


and proposes a gradient ascent heuristic to solve it1. In

contrast, our work applies to an arbitrary system channel, and

we further we propose a decoding heuristic which empirically

performs better than gradient ascent.

Reconstruction over deletion channels without the use

of a codebook is closely related to the problem of trace

reconstruction (see for example [11], [12], [13], [14]). The

symbolwise MAP estimate for this case has been solved (see

[15]). However little is known about ML estimate in this case

(see [16], [17]).

Paper Organization. Section II describes the notation used

throughout this paper, Section III contains our main theoretical

results, Section IV discusses some algorithmic aspects of

our formulation and also gives a ML heuristic, and finally

Section V outlines numerics when C is a deletion channel.

We defer some proofs to the longer version of the paper [18].

II. NOTATION AND TOOLS

Basic notation: Calligraphic letters refer to sets, capitalized

letters correspond to either random variables or integer con-

stants (usage will be clear with context), bold letters are used

for matrices and greek letters are used to denote functions.

Notation Definition

[i : j]
{i, i+ 1, ..., j} if j ≥ i and [i : j] , ∅

otherwise

[i] [1 : i]

x[i:j] xixi+1...xj

P ∈ [0, 1]N×A matrix that parametrizes the distribution of an
N -length random vector

Pi for matrix P ith row of the matrix

Pij for matrix P (i, j)th entry of the matrix

X ∼ (P)
X = X[1:N ] and Xi is independently

distributed and Pr(Xi=a) = Pia

P⊙Q for matrices
P and Q

Hadamard product (element wise product)

cat(x) for sequence
x

cat(x) is an N ×A matrix where
cat(x)ia=1 if xi=a and cat(x)ia=0
otherwise, i.e., cat(x) is the categorical

representation of x.

Matrix P is a lattice
point

∃ x such that cat(x) = P

cat−1(P) cat−1(P) = x if cat(x) = P.

P(j→b)
P

(j→b)
ia =

{

Pia i 6= j

✶{a=b} i = j.

P(j→b) modifies only the jth row of P to be
a unit vector where Pjb = 1.

TABLE I: Table of common notation.

ML estimate. For a system channel C as in Fig. 1 where Xi ∈
A = {1, 2, ..., A}, the ML estimate of X given observation Y

is the integer program:

x∗
ml , argmax

x∈AN

Pr(Y |X = x, C). (1)

Note that there could be multiple optimal solutions to (1)

and in such cases, it suffices to obtain just one such solution.

1We were not aware of [10] when we did the work, but was pointed out
to us during the review process.

SPs and symbolwise MAP. For the system channel C in Fig. 1

where Xi ∈ A = {1, 2, ..., A}, let the prior input distribution

be X ∼ (P). The SPs can be collected in the matrix Ppost:

P
post
ia

= Pr(Xi = a|Y, C).

Note that Ppost varies with both P as well as Y . The SPs give

a convenient way of estimating X by picking the most likely

symbol at each position (the symbolwise MAP estimate).

Definition 1. Expected likelihood function. For the system

channel model in Fig. 1, given an observation Y and a distri-

bution matrix P, we define the expected likelihood function

as the expectation of the likelihood of observing Y w.r.t the

distribution X ∼ (P), i.e.,

λ(P, Y ; C) , E
X∼(P)

Pr(Y |X, C). (2)

Some properties of the expected likelihood function are:

• 0≤λ(P, Y ; C)≤1, since it is an expectation of the likelihood.

• For a lattice point P, λ(P, Y ; C)=Pr(Y |X=cat−1(P), C).

III. ML AND SPS VIA EXPECTED LIKELIHOOD FUNCTION

In this section, we discuss our ML and MAP SPs formula-

tions through the lens of the expected likelihood function.

A. ML via expected likelihood

Theorem 1. Consider a system channel C as in Fig. 1. Assume

that Xi ∈ A = {1, 2, ..., A}. The ML estimate in (1) is

equivalent to solving the following continuous optimization:

argmax
P∈RN×A

λ(P, Y ; C)

s.t. P · 1 = 1

0 ≤ P.

(3)

P · 1 represents the matrix product of P with the all ones

vector 1, and “ ≤ ” represents component-wise inequality.

Proof. The idea behind the proof is that instead of optimizing

over all possible choices for X , we optimize over all pos-

sible product distributions for X . Recall that λ(P, Y ; C) ,

EX∼(P) Pr(Y |X, C). We prove the theorem by proving the

following three claims:

1) For every feasible P,

λ(P, Y ; C) ≤ max
x∈AN

Pr(Y |X = x, C).

2) Given a solution x∗
ml

of (1), there exists P∗ such that

λ(P∗, Y ; C) = max
x∈AN

Pr(Y |X = x, C)

= max
P∈RN×A

λ(P, Y ; C).

3) Consider a P∗ which maximizes λ(P, Y ; C). Sample an

X from X ∼ (P∗), then X is a solution of (1).

Claims 1) and 2) together prove that the maximum objective

values of (1) and (3) are equal, claim 2) also gives a way of

obtaining a solution of (3) from a solution of (1), and claim

3) gives a way of obtaining a solution of (1) from (3).

�✁✁
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Claim 1) is easily seen by observing that λ(P, Y ; C) is

the expectation of Pr(Y |X, C) w.r.t to a distribution on X

defined over the set AN . Clearly λ(P, Y ; C) must not exceed

the maximum value taken by Pr(Y |X, C) over AN .

