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Abstract

There is a growing recognition that ecological systems can spend extended periods of time
far away from an asymptotic state, and that ecological understanding will therefore require a
deeper appreciation for how long ecological transients arise. Recent work has defined classes of
deterministic mechanisms that can lead to long transients. Given the ubiquity of stochasticity
in ecological systems, a similar systematic treatment of transients that includes the influence
of stochasticity is important. Stochasticity can of course promote the appearance of transient
dynamics by preventing systems from settling permanently near their asymptotic state, but
stochasticity also interacts with deterministic features to create qualitatively new dynamics. As
such, stochasticity may shorten, extend, or fundamentally change a system’s transient dynamics.
Here, we describe a general framework that is developing for understanding the range of possible
outcomes when random processes impact the dynamics of ecological systems over realistic time
scales. We emphasize that we can understand the ways in which stochasticity can either extend
or reduce the lifetime of transients by studying the interactions between the stochastic and
deterministic processes present, and we summarize both the current state of knowledge and
avenues for future advances.



1 Introduction

Two major goals of ecological theory are to make predictions, and to explain past observations.
In both cases, qualitative changes in dynamics through time represent both a challenge and an
opportunity. For prediction, a sudden change in dynamics is important to capture. In parallel,
understanding the limits to prediction, in time or in other ways, is important. Both for prediction
of the future and for understanding the processes that lead to the current state of the system,
the presence of large changes in dynamics [1, 2] presents a challenge. How can these events be
understood using ecological models?

There is increasing recognition that transients can play a critical role in ecological sys-
tems [3, 4, 5, 6, 7, 8, 9, 10], building on the variety of long transient behaviors exhibited by
nonlinear dynamical systems [11, 12, 13]. For example, regime shifts are an important phe-
nomenon in ecology, in which the system behavior changes suddenly without any warning (e.g.,
sudden species extinction) [14, 15, 16]. The traditional view is that regime shifts are caused
by parameter drifting. However, as recently emphasized, even without any parameter change,
transient behaviour can lead to regime shifts [8, 9].

Earlier work has emphasized the possibility of sudden changes in dynamics even in determin-
istic models with constant parameters [8], but stochasticity is ubiquitous in real ecosystems and
will affect transients [10]. How has the deterministic view limited our understanding of sudden
shifts in ecosystems, and how does this understanding deepen when we account for stochasticity
in our theoretical constructs and models? This question, in the context of observations of chang-
ing ecological dynamics [1, 2|, fits in with the recent recognition of the importance of focusing
on dynamics on ecological time scales. Stochasticity can play an important role in determining
dynamics on realistic time scales.

Real-world ecosystems are subject to inevitable and constant influences of stochastic distur-
bances that can have significant effects on the population dynamics [17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 8]. A particularly notable example includes the population dynamics
of Dungeness crab, Cancer magister, along the USA West Coast [32]. In this system, chaotic-
like oscillations were analyzed using a method that combined data analysis and modelling fitted
from data to reveal that the oscillations were actually long transient relaxations due to stochastic
perturbations of a stable equilibrium. In addition, random perturbations of cyclic population
dynamics can also result in a chaotic-like behaviour, which was observed in the experimental
dynamics of T'ribolium [33]. Although there have been many individual, well-studied examples
illustrating these points, a recognition of common themes arising in a discussion of stochastic
transients in ecological systems reveals both new insights into ecological dynamics and suggests
important future research directions.

We start from the premise that in natural systems, noise and random disturbances are
inevitable. We consider noise that affects one or more state variables, perturbing them with
some magnitude, direction, and frequency. Noise can influence long transients in a variety of
ways (figure 1). Noise may certainly alter long transient dynamics that were created by another
mechanism and already present in the ecological system. Importantly, stochasticity can also
provide an alternate mechanism for long transient dynamics, creating a long transient that
would not otherwise occur.

There are two major types of stochasticity in ecological systems: external perturbations due
to random variations in the environmental conditions, and internal population fluctuations. En-
vironmental stochasticity can sometimes be modeled as additive Gaussian white noise [34, 35]
or in many cases as multiplicative noise proportional to the population density, while internal
stochasticity is effectively demographic noise [36, 24, 37, 38] that needs to be described as multi-
plicative noise with its strength depending on the fluctuating abundance variable. Demographic
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Figure 1: Real world dynamics fall into the light gray regions, where deterministic and stochastic
processes interact. The length and nature of transient dynamics in these regions depends both on
the presence of deterministic features known to promote long transients and on properties of the
noise. DLT = deterministic long transient (i.e. a long transient that exists in the deterministic
part of the dynamics); DST = deterministic short transient. The definition of a ‘long’ transient
can be found in Section 3, and for simplicity we refer to all other transients as ‘short’.

noises are thus correlated, colored stochastic processes.

