generally higher throughout ASOND in374

the MH], despite no change in annual average air temperatures between375

MH and HIST. This implies a non-stationary temperature bias between air376

and lake temperature (the air-lake temperature offset changes in different377

climate states), arising due to lake heat budget effects alone.378

We repeated this analysis for the full PMIP3 ensemble and for both379

lakes, generating MH input files for the LakePSM from each PMIP3 model380

using the approach described in Section 2.3. MH vs. HIST air temperature381

anomalies were compared to lake temperature anomalies (expanding Table 5382

for the full PMIP3 ensemble). The total lake amplification of air temper-383
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Time Slice Air / Lake Temperatures

HISTAIR 21.9◦C
MHAIR 21.9◦C

Air Anomaly 0

HISTLAKE 26.5 ◦C
MHLAKE 27.3 ◦C

Lake Anomaly 0.8

Bias (Lake-Air) 0.8

Table 5: HADGEM-2 MidHolocene (MH) vs. Historical (HIST) Mean Annual Air Tem-
perature and Lake Surface Temperature simulated at Lake Tanganyika. Lake PSM uncer-
tainties are approximately ±0.04C (Sec. S2).

atures (MH minus HIST) is shown in Figure 6. This yields a multi-model384

average of 0.3◦C hotter and 0.05◦C colder lake surface temperatures than385

air temperatures for MH compared to HIST at Tanganyika and Malawi,386

respectively. This temperature bias is larger for Tanganyika (see Sec. 3.3).387

BCC is a notable outlier in Figure 6, and shows a large cold bias for388

both lakes. While its air temperature anomalies are comparable to other389

models (Tab. 4), BCC’s wind speed anomalies greatly exceed other models390

during the MH (a 124% increase), amplifying lake cooling (not shown). How-391

ever, the model only drives down the multi-model average by approximately392

0.1◦C, for reference.393

To test the hypothesis that MH insolation forcing imparts a seasonal bias394

on the lake surface temperature reconstructions and to diagnose the energy395

balance changes involved, we examined the changes in the lake energy bud-396

get terms in HADGEM-2 (Fig. 3): lake surface temperature, downwelling397

shortwave, downwelling longwave, upwelling shortwave, upwelling longwave,398

sensible heat flux, and latent heat flux (Figs. 7,8).399

The simulation’s seasonal cycle indicates more longwave radiation and400

less net shortwave radiation (SW hereafter) at the lake surface (Figs. 7, 8,401

S6) and higher humidity during the wet season (∼ONDJFM). By contrast,402

the dry season (∼AMJJAS) is drier, sunnier, and windier. The timing of the403

wet season and the dry season is similar between Tanganyika and Malawi.404

The warmest lake temperatures happen at the end of the wet season and405

the coolest lake temperatures happen at the end of the dry season. Latent406

heat fluxes likely play an important role in this cycle. There is much more407

evaporation during the dry season than during the wet (a seasonal range408

of 175 W/m2 at Tanganyika). So, despite increased SW radiation during409

the dry season, increased evaporative cooling of the lake (drier, windier410
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conditions) and decreased downwelling longwave (likely due to reduced cloud411