Claim 2) can be seen by taking P∗ = cat(x∗
ml

) i.e.,

λ(cat(x∗
ml), Y ; C) = Pr(Y |X = x∗

ml, C).

To prove claim 3) we first note that λ(P∗, Y ; C) =
Pr(Y |X=x∗

ml
) from claims 1) and 2). But λ(P∗, Y ; C) is

also the expectation of Pr(Y |X, C) over X ∼ (P∗). Since

Pr(Y |X=x, C) ≤ Pr(Y |X=x∗
ml

, C) ∀x, we have that for

every x such that Pr(Y |X=x, C) > 0 w.r.t to X ∼ (P∗),
Pr(Y |X=x, C)=Pr(Y |X=x∗

ml
, C).

We remark that the formulation in (3) falls under the

umbrella of signomial optimization problems (see [19], [20]

and references therein) which are, in general, hard to solve.

Typical heuristic approaches to such problems involve convex-

ification strategies that instead solve a series of related convex

programs. However, such strategies would in general fail for

(3) since, with a change of variables, (3) can be written as

minimization of a concave function over a convex set.

B. SPs via expected likelihood

Recall that the SPs for the model in Fig. 1 can be collected

in the matrix Ppost where P
post
ia

= Pr(Xi = a|Y, C). We first

state some results that will be used to prove Theorem 2 and

for the heuristic in Section IV.

Lemma 1. Consider Fig. 1 and let the prior input distribution

be X ∼ (P). Then,
∑

x:xi=a

Pr(x) Pr(Y |X = x, C) = Piaλ(P
(i→a), Y ; C).

The proof follows from the definition of expected likelihood

and can be found in [18]. The following two corollaries are

easily seen from the definition of λ(·) and Lemma 1.

Corollary 1. λ(P, Y ; C) =

A
∑

a=1

Piaλ(P
(i→a), Y ; C). (4)

Corollary 2.
∂

∂Pia

λ(P, Y ; C) = λ(P(i→a), Y ; C). (5)

(4) indicates an important property about the geometry of the

expected likelihood function – it is linear in each Pi (however

it is not linear in P) and (5) relates λ(·) and its gradient.

Theorem 2. In Fig. 1, let the prior distribution be X ∼ (P).
Then the SPs Ppost can be written as:

P
post
ia

= Pia

λ(P(i→a), Y ; C)

λ(P, Y ; C)
= Pia

∂

∂Pia
λ(P, Y ; C)

λ(P, Y ; C)
. (6)

Alternatively a matrix formulation for the SPs is,

Ppost =
P⊙∇Pλ(P, Y ; C)

λ(P, Y ; C)
. (7)

Proof. First we note that the SPs can be written as,

P
post
ia

=
Pr(Xi = a, Y |C)

Pr(Y |C)

=
1

λ(P, Y ; C)

∑

x:xi=a

Pr(x) Pr(Y |X = x, C). (8)

Using Lemma 1 and (5) with (8) concludes the proof.

IV. COORDINATE REFINEMENT: A GLOBAL ML HEURISTIC

BASED ON EXPECTED LIKELIHOOD

In this section, we propose a heuristic for ML based

on our theoretical observations in Section III. But first, we

discuss some classes of system channels where our expected-

likelihood formulation of ML and MAP SPs can be useful.

A. Algorithmic aspects of expected likelihood

Clearly, Theorem 1 and Theorem 2 are directly applicable

for system channels where the expected likelihood can be

computed efficiently. For such cases, we observe the following:

• First we observe that (5) implies that computing the gradient

of λ(·) amounts to NA computations of λ(·). However, in

many cases it might be possible to compute the gradients

directly and faster (we do this for deletion channels). More-

over, Theorem 2 signifies that in such cases, the MAP SPs

can be computed in polynomial time.

• Existence of a polynomial time algorithm to compute λ(·)
does not necessarily imply that the ML problem in (3) is

solvable in polynomial time. However, what it indicates is

that heuristics for continuous optimization can be employed

for (3).

• A natural first-order heuristic for (3) is projected gradient as-

cent, which is a variant of gradient ascent for maximization

with constraints. In our case the constraint is that P must

be a valid distribution matrix, i.e., P lies in the polytope

D ,
{

Q : Q ∈ [0, 1]N×A and Q · 1 = 1
}

.

In projected gradient ascent, at each update step, the updated

point is projected back onto D by finding a point in D closest

to P, i.e, the update step is

P← argmin
Q∈D

∣

∣

∣

∣

∣

∣
Q− (P+ ǫ.∇Pλ(P, Y ; C))

∣

∣

∣

∣

∣

∣

2

. (9)

We now comment on the complexity of computing the

expected likelihood for a few examples of system channel

C in Fig. 1. We refer the reader to [18] for a more detailed

discussion on each of the following situations.

Discrete memoryless channel (DMC): When C is a DMC,

λ(P, Y ; C) breaks down into a product of N terms and can

be computed in O(NA). We clarify here that this case does

not subsume the situation of having an encoder before a

DMC. Note that the ML formulation in Theorem 1 also breaks

down into N smaller problems each of which can be solved

efficiently. This can also be proved to be equivalent to the

symbolwise MAP estimate.

Probabilistic finite state machine (FSM): Say C is an FSM

with states in S which outputs exactly K symbols corre-

sponding to each input symbol. Then the expected likelihood

can be computed using a dynamic programming approach in

O(A|S|2N). We note that this complexity is of the same order

�✁�
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