We begin this exploration of the role of noise in creating and influencing long transients
with some simple examples, illustrating the important point that stochasticity can either extend
or reduce transients. Using the simple examples as a jumping off point, we then undertake a
systematic exploration of transients in nonlinear (density-dependent) ecological systems. Even
these simple examples bring out the important point that the definition of a transient for a
stochastic system may be less clear cut than for a deterministic one. In particular, we have to
be clear about terminology for the case where there is no long transient for the deterministic
skeleton of a model, yet the addition of stochasticity produces long term dynamics that are
different than the equilibrium dynamics of the underlying deterministic model. As a way to
outline the framework of the current paper, we summarize the current state of synthesis in
Figure 1. The more systematic approach suggested by this figure first requires attention to the
definition of transients and the kinds of stochasticity we consider, followed by different ways in
which transients arise and the effects of stochasticity in different cases.

2 Simple examples of transients

Before starting with a systematic exploration of the influence of stochasticity on transients with
an emphasis on long transients, simpler systems can provide background. Starting with the
simplest case of linear deterministic systems, and then adding stochasticity, will demonstrate first
the ecological importance of the phenomena, and provide insights into the role of stochasticity.

Age structured systems provide some of the simplest examples of transient dynamics, which
are present even in linear systems. The dynamics of a population of salmon provide a straight-
forward illustration [39]. Individuals of most salmon species typically reproduce once and then
die. In addition, in many populations, almost all individuals reproduce at the same age. We
can denote the number of females of age i at time ¢t by n;(¢) in a discrete time description. We



assume that the survival from age 1 to age 2 is given by s; and similarly by so for age 2 to
3. Finally, denote the fecundity of 2-year-olds by mo with mo > 1 and the fecundity of 1- and
3-year-olds by €; and e3 respectively, where ¢; < 1. Thus the dynamics of the females would be
given by the following Leslie matrix model, if almost all individuals reproduce at age 2:

nl(t + 1) €1 Mo €3 nl(t)
na(t+1) ] =1s1 0 O na(t) | . (1)
ng(t + 1) 0 so O ng(t)

It is easy to see that if € = e3 = 0, this matrix would have two dominant eigenvalues of the
same magnitude. If instead these fecundities are small and positive, then these two eigenvalues
would have nearly the same magnitude. In this case, if in a given year almost all individuals
were of age 2 and very few were of age 1, then for many years the dominant age class would
alternate between 1 and 2. The addition of stochasticity to the return time (i.e. varying the age
of reproduction) could greatly reduce the time the system would need to approach stable age
distribution (i.e. where the ratio of individuals in different age classes would be constant from
year to year).

A second example of a linear ecological transient is given by a simple predator-prey system
with an equilibrium that is a stable focus, but with complex eigenvalues with very small, negative
real parts. In this case, the deterministic system would have oscillations whose magnitude would
decay very slowly, while the presence of environmental stochasticity could extend the time to
reach equilibrium [40] by interrupting the decay in cycle magnitudes. Importantly, a similar
effect is observed with demographic, as opposed to environmental, stochasticity [41].

What is interesting about these two simple examples is the contrasting effect of stochasticity.
In the first one, the Leslie matrix model, clearly stochasticity would shorten the transient by
accelerating the approach to the stable age distribution. In contrast, for the predator prey mod-
els, as originally demonstrated [42, 40] using Fourier analysis, a stochastic system can continue
to exhibit cyclic behavior indefinitely and thus stochasticity greatly extends the lifetime of the
transient, even making it effectively infinite.

If even linear systems can exhibit interesting and contrasting effects of stochasticity on
transients, nonlinear systems, which can exhibit longer and more varied kinds of transients
[8], will provide a much richer set of phenomena that will be key for ecological understanding.
But, before presenting a systematic exploration of long nonlinear transients, it is important to
highlight a particular class of stochastic transients which are prominent in ecology and more
broadly.

Increasing attention is being paid to tipping points, and early warning signs for tipping based
on the concept of critical slowing down have been well studied [43, 44]. Critical slowing down
refers to the slower return to equilibrium and related phenomena as a bifurcation is approached
through parameter change, and thus is related to issues of time scales, and therefore transients.
Without stochasticity to perturb a system, there would be no opportunity to observe critical
slowing down, and thus no possibility of early warning signs. Thus, the concept of critical
slowing down has at its core ideas about both transients and stochasticity.

More generally, the concept of critical slowing down can be difficult to apply in practice
as emphasized both from a theoretical [16], and from an empirical [45], standpoint. Though
there have been notable and important examples of success in detection of early warning signs
in experiments [46, 47], much more work is needed to understand this issue. An integration of
concepts of stochasticity and transients is one way forward.

