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Ensemble bootstrap methodology for
forecasting dynamic growth processes
using differential equations: application to
epidemic outbreaks
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Abstract

Background: Ensemble modeling aims to boost the forecasting performance by systematically integrating the
predictive accuracy across individual models. Here we introduce a simple-yet-powerful ensemble methodology for
forecasting the trajectory of dynamic growth processes that are defined by a system of non-linear differential
equations with applications to infectious disease spread.

Methods: We propose and assess the performance of two ensemble modeling schemes with different parametric
bootstrapping procedures for trajectory forecasting and uncertainty quantification. Specifically, we conduct sequential
probabilistic forecasts to evaluate their forecasting performance using simple dynamical growth models with good track
records including the Richards model, the generalized-logistic growth model, and the Gompertz model. We first test and
verify the functionality of the method using simulated data from phenomenological models and a mechanistic transmission
model. Next, the performance of the method is demonstrated using a diversity of epidemic datasets including scenario
outbreak data of the Ebola Forecasting Challenge and real-world epidemic data outbreaks of including influenza, plague, Zika,
and COVID-19.

Results:We found that the ensemble method that randomly selects a model from the set of individual models for each
time point of the trajectory of the epidemic frequently outcompeted the individual models as well as an alternative
ensemble method based on the weighted combination of the individual models and yields broader and more realistic
uncertainty bounds for the trajectory envelope, achieving not only better coverage rate of the 95% prediction interval but
also improved mean interval scores across a diversity of epidemic datasets.

Conclusion: Our new methodology for ensemble forecasting outcompete component models and an alternative ensemble
model that differ in how the variance is evaluated for the generation of the prediction intervals of the forecasts.

Keywords: Model ensemble, parameter estimation, uncertainty quantification, phenomenological growth, Differential
equations, Generalized logistic growth model, Richards model, Gompertz model, Interval score, Parametric bootstrapping
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Introduction
The application of mathematical models to generate
near real-time forecasts of the trajectory of epidemics
and pandemics to guide public health interventions has
been receiving increasing attention during the last dec-
ade. For instance, disease forecasting efforts have been
conducted in the context of forecasting challenges such
as the DARPA Chikungunya Challenge [1], the US CDC
Flu sight Challenge [2], the Dengue Forecasting Chal-
lenge [3], and the Ebola Forecasting Challenge [4] as
well as recent epidemic and pandemic emergencies in-
cluding the 2014–16 West African Ebola epidemic [5, 6],
the 2018–19 DRC Ebola epidemic [7] and the ongoing
COVID-19 pandemic [8–12]. It is also worth noting that
the diversity of mathematical models and approaches for
epidemic forecasting has been expanding, with probabil-
istic forecasts gaining more attention [13, 14].
Assessing prediction accuracy is a key aspect of

model-based forecasting especially in the context of lim-
ited epidemiological data or the emergence of novel
pathogens for which little is known about the natural
course of the disease. However, epidemiological data is
frequently insufficient to discriminate among different
plausible models. Hence, forecasting approaches that
rely on multiple models rather than a single model are
desirable [7, 15]. One powerful multi-model approach
consists in devising ensemble models based on a quanti-
tative combination of a set of individual models (e.g.
[16–21]). While ensemble modeling has become a stand-
ard approach in weather forecasting systems [17, 18, 22–
24], their application in infectious disease forecasting
has only recently started to gain traction (e.g. [25–28]).
Ensemble modeling aims to boost the forecasting per-

formance by systematically integrating the predictive ac-
curacy tied to a set of individual models which can
range from phenomenological, semi-mechanistic to fully
mechanistic [16, 25, 29]. Past work indicates that multi-
model ensemble approaches are powerful forecasting
tools that frequently outperform individual models in
epidemic forecasts [2–4, 7, 27, 30–32]. However, there is
a lack of studies that systematically assess their forecast-
ing performance across a diverse catalogue of epidemic
datasets involving multiple infectious diseases and social
contexts. In the context of influenza, one study utilized
“weighted density ensembles” for predicting timing and
severity metrics and found that the performance of the
ensemble model was comparable to that of the top indi-
vidual model albeit the ensemble’s forecasts were more
stable across influenza seasons [33]. In the context of
dengue in Puerto Rico, another study found that
forecasts derived from Bayesian averaging ensembles
outperformed a set of individual models [27]. Here we
put forward and assess the performance of two frequen-
tist computational ensemble modeling schemes for

forecasting the trajectory of growth processes based on
differential equations with applications to epidemic out-
breaks [34]. For this purpose, we conduct sequential
probabilistic forecasts to evaluate their forecasting per-
formance using simple dynamical growth models with
promising track records including the Richards model,
the generalized-logistic growth model, and the Gom-
pertz model and a diversity of epidemic datasets includ-
ing synthetic data from standard epidemic models to
demonstrate method functionality as well as scenario
outbreak data of the Ebola Forecasting Challenge [4] and
real epidemic data involving a range of infectious dis-
eases including influenza, plague, Zika, and COVID-19.

Parameter estimation for a given model
Given a model, parameter estimation is the process of
finding the parameter values and their uncertainty that
best explain empirical data. Here we briefly describe the
parameter estimation method described in ref. [34] To
calibrate dynamic models describing the trajectory of ep-
idemics, temporal data for one or more states of the sys-
tem (e.g., daily number of new outpatients, inpatients
and deaths) are required. In this paper, if we consider
the case with only one state of the system, we have:

ẋ ¼ g x;Θð Þ

Where ẋ denotes the rate of change of the system and
Θ = (θ1, θ2,…, θm) is the set of model parameters. The
temporal resolution of the data typically varies according
to the time scale of the processes of interest (e.g, daily,
weekly, yearly) and the frequency at which the state of
the system is measured. We denote the time series of n
longitudinal observations of the single state by:

yt j¼yt1;yt2 ;…; ytn where j ¼ 1; 2;…; n

where tj are the time points of the time series data and n
is the number of observations. Let f(t,Θ) denote the ex-
pected incidence series yt over time, which corresponds
to ẋðtÞ if x(t) denotes the cumulative number of new
cases at time t. Usually the incidence series yt j is as-

sumed to have a Poisson distribution with mean ẋðtÞ or
a negative binomial distribution when the data exhibits
overdispersion.
Model parameters are estimated by fitting the model

solution to the observed data via nonlinear least squares
[35] or via maximum likelihood estimation assuming a
specific error structure in the data such as Poisson [36].
For nonlinear least squares, this is achieved by searching

for the set of parameters Θ̂ ¼ ðθ̂1; θ̂2;…; θ̂mÞ that mini-
mizes the sum of squared differences between the
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observed data yt j¼yt1;yt2…::ytn and the model mean

which corresponds to f(t,Θ). That is, Θ = (θ1, θ2,…, θm)

is estimated by Θ̂ ¼ arg min
Pn
j¼1

ð f ðt j;ΘÞ − yt jÞ2 .