cover, see Sec. 3.3) would act to cool both Tanganyika and Malawi.412

Figures 7 & 8 indicate coherent changes during the MH in the surface413

heat budgets: alongside higher lake surface temperatures during ASOND,414

we observe elevated downwelling SW radiation, small-negligible changes in415

sensible heating, and enhanced upwelling longwave radiation. These changes416

are robust to changes simulated using calendar-corrected MH forcing (SI,417

Figs. S2, S3). Interestingly, latent heat is less negative during AMJJASO418

in the MH simulation compared to HIST, indicating reduced heat loss and419

reduced evaporative cooling (Figs. 7c., 8c., S6) during this season. By420

contrast, for Lake Malawi (Fig. 8), evaporation and latent heat release421

increase during SON, suggesting the enhanced evaporation and latent heat422

release cannot explain the enhanced warming at 6ka. Rather, the variable423

which shows consistently higher (though modest ∼ 20W/m2) values during424

JJASON (austral winter, spring, i.e. the lakes’ dry season) is downwelling425

SW radiation. The seasonality impact on lake temperature is asymmetric:426

the enhanced wet season warming is not fully offset by dry season cooling427

due to enhanced temperature seasonality and cloud cover change.428

Furthermore, in the MH compared to PI, transitions between wet/dry429

seasons are shifted such that seasonal changes occur earlier in the year. Due430

to orbital forcing, incident SW radiation is elevated during JJA and SON431

in the MH for all 13 PMIP3 models (SI, Fig. S1). Cloud feedbacks could432

potentially accentuate changes in August and September (the months with433

greatest orbital forcing at 6 ka) insolation through October and November.434

In the simulation, lake surface temperatures do not directly track changes435

in annual average air temperatures. Because GCMs simulate air tempera-436

tures only, it follows that a direct comparison between lake surface tem-437

perature reconstructions and air temperature simulations from GCMs may438

contain uncertainties generated by lake system dynamics. The above anal-439

ysis suggests a substantial amount of the warming recorded by lake GDGT440

archives may arise from the lake energy budget alone. The PMIP3 multi-441

model range indicates lake heat amplification due to enhanced MH JJA/SON442

heating may account for between 0 to 1.5 ◦C of reconstructed warming ob-443

served in GDGT-based reconstructions, despite little-no change in annual444

average air temperatures. However, lake heat budget biases cannot recon-445

cile all of the proxy-reconstructed warming during the MH. The multi-model446

average lake temperature bias compared to air temperatures is 0.3◦C, and447

only partially accounts for the data-model MH gap.448

Revisiting our motivating question, how does the lake system itself alter449

the signal?, the apparent lake heating bias shown in Fig. 5 and the analysis450
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discussed above suggests MH insolation forcing drives seasonal biases caus-451