An emphasis of early warning sign work has been the detection of parameter changes that
push the system through a saddle node bifurcation. At such a bifurcation, the system’s stable



equilibrium is replaced by a ghost attractor which can lead to a long transient [7]. A natural
question is how stochasticity affects the length (in time) of a transient resulting from a ghost
attractor.

These simple but illustrative examples provide an important starting point for a discussion
of transients in stochastic systems. But transients arise in many other ways, and given the
ubiquity of stochasticity, a more thorough and systematic investigation is called for. Clearly,
first steps are an unambiguous definition of transients, and a consideration of how stochasticity
enters into ecological systems.

3 Definitions of long transients

There are two different ways to define transients in mathematical models (including those with
noise) as well as in empirical systems. In this study we are emphasizing long transients due to
their crucial role in ecological applications including sudden regime shifts. Producing a strict,
precise, definition of transients is challenging for reasons we note below. We thus view our
definition as one that is useful rather than one that is without flaws.

Consider first the scenario where the system is functioning in a certain dynamical regime
in which its major characteristics remain unchanged for a long time (for stochastic systems we
operate with average characteristics). Here by ‘long time’ we understand the situation where
the duration of the regime is much longer that its internal characteristic time (e.g. the period of
oscillations). The characteristic time of an ecological system thus depends on the interactions
among species. Although not strictly true, in an ecological context, this notion of long typically
corresponds to a regime duration that is much longer than the generation time of species involved.
To the external observer exploring the system based on time series, such a system would appear
to be stable. Now suppose that at some moment in time, but without any directional changes to
the properties governing the dynamics, the system demonstrates a rapid transition (as compared
to the duration of the regime) to another regime which, in turn, conserves its new characteristics
unchanged for a long time again. In this case, we call the preceding dynamical regime a long
transient. Note that the post-transitional regime can be transient as well and a new transition
may occur later on. In fact, the above mentioned scenario of transient behaviour describes a shift
between regimes. It is also important to emphasize that according to the considered scenario
the transition between regimes occurs without external forcing of the system, i.e. without any
secular change to model parameters in the course of time. Obviously, however, the presence of
the long transient depends on the relationship between the initial conditions and the asymptotic
behavior for the system, so a regime shift due to long transients may be originally triggered by
some initial disturbance of either the parameters or the state of the system.

The other long transient scenario involves the situation where the system itself is in slow
transition to a stable or quasi-stable state. We assume that the pattern of dynamics evolves very
slowly with time as compared to the characteristic time of the current system. For example, this
can be the case of damped oscillations with a very long relaxation time where both the amplitude
and the period change only slightly. An important practical case is where the transition of
the system to the final attractor actually requires an arbitrarily large time [32]. This can
happen in the presence of large noise since there will always be perturbations kicking the system
away from the eventual asymptotic state. In this case, the resultant pattern of dynamics will
be an infinite sequence of transient regimes. We note that calling this behavior a transient
is, perhaps, an arbitrary decision, as the combination of stochasticity plus the deterministic
skeleton produces behavior that persists indefinitely. We believe that this is the more useful
choice because it encompasses the role that stochasticity plays in altering dynamics and also



note that this provides consistency in our definition.

Another important issue that arises is that any finite population with demographic stochas-
ticity will eventually go extinct. Given this notion, any population is in a transient, which
may seem to make the definition too broad. For cases like this, we would suggest that if the
addition of stochasticity changes a system from one where the deterministic analog produces a
stable equilibrium and the stochastic version leads to extinction on a time scale too long to be
of ecological interest then the transient nature is not the important focus. We view this kind of
example as not invalidating our approach, but emphasizing the difficulty of producing a precise
definition.

Earlier [9] a key property of long transients was described: there is a scaling law describing
the duration of transients while a particular model parameter is varied. The length of a transient
regime (in stochastic systems the length should be understood as the mean length) can be made
as large as possible when a certain bifurcation parameter (including the magnitude of noise)
approaches a critical value. This mathematically quantifies the common sense notion of ‘long’
transient (i.e. how long is long). From the ecological point of view, the duration of a transient is
always limited by natural constraints and we usually assume the average length of transients to
be larger than several characteristic generation times [8]. The existence of a scaling law allows
us to classify transients into different types [9].

4 Types of noise

In this contribution we focus primarily on extrinsic temporal noise, that is, those sources of
stochasticity that arise because of relationships and quantities external to the modelled system,
but also consider demographic stochasticity in some cases. One classic example is detrended
environmental variation. Coulson et al. [48] describe active and passive stochasticity, where
active noise interacts with deterministic nonlinearity to produce dynamics that cannot result
from either factor independently [49], and passive noise influences the transients among different
deterministic states. The impact of environmental noise that affects the modelled system will
depend on the modelled time frame of interest, the influence of the particular factor, the time
scales of variation in the noise relative to the time scales of response, and the characteristics of
the noise itself.