Hence, the model mean f ðt; Θ̂Þ yields the best fit to
the observed data in terms of squared L2 norm. This
parameter estimation method gives the same weight to
all of the data points, and does not require a specific dis-
tributional assumption for yt, except for the first mo-
ment E[yt] = f(ti;Θ); meaning, the mean at time t is
equivalent to the count (e.g., number of cases) at time t
[37]. Moreover, this method yields asymptotically un-
biased point estimates regardless of any misspecification
of the variance-covariance error structure. Hence, the

model mean f ðti; Θ̂Þ yields the best fit to observed data
yti in terms of squared L2 norm.
The parameters for trajectories involving count data

are often estimated via maximum likelihood estimation
(MLE) with a Poisson error structure in the data. Con-
sider the probability mass function (pmf) that specifies
the probability of observing data yt given the parameter
set Θ, or f(yt|Θ); given a set of parameter values, the
pmf can show which data are more probable, or more
likely [37]. MLE aims to determine the values of the par-
ameter set that maximizes the likelihood function, where
the likelihood function is defined as L(Θ| yt) = f(yt|Θ) [37,
38]. The resulting parameter set is called the MLE esti-
mate, the most likely to have generated the observed
data. Specifically, the MLE estimate is obtained by maxi-
mizing the corresponding log-likelihood function. For
count data with variability characterized by the Poisson
distribution, the log-likelihood function is given by:

L Θjyt j
� �

¼
Xn
j¼1

yt j log f t j;Θ
� �� �

− f t j;Θ
� �h i

and the Poisson-MLE estimate is expressed as

Θ̂ ¼ argmax
Xn

j¼1
yt j log f t j;Θ

� �� �
− f t j;Θ

� �h i
:

In Matlab, we can use the fmincon function to set the
optimization problem.
To quantify parameter uncertainty, we follow a para-

metric bootstrapping approach which allows the compu-
tation of standard errors and related statistics in the
absence of closed-form formulas [19]. As previously de-
scribed in ref. [34], we generate B replicates from the

best-fit model f ðt; Θ̂Þ by assuming an error structure in
the data (e.g., Poisson) in order to quantify the uncer-
tainty of the parameter estimates and construct confi-
dence intervals. Specifically, using the best-fit model

f ðt; Θ̂Þ , we generate B-times replicated simulated data-

sets, where the observation at time tj is sampled from

the Poisson distribution with mean f ðt j; Θ̂Þ. Next, we re-
fit the model to each of the B simulated datasets to re-
estimate parameters for each of the B-simulated realiza-
tions. The new parameter estimates for each realization

are denoted by Θ̂b where b = 1, 2, …, B. Using the sets

of re-estimated parameters ðΘ̂bÞ; it is possible to
characterize the empirical distribution of each estimate,
calculate the variance, and construct confidence intervals
for each parameter. Moreover, the resulting uncertainty

around the model fit can similarly be obtained from f ðt;
Θ̂1Þ; f ðt; Θ̂2Þ;…; f ðt; Θ̂BÞ. It is worth noting that a Pois-
son error structure is the most common for modeling
count data where the mean of the distribution equals
the variance. In situations where the time series data
show over-dispersion, a negative binomial distribution
can be employed instead [34]. This parameter estimation
method has been shown to perform well with simulated
and real epidemic data [30, 34, 36].

Model-based forecasts with quantified uncertainty

Forecasting from a given model f ðt; Θ̂Þ; h units of time

ahead is given by: f ðt þ h; Θ̂Þ . The uncertainty of the
forecasted value can be obtained using the previously de-
scribed parametric bootstrap method. Let

f t þ h; Θ̂1
� �

; f t þ h; Θ̂2
� �

;…; f t þ h; Θ̂B
� �

denote the forecasted value of the current state of the
system propagated by a horizon of h time units, where

Θ̂b denotes the estimation of parameter set Θ from the
bth bootstrap sample. We can calculate the bootstrap
variance of the estimates to measure the uncertainty of
the forecasts, and use the 2.5 and 97.5% percentiles to
construct the 95% prediction intervals (PI).

Constructing ensemble models
Ensemble approaches aim to combine the strength of
multiple models rather than selecting the most promis-
ing model and discarding all of the other plausible
models which may help enhance predictive performance
by contributing important information about the
phenomenon under study. Here we introduce two en-
semble methods based on different parametric boot-
strapping to assess the uncertainty of the ensemble
models from a set of dynamic models using differential
equations. These ensemble methods differ in the way
the variance is evaluated for generating the prediction
intervals of the forecasts. Specifically, Ensemble Method
1 is based on the weighted combination of the individual
models whereas Ensemble method 2 randomly selects
the i-th model with probability wi for each time point of
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the trajectory of each bootstrap replicate. Below we pro-
vide a detailed description of these ensemble methods.

Ensemble method 1
Suppose we have I models under consideration. Given

the training data, let Θ̂i denote the set of estimated pa-

rameters and f iðt; Θ̂iÞ denote the estimated mean inci-
dent curve, for the i-th model. Based on the quality of
the model fit measured by the MSE or criteria such as
AIC, we compute the weight wi for the i-th model, i = 1,
…, I, where ∑wi = 1. For instance, if we use the mean
squared error (MSE) to assess the quality of the model
fit then the weight for each individual model is given by:

wi ¼
1

MSEi
1

MSE1
þ 1
MSE2

þ…þ 1
MSEI

for all i

¼ 1; 2;…; I;where MSEi

¼ 1
n

Xn

j¼1
f i t j; Θ̂i
� �

− yt j

� �2
:

