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Abstract—Maximum likelihood (ML) and symbolwise maxi-
mum aposteriori (MAP) estimation for discrete input sequences
play a central role in a number of applications that arise in
communications, information and coding theory. Many instances
of these problems are proven to be intractable, for example
through reduction to NP-complete integer optimization problems.
In this work, we prove that the ML estimation of a discrete
input sequence (with no assumptions on the encoder/channel
used) is equivalent to the solution of a continuous non-convex
optimization problem, and that this formulation is closely re-
lated to the computation of symbolwise MAP estimates. This
equivalence is particularly useful in situations where a function
we term the expected likelihood is efficiently computable. In
such situations, we give a ML heuristic and show numerics for
sequence estimation over the deletion channel.

Index Terms—Maximum-Likelihood, Symbolwise MAP, Dele-
tion Channels, Expected Likelihood.

I. INTRODUCTION

The problem of estimating an unknown discrete input se-
quence from its noisy observation arises in many disciplines,
including communications, information and coding theory.
Fig. 1 represents a typical decoding problem — an input
message sequence X must be estimated from the observation
or output sequence Y. The input-output relation depends on a
multitude of factors such as the exact choice and properties of
the encoder, the model and parameters of the noisy channel,
and initializations. We capture all these factors together by
what we call the system channel C. In this work, we are agnos-
tic on what exactly happens inside C, and instead, only assume
the knowledge of the input-output relation Pr(Y'|X,C).

X—-hEncode” _____ i Noisy v

________________ i channel
X = X1X2 XN C Y = Y1Y2 YM

Fig. 1: A generic model of a probabilistic system channel where
each X; € A= {1,...,A}. The goal is to estimate X given ¥ and
we assume the knowledge of Pr(Y'|X,C).

Central to the above discussion lie two algorithmic prob-
lems on optimal decoding — computation of the maximum-
likelihood (ML) and the symbolwise maximum-aposteriori
(MAP) estimates. The ML problem, in words, is the integer
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program that maximizes the likelihood Pr(Y'| X, C) over all N-
length input sequences X, and the symbolwise MAP problem
involves computing the symbolwise posterior probabilities
(SPs) Pr(X;=a|Y,C) for a pre-defined prior distribution on
X. Many of these problems are proven to be intractable, for
example through reduction to NP-complete integer optimiza-
tion problems (see [1], [2] for instance).

In this work, we provide continuous variable formulations
for the ML and MAP decoding problems for an arbitrary
system channel C. In particular, we posit the ML problem
as maximization over all product distributions for X. Rather
surprisingly, this formulation closely relates to an expression
for computing the MAP SPs. Our formulation is particularly
useful for system channels where a function termed expected
likelihood function (that we will define later) can be computed
efficiently. Although in full generality this function would be
hard to compute, it could still lead to new efficient optimal
or heuristic algorithms over new classes of system channels.
We believe that at the very least, our observations give a new
theoretical perspective on ML and MAP decoding.

Contributions. The main result of our work formulates the
ML estimate of an arbitrary system channel as a continuous
optimization problem; in particular, we optimize the expected
likelihood function over the space of product distributions for
X, instead of optimizing the actual likelihood. This opens the
door to the use of first-order heuristics like gradient ascent.
Moreover, we propose an alternate heuristic called coordinate
refinement for the ML estimate. For the SPs, we give an
expression in terms of the expected likelihood and its gradient.
As an application, we illustrate performance benefits of our
formulations via numerics for the deletion channel.

Related work. Over the past few decades, there has been
significant progress towards understanding the complexity of
computing optimal ML and MAP estimates (see [1], [3],
[2], [4]) as well as towards coming up with efficient al-
gorithms/heuristics (such as Viterbi [5], forward-backward
[6], message-passing [7], sphere decoding [8], [9]). These
algorithms are tailored to specific classes of system channels;
in contrast, our approach applies for all system channels (is
agnostic to the encoder and system model).

Decoding a discrete sequence via continuous optimization
methods has also been explored in [10] which formulates
the ML decoding problem for a linear code over a discrete
memoryless channel as a continuous optimization problem,
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and proposes a gradient ascent heuristic to solve it'. In
contrast, our work applies to an arbitrary system channel, and
we further we propose a decoding heuristic which empirically
performs better than gradient ascent.

Reconstruction over deletion channels without the use
of a codebook is closely related to the problem of frace
reconstruction (see for example [11], [12], [13], [14]). The
symbolwise MAP estimate for this case has been solved (see
[15]). However little is known about ML estimate in this case
(see [16], [17]).