There are many properties to consider such as the whether the stochasticity is continuous,
a single perturbation or seasonal, whether it has larger or smaller magnitude, and whether
it has frequencies in a similar range as the intrinsic dynamics. Understanding the structure
of noise is critical for understanding its potential impact. For example, continuous long term
trended variation such as climate change, short term uncorrelated variation, and directed impacts
through management might all be expected to have different effects on the same system.

The most familiar description of environmental stochasticity is as random draws, independent
in time, from a Guassian distribution with small variance. In this white noise process, deviations
from the mean at one timestep are unrelated to the size and magnitude of deviations at another
timestep. That is, white noise is uncorrelated in time. Or put another way, all frequency
components of the signal have the same value. The fact that the variance of noise is small has
little bearing on its dynamical impact. To take a trivial case, even small variations close to a
critical value in a bifurcation parameter can have large impact on the dynamics of a system.
Environmental stochasticity of relatively small variance can also create oscillations through
resonance effects [40, 50].

Most environmental signals such as temperature, rainfall and river flow rates have large vari-
ance and are autocorrelated in time even after detrending (e.g., [51, 52]). The strength of this



autocorrelation depends on the signal itself (e.g., air temperature vs. sea surface temperature),
the geographic location (e.g., continental air temperatures vs maritime air temperatures), and
the time period. In particular climate change is altering the autocorrelation of related environ-
mental signals [53, 54]. The autocorrelation of deviations can be large, and, in these cases, can
cause clustering of extreme events [55]. Therefore, when we model the impact of environmental
stochasticity as a white noise process, we may err in our estimates of the probability of long
transient behaviour, as these signals can push a system away from (or towards) an attractor by
virtue of the autocorrelated variation.

Patterned noise, for example seasonal forcing [56, 57], can have large impacts, and episodic
noise (flow-kick) can move and maintain a system far from any attractor in the deterministic

scaffold [58].

5 Interactions between stochasticity and transients

The effects of noise on transients are numerous and diverse (Fig. 1). Noise can make the lifespan
of the transient considerably shorter and/or decrease the range of the initial conditions that
result in the long transient dynamics, or remove the long transient altogether. Alternatively,
noise can make the transient’s lifespan longer. With noise, the emergence of long transient
dynamics becomes a probabilistic event rather than a deterministic one. Noise can turn a
deterministic long transient into stable, persistent dynamics [42, 40]. Moreover, noise can create
long transients via mechanisms that do not exist in a deterministic case [59, 60, 61].

The outcome of the interaction between noise and a long transient depends both on the
properties of noise and on the mechanism behind the (deterministic) long transient. For the
transient created by a crawlby [8] (i.e. caused by the closeness of the system to a saddle point),
it is readily seen that uncorrelated noise makes the lifespan of the transient shorter (but does
not remove it unless the noise is large), as the random movement of the system in the phase
space pushes it, on average, away from the equilibrium. Consequently, the system does not
necessarily follow the phase flow along the stable manifold that otherwise would bring it into
the close vicinity of the saddle (cf. Fig. 2 in [9]). Interestingly, in the presence of noise, long
transient dynamics can also emerge, with a certain probability, for a set of initial conditions
that would not otherwise lead to a long transient, as the random movement of the system in the
phase space can occasionally bring the system into close vicinity of the saddle.

The effect of correlated, directed noise can also make a transient much longer, by keeping
the system in the vicinity of a saddle or ghost attractor. In particular, this is readily seen in
a flow-kick system [62, 58] where the kicks (directed, quasi-periodical, time-discrete random
perturbations of the state variable) control the movement of the system over the phase space,
with the capacity of keeping it close to a specific location in that space (e.g. a saddle or a ghost
attractor).

Perhaps the simplest and best known example where noise can change the system properties
qualitatively is the bistable system. We mention here that bistable systems are highly ecologi-
cally relevant; in particular, they are used as the paradigm of a regime shift [63] resulting from
slow parameter change. Without noise or even with extremely small noise, the system remains
in the vicinity of one of the steady states indefinitely long (see Fig. 2a,b). However, slightly
larger uncorrelated noise can push the system out of the attraction basin of the current state, so
that it fast converges to the alternative state: a purely noise-induced regime shift occurs. The
dependence of the state variable (e.g. the population size) on time takes the form of alternating
periods with a quasi-stationary value (Fig. 2c¢). The time spent by the system in the vicinity of
the given state increases as the noise intensity decreases and, hence, can be very long. There-



fore, small noise creates long transient dynamics. We mention here that there are empirical
examples of stochastic switching with long transients in ecological systems [64, 65, 66] as well
as in epidemiology [67]. Interestingly, noise of larger intensity can destroy the long transient as
the system diffuses across the whole span of the phase space between the two states (Fig. 2d).
Therefore, the dependence of the lifetime of the transient dynamics on the strength of noise
is non-monotonous. This non-monotonicity is a generic property of population dynamics with
stochasticity and is seen in a variety of systems and models (e.g. see [68, 69, 70]). Below, we see
a similar phenomenon emerging in high dimensional ecological systems.