Hence, the estimated mean incidence curve from the
ensemble model is:

f ens tð Þ ¼
XI

i¼1

wi f i t; Θ̂i
� �

Assuming that the observed incidence series have a
Poisson (or negative binomial) distribution
with mean fens(t), we can construct the 95% CI or PI

for the incidence at time t using the parametric boot-
strap method for the ensemble method. Specifically, sup-
pose the training sample size is n with time points t1, …,
tn. To generate a Bootstrap sample, we generate a ran-
dom variable yi from Poisson distribution with mean
fens(tj):

y j � Poisson f ens t j
� �� �

for j ¼ 1;…;n:

Then { y1, …, yn } is a bootstrap sample, from which
we can re-fit each of the I models, calculate weights, and
get the estimate and generate the ensemble model’s fore-
cast. Doing this B times, we can construct the 95% CI or
prediction interval using the 2.5 and 97.5% quantiles.
This method assumes that the whole population consists
of I sub-populations, and the i-th subpopulation follows
model i. The total incidence is the sum of incidences
from I sub-populations with the i-th subpopulation ac-
counting for wi of the whole population. For this method
the mean and variance of the ensemble are both equal

Fig. 1 Schematic diagrams illustrate the construction of the Bootstrap samples using Ensemble Method 1 (a) and Ensemble Method 2 (b). Suppose we have I

models under consideration. Given the training data, let Θ̂i denote the set of estimated parameters and f iðt; Θ̂iÞ denote the estimated mean incident curve, for
the i-th model. Based on the quality of the model fit measured by the MSE or criteria such as AIC, we compute the weight wi for the i-th model, i = 1, ..., I, where

∑wi = 1. For Method 1, we generate a random variable yi from Poisson distribution with mean f ensðt jÞ ¼
PI
i¼1

wi f iðt; Θ̂iÞ to generate a bootstrap sample. In

contrast, to generate the Bootstrap samples based on Method 2, we assume that at each time point the epidemic follows the i-th model with probability wi
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to fens(tj). Figure 1a illustrates the construction of the
Bootstrap sample according to Ensemble Method 1.

Ensemble method 2
This method differs from Ensemble Method 1 in the
way the Bootstrap samples are generated for the fitted
ensemble model. Specifically, to generate the Bootstrap
samples, we assume that at each time point the epidemic
follows the i-th model with probability wi. Then we can
generate the b-th bootstrap sample as follows. At each
time point tj, j = 1, …, n,

1. Choose model: Generate a random variable i from
the set {1, …, I} with corresponding probability set {
w1, …, wI }. Suppose that the i-th model is chosen.

2. Given that the i-th model is chosen, generate a
random variable yi from the Poisson distribution

with mean f iðt j;Θ̂iÞ:

y j � Poisson f i t j;Θ̂i
� �� �

Then { y1, …, yn } forms a bootstrap sample. The mar-

ginal mean of yj is f ensðt jÞ ¼
PI

i¼1wi f iðt j; Θ̂iÞ and the
marginal variance is

f ens t j
� �þXI

i¼1

wi f
2
i t j;Θ̂i
� �

− f 2ens t j
� � ¼ XI

i¼1

wi f i t; Θ̂i
� �

þ
XI

i¼1

wi f
2
i t j;Θ̂i
� �

−
XI

i¼1

wi f i t; Θ̂i
� �( )2

which is larger than fens(tj), the variance of the ensemble
model derived from the Ensemble Method 1. Figure 1b
illustrates the construction of the Bootstrap sample
using Ensemble Method 2. In summary, Ensemble
Method 1 takes the occurrence of each model as deter-
ministic with the proportion of new cases taken from
each model at each time point specified as wi. Thus, the
total number of new cases is the weighted average of all
models. In contrast, Ensemble Method 2 takes the oc-
currence of each model as random at each time point,
with the probability of the occurrence of the i-th model
given by wi. Hence the expected value is the weighted
average of all models, and the weights correspond to the
probabilities for each model. However, the randomness
in the occurrence of the models across time points in-
troduces additional variation in the ensemble estimates,
leading to higher variance than the first ensemble
method.

Models for short-term forecasting the trajectory of
epidemics
To illustrate our ensemble methodology, we employ
simple dynamic growth models which have been previ-
ously used in various disease forecasting studies (e.g. [4,
39–42]). Specifically, we conducted a comparative study
to assess the forecasting performance of the ensemble
methods that combine three dynamic growth models
based on simulated and real epidemic datasets. Below
we describe the single models that we use to construct
the ensemble model, where C(t) denotes the cumulative
case count at time t.

Generalized logistic model (GLM)
The Generalized Logistic model (GLM) has 3 parame-
ters and is given by:

dC tð Þ
dt

¼ C
0
tð Þ ¼ rCp tð Þ 1 −

C tð Þ
K 0

� �

The scaling of growth parameter, p, is also used in the
GGM to model a range of early epidemic growth profiles
ranging from constant incidence (p = 0), polynomial (0 <
p < 1) and exponential growth dynamics (p = 1). The
remaining model parameters are as follows: r is the
growth rate, and K0 K is the final epidemic size. For this
model, we estimate Θ = (r, p, K0) where f(t,Θ) =C′(t) and
fix the initial number of cases C(0) according to the first
observation in the data. The GLM model has been
employed to generate short-term forecasts of Zika,
Ebola, and COVID-19 epidemics [8, 9, 39, 43]. In par-
ticular, forecasts from the GLM model based on the ini-
tial growth phase of an epidemic tend to under predict
disease incidence before the inflection point has
occurred.

Richards model (RIC)
The well-known Richards model is an extension of the
simple logistic growth model and relies on 3 parameters.
It extends the simple logistic growth model by incorpor-
ating a scaling parameter, a, that measures the deviation
from the symmetric simple logistic growth curve [34, 44,
45]. The Richards model is given by the differential
equation:

dC tð Þ
dt

¼ rC tð Þ 1 −
C tð Þ
K 0

� �a� 	

where r is the growth rate, a is a scaling parameter
and K0 is the final epidemic size. The Richards model
has been employed to generate short-term forecasts of
SARS, Zika, Ebola, and COVID-19 epidemics [8, 9, 39,
43, 46].
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Gompertz model (GOM)
The 2-parameter Gompertz model is given by:

dC tð Þ
dt

¼ C
0
tð Þ ¼ rC tð Þe − bt

Where r is the growth rate and b > 0 describes the ex-
ponential decline of the growth rate. For this model, we
estimate Θ = (r, b) where f(t,Θ) = C′(t) and fix the initial
number of cases C(0) according to the first observation
in the data. The GOM model has been employed to gen-
erate short-term forecasts of Zika and COVID-19 epi-
demics [40, 47, 48].

