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Abstract: Global surface water classification layers, such as the European Joint Research Centre’s
(JRC) Monthly Water History dataset, provide a starting point for accurate and large scale analyses
of trends in waterbody extents. On the local scale, there is an opportunity to increase the accuracy
and temporal frequency of these surface water maps by using locally trained classifiers and gap-
filling missing values via imputation in all available satellite images. We developed the Surface
Water IMputation (SWIM) classification framework using R and the Google Earth Engine computing
platform to improve water classification compared to the JRC study. The novel contributions of
the SWIM classification framework include (1) a cluster-based algorithm to improve classification
sensitivity to a variety of surface water conditions and produce approximately unbiased estimation
of surface water area, (2) a method to gap-fill every available Landsat image for a region of interest to
generate submonthly classifications at the highest possible temporal frequency, (3) an outlier detection
method for identifying images that contain classification errors due to failures in cloud masking.
Validation and several case studies demonstrate the SWIM classification framework outperforms the
JRC dataset in spatiotemporal analyses of small waterbody dynamics with previously unattainable
sensitivity and temporal frequency. Most importantly, this study shows that reliable surface water
classifications can be obtained for all pixels in every available Landsat image, even those containing
cloud cover, after performing gap-fill imputation. By using this technique, the SWIM framework
supports monitoring water extent on a submonthly basis, which is especially applicable to assessing
the impact of short-term flood and drought events. Additionally, our results contribute to addressing
the challenges of training machine learning classifiers with biased ground truth data and identifying
images that contain regions of anomalous classification errors.

Keywords: land cover classification; machine learning; outlier detection; remote sensing; gap-fill;
imputation; surface water extent

1. Introduction

Remote sensors gather observations of Earth’s surface and atmosphere in a wide range
of spectral, temporal, and spatial resolutions [1]. Data collected by these sensors are often
classified at the pixel level to produce land cover maps of the Earth’s surface [2-4]. However,
the accuracy and scope of analysis of these maps are significantly affected by factors such
as spatial and temporal resolution, presence of cloud cover, and cost of acquisition of the
remote sensing imagery [5]. Trade-offs that compromise the fidelity of one factor for the
sake of another are often inevitable. Yet, recent advances in computation and open access to
Landsat sensor data have led to the generation of high-resolution global land cover maps such
as the European Joint Research Centre’s (JRC) Monthly Water History v1.0 dataset, which
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provides 30-m resolution global classifications of surface water at monthly intervals from 1984
to 2015 [4,6].

Open access to Landsat imagery has greatly advanced research in land cover classifi-
cation studies [5,7]. The mapping of surface water and inland waterbodies using Landsat
imagery has been of primary interest in a variety of studies [8-11]. Landsat images have a
spatial resolution of 30 m and a temporal resolution of 8 or 16 days [6]. The Landsat 5, 7,
and 8 satellites have generated a dataset of global imagery spanning from the early 1980s
to the present day. Each satellite quantifies spectral information from surface reflectance
in both the visible and infrared spectra. However, compared to aerial imagery, lower
resolution and the presence of cloud cover pose challenges for consistent and accurate land
cover classification from Landsat imagery. The Landsat 7 satellite is additionally affected
by scan line corrector (SLC) failure which introduces additional gaps in its images [12].

Despite these challenges, many studies have mapped surface water using Landsat
imagery [4,5,7,13,14]. The JRC Monthly Water History v1.0 dataset provides high resolution
classification maps of surface water at monthly intervals to track the change in surface
water extent over time and monitor the occurrence of floods and droughts [4]. This dataset
classifies each pixel as open water, non-water, or missing at monthly intervals from 1984-
2015. According to the JRC definition, areas classified as open water must contain 30 m? of
water alone. The study claims a false positive water classification rate of less than 1% and
an exclusion rate of less than 5% of true open water pixels.

While the success of the JRC Monthly Water History dataset is impressive, the data
is most adept for studies of large waterbodies and regions of interest. Our initial stud-
ies of small waterbodies in Iowa using the JRC dataset, revealed that the stringent JRC
definition (classifying as water only pixels composed of completely open water) often
leads to underestimation of the total extent of small waterbodies and flooded wetlands.
There are, in fact, a variety of signals that may characterize surface water, including pixels
capturing (1) completely open water, (2) water along waterbody boundaries, or (3) water
in wetland areas [7]. Additionally, the JRC dataset combines all Landsat imagery from
each month into monthly classifications. This strategy does not always produce a gap-free
classification map [4,11]. Furthermore, the monthly period between JRC classifications fails
to capture the change of extent in waterbodies that occurs within each month, particularly
in waterbodies with high seasonal fluctuation or those prone to short-term flooding and
drought. By gap-filling every available Landsat image, the full temporal frequency of
Landsat imagery can be retained to produce submonthly surface water classification maps.

There is a need for a classification framework that can classify a variety of surface
water land covers with high sensitivity and retain the full temporal frequency of Landsat
observations through gap-fill imputation. We developed the Surface Water IMputation
(SWIM) classification framework using R and the Google Earth Engine computing plat-
form to support analyses of small waterbodies with optimized sensitivity and temporal
frequency. Our work has achieved several novel and important contributions. Most im-
portantly, the SWIM classification framework includes gap-fill imputation to allow for
classification of every pixel in each available Landsat image, even those where some or all
of the region of interest is covered by clouds. Our case studies demonstrate that SWIM
water extent estimations in images with a high proportion of imputed data are reliable
and consistent with overall trends. Additionally, we show that it is possible to improve
the accuracy of machine learning classifiers trained on error-prone and/or biased ground
truth data via a novel cluster-based bias correction algorithm. Finally, we have developed
a method to recognize anomalous classification results via outlier detection. We expect
other scientists may be interested in applying SWIM to surface water analyses in studies
that require submonthly classification frequency. For instance, we demonstrate in several
case studies that the SWIM classification framework can more accurately identify the im-
pact of short-term flood and drought events given its submonthly classification frequency
compared to the JRC Monthly Water History dataset.
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This paper is organized in the following sections. Section 2 describes the methodology
of the SWIM classification framework. Our validation study is presented in Section 3.1,
where we compare the SWIM classifications to the JRC classifications. In Section 3.2,
three case studies demonstrate the advantages of studying waterbody dynamics with sub-
monthly classification frequency using SWIM. The final sections of the paper, discuss and
draw conclusions about the contributions of our research and its potential future directions.