Another example of a situation where noise can create long transients is the dynamics of
excitable systems [60]. A relevant ecological system that exhibits excitable dynamics is a prey-
predator system with Holling type III predation [71]. In a certain parameter range (e.g. where
the linear predator nullcline is to the left of the trough of the prey nullcline, see Fig. 3a), the
coexistence state is globally stable, but there is a threshold separating different types of approach
to it. For initial conditions on one side of the threshold, the system approaches the steady state
directly. For initial conditions on the other, excitable side of the threshold, the system takes
an excursion around state space to large abundance of prey and then predator before returning
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Figure 2: Behavior of a bistable ecological model with different noise levels. In each case the
model with the deterministic skeleton dx/dt = z(x —0.3)(1 — ) +0.01, describing the dynamics
of a population with scaled population size x describing Allee dynamics, is simulated for different
noise levels. The deterministic skeleton is a bistable system where the last term represents a
small steady immigration to prevent extinction. The noise term is of the form yzw where w
is a Wiener process (white noise) with mean 0 and variance 1 and the equation is integrated
as the equivalent Stratanovich stochastic differential equation using an Euler method and step
size of 0.001. Note scale differences. (a) Small noise level, v = 0.1, starting near the larger
equilibrium; system stays near the equilibrium; (b) small noise level, v = 0.1, starting near
the lower equilibrium; system stays near the equilibrium; (c) intermediate noise level, v = 0.6,
showing noise induced transients; and (d) large noise level, v = 5, where the system is noise
dominated and does not exhibit transients.



to settle at the steady state. In the deterministic case, once the system has returned to the
steady state, it stays there indefinitely. However, the excitability threshold runs close to the
steady state, so noise can push the system over the threshold, triggering another large excursion
around the phase plane before finally returning to the vicinity of the coexistence state where
it can remain for a long time until noise pushes it out again (see Figs. 3b,e). Altogether,
the state variable exhibits small-amplitude, random oscillations around the steady state value
intermittent with occasional large-amplitude cycles. An increase in the noise level makes the
large-amplitude cycles more frequent, see Figs. 3c,f. The periods of small-amplitude oscillations
are long transients. This dynamic can be viewed as a noise-induced mixed-mode oscillation
[72, 73].

Another highly relevant example of transient dynamics facilitated by noise is noise-induced
synchronization [61, 74]: population oscillations at different locations in space (e.g. in different
patches of a fragmented habitat) that would occur asynchronously in the absence of noise can
become synchronized under the effect of noise. In ecology, this phenomenon is often referred
to as the Moran effect and it is believed to be responsible for masting [75, 76]. However, full
synchronization only happens when the controlling parameter (e.g. the strength of the noise)
exceeds a certain critical value. In the subcritical parameter range, intermittent synchronization
occurs, so that the periods of synchronized and asynchronized dynamics alternate [77, 61]. In
this case, the intervals of synchronized dynamics can be regarded as transients. When the
controlling parameter approaches its critical value, their lifetime becomes very long; the average
transient time follows the power law [77].

Noise can also turn a transient regime into permanent, sustainable dynamics. As a simple
example, let us consider damped population oscillations. In models, such oscillations are fre-
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quently observed around a stable focus. Their characteristic life time is 7 ~ 1/ |ReAg| where Ao
is the eigenvalue with the largest negative real part. Correspondingly, for |[Re\g| < 1, they last
for very long and hence can be regarded as long transient dynamics. The effect of noise can be
to turn these long-term damped oscillations into a sustained oscillations [42, 40, 78] through a
mechanism known as stochastic resonance [79]. Such quasi-cycles have been reported in several
empirical systems including the dynamics of populations of Dungeness crab [32] and bluefin tuna
[80].