Forecasting strategy and performance metrics
Using the GLM, RIC, GOM, and two ensemble methods
described above, we conducted sequential h-time units
ahead forecasts where h ranged from 1 to 20 days for
daily time series data, and from 1 to 4 weeks for the
weekly outbreak scenarios of the Ebola Forecasting Chal-
lenge. Each of these models were sequentially re-
calibrated starting from the first data point using the
most up-to-date incidence curve. That is, the calibration
period for each sequential forecast included one add-
itional data point than the previous forecast.
To assess forecasting performance, we used four per-

formance metrics: the mean absolute error (MAE), the
mean squared error (MSE), the coverage of the 95% pre-
diction intervals, and the mean interval score (MIS) [49].
The mean absolute error (MAE) is given by:

MAE ¼ 1
N

XN
i¼1

f ti; Θ̂
� �

− yti


 



Here yti is the time series of incident cases of the h-
time units ahead forecasts where ti are the time points
of the time series data [50]. Similarly, the mean squared
error (MSE) is given by:

MSE ¼ 1
N

XN
i¼1

f ti; Θ̂
� �

− yti
� �2

We also employed two metrics that account for pre-
diction uncertainty: The coverage rate of the 95% predic-
tion interval, e.g., the proportion of the observations that
fall within the 95% prediction interval as well as the
mean interval score (MIS) [49, 51] which is a proper
score that evaluates the width of the 95% prediction
interval as well as coverage which is given by:

MIS ¼ 1
h

Xh
i¼1

�
Uti − Ltið Þ þ 2

0:05
Lti − yti
� �

Ι yti < Lti
� 


þ 2
0:05

yti −Uti

� �
Ι yti > Uti

� 
�
where Lt and Ut are the lower and upper bounds of the
95% prediction interval and Ι{} is an indicator function.
Thus, this metric rewards for narrow 95% prediction in-
tervals and penalizes at the points where the observa-
tions are outside the bounds specified by the 95%
prediction interval where the width of the prediction
interval adds up to the penalty (if any) [49].
The mean interval score (MIS) and the coverage of the

95% prediction intervals take into account the uncer-
tainty of the predictions whereas the mean absolute
error (MAE) and mean squared error (MSE) only assess
the closeness of the mean trajectory of the epidemic to
the observations [13]. These performance metrics have
been adopted in the international M4 forecasting compe-
tition [52] and more recent studies that systematically
compare forecasting performance in the context of the
2018–19 Ebola epidemic in DRC [7, 41] and the
COVID-19 pandemic [8].

Testing and verification of ensemble methods using
synthetic data
Before applying the new ensemble methods to real
epidemic contexts, it is important to demonstrate the
functionality of the ensemble methodology through
simulation studies. Specifically, we constructed ensemble
models using three individual models (GLM, RIC,
GOM) based on the quality of the model fit to the data.
For this purpose, we considered two sources of synthetic
data as follows:

a) Simulated daily incidence curve from the Gompertz
model (GOM), which is one of the three models
used to construct the ensemble model.

b) Synthetic data generated using a stochastic SEIR
model that incorporates a time-dependent transmis-
sion rate to model more temporal variability in the
incidence curve. We assessed the forecasting per-
formance (1-day to 20-day ahead forecasts)
achieved by each of three individual models (GLM,
RIC, GOM) as well as the two ensemble models. In
particular, we are interested in assessing how well
the ensemble methods perform relative to the indi-
vidual models. Below we provide a detailed descrip-
tion of the synthetic data generation process.

Synthetic data generated from the Gompertz model
We simulated incidence curves from the 2-parameter
Gompertz model (the “true model”) with Poisson noise
(Fig. 2). Then we used the simulated epidemic curves to
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assess the forecasting performance by each of three indi-
vidual models (GLM, RIC, GOM), a set that includes the
“true model”, as well as the two ensemble models in 1-
day to 20-day ahead forecasts. We expect the “true
model” (GOM) to outperform all of the individual
models as well the ensemble models. We also expect
that the ensemble models will outperform, on average,
the individual models except for the “true model”
(GOM). To generate synthetic data, we selected the
GOM parameters such that the total number of cases by
the end of the epidemic is 10,000 [53]. Thus,

r ¼ 1 −
C 0ð Þ
10000

and b ¼ r

ln
10000
C 0ð Þ

� � where C 0ð Þ ¼ 1:

Synthetic data from a stochastic SEIR model with
time-dependent transmission rate We generated sim-
ulated data using an SEIR transmission model with
time-dependent transmission rate β(t), a model that is
not included in the ensemble models. Specifically, we
generated stochastic realizations from a homogenous-
mixing SEIR model with a population size of 100,000
and time-dependent transmission rate such that the
resulting incidence curves display a brief leveling off be-
fore a decay phase, a pattern that is not well-captured by
any of the individual models employed to construct the
ensemble model (GLM, RIC, GOM). More specifically,

we generated stochastic simulations with a constant
reproduction number of 2.0 from day 0 to day 20, then
the reproduction number declines to near endemicity
from R = 2.0 to R = 1.0 on epidemic day 30. Finally, the
reproduction number drops from 1.0 to 0.5 on epidemic
day 40. Thus, these epidemic curves exhibit an exponen-
tial growth period from day 0 to day 20, then a brief
steady incidence trend from day 30 to day 40 before the
number of new cases declines towards zero (Fig. 3).

The Ebola forecasting challenge
We also assessed the forecasting performance of the en-
semble and individual models using four synthetic epi-
demic trajectories (scenarios) from the Ebola Forecasting
Challenge [4], an effort that was inspired by the 2014–
2015 West African Ebola outbreak and generated based
on a detailed individual-based transmission model for
Liberia [54]. These synthetic epidemics have different
levels of data quality and quantity based on different
epidemiological conditions, behavioral changes, and inter-
vention measures (Figure S1). For Scenarios 1–3, interven-
tions bring the epidemic under control while Scenario 4
represents an uncontrolled outbreak that included a tem-
porary downturn in case incidence [4]. All of the models
were calibrated for each scenario starting from week 0.
For each of the four scenarios, we generated weekly fore-
casts based on the first and last forecasting periods defined
in the Ebola Forecasting Challenge [4]. For instance, for
Scenario 1, we generated a total of 23 short-term forecasts
from day 20 until day 42 (Figure S1).

