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Online Proximal-ADMM for Time-Varying

Constrained Convex Optimization
Yijian Zhang, Emiliano Dall’ Anese 2, Associate Member, IEEE, and Mingyi Hong ' Member, IEEE

Abstract—This paper considers a convex optimization problem
with cost and constraints that evolve over time. The function to be
minimized is strongly convex and possibly non-differentiable, and
variables are coupled through linear constraints. In this setting,
the paper proposes an online algorithm based on the alternating
direction method of multipliers (ADMM), to track the optimal
solution trajectory of the time-varying problem; in particular,
the proposed algorithm consists of a primal proximal gradient
descent step and an appropriately perturbed dual ascent step.
The paper derives tracking results, asymptotic bounds, and linear
convergence results.The proposed algorithm is then specialized to
a multi-area power grid optimization problem, and our numerical
results verify the desired properties.

Index Terms—ADMM, online optimization, optimal control,
optimal trajectory tracking, proximal gradient.

I. INTRODUCTION

HIS paper considers time-varying optimization problems

for network systems, where objective and constraints
evolve over time [1]-[6]. The applicability of time-varying opti-
mization problems is evident in a number of domains including
power grids [7]-[9], communication systems [10], [11], and
online methods in signal processing [12], just to name a few: see
also the representative works [13]-[15] and [16] for additional
time-varying models and application examples.

In particular, assume that the temporal domain is discretized
as {kt,k € N}, with 7 > 0 being a given interval time [6], [16].
This paper focuses on time-varying optimization problems in the
following form [1], [2]:

(P1) fPx) +¢®(y) (1a)

min
xcR™ ycR™

st. ARx + BBy — p(®) (1b)

xeX® y e y®), (1c)
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where k is the index for the time steps {k7,k € N}; f(®)()
and g(*)(-) are strongly convex functions (for all times k7);
A®) ¢ R&m B() ¢ R*" are time-varying matrices; and,
X®) Y(k) are convex constraint sets. For optimization and
learning problems with streams of data, the interval T coincides
with the inter-arrival date of data points [16]; when problem
(1) is associated with a network, the functions f U‘)(-) and
g(")(-) can capture performance objectives that evolve over
time, whereas (1) can capture time-varying physical or logi-
cal interactions in the network. Denoting as x*(*) an optimal
solution of (1) at time kT, the optimization model (1) leads
to an optimal frajecfory. The problem addressed in this paper
pertains to the development of algorithms that enable tracking of
the optimal trajectory {x*¥) } .. It is worth noticing that, for
problems with inequality constraints, one can always add slack
variables to re-write them as equality constraints — thus fitting
the formulation (1).

Previous efforts [17], [18] have addressed dynamic
(consensus-type) problems as a series of static problems, and
have assumed a time-scale separation between algorithms and
variability of the problem, so that convergence is reached for
each time. However, this might not be when the system param-
eters and the problem inputs change fast, at a time scale that
is comparable with the execution of one (or a few) algorithmic
steps; [13], [14], [19] successfully approach dynamic problem
in continuous time, but only for isolated systems where time-
varying exogenous inputs are available at a central processor.

In recent years, an intensive research has focused on real-time
implementation: [13] presents a control algorithm for real-time
multi-agent systems with the ability to track optimal trajectory,
however, only the cost function is time-varying; [8] proposes
an online algorithm for optimal power flow problem based on
quasi-Newton method. It can be shown that proposed algorithm
is able to provide suboptimal solution at a fast timescale. The
tracking ability hinges on the accurate estimation of second
order information. For the same application, [7] leverages dual
subgradient method and system feedback (or measurements)
to design a tracking algorithm based on a double smoothing
strategy. Regularization terms are added in both primal and dual
subproblems to prove Q-linear convergence to a neighborhood of
optimal solution for each time instance; [5] further extend double
smoothing algorithm to more general settings and provide a
regret analysis. The authors in [20] presents a saddle-point
method for networked online convex optimization, and provide
a regret analysis for problems with a Lipshitz-continuous func-
tion. Lastly, [21], [22] considered online optimization methods
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TABLEI
TRADE OFF BETWEEN OPTIMALITY AND CONDITIONS FOR LINEAR
CONVERGENCE [26]