As we noted above, tipping points with simple saddle node bifurcations of equilibria are a
core example of the interaction between stochasticity and transients. This interaction becomes
even more important with a deterministic system with a chaotic attractor that experiences a
crisis [11, 12] when its controlling parameter p passes the critical value p.. Before the bifurcation
point, i.e. for p < p., there is a chaotic attractor so that chaos is self-sustained; at p = p. the
chaotic attractor turns into a chaotic saddle so that for p > p. chaotic dynamics are transient.
In the presence of chaos, for p > p., some, but not all, trajectories may leave the basin of
attraction at any given time. The chaotic dynamics that are sustained for the trajectories that
remain in the basin instead become transient for the trajectories that leave. The classic three
species food chain [81] is an important ecological example that has this kind of bifurcation.
The presence of noise further complicates the situation and can lead to very long transients,
supertransients, even for those parameter values where the deterministic system would have a
stable chaotic attractor. As previously reviewed [9], in the region where there is deterministic
stability, after some time the corresponding stochastic system can cross the basin boundary and
leave the basin of attraction for the chaotic attractor and end up in the basin of attraction for
a different attractor. This situation is thus a case where stochasticity leads to a transient. A
rigorous mathematical analysis of this case is possible [82, 83].

6 Systems with positive feedback

There is increasing recognition of the importance of positive feedback in ecological systems [84],
and, as Figure 2 suggests, stochastic transients are likely to be an important feature of these
systems. An important class of systems with positive feedback is mutualistic networks [85,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95|, e.g., a bipartite network of pollinator and plant species.
As a way to illustrate more details about stochastic transients, we describe the analysis of a
mutualistic network in more detail. Because the number of species involved in the mutualistic
interactions can be large, the system is high dimensional. As is the case in other contexts, much
of the dynamical behavior even in high dimensional systems can be understood as a phenomenon
in low dimensions or one dimension. The distinct dynamical behavior in complex mutualistic
networks is a tipping point transition, which is codimension one. In this case, the resulting lower
dimensional dynamics are essentially equivalent to the Allee effect.

Consider a complex mutualistic network subject to environmental or demographic noise, or
both. The setting thus naturally has high dimensionality and stochasticity. Can transients arise
and are they typical? The answer is affirmative. One scenario is tipping point dynamics [96, 43,
44,97, 46, 16, 47, 98, 99, 100, 101, 102, 88, 103, 104]. In particular, in a mutualistic network, the
deterministic behavior is dominated by the dynamics about a tipping-point transition [92, 93].
For example, environmental deterioration will result in massive species extinction, which can
occur suddenly in mutualistic systems as a relevant parameter (e.g., the species decay rate)
increases through a critical point — a tipping point. Under noise, even when the parameter value
has not reached the tipping point, a total system collapse can occur. This is the phenomenon of
noise-induced collapse which, dynamically, is nothing but a transition from one steady state to
another: from a healthy, high-abundance state to an extinction state. The collapse, of course,
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does not occur instantaneously: it takes time for the transition to complete, and during this time
what we see is a transient. Likewise, when the system is effectively extinct with near zero species
abundances, noise can trigger a recovery of the species abundances. In this case, the transition
occurs in the opposite direction: from a low abundance steady state to a high abundance one,
which is the recently discussed phenomenon of noise-induced recovery [94] accomplished through
a transient.
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Figure 4: Dynamical mechanism of noise-induced collapse and recovery in mutualistic networks.
The bifurcation parameter is the species decay rate x. The system has two stable steady states,
with high and low abundances, respectively. There is an unstable steady state in between the
two stable states. The three equilibrium points are dynamically connected through two saddle-
node bifurcations: one corresponding to the tipping point (the reverse one) at x.(0), and another
leading to species recovery (the forward one) at k,(0). In the deterministic case, as k increases
through £.(0), the system collapses. Under noise of amplitude ¢, the collapse can occur earlier
at k¢(¢) - the phenomenon of noise-induced collapse. Likewise, as x decreases, noise can induce
species recovery at k,(e).

A dynamical picture of the phenomenon of noise-induced collapse and recovery is illustrated
in Fig. 4. In the deterministic case, species collapse and recovery are the result of saddle-
node bifurcations. Let k be the normalized species decay rate (the bifurcation parameter).
Environmental deterioration is manifested as an increase in the value of k. As k increases through
a critical point, denoted as k.(0), a reverse saddle-node bifurcation occurs, giving rise to a tipping
point transition. Now consider the case where noise of amplitude ¢ is present. The phenomenon
of noise-induced collapse corresponds to an earlier tipping point transition, now occurring at
the critical point k.(g), where k.(e) < k.(0). Likewise, without noise, species recovery occurs
through a forward saddle-node bifurcation at «,(0), but noise can induce species recovery at a
critical point k,(g), where k() > £,(0). For k,.(0) < k < k¢(0), the deterministic system has
three equilibria: two stable equilibria and an unstable equilibrium in between. The two stable
equilibria are two attractors with their own basins of attraction, while the stable manifold
of the unstable equilibrium is the basin boundary [105, 13]. Dynamically, the two transition
phenomena are the result of noise driving the system across the basin boundary. Transients
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arise because of the competition between the attractive dynamics in the neighborhoods of the
stable equilibria as controlled by the eigenvalues of the Jacobian matrix with negative real part,
and stochastic hopping that brings the system out of the attractor [106, 107, 108]. The transient
dynamics underlying noise-induced collapse and recovery are the result of stochastic forcing that
drives the system from one stable steady state to another. For an ensemble of trajectories from
random initial conditions, the transient time required for the transition is typically exponentially
distributed [109, 110] and the average transient lifetime 7 depends on the noise amplitude . For
stronger noise, the transition occurs more quickly, so we expect 7 to decrease with €. A recent
study of four real world mutualistic networks [111] demonstrated the phenomena of noise-induced
collapse and recovery, and confirmed the occurrence of transients.