Fig. 2 Synthetic datasets for testing and demonstrating the functionality of the ensemble approaches. We simulated incidence curves from the
2-parameter Gompertz model (the “true model”) with added Poisson error structure noise (blue circles). We set parameters r = 0.4, b = 0.1086 and
K = 10,000. The initial condition was set at C(0) = 1. The dashed vertical lines indicate the start and end days of the daily 20-day ahead forecasts
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Real outbreak data
We applied our new ensemble modeling methods to
generate short-term forecasts for eight real epidemics
namely Zika in Antioquia, Colombia, the 1918 influenza
pandemic in San Francisco, the 2009 A/H1N1 influenza
pandemic in Manitoba, Canada, severe acute respiratory
syndrome (SARS) in Singapore, plague in Madagascar,
and COVID-19 epidemics in the provinces of Guang-
dong, Henan and Hunan [55].

Zika in Antioquia, Colombia
We analyzed daily counts of suspected Zika cases by
date of symptoms onset of the 2016 outbreak in Antio-
quia, Colombia [39]. Antioquia is the second largest de-
partment in the central northwestern part of Colombia
(with a population size of 6.3 million people). The epi-
demic wave peaked 36 days into the outbreak. For each
model, we generated daily short-term forecasts from day
20 until day 60 (Fig. 4).

The 1918 influenza pandemic in San Francisco, California
We analyzed the daily epidemic curve of reported cases
during the fall wave of the 1918 influenza pandemic in

San Francisco, California [56]. A total of 28310 cases in-
cluding 1908 deaths were attributed to the fall epidemic
wave comprising 63 epidemic days with the first case re-
ported on 23 September 1918. For each model, we gen-
erated daily short-term forecasts from day 20 until day
42 (Fig. 4).

2009 A/H1N1 influenza in Manitoba, Canada
Daily number of laboratory-confirmed cases of H1N1 in-
fluenza infection were obtained from influenza databases
of Manitoba Health for both waves of the 2009 pan-
demic in spring (total of 891 cases between May 2 and
August 5) and fall (total of 1774 cases between October
1, 2009, and January 3, 2010), classified for each of the
11 health regions in the province of Manitoba, Canada.
A laboratory-confirmed case was defined as an individ-
ual with influenza-like illness or severe respiratory illness
who tested positive for pandemic H1N1 influenza A
virus by real-time reverse-transcriptase PCR (RT-PCR)
or viral culture. The first case of H1N1 infection in
Manitoba was identified (tested positive) on May 2, 2009
[57]. For each model, we generated daily short-term
forecasts from day 20 until day 60 (Fig. 4).

Fig. 3 Synthetic datasets derived from a stochastic homogenous-mixing SEIR transmission model with a population size of 100,000 and time-
dependent transmission rate such that the resulting incidence curves are not well-captured by any of the individual models considered in the
ensemble model (GLM, RIC, GOM). These simulations have a constant reproduction number of 2.0 from day 0 to day 20, then the reproduction
number declines from 2.0 to 1.0 on epidemic day 30 and then finally the reproduction number drops from 1.0 to 0.5 on epidemic day 40. The
simulations start with 5 infected individuals. The dashed vertical lines indicate the start and end days of the daily 20-day ahead forecasts
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Plague outbreak in Madagascar
We analyzed the main epidemic wave of the 2017 plague
epidemic in Madagascar which was retrieved from the
WHO reports. The epidemic wave consists of weekly
confirmed, probable and suspected plague cases during
September–November 2017 [58]. For each model, we
generated daily forecasts from day 8 to day 30 (Fig. 4).

SARS outbreak in Singapore
We obtained the daily number of new SARS cases by
date of symptom onset of the 2003 SARS outbreak in
Singapore [59]. This outbreak involved three major hos-
pitals in Singapore, and the incidence curve exhibited a
bimodal shape with two peaks occurring in mid-March
and early April (2003), respectively. These two small
sub-epidemics largely correspond to outbreaks stem-
ming from different healthcare settings [59]. This epi-
demic lasted a total of 70 days. For each model, we
generated daily short-term forecasts from day 15 until
day 45 (Fig. 4).

COVID-19 outbreaks in Guangdong, Henan and Hunan
We used data from the National Health Commission
of China which reports the cumulative cases for prov-
inces, including municipalities, autonomous regions,

and special administrative regions [60]. We collected
reported case data each day at 12 pm (GMT-5) from
the initial date of reporting, 22 January 2020 to 25
April 2020. We focused on the provinces of Guang-
dong, Anhui, and Hunan, which have exhibited a high
burden of COVID-19. For Guangdong Province, we
conducted daily forecasts from day 8 to day 25; for
Anhui and Hunan Provinces, we conducted forecasts
from day 10 to day 25 (Fig. 4).

Results
Using synthetic incidence curves simulated from the
Gompertz model (Fig. 2), we demonstrated the function-
ality of the ensemble methods in 20-day ahead forecasts
relative to three individual models (GLM, RIC, GOM), a
set that includes the “true model”. A set of representa-
tive sequential forecasts from all models are shown in
Fig. 5. As expected, we found that the “true model”
(GOM) outperformed all other models based on all four
performance metrics although it achieved a similar
coverage rate of the 95% PI to that of the Ensemble
Method 2, which was close to 0.95, indicating well-
calibrated models (Fig. 6). While the ensemble methods
performed similarly in terms of the MAE and MSE, En-
semble Method 2 achieved significantly better coverage

Fig. 4 Epidemic trajectories for eight real epidemics namely Zika in Antioquia, Colombia, the 1918 influenza pandemic in San Francisco, the 2009 A/H1N1
influenza pandemic in Manitoba, Canada, Severe Acute Respiratory Syndrome (SARS) in Singapore, plague in Madagascar, and COVID-19 epidemics in the
provinces of Guangdong, Anhui, and Hunan. The dashed vertical lines indicate the start and end days of the daily 20-day ahead forecasts
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rate of the 95% PI and lower MIS compared to the En-
semble Method 1 (Fig. 6). For instance, in 20-day ahead
forecasts, the 95% PI of the Ensemble Method 2 covered
92.3% of the data, on average, whereas the Ensemble
Method 1 only covered 53.3% of the data. Moreover, the
Ensemble Method 2 achieved a lower average MIS
(169.1) compared to the ensemble method 1 (371.1). It
is also worth pointing out that the coverage rate and
MIS achieved by the Ensemble Method 2 were stable
across forecasting horizons.
We also assessed the performance of the Ensemble