ing enhanced JJA-SON heat uptake, contributing to observed MH warming452

in Tanganyika and Malawi. This observation warrants further investigation,453

however: What are the explicit physical impacts of enhanced solar radiation454

seasonality on the lake energy budget, and why does this elevate lake sur-455

face temperature? Furthermore, other lake-specific processes can affect the456

reconstructed temperature signal, such as mixing depth. These additional457

mechanisms for heightened sensitivity to enhanced MH JJA-SON insolation458

are discussed in Section 3.3.459

3.3. Coupled Climate-Lake Dynamics: Mixing Depths and MH Warming460

We next characterize the impacts of enhanced seasonality in SW on lake461

heating in the MH. Relevant are the spatial changes over Africa in surface462

downwelling SW radiation (Fig. 9), cloud cover, and precipitation (Fig. 10).463

Figure 10 shows the seasonal average anomalies in cloud area fraction (MH464

minus HIST). Over the great lakes region, cloud cover is reduced in MH JJA465

and SON relative to HIST. Lower cloud albedo leads to decreased reflection466

of incoming solar radiation; indeed, Figure 9 shows increased surface down-467

welling SW radiation corresponding to areas of lower cloud cover during the468

MH over Malawi and Tanganyika (JJA-SON). Increased SW radiation in469

JJA and SON during the MH is consistent with increased insolation driving470

a larger seasonal northward shift of the Tropical Rain Belt, which causes471

increased cloud cover north of the equator during the African Humid Pe-472

riod (AHP, Fig. 10, MAM, JJA), and decreased cloud cover in the south at473

6 ka [Shanahan et al., 2015, Chevalier et al., 2017]. Precipitation changes474

are small over both lake regions during JJA/SON (Fig. 10), though the475

HadGEM2 model does simulate wetter (∼ +1 mm/day) conditions over476

Tanganyika during the dry season (∼AMJJAS); this increase occurs despite477

the northward shift of the Tropical Rain Belt documented in previous work478

[Gasse, 2000, Shanahan et al., 2015, Costa et al., 2014]. Essentially, the479

model simulation suggests changes in cloud cover can promote lake warm-480

ing through increasing SW radiation incident at the lake surface contem-481

poraneously with a wetter dry season and wetter conditions in general, in482

agreement with previous hydroclimate reconstructions from Tanganyika [e.g.483

Tierney et al., 2008, Ivory and Russell, 2016]. By contrast, we note that at484

Malawi, previous works suggests conditions were substantially drier during485

the AHP [Finney and Johnson, 1991]. While the two lakes do not share486

the same hydrologic history, similar changes in seasonal lake temperatures487

and mixed layer depth underscores the importance of shortwave forcing and488

16



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

cloud cover, which may overcome latent heat loss and other processes likely489

to differ at the two lakes.490

Shortwave radiation directly impacts lake surface temperature, but also491

exerts a primary control on mixing depth [Hostetler and Bartlein, 1990].492

While mixing depth depends on multiple additional controls including sur-493

face temperature, evaporation, wind speed, and humidity, net downward494

SW radiation is the only variable notably enhanced in the MH. Due to the495

exponential decline of SW permeation with depth in the lake, an increase496

in surface incident shortwave radiation will heat surface waters more than497

deep waters, causing surface waters to become more buoyant than deeper498

layers and reducing mixing [see Dee et al., 2018, SI]. Figure 5c. shows499

the HadGEM2 MH and HIST simulations of SW radiation over Lake Tan-500

ganyika. As discussed above, and shown in Figure 5c., more SW radiation501

penetrates the lake surface in MAM-JJA in the MH relative to HIST; as a502

result, Figure 5d. shows that in HadGEM2, lake mixing depths are approx-503

imately 10-20 m shallower during MH JJA compared to historical.504

The mixing climatology for both lakes are such that mixed layer depths505

are shallow (∼20 meters) during the wet season, and deepen through the506

dry season with maximum mixing in September. The mixed layer deepens507

through the dry season due to both windier conditions and due to surface508

heat loss through evaporation. Deepening of the mixed layer during the509

dry season further contributes to lake surface temperature cooling by trans-510

ferring heat to deeper layers. Figure 5b. indicates that deeper dry season511

mixing ends earlier (by about one month) in the MH (and see Figs. 7,8b.).512

This shift in the seasonal timing of lake surface temperature and mixing513

depth is most pronounced at the end of the dry season, which starts one514

month earlier during MH and leads to warm lake temperature anomalies515

during SOND.516

This change in mixing depth seasonality occurs in both lakes, and is517

potentially important for understanding the biases between lake and air518

temperatures. Namely, reduced mixing depth results in a reduction in the519

ability of the lake to store heat (thus warming the surface layer). Large520

[MH-HIST] lake surface temperature anomalies onset in September and are521

maintained through November. Surface heating due to the large positive522

anomaly in SW radiation alone may cause the mixed layer depth to shallow.523

In any case, a shallowing mixed layer would act to perpetuate and enhance524

an initial surface heating.525

In sum, during both the MH and HIST periods, mean annual tempera-526

ture in the lake is set by the change in seasonal cloud cover and insolation527

(SW radiation). Reduced JJA-SON cloud cover and increased shortwave528
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radiation at lake surface also directly impact mixing depth. PMIP3 simula-529

tions indicate shallower mixed layer depths during the MH relative to HIST530

in September-October, driven in part by greater surface incident shortwave531

radiation. These changes in lake stratification and mixing compound the dry532

season warming observed during JJA-SON, maintaining elevated MH tem-533

peratures initiated by enhanced shortwave radiation in MAM-JJA through-534

out SON. The dry-wet season shift from deeper to shallower mixed layers535

occurs one month earlier in the MH, due to increased downward SW. In-536

creased SW forcing heats and increases the buoyancy of surface waters, and537

would enhance direct SW effects on lake surface temperature via shallowing538

the thermocline and reducing the redistribution of heat to deeper layers.539

4. Discussion: Unravelling Drivers of African Temperature Changes540

in the Holocene541

This study evaluates temperature changes in paleoclimate reconstruc-542

tions and GCMs, specifically the accuracy of GCM hindcasts of past African543

temperature. The suite of PMIP3 models which performed a MH time-slice544

simulation were analyzed, and we evaluated model simulations which come545

closest to simulating regional reconstructed temperatures for Africa during546

the MH (HadGEM2). Output from the climate model simulations were547

then used to drive a lake PSM that simulates lake energy balance to iden-548

tify processes that explain the timing and amplitude of observed African549

temperature signals. The PSM directly simulates lake temperature, and550

provides direct insights into the energy and mass transfers that drive those551

lake temperature changes.552

The lake PSM indicates that lake and air temperatures differ in their553

relative means, seasonality, and patterns of change through time, indicat-554

ing biases imparted by the lake system [Dee et al., 2018]. Amongst all555

PMIP3 models, none simulate higher mean annual air temperatures in trop-556

ical Africa during MH compared to present-day (Section 3.1). However,557

multiple processes within the lake proxy system alter the input air temper-558

ature signal. Employing the Lake PSM energy balance model, we converted559

modeled air temperature and other environmental inputs to lake surface560

temperatures, and in doing so quantified biases between modeled air and561

lake surface temperatures during the relatively warm MH. Lake tempera-562

tures are warmer during SON at 6 ka, amidst enhanced seasonality due to563

precessional forcing (strongest in SON). This enhanced seasonality leads to564

greater heat uptake by the lakes and potentially biases the GDGT recon-565

structions with respect to mean annual air temperature. We demonstrated566
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that the simulated lake energy budget exhibits heightened sensitivity to en-567