2. Materials and Methods

The SWIM classification framework integrates a series of methods using R and the
Google Earth Engine (GEE) computing platform to produce submonthly surface water
classifications. In this section of the paper, we describe these methods and contextualize
the contributions of each.

GEE allows researchers to rapidly process massive remote sensing datasets via both
traditional and machine learning techniques [15]. The platform drastically reduces the
complexity of acquiring and pre-processing such imagery. We utilize GEE for the first two
steps of the SWIM classification framework, including gathering all Landsat imagery for
the ROI and preparing the training data. GEE also includes a variety of out-of-the-box
methods for supervised and unsupervised pixel classification. The training data and all
other Landsat images for the ROI may be either classified on GEE directly or downloaded
for further processing before classification. The gap-fill imputation and outlier detection
steps of SWIM require downloading the data from GEE and performing these last steps in R.
For generality, adjustable parameters of the SWIM classification framework are presented
and our selected values are also specified, e.g., k = 3.

The steps of the SWIM classification framework include gathering the Landsat imagery
(Section 2.1), preparing the training data (Section 2.2), performing a clustering algorithm
on the training data to improve classification sensitivity (Section 2.3), gap-filling missing
values in the images (Section 2.4), classifying the images via random forest (Section 2.5),
and identifying classification outliers (Section 2.6). These steps are visually summarized in
Figure 1.
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Figure 1. Visual summary of the SWIM classification framework. The relevant sections of this paper
are listed in parentheses, e.g., (2.1).
2.1. Gather Landsat Imagery

The coordinates of the ROI are stored in GEE as a polygon. GEE can efficiently compile
all Landsat images that fall within this ROI and pre-process the data for classification.
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1.  Collect image population: Use GEE to collect all Landsat 5, 7, and 8 Surface Re-
flectance Tier 1 images with at least one pixel located within the ROI and clip each
image to the ROI polygon. In regions with snow or frozen water during the winter
months, we exclude images under these conditions.

2. Import JRC data: Merge each of the retained images with the JRC water classification
layer of the same month and year as each image’s acquisition date.

3. Nullify low quality pixels: Utilize the Landsat quality assurance bands to nullify
pixels containing cloud cover or other sensor errors as described in Appendix A [16].

4.  Perform feature selection: The spectral channels provided in each of the images
may be used directly for classification or functions of these bands may be used to
generate other features. The six standard reflectance bands among Landsat mis-
sion imagery include Red, Green, Blue, NIR (Near Infrared), SWIR_1 (Shortwave
Infrared 1), and SWIR_2 (Shortwave Infrared 2) [6]. Various forms of the Normalized
Difference Water Index (NDWI, MNDWI) and other indices related to the infrared
Landsat sensor bands have consistently been shown to perform well as features for
detecting surface water [10,17-19]. We utilize the following quantities as features:

(@) NDWI = (Green — NIR)/(Green + NIR) [20,21]
(b) MNDWI = (Green — SWIR_1)/(Green + SWIR_1) [22]
(c) SWIR_1 [23]

2.2. Select Training Images

From the full set of Landsat images compiled for the RO], several high quality images
are sampled as training data. Computational limits in GEE constrain the amount of training
data that can be used for the within-platform random forest classifier, so we sample k = 3
training images for each ROL

1.  Filter low quality images: Filter the collected images, requiring each retained image
to meet the following thresholds: no more than c¢% of the ROl is covered by clouds
and at least a% of the ROl is included in the image (Appendix A). Values of c = 5
and a = 95 allow for a sufficient pool of high-quality imagery for the validation study
presented in Section 3.1. We select images only from the Landsat 5 archive for training,
but Landsat 7 and 8 images can also be used.

2. Sortimagery: Calculate the day of year (DOY) quantities from each image acquisition
date and sort the images into k sets {Dj, ..., D¢}. In this implementation, we use
DOY 120-180, DOY 180-240, and DOY 240-300 to split the growing season into
three groups.

3. Select representative training imagery: For the images in each group, calculate the
total number of pixels labeled as water in the JRC classification layer and sort the
images by total JRC water extent in increasing order. Determine which image is the
first to fall within the p™ percentile for the group and select this image to represent
the associated DOY range. We select p = 90 for our analyses. At this level, some of
the selected images exhibit signal variation due to frequent flooding, which helps the
classifier account for a range of surface water conditions.

The k images selected in this step can be used as training data for the random forest
classifier within GEE or downloaded for use with other platforms such as R.

2.3. Cluster-Based Bias Correction Algorithm

In our initial studies, we used the sampled images and the associated JRC classification
labels to train random forest classifiers for multiple ROI. The sensitivity of the classifier
was low, with many majority water pixels classified as not water. As a solution to adjust
for the bias in the ground truth JRC labels, we developed the Cluster-based Bias Correction
(CBC) algorithm.