Methods relative to individual models using simulated
data from a stochastic SEIR model with time-dependent
changes in transmission rate (Fig. 3). A set of representa-
tive sequential forecasts from all models are shown in
Figure S2. We found that the Ensemble Method 2 out-
performed all other models including Ensemble Method
1 based on the coverage rate of the 95% PI and the MIS
(Figure S3). Although the RIC model achieved better
MAE and MSE compared to the other models, Ensemble
Method 2 outperformed the other models including the
Ensemble Method 1 based on the performance metrics
that account for predictive uncertainty. Furthermore, the

coverage rate and MIS were more stable across forecast-
ing horizons for the Ensemble Method 2 compared to
the Ensemble Method 1. For instance, for 10- and 20-
day ahead forecasts, the 95% PI of the ensemble method
2 covered 91 and 95.2% of the data, respectively. In con-
trast, the 95% PI of the ensemble method 1 covered 79.5
and 61.9% of the data on average for 10- and 20-day
ahead forecasts.
For Scenario 1 of the Ebola challenge, the Ensemble

Method 2 achieved consistently better performance
across all metrics and forecasting horizons compared to
the Ensemble Method 1 and the individual models (Fig-
ures S4 and S5). For instance, for 4-week ahead fore-
casts, the 95% PI of the ensemble method 2 covered
89.2% of the data on average whereas the ensemble
method 1 only covered 75.8.3% of the data. Moreover,
the ensemble method 2 achieved a lower average MIS
(490.2) compared to the ensemble method 1 (615.7). For
Scenario 2, the Richards model yields better MIS, but it
did not achieve much greater advantage over the Ensem-
ble Method 2 in terms of the coverage rate (Figures S6
and S7). For Scenario 3, GLM and RIC achieved lower
MAE, MSE, and better coverage rate. In terms of the

Fig. 5 Representative sequential 20-day ahead forecasts (top to bottom panels) obtained from individual models (GLM, RIC, GOM) and two ensemble
methods applied to synthetic data derived from the GOM model. Blue circles correspond to the data points. The mean fit (solid line) and 95% prediction
interval (dashed lines) are also shown. The gray shaded areas help highlight differences in the 95% prediction intervals associated with the ensemble
methods. The vertical line separates the calibration period (left) from the forecasting period (right)
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Fig. 6 Mean performance of the individual and ensemble models in 1–20 day ahead forecasts from the synthetic data derived from the Gompertz
model. As expected, we found that the “true model” (GOM) outperformed all other models based on four performance metrics although it achieved a
similar coverage rate of the 95% PI to that of the Ensemble Method 2, which was close to 0.95. While the performance of the ensemble methods was
not different in terms of the MAE and MSE, Ensemble Method 2 achieved significantly better coverage rate of the 95% PI and lower MIS compared to
the Ensemble Method 1

Fig. 7 Mean performance of the individual and ensemble models in 1–20 day ahead forecasts for the 2009 A/H1N1 influenza pandemic in Manitoba,
Canada. The Ensemble Method 2 outperformed all other models based on the coverage rate of the 95% PI and the MIS albeit predictions were a little
away from the actual future values and individual models often attained lower MAE or MSE
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MIS, GLM, RIC and Ensemble Method 2 achieved better
performance (Figures S8 and S9). Finally, for Scenario 4
characterized by an unmitigated epidemic, the Ensemble
Method 2 clearly outperformed all other models includ-
ing the Ensemble Method 1 (Figures S10 and S11).
For real epidemic data, we found that the Ensemble

Method 2 consistently yielded robust forecasting per-
formance compared to other models according to prob-
abilistic performance metrics (Figs. 7, 8, 9, 10, 11, 12, 13
and 14 & Figures S12, S13, S14, S15, S16, S17, S18 and
S19). Specifically, for the A/H1N1 influenza epidemic in
Manitoba, Canada, the plague outbreak in Madagascar,
the 1918 influenza epidemic in San Francisco, the SARS
outbreak in Singapore, and three COVID-19 epidemics
in the Chinese provinces of Guangdong, Henan and
Hunan, forecasts from the Ensemble Method 2 outper-
formed all other models based on the coverage rate of
the 95% PI and achieved lower MIS albeit for most fore-
casting horizons even as individual models often attained
lower MAE or MSE (i.e., which means that the predicted
value is closer to the observed value). For the Zika epi-
demic in Antioquia, the GLM yielded best forecasting
performance for all metrics, but the Ensemble Method 2
achieved similar performance (Fig. 14 and Figure S19).

Discussion
We have introduced a simple yet-powerful methodology
based on parametric bootstrapping for constructing en-
semble forecasts and assessing their uncertainty from
any number of individual dynamic models of variable

complexity that are defined by a system of differential
equations. Specifically, we introduced algorithms and
assessed forecasting performance for two ensemble
methods that differ in how the variance is evaluated for
the generation of the prediction intervals of the fore-
casts. This methodology was illustrated in the context of
three simple and well-known dynamical growth models
with an outstanding track record in short-term epidemic
forecasting [1, 4]. However, our methodology is applic-
able to any type of dynamic models based on differential
equations ranging from phenomenological, semi-
mechanistic to fully mechanistic models. We found that
Ensemble Method 2 which randomly selects a model
from the set of individual models for each time point of
the trajectory of the epidemic frequently outcompeted
the individual models as well as the alternative ensemble
method based on the weighted combination of the indi-
vidual models. Our results suggest that forecasting per-
formance can be improved by combining features from
multiple models across the entire trajectory of an epi-
demic, and the epidemic can follow or be dominated by
different models at different times. In particular, Ensem-
ble Method 2 produced broader and more realistic un-
certainty bounds for the trajectory envelope and
achieved not only better coverage rate of the 95% PI but
also improved mean interval scores across a diversity of
epidemic datasets.
Investigating different model weighting strategies to

construct ensemble models is a promising direction to im-
prove ensemble methodologies. Here we relied on the

Fig. 8 Mean performance of the individual and ensemble models in 1–20 day ahead forecasts for the 1918 influenza pandemic in San Francisco.
The Ensemble Method 2 outperformed all other models based on the coverage rate of the 95% PI and the MIS
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quality of the model fit to weight the individual models,
but alternative strategies could be investigated. For in-
stance, the weights could be a function of the models’
forecasting performance during previous time periods [4].
One could also consider systematic approaches to decide

when to drop poor performing models from the ensemble
model as the epidemic evolves. A systematic investigation
to assess the effect of the weighting strategy may require a
larger and more diverse set of models to identify meaning-
ful differences in forecasting performance.