Paper Organization. Section II describes the notation used
throughout this paper, Section III contains our main theoretical
results, Section IV discusses some algorithmic aspects of
our formulation and also gives a ML heuristic, and finally
Section V outlines numerics when C is a deletion channel.
We defer some proofs to the longer version of the paper [18].

II. NOTATION AND TOOLS

Basic notation: Calligraphic letters refer to sets, capitalized
letters correspond to either random variables or integer con-
stants (usage will be clear with context), bold letters are used
for matrices and greek letters are used to denote functions.

Notation Definition
i ] {iyi+1,.,jyifj>diand[i:j] 2@
o otherwise
(4] [L:1]
x[i:j] TiTiy1..-Tj
Pc[0,1] NxA matrix that parametrizes the distribution of an
’ N-length random vector
P; for matrix P ith row of the matrix

(i, 5)*" entry of the matrix
X = X[1.n) and X; is independently
distributed and Pr(X;=a) = P,

P;; for matrix P

X ~ (P)

P © Q for matrices

P and Q Hadamard product (element wise product)

cat(z) is an N X A matrix where

cat(x) for sequence cat(x);o=1 if z;=a and cat(z);,=0
T otherwise, i.e., cat(z) is the categorical

representation of x.

Matrix P is a lattice 3 & such that cat(z) = P

point
cat~1(P) cat™1(P) = z if cat(z) = P.
pU—b _ {Pm i#]
pU—b h Ya=py =7

PU—b) modifies only the jt" row of P to be
a unit vector where Pj; = 1.

TABLE I: Table of common notation.

ML estimate. For a system channel C as in Fig. 1 where X; €
A=1{1,2,..., A}, the ML estimate of X given observation ¥’
is the integer program:
xh, = argmax Pr(Y|X =z,0C). (1)
z€AN
Note that there could be multiple optimal solutions to (1)
and in such cases, it suffices to obtain just one such solution.

'We were not aware of [10] when we did the work, but was pointed out
to us during the review process.

SPs and symbolwise MAP. For the system channel C in Fig. 1
where X; € A = {1,2,..., A}, let the prior input distribution
be X ~ (P). The SPs can be collected in the matrix PP

P = Pr(X; = a|Y,C).

Note that PP varies with both P as well as Y. The SPs give
a convenient way of estimating X by picking the most likely
symbol at each position (the symbolwise MAP estimate).

Definition 1. Expected likelihood function. For the system
channel model in Fig. 1, given an observation Y and a distri-
bution matrix P, we define the expected likelihood function
as the expectation of the likelihood of observing Y w.r.t the
distribution X ~ (P), i.e.,

AP, Y;C) 2 LB Pr(YIX,0) )

Some properties of the expected likelihood function are:
e 0<A(P,Y;C)<1, since it is an expectation of the likelihood.
« For a lattice point P, A\(P,Y;C)=Pr(Y|X=cat™!(P),C).

III. ML AND SPS VIA EXPECTED LIKELIHOOD FUNCTION

In this section, we discuss our ML and MAP SPs formula-
tions through the lens of the expected likelihood function.

A. ML via expected likelihood

Theorem 1. Consider a system channel C as in Fig. 1. Assume
that X; € A = {1,2,...,A}. The ML estimate in (1) is
equivalent to solving the following continuous optimization:

argmax A(P,Y;C)
PeRNxA

st. P-1=1 3)
0<P.

P - 1 represents the matrix product of P with the all ones
vector 1, and “ <7 represents component-wise inequality.

Proof. The idea behind the proof is that instead of optimizing
over all possible choices for X, we optimize over all pos-
sible product distributions for X. Recall that A(P,Y;C) =
Ex @) Pr(Y[X,C). We prove the theorem by proving the
following three claims:

1) For every feasible P,

AP, Y;C) < max Pr(Y|X =z,C).
ze AN

2) Given a solution x , of (1), there exists P* such that

AP*Y:C) = max Pr(Y|X =uz,C)
ze AN
= max AP,Y;0).
PERN x4

3) Consider a P* which maximizes A\(P,Y’;C). Sample an
X from X ~ (P*), then X is a solution of (1).