hanced MH JJA-SON insolation, with preferential heat uptake in JJA-SON568

(Sec. 3.2).569

Previous studies have demonstrated that GCMs underestimate temper-570

ature changes in East African lakes relative to GDGT-based reconstructions571

[e.g. Loomis et al., 2017]. Our work takes this a step further, evaluating572

temperature and energy transfers between air and lake surface tempera-573

ture, as well as potential biases imparted by lake system dynamics. Despite574

the extended analysis pursued here, we find that while lake system biases575

can partially account for the model-data discrepancy (up to 0.8◦C for some576

models such as HadGEM2-ES), energy budget biases alone are insufficient577

to explain the full 1-2.5◦C of warming observed during the MH relative to PI578

in Africa. The multi-model, lake PSM simulation mean provides a quantita-579

tive estimate of the offset between lake and air temperatures (+0.3◦C) which580

at best resolves 30% of the observed model-data discrepancy, and at worst,581

closer to 12% (assuming a maximum warming of 2.5◦C). Furthermore, we582

note that the PMIP3 HIST-PI air temperature mean is approximately 0.3◦C583

for Tanganyika, and 0.2◦C for Malawi; thus, the MH warming reconstructed584

in lake sedimentary archives is not only substantially different from what585

models show, but also exceeds the range of model HIST-PI differences.586

This comparison demands a full account of uncertainties in the model587

simulations, proxy reconstructions, and the PSM. As mentioned above,588

GDGT calibration uncertainties vary by reconstruction and method, but can589

range from 0.4 to 3.7◦C [e.g. Tierney et al., 2010a, 2008, Powers et al., 2005,590

2010]. Even in a maximum error estimation compounding model (±0.3◦C,591

this study), proxy (±0.4◦C,[Tierney et al., 2010a]) and LakePSM parameter592

uncertainty (±0.04◦C, this study) errors, the model-simulated lake tem-593

peratures only graze the lower (+1◦C) GDGT estimates of relative MH594

warmth. While there are underconstrained uncertainties in both the models595

and proxy data, assuming the reconstructions are accurate, it is difficult to596

imagine that these uncertainties are the primary cause of data-model dis-597

crepancy. The GDGT temperature trends, rather than the absolute values,598

indicate MH warming is robust, and lake system bias can only explain part599

of the reconstructed temperature change.600

As discussed in Section. 3.3, Changes in net downward shortwave radia-601

tion, cloud fraction, and temperature anomalies driven by precessional forc-602

ing and enhanced seasonality jointly contribute to an amplified lake heating603

signal. Warmer lake surface temperature in MH SOND compared to HIST604

is due to: 1) shallowing of mixed layer depths at the end of the dry sea-605

son occuring earlier in the season (reducing lake heat storage at depth),606
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2) increased downward shortwave radiation due to orbital forcing accompa-607

nied by a decrease in cloudiness during the same months. At Tanganyika,608

the cumulative effects of decreased evaporation and reduced latent heat loss609

throughout the dry season at MH compared to HIST could be contributing610

to warmer SOND temperatures. However, we do not observe a similar de-611

crease in evaporation at Malawi, and Malawi exhibits identical SOND lake612

surface warming. We conclude that the mixed layer depth and SW effects613

are the primary drivers of SOND LST warming.614

There are important differences between simulated lake climate changes615

at Tanganyika and Malawi, despite similarities in their seasonal cycle for616

lake surface temperatures. As noted in Section 3.1 and in Fig. 6, the multi-617

model average shows [MH-HIST] lake-air offsets of 0.3◦C warmer and 0.05◦C618

colder for Tanganyika and Malawi, respectively. In contrast, the GDGT619

data (Fig. 2b) suggest a similar mid-Holocene warming feature at both620

Tanganyika and Malawi. This modeled difference between the two lakes621

can potentially be attributed to differences in shortwave forcing and cloud622

cover. In HadGEM2-ES, shortwave forcing is elevated in MAM, JJA and623

SON over Tanganyika, but only in JJA/SON at Malawi (Figs. 7, 8, 9);624

meanwhile both lakes show reduced or no change in cloud cover for all three625

seasons (Fig. 10). The total shortwave forcing differs seasonally between the626

two sites (Figs. 7, 8). This difference might explain the large MH shoaling of627

the mixed layer in Tanganyika compared to Malawi, though the bias in the628

LakePSM in simulating Malawi’s modern mixed layer depth is large (Table629

3). Furthermore, Fig. S4 indicates a large increase (decrease) in evaporation630

and thus surface cooling (warming) during the MH for Malawi (Tanganyika),631

which likely contributes to Malawi’s simulated colder temperatures. Further632

diagnostics are required to fully deconvolve this difference.633

Nonstationarity in seasonal mixing depths may also generate biases in634

GDGT temperature reconstructions during the MH. In the present day, the635

concentrations of GDGT-producing Thaumarchaeota in the water column636

of Lakes Malawi and Tanganyika are low in the surface mixed layer and637

increase in the thermocline, below the lakes chlorophyll maxima and in the638

lakes suboxic zone and oxycline [Schouten et al., 2012, Kumar et al., 2019].639

Both theory and our simulations suggest that during the MH, as the lakes640

warmed, the thermocline shoaled. This is consistent with ongoing changes in641

Lake Tanganyika, where anthropogenic warming has resulted in a shoaling642

of the thermocline and oxycline [Cohen et al., 2016]. Kraemer et al. [2015]643

noted that changes in lake temperature during the last century inferred from644

TEX86 [Tierney et al., 2010a] overestimated observed and modeled temper-645

ature changes, and suggested that shoaling of the oxycline, where Thau-646
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marchaeota reside, exposed the GDGT-producers to warmer water within647