It should be noted that the quantities x,(¢) and k.(¢) are empirical. Even with noise of
arbitrarily small amplitude, sooner or later the system will switch to an alternative steady state,
if an infinite amount of observational time is allowed. What is important is whether such a
switch can occur on a realistic time scale. Computationally, one can set up a simulation time
that is much longer (typically one order of magnitude longer) than any time scale of the system,
such as the average time it takes for the system to settle into a steady state from a random
initial state. In the presence of noise of amplitude €, one can choose a large number of uniformly
spaced values of the decay rate x and determine the tipping-point transition point .(¢) and the
noise-induced recovery point s, (¢).

The common dynamical feature of transition from one stable steady state to another between
noise-induced collapse and recovery notwithstanding, the specific nature of the noise does play
an important role. In particular, environmental noise is independent of the dynamical variables
of the system and is thus simply additive, but demographic noise depends on the species abun-
dances. Before reaching the tipping point where the system is in the high-abundance steady
state, demographic noise is weak and environmental noise is the dominant stochastic force to
induce a system collapse. In contrast, if the system is in the low-abundance steady state, de-
mographic noise is strong and may lead to extinction. The specific roles played by demographic
and environmental noises have implications to devising strategies to manage high-dimensional
ecological systems. For example, because of the detrimental role of environmental noise in caus-
ing an ecosystem to collapse to a low state, it is imperative to devise methods to reduce the
level of environmental noise to keep the system in the healthy state. Conversely, when the sys-
tem is already close to extinction, a suitable amount of environmental noise may help facilitate
recovery [94].

7 Flow-kick dynamics

So far, we have focused on systems where the stochastic influence is due to continual noise.
But in real ecological systems there may instead be large disturbances at regular or irregular
intervals. These exogenous disturbances may be stochastic or, as in some management settings,
they may be tightly controlled. In analyses of transients in a deterministic setting [8, 9], the
focus is often on response to a single perturbation of a system away from its asymptotic state.
These ideas provide the background behind the approach we use to deal with cases of repeated
large disturbances.

Consider a population that — in the absence of noise — has an attracting state. If the system
is subject to recurring disturbance by disease, weather extremes, management, etc., it may never
even get close to the asymptotic dynamics, but instead will stabilize in a region of state space
where the short-term transient dynamics balance the disturbance.

A familiar example is given by fishery management: an undisturbed fish stock might grow
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to carrying capacity but, when subject to repeated harvesting, does not recover to full carrying
capacity between harvests. Indeed, a management strategy typically maintains stock population
significantly below carrying capacity to ensure a high recruitment rate and corresponding yield.
Alternatively, in the context of an invasive species, the disturbance pattern might represent a
culling strategy. In this case a management strategy of regular removal may be designed to keep
the invasive below a threshold way below carrying capacity.

One approach to exploring this phenomenon mathematically is to combine the growth dy-
namics of the ecosystem with the disturbance dynamic to define a new system whose asymptotic
dynamics represent a balance between growth and disturbance. For example, given a continu-
ous population model ‘fl—‘f = f(z) that is repeatedly disturbed by a discrete kick x to the state
variable, the associated flow-kick system (a special case of impulsive differential equations), is
defined by the discrete system

Titl = xz(ﬂ) + K4, (2)

for additive disturbance, or
Ty = Kii(Ti), (3)

for multiplicative disturbance. Here z(t) is the solution to the undisturbed system with initial
condition z, and the ith kick k; occurs at time 7; after the previous kick x;_1. In the fishery
context, f(z) represents the recruitment function, and the disturbance pattern x;,7; represents
a harvesting strategy. This framework is used in [62] to quantify resilience of ecosystems to
regular recurrent disturbances, and in [58] to study the resilience of socially valued properties
of natural systems to recurrent disturbance.