Claims 1) and 2) together prove that the maximum objective
values of (1) and (3) are equal, claim 2) also gives a way of
obtaining a solution of (3) from a solution of (1), and claim
3) gives a way of obtaining a solution of (1) from (3).
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Claim 1) is easily seen by observing that A(P,Y;C) is
the expectation of Pr(Y|X,C) w.rt to a distribution on X
defined over the set AY. Clearly A(P,Y;C) must not exceed
the maximum value taken by Pr(Y|X,C) over A",

Claim 2) can be seen by taking P* = cat(z},) ie.,

Acat(z),;),Y;C) =Pr(Y|X = z,,C).

ml
To prove claim 3) we first note that A(P*Y;C) =
Pr(Y|X=z},,) from claims 1) and 2). But A(P*,Y;C) is
also the expectation of Pr(Y|X,C) over X ~ (P*). Since
Pr(Y|X=z,C) < Pr(Y|X=z},,C) Vx, we have that for
every z such that Pr(Y|X=xz,C) > 0 wrt to X ~ (P*),
Pr(Y|X=xz,C)=Pr(Y|X=z*,,C). O

ml»

We remark that the formulation in (3) falls under the
umbrella of signomial optimization problems (see [19], [20]
and references therein) which are, in general, hard to solve.
Typical heuristic approaches to such problems involve convex-
ification strategies that instead solve a series of related convex
programs. However, such strategies would in general fail for
(3) since, with a change of variables, (3) can be written as
minimization of a concave function over a convex set.

B. SPs via expected likelihood

Recall that the SPs for the model in Fig. 1 can be collected
in the matrix PP*' where P?>" = Pr(X; = a|Y,C). We first
state some results that will be used to prove Theorem 2 and
for the heuristic in Section IV.

Lemma 1. Consider Fig. I and let the prior input distribution
be X ~ (P). Then,

> Pr(a)Pr(Y|X =2,C) = Pi AP, Y;0).
The proof follows from the definition of expected likelihood

and can be found in [18]. The following two corollaries are
easily seen from the definition of A(-) and Lemma 1.
A

Corollary 1. A\(P,Y;C) =Y P AP YiC). (@)

a=1
0
0P,
(4) indicates an important property about the geometry of the
expected likelihood function — it is linear in each P; (however
it is not linear in P) and (5) relates A(-) and its gradient.

Corollary 2. AMP,Y;C) = AP Y: Q). (5)

Theorem 2. In Fig. 1, let the prior distribution be X ~ (P).
Then the SPs PP*" can be written as:

A(PG—a) v 9\ P.Y:C

pr—p, MU0 p L ®
AP,Y;C) AP,Y;C)

Alternatively a matrix formulation for the SPs is,

PoVpAP,Y;C)

1

=3FT 0 > Pr(a)Pr(Y|X =2,0). (8)

T:x;=a

Using Lemma 1 and (5) with (8) concludes the proof. O]

IV. COORDINATE REFINEMENT: A GLOBAL ML HEURISTIC
BASED ON EXPECTED LIKELIHOOD

In this section, we propose a heuristic for ML based
on our theoretical observations in Section III. But first, we
discuss some classes of system channels where our expected-
likelihood formulation of ML and MAP SPs can be useful.

A. Algorithmic aspects of expected likelihood

Clearly, Theorem 1 and Theorem 2 are directly applicable
for system channels where the expected likelihood can be
computed efficiently. For such cases, we observe the following:
« First we observe that (5) implies that computing the gradient

of A\(-) amounts to N A computations of A(-). However, in
many cases it might be possible to compute the gradients
directly and faster (we do this for deletion channels). More-
over, Theorem 2 signifies that in such cases, the MAP SPs
can be computed in polynomial time.

« Existence of a polynomial time algorithm to compute A(-)
does not necessarily imply that the ML problem in (3) is
solvable in polynomial time. However, what it indicates is
that heuristics for continuous optimization can be employed
for (3).

A natural first-order heuristic for (3) is projected gradient as-
cent, which is a variant of gradient ascent for maximization
with constraints. In our case the constraint is that P must
be a valid distribution matrix, i.e., P lies in the polytope

D2{Q:Qe[0,1]"**and Q-1 =1}.

In projected gradient ascent, at each update step, the updated
point is projected back onto D by finding a point in D closest
to P, i.e, the update step is

2

P < arg min ‘ ’Q — (P +e.VpAP, Y;C))H )
QeD

We now comment on the complexity of computing the

expected likelihood for a few examples of system channel

C in Fig. 1. We refer the reader to [18] for a more detailed

discussion on each of the following situations.