Fig. 9 Mean performance of the individual and ensemble models in 1–20 day ahead forecasts for the plague epidemic in Madagascar. The Ensemble
Method 2 outperformed all other models based on the coverage rate of the 95% PI and the MIS

Fig. 10 Mean performance of the individual and ensemble models in 1–20 day ahead forecasts for the SARS outbreak in Singapore. The Ensemble
Method 2 outperformed all other models based on the coverage rate of the 95% PI and the MIS
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Fig. 11 Mean performance of the individual and ensemble models in 1–20 day ahead forecasts for the COVID-19 epidemic in Guangdong. The
Ensemble Method 2 outperformed all other models based on the coverage rate of the 95% PI and the MIS

Fig. 12 Mean performance of the individual and ensemble models in 1–20 day ahead forecasts for the COVID-19 epidemic in Henan. The Ensemble
Method 2 outperformed all other models based on the coverage rate of the 95% PI and the MIS
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Our ensemble methodology can efficiently accommo-
date any combination of phenomenological, mechanistic,
or quasi-mechanistic models which could describe a var-
iety of growth processes beyond the spread of infectious
disease. Further, the individual models could vary

substantially in complexity in terms of the number of pa-
rameters and dynamic variables so long as the models are
well calibrated to data. We have introduced ensemble al-
gorithms that have shorter running time than other ap-
proaches that rely on knitting together the bootstrap

Fig. 13 Mean performance of the individual and ensemble models in 1–20 day ahead forecasts for the COVID-19 epidemic in Hunan. The
Ensemble Method 2 outperformed all other models based on the coverage rate of the 95% PI and the MIS

Fig. 14 Mean performance of the individual and ensemble models in 1–20 day ahead forecasts for the 2016 Zika epidemic in Antioquia, Colombia.
The GLM yields best forecasting performance in terms of the coverage rate and the MIS, but it does not achieve great advantage over the Ensemble
Method 2
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realizations from all individual models [30]. Furthermore,
it is important to note that the resulting ensembles are in-
variant compared to Bayesian ensemble modeling
methods for which subjective choices on prior assump-
tions of the distributions of parameters across different
models (or modeling teams) could influence posterior dis-
tributions, and in turn, the ensemble forecasts.
Probabilistic forecasts have been gaining more traction

over the years. Here we rely on two performance metrics
that account for the uncertainty of the predictions
namely the coverage rate of the 95% PI and the mean
interval score, which is a proper score that takes into ac-
count the proportion of the data that is covered by the
prediction interval while penalizing for data points that
fall outside the prediction interval [49]. However, these
performance metrics are not exhaustive and additional
performance metrics could be evaluated. We found that
Ensemble Method 2 yielded the most stable performance
even at longer forecasting horizons whereas the per-
formance of the other models tended to deteriorate
more rapidly over longer horizons. It is important to
note that biases can arise when models are added or re-
moved from the ensemble, which can happen in the
context of forecasting competitions. Specifically, when
the number of models utilized in the ensemble varies
over time, the uncertainty associated with the ensemble
estimates is obscured by the varying number of models
considered across forecasting time points.
There is a need to establish and evaluate models and

methods against a set of shared benchmarks which other
models can use for comparison. New forecasting method-
ologies must be evaluated on well-known, diverse, and
representative datasets. Here we assessed our methods in
the context of a diversity of epidemic datasets including
synthetic data from standard epidemic models to demon-
strate method functionality as well as scenario outbreak
data of the Ebola Forecasting Challenge [4] and real epi-
demic data involving a range of infectious diseases includ-
ing influenza, plague, Zika, and COVID-19. Yet, there is a
lack of studies that systematically assess forecasting per-
formance using a catalogue of epidemic datasets involving
multiple infectious diseases and social contexts. Therefore,
we call on the research community to establish a curated
data repository that includes diverse and representative
epidemic datasets to systematically assess and record the
performance of existing and new forecasting approaches
including ensemble modeling methods.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12874-021-01226-9.

Additional file 1: Figure S1. Weekly incidence curves of the four
epidemic scenarios of the Ebola Forecasting Challenge (blue circles). The