the surface mixed layer. This would increase the amplitude of warming648

recorded by TEX86. However, shoaling of the thermocline, such as we sim-649

ulate during the mid-Holocene, could have the opposite effect exposing650

Thaumarchaeota to colder, deeper waters if the oxycline remains station-651

ary. Furthermore, Hurley et al. [2016] demonstrate that if Thaumarchaeota652

GDGT producers become ammonium-starved in a particular season, they653

produce higher TEX86. Thus, the question is how changes in the depth654

and temperatures within the thermocline, oxycline, chlorophyll maximum,655

and ultimately the depth of Thaumarachaeotal GDGT production interact656

during intervals of climate change. While shifts in mixed layer depth are657

simulated by multiple models, it is at present impossible to conclusively658

identify the impacts of those changes on the proxy records without an in-659

dependent proxy for lake surface temperature, mixed layer, and/or oxycline660

depth. At present, few proxies for mixing depth are available alongside these661

records. Regardless, simulated changes in mixed layer depth during the MH662

could cause non-stationary responses of GDGT-inferred temperature to sur-663

face warming. Nevertheless, uncertainties generated by non-stationarity in664

mixing depths will obscure the true heating signal in GDGT reconstructions665

[Kraemer et al., 2015, Zhu et al., 2017, Zhang and Liu, 2018, Kumar et al.,666

2019]. Advances developing PSMs of intermediate complexity for TEX86 in667

large, stratified lakes are needed to refine our understanding of these effects.668

It is important to contextualize the data-model comparison presented669

here with temporally coherent paleoclimate archives. Some global synthe-670

ses indicate cooling from 6ka-0ka [Marcott et al., 2013, Kaufman et al.,671

2020b,a], though recent work highlights significant seasonal biases in these672

reconstructions at higher latitudes [Bova et al., 2021]. Globally, glaciers were673

advancing during this time in both Greenland and at lower latitudes, such as674

the Alps [Marcott et al., 2013, Liu et al., 2014, Marsicek et al., 2018]). The675

observed warming reported in the Tanganyika and Malawi reconstructions676

is observed in other East African rift lakes, including Turkana [Berke et al.,677

2012a, Linke et al., 2018, Loomis et al., 2012]. While many of these proxy678

types respond to multiple climate drivers, we cannot rule out the possibil-679

ity, based on these multi-proxy lines of evidence, that tropical Africa may680

have warmed by 1-2◦C during the MH, warmer than the historical period.681

These other proxy data also disagree with the relatively quiescent model682

simulations (especially transient simulations), which do not indicate abrupt683

changes in temperature across the MH.684

We note additional important caveats of this work. In both Lake Tan-685

ganyika and Lake Malawi, oscillation of the thermocline results from southerly686
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winds that generate lake surface water highs at the northern sides of the687

lakes, which then flow southwards when the winds subside. This creates688

an oscillation with a period of a few weeks and an amplitude of several689

tens of meters [e.g. Naithani et al., 2003], and likely impacts mixing depths690

in these large lakes. The LakePSM used in this paper [Dee et al., 2018]691

is a one-dimensional model, oversimplying processes in long, deep, narrow692

lakes such as Malawi and Tanganyika, where thermocline dynamics play an693

important role in the lake heating budgets. Additional modeling using a694

three-dimensional coupled lake model would incorporate water column mix-695

ing associated with thermocline response to wind fields. This may strongly696

impact mixing depth and lake surface water temperature. The use of such697

3D lake models [e.g. Laval et al., 2003, León et al., 2007] is an important698

next step forward in the model-data comparison.699

Additionally, while GDGT records are not seasonally resolved, they may700

be seasonally biased; transient simulations show particularly elevated SON701

temperatures in the MH (SI Fig. S5), exceeding annual mean temperatures702

by ∼ 1◦C. If GDGT producers are selectively recording lake temperatures in703

specific months, this may contribute to the data-model discrepancy reported704

in this work. Research forcing the Lake PSM with seasonal temperatures705

may shed light on the contributions (or lack-thereof) of potential seasonal706

biases.707

Finally, the PMIP4 mid-Holocene multi-model ensemble experiments708

were recently published [Kageyama et al., 2020], and initial evaluation per-709

formed by Brierley [2020] show that MH air temperatures in Africa are710

cooler for PMIP4 than for PMIP3. This is due to the fact that PMIP4 em-711

ploys lower (and more realistic) greenhouse gas concentrations compared to712

PMIP3. Thus, we expect that the model-data discrepancy we document will713

increase when PMIP4 results are considered. This work also considers all714

models in the PMIP3 ensemble regardless of their climatological biases rel-715

ative to observations. Differences between models’ treatment of vegetation716

and aerosols likely drive large simulation spread, and warrant further inves-717

tigation [e.g. Liu et al., 2018]. Our future planned analysis of the PMIP4718

ensemble will assess the fidelity of the models in reproducing modern cli-719

matology in east Africa, in order to generate ensemble means weighted by720

model skill and in an effort to deduce the model physics that give rise to721

stronger model-data agreement.722
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5. Conclusions723