1. Cluster image: Given an image containing a set of pixels with b bands and the associ-
ated “ground truth” labels, use X-Means clustering [24] to assign each pixel to one of
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X clusters, such that X € {x,,...,x;}. For this study, we used x, = 10 and x;, = 100
in order to ensure at least 10 clusters would be identified in the training images.
This specification often results in regions of each waterbody being separated into
various clusters based on different depths, bordering terrains, or vegetation. X-means
clustering intrinsically determines the optimal number of clusters X by minimizing
AIC. Perform clustering on the b bands for each pixel alone, without including the
information from the ground truth labels.

2. Calculate proportion water: For each cluster x € {1,..., X}, calculate the proportion
p € [0,1] of pixels with an associated binary label of 1 or with at least one vertically
or horizontally adjacent pixel labeled as 1. These adjacent pixels assist in identifying
pixels located along the border of waterbodies.

3. Threshold at A: For cluster x, if the proportion p is greater than a threshold A € [0,1],
i.e, p > A, set a temporary classification label to 1 for all pixels belonging to cluster x.
If p < A, set the temporary label to 0 for all pixels belonging to cluster x.

4. Compare to JRC label: After iterating through all X clusters, compare the temporary
label for each pixel to its original label. If the temporary and original labels are both 1
or both 0, include one copy of the pixel data with the original label in the new training
dataset. If the temporary and original labels do not match, include two copies of the
pixel data in the training dataset, the first labeled 0 and the second labeled 1.

5. Sensitivity analysis: The threshold A is selected in the validation study to reach
desirable rates of sensitivity and specificity. See details in Section 3.1.

The goal of this technique is to generate a variation of the training label data that
decreases local classification errors by reducing the effect of biases in the “ground truth”
training labels. In the case that the CBC algorithm generates two copies of a pixel, one
with label 0 and the other with label 1, we hypothesize the trained classifier is better able
to accommodate for the uncertainty of the true label for these pixels. As a result, there is
better quantification of the average nature of similar pixels for both classes.

The CBC algorithm is relatively simple as it was initially created within the constraints
of GEE. The technique was also developed to work specifically with the bagging procedure
of the random forest algorithm and may not perform similarly with other classification
methods [25]. This algorithm is an integral part of the SWIM classification framework and
outputs vary based on the value of A. Section 3.1 includes a validation study that compares
the classification results under various values of A to the original JRC classifications.

2.4. Impute Missing Values

Remote sensing imagery collected via satellites is often contaminated by cloud cover
or other sensor errors. Many classification techniques, such as those used to generate the
JRC dataset, combine multiple images to fill in missing pixels. Gap-fill techniques can
also be used to fill in gaps in Landsat imagery [26-29]. In order to avoid a reduction in
temporal frequency, SWIM gap-fills missing pixels in each image using the spatio-temporal
imputation algorithm STFIT [30]. By imputing each image, classifications can be generated
for every pixel in all available imagery retaining the full temporal frequency of Landsat
observations. This differentiates our method from another [31], which also used gap-
filling to estimate surface water extent from Landsat imagery, but has a monthly temporal
frequency at best.

Imputation is not performed on the training data to prevent the introduction of any
potential bias into the classifier. For all other available imagery of the ROI, a modified version
of the STFIT algorithm is used to fill in any gaps in each image before classification [30]. In the
first step of the SWIM classification framework, we use GEE to gather all Landsat imagery
of the ROL Quality assurance bands are used to nullify pixels containing cloud cover for
imputation as described in Appendix A [16]. The following procedures are used to impute
missing values in these images:

1.  Mean estimation: Group images by every two consecutive years (the last group
containing three years if the total number of years is odd), then estimate a pixel-wise
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annual mean function within each group separately. Compared to using all of the
images to estimate one universal mean function in STFIT, the proposed step mean
estimation can reflect long-term waterbody extent variation and is more accurate
when the annual mean of any pixel is nonstationary.

2.  Temporal effect estimation: Subtract the estimated mean function from the observed
pixels (i.e., calculate the residuals within each group after removing outliers), then
pass the residuals to the temporal effect estimation in the STFIT algorithm.

3.  Spatial effect estimation: The STFIT algorithm is used to estimate the spatial effect
for pixels in partially missing images by sparse FPCA techniques [32]. For images with
completely missing data, we use a linear interpolation of the spatial effect estimates
from the nearest before and after images by date (of those with less than 50% pixels
missing) to estimate the spatial effect.

4. Imputation: The imputed pixel value is the sum of the mean estimate, temporal effect
estimate, and spatial effect estimate.

This step of the SWIM classification framework must be performed in R after down-
loading the Landsat data for the ROIL The procedure is efficient for imputing images of
a few thousand pixels. For the case study ROIs in Section 3.2, we implemented a 2-level
hierarchical sampling scheme to reduce the computational burden [30]. A sub-image
obtained by systematic sampling was imputed first and then we split the whole image
into a grid of 9 regular units, imputing each using the above method in a parallel fashion.
By performing imputation on every available Landsat image, we generate classifications of
the full ROI at the highest possible temporal frequency.

2.5. Classify Imagery

In the SWIM classification framework, classification is performed after processing the
training dataset with the CBC algorithm. Classification can either be performed immedi-
ately after the CBC algorithm in GEE directly or gap-fill imputation can be completed prior
to classification if the data is downloaded to use with R. In either case, a random forest
classifier may be trained on the k training images and used to generate classifications for
each image as detailed in the following steps:

1.  Train classifier: Train a random forest classifier using ¢ trees, e.g., t = 500, and the k
training images processed by the CBC algorithm for some A € [0, 1], as described in
Sections 2.2 and 2.3 [25,33].

2. Gap-fill images: If the data is downloaded for use with R, use the method described
in Section 2.4 to gap-fill all the images of the ROI gathered in Section 2.1.

3. Perform feature selection: For each pixel in the set of ROI imagery, use the Landsat
surface reflectance bands to generate the same features as derived in the training data
(Section 2.2).