This kind of flow-kick system illustrates the essential role played by transient dynamics in
the presence of disturbance to yield different qualitative dynamics, in which kicks can move the
asymptotic state of the system in any arbitrary way [58]. More formally, given any point z*
in n-dimensional state space, and any disturbance time 7, there is a kick x so that x* is an
equilibrium of the flow-kick system (2) with k; = k and 7; = 7 for all . In other words, using a
perfectly regular disturbance pattern of fixed kicks at fixed time intervals, one can stabilize the
disturbed system anywhere in state space, regardless of the location of attracting sets or basins
of attraction of the underlying growth dynamics ‘é—f = f(x). This idea can be a very powerful

conceptual tool in the management of ecosystems [112].

8 Conclusions

An overarching challenge in understanding the dynamics of ecological systems is to provide
insights on ecologically-realistic time scales in the presence of both environmental variability
and stochasticity driven by small population sizes. In this setting, the asymptotic behavior
of deterministic systems is not relevant, and instead a focus on transient dynamics is required.
Examples of transient behavior have been observed in a variety of ecological systems as previously
summarized [8], but a more systematic approach is important for understanding the role of
stochasticity in ecological transients, especially in cases where detailed information about the
system may be limited. The importance of transients in stochastic systems shows up in a
variety of ecological contexts [10] and our contribution here emphasizes both the importance of
this phenomenon and the idea that a careful mathematical treatment can find order in what
may seem like a series of idiosyncratic examples. This is an area where despite the advances we
have covered here, much more work is needed. For example,the study of transients in spatial
systems is obviously important [113, 114]. More generally, ecological systems are typically high
dimensional and the approach describe here provides a guide for future research on these, and
related socio-ecological, complex systems.
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The work summarized here can also be thought of as an extension to stochastic variation
of the insights that come from studying seasonal dynamics [57]. Analyses of seasonal systems
have emphasized ecological implications, such as long-term variation of densities and species
succession of plankton communities of temperate lakes across the warm season [115], where the
random starting conditions play an important role. The existence of transients with time scales
much larger than the time of a single season can guarantee the coexistence of many plankton
species within a short time period — which would be impossible for a longer period in a constant
environment — since the ecosystem is ‘re-set’ each year in a random fashion [116]. In other
words, this type of ecological transient seems to be a robust phenomenon; however, mechanisms
of observed long transients in many such systems are still unclear due to the high complexity of
communities containing dozens of interacting species, the existence of several time scales, and
stochastic aspects. Further work based on the ideas we have developed here will shed light on
the ecological implications of stochastic transients [10].

Here, we have emphasized using modeled stochastic dynamics as a way to understand and
predict real-world dynamics. We might also consider the inverse problem, in which we could
think of stochasticity as obscuring the signal of a processes of interest. As a result, it is tempting
to feel that ecological insights would be improved if we could study ecological systems in isolation
from stochastic noise. However, if we could observe ecological dynamics after long times in the
absence of noise, we would see one behavior — the the deterministic asymptotic behaviour. In
the simplest case, a system at or near its equilibrium would simply sit at equilibrium. If our
observations began with the system out of equilibrium, we could see a short transient or part
of a long transient eventually approaching the equilibrium. In the presence of noise, however,
we have the opportunity to see all of these things within a reasonable observation window, as
perturbations push the system from one domain to another [117].

One key example that we have highlighted in this work is unexpected shifts between alter-
native stable states in ecological systems [43]. Much attention has been focused on single shifts,
but many systems move more than once between different states. Important quantities, like
the expected interval between shifts and the proportion of time the system is expected to be
in each state, can be computed with knowledge of each stable state’s basin of attraction and
the characteristics of the noise. In one dimension, knowledge of the basin of attraction can
be obtained from the potential. In higher dimension, surfaces like the quasi-potential [118] or
the gradient of a Helmholtz-Hodge decomposition [119] provide analogous information based,
respectively, on the most likely path or the average path between basins of attraction. A system
that mostly sits at or very near one equilibrium gives us virtually no information about these
basins. We may not even know whether other stable states exist in such a system. In contrast,
a system that experiences enough stochasticity could shift many times [70].

In conclusion, here we argue that an investigation of noisy nonlinear systems reveals a much
richer view of the underlying deterministic structure of ecological systems than does focusing
exclusively on unperturbed systems. When we observe a system at equilibrium, we can only
infer that the equilibrium exists, not what causes it. When we observe how different parts
of the system — such as the population densities of different interacting species — change in
response to being in different states or configurations, we gain valuable information about the
nonlinearities and feedbacks that are present. Extracting these insights, however, requires a
good understanding of how the types of stochasticity present interact with these nonlinearities
and feedbacks.

Finally, we emphasize that although we have focused on ecological issues and models here,
these themes arise in other areas as well. In particular, interactions between stochasticity and
transients are clearly important in neuroscience [120, 121}, as well as other areas of biology,
engineering [122], physics [123] and climate[124].
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