We evaluated temperature reconstructions from the African tropics, and724

compared these data with model simulations to assess the dynamics and725

drivers of African temperature changes over the Holocene. Studies such726

as this characterizing past temperature changes and their governing mech-727

anisms are fundamental to understanding future climate change. Further,728

surface temperature is one of the few climate variables that we can quantita-729

tively reconstruct with reasonable accuracy and precision. Climate models730

are thought to have greater skill in predicting changes in temperature than731

hydroclimate variables such as precipitation, yet there are few data-model732

comparison studies to test this assumption for tropical continental air tem-733

peratures. This work analyzes two lake temperature reconstructions from734

Africa and re-evaluates mean-state temperature transitions resolved in these735

records using a new PSM. The Lake PSM elucidates relationships between736

lake and air temperatures (i.e., energy and mass transfers). We show that737

impacts on the relationship between lake temperature and air temperature738

can be imparted by lake processes, and these impacts can be quantitatively739

simulated and partitioned from the primary climate signal. This enhanced740

data-model comparison provides more realistic constraints on climate model741

simulations of the past to identify potential shortcomings they face predict-742

ing future temperature change in Africa.743

Ensemble climate model simulations predict African warming of up to744

5◦C by 2080-2099 in an RCP8.5 high emissions scenario [IPCC, 2013]; this745

will severely stress society and ecosystems [Boko, 2007, James and Wash-746

ington, 2013]. Air temperature affects human health, directly through heat747

waves causing cardiac and respiratory distress, and indirectly through its748

impact on disease transmission, drought, agriculture, and ecosystems. Eval-749

uating climate model simulations spanning past warm climates facilitates750

validation of projections of future warming performed with the same cli-751

mate models [Taylor et al., 2012], allowing us to systematically evaluate752

model performance. The temperature reconstructions evaluated here sug-753

gest substantial sustained, long-term warming during the MH (Fig. 2b.);754

while it is possible these warming events in the GDGT record may be an755

under-constrained artifact of the proxy system, the warming is still notably756

lacking in current-generation climate models. Careful evaluation of these757

warming events, such as that of the 6 ka heating event, is crucial for con-758

textualizing patterns and amplitudes of African climate change in the past759

and future.760

In forthcoming research, we hope to amass a greater number of African761
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temperature records for a more complete and heterogeneous view of African762

temperature evolution. Extension work should synthesize a more geograph-763

ically comprehensive set of continental temperature reconstructions from764

Africa and evaluate these reconstructions using lake proxy system mod-765

els, providing a more robust evaluation of the potential for rapid tropical766

temperature change. This information is needed to elucidate the drivers767

of African climate changes, provide better statistics constraining continen-768

tal African temperature sensitivity, and enable more robust predictions of769

climate change in Africa for scientists and policy makers.770
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Lora, U. Mikolajewicz, S. Sherriff-Tadano, T. Vadsaria, A. Abe-Ouchi,897

N. Bouttes, et al. The pmip4-cmip6 last glacial maximum experiments:898

preliminary results and comparison with the pmip3-cmip5 simulations.899

Climate of the Past, 2020.900

D. Kaufman, N. McKay, C. Routson, M. Erb, C. Dätwyler, P. S. Sommer,901
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Damsté. Distributions of 5-and 6-methyl branched glycerol dialkyl glyc-980

erol tetraethers (brgdgts) in east african lake sediment: Effects of tem-981

perature, ph, and new lacustrine paleotemperature calibrations. Organic982

Geochemistry, 117:56–69, 2018.983

S. Schouten, E. C. Hopmans, E. Schefuß, and J. S. S. Damste. Distribu-984

tional variations in marine crenarchaeotal membrane lipids: a new tool985

for reconstructing ancient sea water temperatures? Earth and Planetary986

Science Letters, 204(1-2):265–274, 2002.987

S. Schouten, W. I. C. Rijpstra, E. Durisch-Kaiser, C. J. Schubert, and J. S. S.988
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Figure 1: Climate forcing from the LGM to present, and African Temperature
Evolution. (A) Radiative forcing from atmospheric CO2, CH4, and N2O (blue), as
calculated by Joos and Spahni [2008]; and mean annual (solid orange) and MH calendar-
corrected September-October-November (SON, red dashed) insolation at the equator, both
in units of W/m2.