4.  Classify images: For each image, use the trained random forest classifier to classify
each pixel.

2.6. Detect Outlier Images

Methods used to identify cloud cover in satellite imagery are often imperfect. Even
after cloud-masking, it is likely there are still images that contain unmasked atmospheric
conditions that could result in large areas of incorrectly classified pixels [34]. If these areas
are large enough, the total classified area of interest, such as waterbody extent, will be
significantly over or underestimated. Identifying images that contain significant areas of
incorrectly classified regions is vital for ensuring that spatial visualizations and time series
of relevant statistics are accurate representations of the land cover extents in the classified
imagery. We have developed a post-classification outlier detection method to remove
such images from the analysis. The images removed are those where there is significant
evidence that patches of classification errors have occurred due to previously unidentified
presence of cloud cover, atmospheric effects, or other anomalies. In addition, this method
is designed to retain images that exhibit classification patterns consistent with drought or
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flooding, as it is desirable to include these truly observed events despite any fluctuations
they cause that may differ from overall trends.

Here we describe a method of outlier detection for the general problem of identifying
images that contain random patches of incorrectly classified areas in a set of binary image
classifications as the final step of the SWIM classification framework. The method assumes
that incorrectly classified pixels appear at random within an image. These random errors
should, therefore, not correspond to the patterns of land cover change due to extreme
events or seasonal and overall trends. We mathematically describe the method as follows.

Consider a set of classifications {C1, Cy,...,Cn} for N images of size 11 x ny of the
ROL. The classifications for image Cy where k € 1,..., N can be represented as a matrix

C1ik  ---  Climpk
Ck: . .

C}"l] 1k et Ci’l]l’lzk

where each pixel ¢;j, i € {1,...,m1},j € {1,...,n2} has the following classification:

1 if land cover is water
c
ijk 0 otherwise

Let f(k) be the year image k is captured. For each yeary € 1,...,Y let A, = {k:
f(k) = y} be the set of the images that were taken in year y. From the set of imagery for
year y, we can form the matrix Ty = } ¢ 4, Cr, which records the total number of times
each pixel was classified as type 1 in year y Let t;;, be the elements in T, and M, be the
matrix with elements m;;, = I(t;j,/|Ay| > 0.5) which indicates pixels identified as water
at least 50% of the time.

We now define the statistics i and I for each image k. The statistic /iy represents
the sum total of all pixels in the image k classified as type 1 but designated as type 0 in
M, weighted by each pixels’ frequency of classification as type 1. Similarly, the statistic /i
represents the sum total of all pixels in the image k classified as type 0 but designated as
type 1in M,, weighted by each pixels’ frequency of classification as type 0. That is

4, & eije = 1)1(mjj = 0)

BRI

i=1j=1 ijy
1y _
Cz]k (mijy - 1)
1, =
- zzl Z Ayl = tijy
j=

The statistics h; and [y can each be modeled with generalized linear models and
estimated using robust regression with the inclusion of several covariates. Let ¢y =
221 ;Z 1 Cijk be the total area of water extent in image k and consider s € {1,...,365} to
be the day of the year when the image was captured. The goal of this modeling process is
to identify outlying values of the statistics i and I;. A priori, we expect the data values of
these statistics to include outlying values, so robust regression is an appropriate choice for
estimation. The robustbase R package is used to implement robust regression in generalized
linear models [35]. The mean-variance relationship of the observations of h and I should
be analyzed to select an appropriate distribution family. In the case studies presented in
this paper, Box-Cox plots, show that the log of grouped means versus the log of grouped
standard deviations are often linearly related and we therefore use the gamma family in
these generalized linear regressions.

For the case studies presented in this paper, gamma family generalized linear models
under robust regression for /iy and I/ with mean parameterization and dispersion parameter
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¢ can be selected via standard backward model selection procedure from the following
model specification, here shown for h:

hy ~ Gamma(py, ¢)

log (k) = Bo + Brex + Bask + Basi + Basi + Bsexsk + Poexsi + Prexsy

In the SWIM classification framework, it is crucial to remove images with /iy or I
values that are much higher than would be predicted. These images can be removed from
the analysis when the outlier detection method indicates the presence of significantly over
or under classified regions. To remove outliers, we extract the deviance residuals from
the models and flag any image with a deviance residual greater than two as a potential
outlier. Under the assumed approximate normality of the deviance residuals, we consider
image classifications with hj and I; observations within two standard deviations of the
mean as reliable classifications. Removing all images flagged as outliers by this method
without using any multiple comparison corrections will result in a slight reduction of the
total number of available images. Several of the images identified as outliers are likely
correctly classified images. However, in this application removing several false positive
outliers is not highly impactful. We do not expect that the statistical assumptions for this
method will always match the observed data, but this method provides an interpretable
technique for identifying images with a higher probability of containing patches of incor-
rectly classified pixels. We demonstrate the benefits of including this method as part of the
SWIM classification framework in our case studies (Section 3.2). In these case studies, we
removed all images flagged as potential outliers.

2.7. Swim Classification Framework Summary

The methods presented above compose the SWIM classification framework for surface
water classification from Landsat imagery. These methods improve upon several aspects of
surface water classification for local regions of interest compared to the JRC Monthly Water
History dataset, making SWIM a competitive and specialized framework for generating
accurate, submonthly Landsat surface water classifications.

3. Results
3.1. Validation Study

While developing the SWIM classification framework it became evident that higher
sensitivity to a variety of surface water conditions would improve waterbody extent estima-
tion compared to the JRC study. The JRC dataset classifies as water only pixels composed
of completely open water. SWIM uses the CBC algorithm to increase its sensitivity to pixels
that may contain small amounts of land, such as those along waterbody boundaries or
in wetland areas. By adjusting for the bias of the JRC dataset, the SWIM classification
framework more accurately estimates total waterbody extent. In this section of the paper,
we present a validation study that compares extent estimation of small waterbodies in
Iowa using the SWIM and JRC methods.