Discrete memoryless channel (DMC): When C is a DMC,
A(P,Y;C) breaks down into a product of N terms and can
be computed in O(NA). We clarify here that this case does
not subsume the situation of having an encoder before a
DMC. Note that the ML formulation in Theorem 1 also breaks
down into N smaller problems each of which can be solved
efficiently. This can also be proved to be equivalent to the
symbolwise MAP estimate.

oSt
Pt = AP,Y;0) ) Probabilistic finite state machine (FSM): Say C is an FSM
with states in S which outputs exactly K symbols corre-
Proof. First we note that the SPs can be written as, sponding to each input symbol. Then the expected likelihood
post _ Pr(X; =a,Y|[C) can be computed using a dynamic programming approach in
P, = TP(Yle) O(A|S|?>N). We note that this complexity is of the same order
345
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as the complexity of computing the ML via Viterbi algorithm
or the symbolwise MAP via Forward-Backward algorithm.
The class of probabilistic FSM system channels encompasses
a variety of situations. For example, a convolutional encoder
followed by a DMC can be represented by such a model.
Deletion channel: Assume that C deletes each input symbol
with a constant probability of deletion § (the encoder is an
identity encoder). We prove that a dynamic program can be
used to compute A(+) in O(NM) (see [18]).

Sticky channel: A sticky channel with parameter p repeats
each input symbol K € {1,2,...} times with a probability
(1 — p)X—1p. Recent works have looked at the capacity of
sticky channels [21]. We can prove that a dynamic program
can compute A(-) in O(NM?) time complexity (see [18]).

B. Coordinate refinement

In situations where the expected likelihood function and its
gradient are efficiently computable, we give a heuristic for the
ML formulation in Theorem 1. This algorithm exploits the
linearity of A\(P,Y’;C) when projected on to the coordinates
P, (4). The basic underlying idea is as follows (the exact
algorithm is detailed in Alg. 1):

« Say we start with a distribution matrix P € [0, 1]V >4,

o We iterate over the indices [1:N] (the rows of P) in a
specified order (here we do so greedily). In the iteration
corresponding to index ¢, we update row P; such that the
value of A(-) never decreases.

« This update is done by comparing A(P%~® Y;C) V a and
picking the a which maximizes /\(P(iﬁ“),Y;C), ie.,

P o pli—argmax, ,\(P<Ha>,Y;c))_ (10)

Note that ¥ 4, 3 a such that A\(PU~®) Y;C) > \(P,Y;C)
due to (4), thus ensuring that the update step never decreases
A(+). Further, (5) signifies that VpA(P,Y;C) computes
AP Y;C) V 4, a.
Iterating over the indices [1: V] once amounts to one refinement
iteration. At the end of a refinement iteration, the final P
is a lattice point (since every row has been updated to a
unit vector). A new refinement iteration can now be started
using current distribution P to further improve A(-). Note that
once we reach a lattice point, every update step results in a
distribution which is also lattice point. Since the number of
lattice points are finite, there will arise a situation where the
update stagnates (does not strictly increase A(-)). In that case,
we have arrived at a fixed point of this algorithm and we stop.
Before moving further we first define a fixed point of
an update algorithm. An update algorithm takes as input a
distribution P and updates it iteratively. The projected gradient
ascent and coordinate refinement are both update algorithms.

Definition 2. P! is a fixed point of an update algorithm if
the update step applied on P does not change Pfi*xd,

Pfixed js a fixed point of the projected gradient ascent if the

right-hand side of (9) is equal to P**¢ itself and it is a fixed
point of coordinate refinement if the right-hand side of (10) is
Pfixed jtself. More precisely,

Algorithm 1 Greedy coordinate refinement

1: Inputs: Distribution P™¢ Observation Y, Algorithms to
query A(P,Y;C) and VpA(P,Y;C), Max refinement
iterations RF},qq

2: Outputs: Estimate X
3 Initialize P = Pinit
4: for iter in [1 : RF),4,] do
5: Initialize visited indices 7 = &
6: while |Z| < N do
7: Compute gradient matrix G = VpA(P,Y;C)
8: if P is a lattice point and satisfies (12) then
o: return cat™!(P) and exit
10: (i*,a*) = argmax Gy
i€[N|\T, a€A
11: Update P «+ P —a7)
12: Update Z <+ Z U {i*}

13: return cat !(P)

o P is a fixed point for project gradient descent iff

2
P-— argminHQ—(P—l—e VPA(P,Y;C))H Ve 0, (11)
QeD
whereD:{Q:QE [0, 1]V*4 andQ-l:l}.
e P is a fixed point for coordinate refinement iff

cat }(P); = argmax A\(PU~Y Y:C) Vi. (12)
acA

We do note that there could be multiple solutions to
argmax,c 4 A(PU% Y;C), but we choose to stop coordi-
nate refinement at P instead. Although coordinate refine-
ment reaches a fixed point after a finite number of refinement
iterations, this number could potentially be exponential in N.
However in practice, for the deletion channel, the coordinate
refinement reached a fixed point mostly within 3 refinement
iterations even for N=100. Further, we give an interesting
result about such fixed points.