Figure 2: Individual GDGT reconstructions evaluated in this work, comparison with
Climate Model Simulations. Simulated vs. reconstructed tropical African temperature,
plotted as anomalies relative to PI. GDGT-based temperature reconstructions from Lake
Tanganyika (purple) and Lake Malawi (black/grey), with bootstrapped calibration un-
certainty (σ = ±0.4◦C) as computed in Tierney et al. [2010a]). (A) LGM to PI, re-
constructions only. (B) Holocene temperature reconstructions with comparison to model
simulations. The brGDGT-based lake temperature reconstructions exhibit a larger ampli-
tude of temperature change (lake temperature) than do transient (CCSM3) and time-slice
(PMIP3) GCM simulations of air temperature. All model time series and time slice data
are displayed as anomalies relative to pre-industrial values (PI-1850 C.E.) due to the tem-
poral extent of the proxy reconstructions (they do not extend into the modern period).
Box plots (grey/black) show the inter-quartile [.25:.75] range (IQR) for the 13 PMIP3
simulations; outlier temperatures are shown in red. PMIP3 model uncertainties are ap-
proximately ±0.3◦C, computed by calculating the standard deviation of the [MH-PI] or
[MH-HIST] differences for the model ensemble (in terms of annual average air tempera-
ture) (and see Table 4). Model data are equilibrium simulations with 1850 C.E. prescribed
climate forcing (see citations, Table 2). Note the choice to compute anomalies relative to
the PI is due to the fact that lake reconstructions (GDGT records) do not extend into the
PMIP3 simulations historical period. The reconstructions are coarse temporally compared
to the model simulations. The two PI time periods for the reconstructions were taken as
the average of 1750 B.P. (200 C.E.) to 250 B.P. (1700 C.E.) for Malawi (n = 3) and 2818
B.P. (-868 CE) to 1313 B.P. (637 C.E.) for Tanganyika (n = 6).

Figure 3: Schematic of Lake Heat Budget Terms. The figure details all the terms
which alter the lake temperature profile in the Lake PSM. A full schematic showing all
PSM variables (input/output) is available in [Dee et al., 2018]. Approximate heat fluxes
are given for each term in W/m2 (and see Figs. 7, 8).

Figure 4: HadGEM2-Mid Holocene Seasonal Temperature Anomalies (MH minus HIST,
calendar-corrected), degrees Celsius [◦C]. Top left: DJF. Top right: MAM. Bottom left:
JJA. Bottom right: SON.
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Figure 5: Annual Average Air Temperatures and modeled lake surface temperatures.
HadGEM2-ES Mid Holocene vs. Historical Lake Model Simulation Results. (A) 2m Air
Temperature (◦C) from the HadGEM2-ES PMIP3 simulations for MH and HIST, as well
as the ERA-Interim Reanalysis 2m air temperatures for Tanganyika (1979-2017). (B)
Simulated lake surface temperature for MH (red) and modern period (ERA-Interim Re-
analysis) (blue). (C) Mid Holocene Shortwave Radiation for MH and modern at Lake
Tanganyika, highlighting differences in seasonal shortwave radiation reaching surface dur-
ing MH. (D) Mixing Depth Changes for the modern and MH. In all panels, the MH is
plotted in red, and modern period is plotted in blue.

Figure 6: Lake temperature anomaly minus air temperature anomaly [LAKE-AIR] for
all PMIP3 Models at (A) Lake Tanganyika and (B) Lake Malawi, MH minus modern
(ERA-Interim). The MH lake temperature anomalies are, on average, 0.32◦C hotter and
0.05◦C colder at Tanganyika and Malawi, respectively, than air temp anomalies. Note
that BCC anomalies are likely very low due to greatly increased wind speeds compared
to other models during the MH, which amplifies lake cooling.

Figure 7: HadGEM2-ES: MH (colors, dashed) vs. HIST (black) Lake Heat Budget Terms
for the Lake Tanganyika simulation. All MH variables are calendar-corrected. A. Lake
Surface Temperature (C), B. Mixed Layer Depth (m), C. Latent Heat flux at lake surface
(W/m2), proxy for evaporation, D. Sensible heat flux at lake surface (W/m2), E. incident
shortwave radiation (W/m2), F. longwave radiation (upwards from lake surface, W/m2),
G. wind speed (m/s), H. downwelling longwave radiation (W/m2).

Figure 8: HadGEM2-ES: MH (colors, dashed) vs. HIST (black) Lake Heat Budget Terms
for the Lake Malawi simulation. All MH variables are calendar-corrected. A. Lake Surface
Temperature (C), B. Mixed Layer Depth (m), C. Latent Heat flux at lake surface (W/m2),
proxy for evaporation, D. Sensible heat flux at lake surface (W/m2), E. incident shortwave
radiation (W/m2), F. longwave radiation (upwards from lake surface, W/m2), G. wind
speed (m/s), H. downwelling longwave radiation (W/m2).