In this validation study, we compare the SWIM classifications for Landsat images
with the respective JRC classifications. The acronym SWIM paired with the selected value
of A denotes the classifications generated using the SWIM classification framework. JRC
denotes the classifications retrieved directly from the JRC Monthly Water History dataset.
Note that using A = 1 in the Cluster-based Bias Correction algorithm (Section 2.3) is
equivalent to training a classifier with labels gathered directly from the JRC dataset. As the
value of A decreases, more information from the clustering step is included in the training,
further altering the training data from what is gathered directly from the JRC dataset.

There does not exist a 100% accurate ground truth dataset for land cover classifications
in Landsat imagery. Given that Landsat imagery has 30 m resolution, it is generally difficult
for both humans and machines to correctly identify the land cover type of every pixel
without relying on higher resolution imagery. For the sake of validating the classifications,
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we utilize 1 m resolution imagery from the National Agriculture Imagery Program (NAIP)
to draw polygons of waterbody boundaries and compare these polygons to the SWIM and
JRC 30 m Landsat pixel classifications [36]. This independent method allows us to quantify
the error of both the JRC and SWIM classifications using several statistics.

To validate the accuracy of the SWIM classification framework, we studied a sample of
waterbodies from the National Hydrography Dataset (NHD) [37]. Qualifying waterbodies
include estuaries, lakes, and reservoirs larger than 40 acres in surface area and streams
larger than 660 ft in width. We selected a random sample of 27 waterbodies, three each
from Iowa’s nine agricultural districts. Given the associated polygons within the NHD,
a buffer area of 800 m was drawn around each waterbody to generate 27 regions of interest
(ROI). NAIP imagery is available annually throughout the growing seasons between 2003
and 2018 [36]. We randomly selected one NAIP observation of each waterbody between
2003 and 2015, given that a Landsat image taken within the same month as the NAIP image
met the following criteria: <5% cloud cover and >95% coverage of the ROI (Appendix A).

We produced classifications for an image of each ROI using SWIM. These water
classifications were generated at A = {0.1,0.2,...,0.9,1.0} and we also collected the JRC
water classifications from the same month and year as the Landsat image for each ROL
The validation data for each ROI was composed of a hand-drawn polygon using the 1 m
resolution NAIP images of the closest acquisition date to the Landsat prediction images.
Using the NAIP polygon, we calculated the accuracy, sensitivity, and specificity of each
water classification method. We determined the ground truth classification by checking
whether the centroid of each classified Landsat pixel fell within or outside of the waterbody
polygon(s) drawn from the NAIP images.

We derived a proportion based method to generate an additional error statistic for
the JRC and SWIM classifications. For each classification method, the total area of the
predicted waterbody was calculated and divided by the total area of the ROI. We denote
the predicted proportion of water in an image for each method as pjrc and pswmv. The val-
idated proportion of water in the image was calculated by dividing the total area of the
NAIP water polygon(s) by the total area of the ROI, which we label p. We define the
proportion-based errors as €jrc = Pjrc — p and eswmv = Pswim — p for the JRC and SWIM
classification methods.

Figure 2 compares the JRC water classification sensitivity and specificity to those of
the SWIM water classifications at various values of the tuning parameter A. When A =1,
the SWIM classification framework is equivalent to training the random forest classifier
using the JRC water classification labels alone, as it includes no extra information from
the CBC algorithm. As A decreases toward 0, more information from the clustering step is
included in the training. It is evident that including the information from the clustering
step is useful in increasing the sensitivity of the water classifications. As the sensitivity
increases, there is a slight decrease in the specificity of the classifications, as expected,
but the relative increase in sensitivity is of more value than the decrease in specificity,
at least until A is less than 0.3.

When comparing the error in the estimated water proportions ejrc and eswiv as
shown in Figure 3, we see that the JRC method has high negative bias compared to the
SWIM classification framework. Using SWIM, the bias of the predicted water proportion
approaches zero as the value of A decreases to 0.5. On average, the bias of the JRC method
is —0.0483, while the SWIM bias is smallest, 0.00317, at A = 0.4. Comparatively, the bias for
the JRC method is more than 15 times greater than the SWIM bias at A = 0.4. The variance
of the prediction errors using the SWIM classification framework is also generally less than
the JRC method. Table 1 gives the average bias and standard deviation of the prediction
errors for these methods. SWIM begins to significantly over-predict the total amount of
water in these images as A decreases past 0.3. The mean squared error (MSE) for the
methods is presented in Figure 4. There is a robust reduction in MSE amongst the chosen
level of A in this validation study.
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Figure 2. The sensitivity and specificity of the JRC and SWIM classifications using various levels of A
for 27 ROI sampled from the National Hydrography Dataset in Iowa. Classification sensitivity and
specificity is calculated at the pixel level for each validation ROI by comparing pixel classifications to
high resolution National Agriculture Imagery Program 1 m resolution images taken within the same
month as the sampled Landsat image.
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Figure 3. Prediction error based on predicted proportion water versus validated proportion water in
27 validation ROI for the JRC and SWIM classifications using various levels of A.
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Figure 4. Mean squared error of predicted proportion water versus validated proportion water in
27 validation ROI for the JRC and SWIM classifications using various levels of A.

Table 1. Mean prediction bias and prediction error standard deviations reported for 27 validation
ROI when using the JRC and SWIM pipeline classifications at various levels of A.