P+ eVpA(P,Y; C)

Fig. 3: Figure illustrating the idea behind Theorem 3.

Theorem 3. Ifthe distribution P is a fixed point for coordinate
refinement (given Y'), then P is also a fixed point for projected
gradient ascent.

The proof of the theorem can be found in [18]. The idea
behind the proof is that the gradient at a fixed point P extends
outwardly from P such that any point lying outside D in the
direction of the gradient is closer to P than every other point
in D (see Fig. 3). Thus the result of the projection onto D is
again P.

Note on initializations for coordinate refinement: A natural
question is if it makes a difference initializing P as an interior
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Fig. 2: Hamming error rates and likelihood gains for coordinate refinement (with both vertex and interior point initializations), symbolwise
MAP, and projected gradient ascent. We compare for various blocklengths and deletion probabilities. We use box plots to visualize the
sample distribution of the likelihood gains. The ends of the boxes indicate the upper and lower quartiles, the dot in each box is the median
of the samples, the whiskers indicate the extrema and the diamonds are deemed as outlier samples. We note here that we enforce a lower

cap for the likelihood gain at 0.1 to aid log domain visualization.

point (P;,€(0, 1)) or a lattice point. For an interior point, the
first refinement iteration updates P to a lattice point and sub-
sequent refinement iterations deal with P in the set of lattice
points thereon, in which case we are optimizing Pr(Y|X,C)
directly. One could have initialized P to be a lattice point to
begin with and optimize Pr(Y'| X, C), circumventing the use of
expected likelihood: numerical evaluation in the next section
indicates that such an initialization can significantly deteriorate
the performance of coordinate refinement.

V. EXAMPLE APPLICATION: NUMERICAL RESULTS FOR
THE DELETION CHANNEL

As an application, we focus on the deletion channel and
show numerical results for the various algorithms which
exploit our ML and SPs formulation. We restrict ourselves to
the binary alphabet A = {0, 1} for simplicity. As mentioned
in Section IV, and detailed in [18], the expected likelihood for
the deletion channel can be computed in O(NM). A similar
dynamic programming approach can be employed to compute
its gradient in O(N M) as well (we omit the details in lieu of
space). Our comparisons are based on two metrics:

« The likelihood gain 5 (x, X) = RYI¥=X0)

actual input and X is the estimate. The true ML sequence
gives the optimal (largest) likelihood gain.

o The hamming error rate ¢(x, X) which is defined to be
number of bit errors between the actual input  and estimate
X divided by its blocklength. The symbolwise MAP is an
optimal estimator for the hamming error rate. Note that, in
general, optimizing for hamming error rate is not equivalent
to optimizing for the likelihood gain and vice-versa.

where x is the

We compare the performance of the following algorithms:

o Symbolwise MAP: we first compute the SPs via Theorem 2
and then pick the most likely symbol for each position.

o Projected gradient ascent: as defined by (9). At distribution
P, we use an adaptive step size € = % and allow a
maximum of 200 update steps.

o Coordinate refinement with interior point initialization: We
use Alg. 1 with Pt whose entries are all 0.5, i.e., they
correspond to the uniform distribution.

o Coordinate refinement with lattice point initialization: We
use Alg. 1 and initialize P™* as a random lattice point.

Observations in Fig. 2.

o Symbolwise MAP has the least hamming error rate as it is
an optimal estimator for this error metric. However, it has
poor likelihood gains. The reasoning is very specific to the
nature of deletion channels — changing just a few bits could
vastly affect the likelihoods of the corresponding sequences.
For instance, consider N=5 and an observation Y =001. It
is easily seen that input sequence X=00001 corresponds
to a high likelihood while X=00000 corresponds to 0
likelihood although it differs by only one bit.

Coordinate refinement with lattice point initialization is
seen to perform much worse than coordinate refinement
with interior point initialization in all cases, which supports
the usefulness of the relaxation provided by Theorem 1.
Coordinate refinement with interior point initialization has
consistently good likelihood gain performance across dele-
tion probabilities unlike the other algorithms. One intuitive
explanation is that it can be envisioned as a two step
process: 1) in the first refinement iteration, the algorithm
performs a coarse search (via the gradient values) and finds
a “good” initial lattice point distribution for subsequent
refinement iterations 2) subsequent refinement iterations
finely “refine” the symbols to further improve the quality
of the solution. The projected gradient ascent is lacking
of step 2) while coordinate refinement with lattice point
initialization lacks step 1).
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