Figure 9: HadGEM2-ES: MH-HIST Surface Downwelling Shortwave Radiation Anomalies
[CLEARSKY], in units of Watts per meter squared [W/m2]; all MH variables are calendar-
corrected. (a) DJF, (b) MAM, (c) JJA, (d) SON.

Figure 10: HadGEM2 (MH-HIST) Cloud Area Fraction (%) (A, B, E, F) Anomalies and
Seasonal Precipitation (B, D, G, D) Anomalies over Africa [mm/day]. All MH variables
are calendar-corrected. (A, C) DJF, (B, D) MAM, (E, G) JJA, (F, H) SON.

34



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

    0 2000 4000 6000 800010000120001400016000180002000022000
Years B.P.

-1

-0.5

0

0.5

1

1.5

2

2.5

3
G

HG
 F

or
cin

g 
(W

/m
2 )

400

405

410

415

420

425

430

435

440

In
so

la
tio

n 
(0

° ) (
W

/m
2 )

External Forcing, LGM-Present

Radiative (GHG) Forcing
Insolation at Equator (Annual Mean)
Insolation at Equator (SON)



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

lake surface 
temperature

downward 
shortwave
radiation

mixed layer 
depth

latent 
heat flux

UV+VISIBLE

longwave 
radiation

sensible 
heat flux

upward 
shortwave 
(albedo)

Lake Heat Budget

 (~
 -2

0 
W

/m
2 )

 (~
 -4

50
 W

/m
2 )

 (~
 +

37
0 

W
/m

2 )

 (~
 +

25
0 

W
/m

2 )

 (~
 -1

20
 W

/m
2 )



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

D. Mixing Depth C. Net Shortwave Radiation

A. HadGEM2-ES, ERA-INTERIM, 2m Air Temperature B. HadGEM2-ES, Lake Surface Temperature

ERA Interim Reanalysis Historical Mid-Holocene Mid-Holocene 
(Calendar Correction)



A
cc

ep
te

d
 A

rt
ic

le
This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

J F M A M J J A S O N D
22
24
26
28
30

La
ke

 S
ur

fa
ce

 T
em

pe
ra

tu
re

 [C
]

A. LST

MH
HIST

J F M A M J J A S O N D

0
20
40
60
80

M
ix

in
g 

De
pt

h 
(m

)

B. MXD

MH
HIST

J F M A M J J A S O N D

200

100

La
te

nt
 H

ea
t [

W
/m

2 ]

C. LATENT
MH
HIST

J F M A M J J A S O N D

40

20

0Se
ns

ib
le

 H
ea

t [
W

/m
2 ]

D. SENSIBLE
MH
HIST

J F M A M J J A S O N D

200

250

Ne
t S

ho
rtw

av
e 

[W
/m

2 ] E. SWW
MH
HIST

J F M A M J J A S O N D

460

440

Up
we

llin
g 

Lo
ng

wa
ve

 [W
/m

2 ] F. LONGWAVE-UP
MH
HIST

J F M A M J J A S O N D
0

1

2

W
in

d 
Sp

ee
dy

 [m
/s

]

G. WIND
MH
HIST

J F M A M J J A S O N D
340

360

380

Lo
ng

wa
ve

 D
ow

n 
W

/m
2 H. LONGWAVE-DOWN

MH
HIST

Lake Tanganyika MH vs. HIST Heat Budget



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

J F M A M J J A S O N D

22
24
26
28
30

La
ke

 S
ur

fa
ce

 T
em

pe
ra

tu
re

 [C
]

A. LST
MH
HIST

J F M A M J J A S O N D

0
20
40
60
80

M
ix

in
g 

De
pt

h 
(m

)

B. MXD

MH
HIST

J F M A M J J A S O N D

150

100

50La
te

nt
 H

ea
t [

W
/m

2 ]

C. LATENT
MH
HIST

J F M A M J J A S O N D

20

0Se
ns

ib
le

 H
ea

t [
W

/m
2 ]

D. SENSIBLE
MH
HIST

J F M A M J J A S O N D

200

250

Ne
t S

ho
rtw

av
e 

[W
/m

2 ]

E. SWW
MH
HIST

J F M A M J J A S O N D

460

440

420

Up
we

llin
g 

Lo
ng

wa
ve

 [W
/m

2 ] F. LONGWAVE-UP
MH
HIST

J F M A M J J A S O N D

1

2

3

W
in

d 
Sp

ee
d 

[m
/s

]

G. WIND
MH
HIST

J F M A M J J A S O N D
325

350

375

Lo
ng

wa
ve

 D
ow

n 
W

/m
2 H. LONGWAVE-DOWN

MH
HIST

Lake Malawi MH vs. HIST Heat Budget



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

a. b.

d.c.



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

A. DJF Cloud B. MAM Cloud C. DJF Precip D. MAM Precip

E. JJA Cloud F. SON Cloud G. JJA Precip H. SON Precip