Method Mean Std Dev

JRC —0.04830 0.0679
SWIM A = 1.0 —0.03960 0.0429
SWIM A = 0.9 —0.03410 0.0456
SWIM A =0.8 —0.02850 0.0398
SWIM A = 0.7 —0.01970 0.0345
SWIM A = 0.6 —0.01690 0.0357
SWIM A =0.5 —0.00885 0.0381
SWIM A =04 0.00317 0.0410
SWIM A = 0.3 0.00960 0.0502
SWIM A =0.2 0.02130 0.0554
SWIM A =0.1 0.04550 0.0845

Given these statistics, a sensitivity analysis can be performed to select a value of A.
Mean prediction bias, as reported in Table 1, is absolutely minimal at A = 0.4. Similarly;,
the mean squared error of predicted proportion water versus validation proportion water
is near its minimum at A = 0.5. The optimization of a simple mean of average sensitivity
and specificity across the 27 validation ROI occurs at A = 0.3. In our validation study, this
sensitivity analysis supports the selection of A between 0.3 and 0.5 as an optimal value for
the parameter.

Similarly, a sensitivity analysis may be performed to select a value of A to use for
new RO, but the above results may also be taken into account without having to conduct
a formal analysis. Our analysis suggests A = 0.5 is a good starting value for most ROL
For some locations, decreasing the value of A further increases the sensitivity of the method
without significantly reducing the specificity. It seems reasonable to run the classifications
at A = 0.3 or A = 0.1 and examine the spatial patterns of the classifications with previous
intuition of the RO, to see if the method seems to be over predicting the amount of water.
It is possible that in some cases, a low value of A may be more useful than A = 0.5. In any
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case, the SWIM outlier detection method will remove images that result in classifications
that are suspect for over or under-prediction of total water.

This validation study offers convincing evidence that SWIM can produce water clas-
sifications that result in better sensitivity and estimation of waterbody extent than the
JRC Monthly Water History dataset. The SWIM classification framework is useful for
analyzing small to medium-sized waterbodies. The JRC method is better suited for global
or large scale studies where precise identification of small areas of water is not important.
As we have demonstrated, the SWIM classifications will help to identify areas in small
waterbodies and wetlands that are also water-covered but not classified by the JRC method.
For more precise monitoring of waterbodies of interest, it would be wise to utilize the
SWIM classification framework.

3.2. New Orleans Case Study

The Bonnet-Carre Spillway near New Orleans, Louisiana, is opened when the Mis-
sissippi River floods to a level where excess water needs to be drained rapidly into Lake
Pontchartrain. As of 2014, there are official records of the spillway being opened in at
least 1994, 1997, 2008, and 2011 [38,39]. Within the spillway, there are also several semi-
permanent small waterbodies which fluctuate seasonally. In this case study, we compare
the ability of the JRC and SWIM classifications to accurately depict the dynamic nature of
the surface water in this area, especially with regard to the occasional use of the spillway
to drain floodwaters.

A four square mile region along the Mississippi River including the Bonnet-Carre
Spillway was selected as the ROI for this case study. Using SWIM, we collected all Landsat
images of this ROI between DOY 1 and 365 from 1984 to 2018, for a total of 884 images.
The outlier detection step removed 59 images from the analysis.

When comparing the JRC and SWIM classifications, the time series of total water extent
(Figure 5) shows that the JRC dataset often greatly under-classifies the total water extent
in this ROL The time series generated from the SWIM classifications shows that the total
extent of the water in the region is consistently greater than 1.5 million m?. The estimation
of total water extent when using the JRC dataset is inaccurate due to the presence of missing
classifications. This problem is remedied by using the SWIM classification framework to
gap-fill missing data in all Landsat imagery. Furthermore, a more obvious seasonal trend
within each year is evident in the SWIM time series.

JRC SWIM A=0.3
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Figure 5. Time series of total estimated water extent in New Orleans ROI using the JRC dataset and
SWIM classification framework at A = 0.3. The data are plotted for all available time-points for each
method between 1 January 1984 and 31 December 2015.
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The SWIM outlier detection method retained many images with extremely high water
extent. Upon inspection, it seems most of these images were captured on dates when
the Bonnet-Carre spillway was open and draining floodwaters to Lake Pontchartrain.
The SWIM classification framework accurately captures the floodwaters draining into the
spillway in these years without removing these extreme events as outliers. Furthermore,
the spatial representation of the classifications in Figure 6 show that SWIM increases sensi-
tivity to surface water in the flooded spillway compared to the JRC dataset, complementing
the results of the validation study. In years when the Bonnet-Carre Spillway was not
open, such as in 2002, the SWIM classification framework also produces a more accurate
estimation of the seasonal presence of the semi-permanent waterbodies within the spillway.

JRC SWIM

1997

2002

2011

Water Frequency

B 0% O 20% 0O 40%
B 60% @ 80% M 100%

Figure 6. Spatial representation of water extent frequency in New Orleans ROI for three separate
years of JRC and SWIM classifications, including all available time-points for each method in the
years 1997, 2002, and 2011.

3.3. Devils Lake Case Study

Devil’s Lake in North Dakota has grown rapidly over the last 30 years. As the lake has
grown it has destroyed the property and livelihood of many farmers [40]. The region we
have selected for this case study is located near Minnewaukan, ND, a town that now finds
itself on the edge of Devil’s Lake. The submonthly surface water classifications produced
using SWIM outperform the JRC classifications in this ROL.
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We selected a four square mile ROI along the edge of Devil’s Lake near Minnewaukan,
ND. Using SWIM, we collected all Landsat images of this ROI between DOY 120 and 300
from 1984 to 2018, for a total of 1298 images. The outlier detection step removed 140 images
from the analysis.