dashed vertical lines indicate the start and end weeks of the weekly 4-
week ahead forecasts. Figure S2. Representative sequential 20-day ahead
forecasts (top to bottom panels) obtained from individual models (GLM,
RIC, GOM) and two ensemble methods applied to synthetic data derived
from a stochastic SEIR model with a population size of 100,000 and a
time-dependent transmission rate (Fig. 3). Blue circles correspond to the
data points. The mean fit (solid line) and 95% prediction interval (dashed
lines) are also shown. The gray shaded areas help highlight differences in
the 95% prediction intervals for the two ensemble methods. The vertical
line separates the calibration period (left) from the forecasting period
(right). Figure S3. Mean performance of the individual models and en-
semble models in 1–20 day ahead forecasts from the synthetic data de-
rived from the stochastic SEIR model with time-dependent
transmission rate (Fig. 3). Our findings indicate that the Ensemble Method
2 outperformed all other models including Ensemble Method 1 based on
the coverage rate of the 95% PI, which was closer to 0.95, and the MIS.
Although the RIC model achieved a lower MAE and MSE at longer hori-
zons compared to both Ensemble Methods, Ensemble Method 2 outper-
formed the other models including the Ensemble Method 1 based on
the coverage rate and the MIS. Figure S4. Representative sequential 20-
day ahead forecasts (top to bottom panels) obtained from individual
models (GLM, RIC, GOM) and two ensemble methods applied to Scenario
1 of the Ebola Forecasting Challenge (Figure S1). Blue circles correspond
to the data points. The mean fit (solid line) and 95% prediction interval
(dashed lines) are also shown. The gray shaded areas further highlight dif-
ferences in the 95% prediction intervals associated with the ensemble
methods. The vertical line separates the calibration period (left) from the
forecasting period (right). Figure S5. Mean performance of the individual
and ensemble models in 1–20 day ahead forecasts from the Scenario 1 of
the Ebola Forecasting Challenge (Figure S1). Ensemble Method 2 achieved
consistently better performance across forecasting horizons compared to
the Ensemble Method 1 and the individual models. Figure S6. Represen-
tative sequential 20-day ahead forecasts (top to bottom panels) obtained
from individual models (GLM, RIC, GOM) and two ensemble methods ap-
plied to Scenario 2 of the Ebola Forecasting Challenge (Figure S1). Blue
circles correspond to the data points. The mean fit (solid line) and 95%
prediction interval (dashed lines) are also shown. The gray shaded areas
further highlight differences in the 95% prediction intervals associated
with the ensemble methods. The vertical line separates the calibration
period (left) from the forecasting period (right). Figure S7. Mean per-
formance of the individual and ensemble models in 1–20 day ahead fore-
casts from the Scenario 1 of the Ebola Forecasting Challenge (Figure S1).
Ensemble Method 2 achieved consistently better performance across
forecasting horizons compared to the Ensemble Method 1 and the indi-
vidual models. Figure S8. Representative sequential 20-day ahead fore-
casts (top to bottom panels) obtained from individual models (GLM, RIC,
GOM) and two ensemble methods applied to Scenario 3 of the Ebola
Forecasting Challenge (Figure S1). Blue circles correspond to the data
points. The mean fit (solid line) and 95% prediction interval (dashed lines)
are also shown. The gray shaded areas further highlight differences in the
95% prediction intervals associated with the ensemble methods. The ver-
tical line separates the calibration period (left) from the forecasting period
(right). Figure S9. Mean performance of the individual and ensemble
models in 1–20 day ahead forecasts from the Scenario 3 of the Ebola
Forecasting Challenge (Figure S1). Ensemble Method 2 achieved consist-
ently better performance across forecasting horizons compared to the
Ensemble Method 1 and the individual models. Figure S10. Representa-
tive sequential 20-day ahead forecasts (top to bottom panels) obtained
from individual models (GLM, RIC, GOM) and two ensemble methods ap-
plied to Scenario 4 of the Ebola Forecasting Challenge (Figure S1). Blue
circles correspond to the data points. The mean fit (solid red line) and
95% prediction interval (dashed lines) are also shown. The gray shaded
areas further highlight differences in the 95% prediction intervals associ-
ated with the ensemble methods. The vertical line separates the calibra-
tion period (left) from the forecasting period (right). Figure S11. Mean
performance of the individual and ensemble models in 1–20 day ahead
forecasts from the Scenario 4 of the Ebola Forecasting Challenge (Figure
S1). Ensemble Method 2 achieved consistently better performance across
forecasting horizons compared to the Ensemble Method 1 and the indi-
vidual models. Figure S12. Representative sequential 20-day ahead
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forecasts (top to bottom panels) obtained from individual models (GLM,
RIC, GOM) and two ensemble methods applied to the 2009 A/H1N1 in-
fluenza pandemic in Manitoba, Canada. Blue circles correspond to
the data points. The mean fit (solid red line) and 95% prediction interval
(dashed lines) are also shown. The gray shaded areas further highlight dif-
ferences in the 95% prediction intervals associated with the ensemble
methods. The vertical line separates the calibration period (left) from the
forecasting period (right). Figure S13. Representative sequential 20-day
ahead forecasts (top to bottom panels) obtained from individual models
(GLM, RIC, GOM) and two ensemble methods applied to 1918 influenza
pandemic in San Francisco. Blue circles correspond to the data points.
The mean fit (solid line) and 95% prediction interval (dashed lines) are
also shown. The gray shaded areas further highlight differences in the
95% prediction intervals associated with the ensemble methods. The ver-
tical line separates the calibration period (left) from the forecasting period
(right). Figure S14. Representative sequential 20-day ahead forecasts
(top to bottom panels) obtained from individual models (GLM, RIC, GOM)
and two ensemble methods applied to plague epidemic in
Madagascar. Blue circles correspond to the data points. The mean fit
(solid line) and 95% prediction interval (dashed lines) are also shown. The
gray shaded areas further highlight differences in the 95% prediction in-
tervals associated with the ensemble methods. The vertical line separates
the calibration period (left) from the forecasting period (right). Figure
S15. Representative sequential 20-day ahead forecasts (top to bottom
panels) obtained from individual models (GLM, RIC, GOM) and two en-
semble methods applied to 2003 SARS outbreak in Singapore. Blue
circles correspond to the data points. The mean fit (solid line) and 95%
prediction interval (dashed lines) are also shown. The gray shaded areas
further highlight differences in the 95% prediction intervals associated
with the ensemble methods. The vertical line separates the calibration
period (left) from the forecasting period (right). Figure S16. Representa-
tive sequential 20-day ahead forecasts (top to bottom panels) obtained
from individual models (GLM, RIC, GOM) and two ensemble methods ap-
plied to the COVID-19 epidemic in Guangdong. Blue circles corres-
pond to the data points. The mean fit (solid line) and 95% prediction
interval (dashed lines) are also shown. The gray shaded areas further
highlight differences in the 95% prediction intervals associated with the
ensemble methods. The vertical line separates the calibration period (left)
from the forecasting period (right). Figure S17. Representative sequential
20-day ahead forecasts (top to bottom panels) obtained from individual
models (GLM, RIC, GOM) and two ensemble methods applied to the
COVID-19 epidemic in Henan. Blue circles correspond to the data
points. The mean fit (solid line) and 95% prediction interval (dashed lines)
are also shown. The gray shaded areas further highlight differences in the
95% prediction intervals associated with the ensemble methods. The ver-
tical line separates the calibration period (left) from the forecasting period
(right). Figure S18. Representative sequential 20-day ahead forecasts
(top to bottom to panels) obtained from individual models (GLM, RIC,
GOM) and two ensemble methods applied to the COVID-19 epidemic
in Hunan. Blue circles correspond to the data points. The mean fit (solid
line) and 95% prediction interval (dashed lines) are also shown. The gray
shaded areas further highlight differences in the 95% prediction intervals
associated with the ensemble methods. The vertical line separates the
calibration period (left) from the forecasting period (right). Figure S19.
Representative sequential 20-day ahead forecasts (top to bottom panels)
obtained from individual models (GLM, RIC, GOM) and two ensemble
methods applied to the Zika epidemic in Antioquia, Colombia. Blue cir-
cles correspond to the data points. The mean fit (solid line) and 95% pre-
diction interval (dashed lines) are also shown. The gray shaded areas
further highlight differences in the 95% prediction intervals associated
with the ensemble methods. The vertical line separates the calibration
period (left) from the forecasting period (right).
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