Many of the identified outliers were those which occurred during the rapid expansion
of the lake between 1992 and 1996. In these images, the imputation algorithm did not
perform reliably due to the rapidly changing water extent, which resulted in many of the
imputed images being flagged as outliers. To illustrate the impact of the outlier detection
step, the identified outliers are shown as crosses in Figure 7 for this case study. In the years
before and after the rapid expansion of the lake, however, both the imputation and outlier
detection methods perform reliably. The outlier detection step correctly removes images
with unusually high or low water extent, such as those in 2002, 2003, and 2015. These
images often contain unmasked cloud cover or shadow within the original Landsat image.

During years when the variability of the lake’s extent was mostly seasonal the SWIM
classification framework’s reliance on imputation to produce multiple full classifications
per month is an obvious advantage. Since the JRC dataset sometimes includes missing
classifications, the estimation of total extent is occasionally much lower than expected.
This can be seen in the time series of the JRC data (Figure 7), where some values fall
much below the overall trend of total water extent in the ROI. This problem is remedied
by gap-fill imputation in the SWIM classification framework (Figure 8). In October 2015,
a large proportion of missing values occur in the JRC classification, while the SWIM
method produces complete classifications for several images in this month. The SWIM
classifications can show the within month variability of surface water in the ROIL, which
is especially evident in June 2001. In the SWIM results for this month we can see that a
road in the upper-left quadrant of the image is surrounded by the lake and occasionally
covered by water during this month. Eventually, the road is completely covered by water
in subsequent years, as seen in the classification results for July 2012 and October 2015.
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Figure 7. Time series of total estimated water extent in Devil’s Lake ROI using the JRC dataset and
SWIM classification framework at A = 0.3. The data are plotted for all available time-points for each
method between 1 January 1984 and 31 December 2015. Images selected as outliers by SWIM are
included in the plot and indicated by red crosses for this case study.
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Figure 8. Spatial representation of water extent frequency in Devil’s Lake ROI for three separate
months of JRC and SWIM classifications, including all available time-points for each method in June
2001, July 2012, and October 2015.

3.4. Colorado River Case Study

Extreme drought has occurred in the Colorado River Basin in recent years. Using
the JRC Monthly Water History dataset for preliminary analyses, we selected a section
of the Colorado River near White Canyon, Utah, which has greatly decreased in extent
throughout this period of drought. In this case study, we compare the ability of the JRC
and SWIM classifications to monitor the fluctuations in water extent due to drought in
this region.

We selected a four square mile region of the Colorado River as the ROI for this case
study. Using SWIM, we collected all Landsat images between DOY 120 and 300 from 1984
to 2018, for a total of 1111 images. The outlier detection step removed 105 images from
the analysis.

For this case study, we show a subset of the full time series of observations (Figure 9)
in order to emphasize the SWIM classification framework’s high temporal resolution. It
should be noted that a fair number of images with abnormally low total water extents were
retained in the years after 2013, but these classifications upon further inspection, seem to
accurately model the extreme drought that occurred in those years. The patterns in these
images are similar to the water extents that occurred amongst other drought events and
are therefore not removed as outliers.

Compared to the JRC dataset, the submonthly SWIM classifications illustrate the
surface water dynamics in the ROI at a much higher temporal resolution. This improvement
can be used to monitor the spatial patterns of drought with greater detail (Figure 10).
Imputation via SWIM allows a full estimation of the water extent in June 2012, whereas
missing classifications are present in the JRC data. Areas of the river which were dry for
only part of the month during July 2013 and May 2014 can be seen in the SWIM results
but are not revealed by the JRC classifications. Furthermore, cyclical seasonal flooding and
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drought can be observed annually in this ROI using the SWIM classification framework,
but is not evident in the JRC data. This case study shows that SWIM can be used to
monitor surface water dynamics at the highest possible temporal resolution while utilizing
Landsat imagery.
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Figure 9. Time series of total estimated water extent in Colorado River ROI using the JRC dataset
and SWIM classification framework at A = 0.1. The data are plotted for all available time-points for
each method between 1 January 2012 and 31 December 2015.
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Figure 10. Spatial representation of water extent frequency in Colorado River ROI for three separate
months of JRC and SWIM classifications, including all available time-points for each method in June
2012, July 2013, and May 2014.
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4. Discussion

The SWIM classification framework produces sensitive surface water classifications
at submonthly frequency by gap-filling Landsat imagery. While the JRC Monthly Water
History dataset provides global surface water classifications for each month, our study
has shown that the JRC classifications have a negative bias for estimating the extent of
small inland waterbodies and the monthly frequency is not adequate for thoroughly
studying the impacts of short-term fluctuations and extreme weather events on these small
waterbodies. The validation and case studies presented in this paper demonstrate that the
SWIM classification framework outperforms the JRC dataset in classification analyses of
small waterbody dynamics.

SWIM includes a series of methods to process and classify Landsat imagery. After us-
ing Google Earth Engine to efficiently pre-process and download the imagery, further
analysis is conducted in R. The SWIM classification framework’s Cluster-based Bias Cor-
rection algorithm reduces classification bias compared to the JRC dataset by generating
variations of "ground truth" training labels. Our validation study shows that this algorithm
corrects for the negative bias of the JRC classifications by correctly classifying pixels as
water under a variety of surface water conditions. SWIM then uses imputation to produce
submonthly surface water classifications. This is an improvement compared to the JRC
dataset, which produces monthly classifications after combining multiple Landsat images
per month. Finally, to ensure the accuracy of the SWIM classification framework, our
outlier detection method identifies images that may contain unmasked regions of cloud
cover and random patches of incorrectly classified pixels. This step refines the analysis by
filtering outliers from spatiotemporal representations of water extent.

Compared to previously available methods, the SWIM classification framework of-
fers analysis of small waterbody dynamics with previously unattainable sensitivity and
temporal frequency. For large regions, the JRC Monthly Water History dataset allows
one to draw large scale conclusions about trends and extents. SWIM provides a more
customizable experience that produces an analysis with the highest temporal resolution
available from Landsat imagery. When taking care to ensure proper training of the random
forest classifiers and reasonable imputation results, the SWIM classification framework
can improve the sensitivity of the Landsat surface water classifications compared to the
JRC classifications in many cases. However, the random forest classifiers apply only to the
trained region of interest, compared to the JRC classification method, which applies to the
entire globe. This trade-off between local and global applicability is a significant difference
between the methods.

Steps for further improvement of SWIM are possible. The SWIM classification frame-
work uses random forest classifiers, but state-of-the-art classification techniques such as
segmentation via convolutional neural networks may produce more accurate results [41].
Including an expansive training dataset for such classifiers could expand the applicability
of the method to larger regions and remove the requirement for localized training for
each region of interest. We also intend to expand the range of satellite missions included
in our sampling scheme for training data. Additionally, the SWIM classification frame-
work’s imputation step is currently the computational limiting factor of this methodology.
The computational efficiency of the STFIT method can be improved to allow our method to
be applied to larger regions. This paper provides insight into the advantages of imputation
for Landsat imagery and justifies the need for further investigation of such techniques.
Finally, further validation of the SWIM classification framework could be performed to
ensure classification accuracy across a variety of geographies outside of Iowa.

The case studies presented in this paper, however, show that the SWIM classification
framework can provide valuable insight to small waterbody dynamics in a variety of
applications. SWIM produces sub-monthly classifications by gap-filling each Landsat
image via imputation to produce classifications for every image without any missing data.
This allows one to predict the total water extent in an area at any observed time point
in Landsat imagery, even if part or all of the original image contains cloud cover. This
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greatly increases the total time points available to assess water extent compared to once-
per-month or seasonal analysis. This method can be used to assess the total surface water
extent in a single Landsat image or in several images over a short period of time. Within a
single month, it is possible that floodwaters could appear and disappear completely.
Therefore sub-monthly classification is an important contribution and necessary for detailed
surface water extent analysis. The New Orleans and Devil’s Lake case studies demonstrate
the applicability of SWIM in flooded regions whereas the Colorado River case study
demonstrates its performance during drought. In each of these case studies, the SWIM
submonthly classifications provide enhanced understanding of each regions” short-term
trends and the spatial impact of extreme events. Given the results of these case studies,
we are confident the SWIM classification framework outperforms the JRC dataset in the
analysis of small waterbody dynamics.

5. Conclusions

In summary, the SWIM classification framework generates accurate, submonthly
surface water classifications of Landsat imagery. We have achieved several novel and
important contributions in this work. For small regions of interest that contain one or more
inland waterbodies, SWIM can efficiently generate surface water classifications of every
available Landsat image after imputing the missing values of masked pixels due to cloud
cover, SLC failure, or other atmospheric effects. Cluster-based Bias Correction increases the
sensitivity of our random forest classifiers to a variety of surface water conditions in local
regions compared to the JRC Monthly Water History dataset. Finally, an outlier detection
method identifies images that contain anomalous regions of classification errors prior to
including these results in the final output. Given these contributions, the time series and
spatial visualizations generated from the SWIM classification framework can represent the
spatiotemporal dynamics of small inland waterbodies at previously unattainable sensitivity
and temporal frequency.

The need to increase the sensitivity and temporal frequency of surface water classifi-
cations was our motivation for this study. The SWIM classification framework achieves
this goal by producing reliable, sensitive, and consistent estimation of submonthly surface
water extent. This has been achieved by gap-fill imputation to facilitate classification of all
pixels in every available Landsat image. We believe the submonthly classification frequency
of our framework will be of interest to other researchers who need to determine changes in
water extent over short periods of time. Compared to the monthly period between JRC
classifications, which may fail to capture the change of extent in waterbodies that occurs
within each month, the SWIM framework achieves better analysis of waterbodies prone
to short-term periods of flooding and drought. Our framework may be of use to those
assessing the impact of extreme weather events, such as heavy rain storms and hurricanes.
There is potential for further research and development of the SWIM framework, including
the utilization of deep learning methods, increasing the computational efficiency of imputa-
tion, and expanding the training dataset sampling scheme to facilitate classification of large
regions. In its current form, however, we are confident the SWIM classification framework
can provide enhanced understanding of small waterbody dynamics given its submonthly
classification frequency and local sensitivity to a variety of surface water conditions.
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Appendix A. Masking Landsat Data

The Landsat 5 and 7 satellites provide ‘sr_cloud_ga” and "pixel_qa’ quality information
for each pixel. Landsat 8 provides similar ‘sr_aerosol” and ‘pixel_ga’ values. The Landsat
5 and 7 missions use LEDAPS to assess pixel quality and provide bit values for general
classifications including dense dark vegetation, cloud, cloud shadow, adjacent to cloud,
snow, and water via the sr_cloud_qga band [42]. The Landsat 8 mission uses the LaSRC
method and similarly reports bit values indicating fill (missing), aerosol retrieval, water,
cloud or cirrus, cloud shadow, aerosol content [43].

SWIM uses the quality information from all three methods. Pixels with high-quality
scores are retained, while pixels with other values are removed and imputed by the STFIT
algorithm [30]. Pixels that are not removed for imputation must have one of the following
high-quality scores in each quality band:

e pixel_ga: 66, 68, 130, 132, 322, 324, 386, 388, 834, 836, 898, 900, 1346, 1348
e sr_cloud_ga: 1,32
e gsr aerosol: 1,2,4,32,66,68,96,100, 130, 132, 160, 164, 194, 224, 228
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