‘ H Strong Lipschitz Full Row ‘ Optimalitsw
Convexity | Continuity Rank
£ v k) AR (BENT
Classic FUET gUk) v F & ATR) Optimal
ADMM IR viE vglFl| (BENT solution
fF g(F) viE vglFl| x
Proposed FR) (k) X X Perturbed
Algo- solution
rithm [ef. (11)]

for output regulation problems in dynamical systems. It is also
worth mentioning that prediction-correction methods have been
utilized to solve time-varying convex optimization problems;
see e.g., [6], [23] and the recent survey paper [24].
This paper proposes the development of an online algorithm
for time-varying convex problems based on the alternating di-
rection method of multipliers (ADMM) method [25]. Using a
quadratic regularization term, ADMM can allow one to deal
with nonsmooth terms, and it exhibits improved convergence
properties relative to dual (sub)gradient methods, especially for
problems with ill-conditioned dual functions [26][27]. The paper
present a new algorithm that has following characteristics: i)
at each step the primal subproblems are solved via proximal
gradient descent — providing favorable scalability to large-scale
problems and accommodating non-smooth objectives; ii) a dual
perturbation method is utilized, where the dual variables are
suitably perturbed at every iteration to gain in convergence
rate. Related works along this line include the following: [28]
leverages ADMM to solve a real-time multi-agent problem. But
it differs from the present work because it considers only con-
sensus constraints (a special case of our general formulation);
[29] considers a dynamic sharing problem, and convergence to a
neighborhood is provided under standard assumptions; however,
the constraint is also a special case of our formulation.
We note that relative to existing online primal-dual meth-
ods [2], [5], [20], the proposed method can handle non-
differentiable costs. We also note that the choice of ADMM
as opposed to, e.g., an Arrow-Hurwicz method, is due to the
following two reasons: i) problem (1) has a two-block structure
(i.e., x, ¥) which can be effectively handled by ADMM; and, ii)
the objective function has nonsmooth terms, which would nev-
ertheless require modifications of the Arrow-Hurwicz method.
To summarize, this paper has the following main contribu-
tions:
* We develop an online proximal-ADMM algorithm for
solving time-varying optimization problems of form (1);

®* We provide convergence analysis, which shows that the
proposed algorithm can track the optimal solution tra-
jectory of (1) under mild assumptions; in particular, our
methodology does not require smoothness of the cost and
does not rely on the full-rankness of the constraint matrix
(see Table I for detailed comparison between the conver-
gence conditions of a few algorithms).

Our previous work [30] focuses on ADMM-based online
algorithms to track a solution of a domain-specific linearized

AC optimal power flow (OPF) problem in power grids. In this
application domain, this work significantly extends [30] in the
following ways:

® We consider more general linearized OPF formulations,

which can be used to deal with, for example, OPF problems
in a distributed setting, where the power system is divided
into areas [31]; and,

® A different algorithm which works under milder conditions

and has wider applicability is proposed.

The remainder of paper is organized as follows. Section IT will
give the general time-varying problem formulation. Section IIT
will introduce our online algorithm. Section IV will apply pro-
posed algorithm to two applications, one is in power systems,
the other one is route selection. Tracking ability is shown in
V and VI in the form of convergence analysis and simulation,
respectively.

1I. PROBLEM FORMULATION

Consider the time-varying problem (1).! At time k, if problem
(1) is solved to global optimality, then we say that the perfect
tracking is achieved. However, in many applications [16] such
perfect tracking may not be possible because before the problem
at time k is solved, it may have already evolved to a new
problem. Specifically, iterative algorithms often involve multiple
iterations of computing and communication, and by the time
algorithms converge for time k, problem parameters such as
A®) B® b might have already changed. Therefore it is
desirable to design algorithms with certain “tracking ability,”
which means that the iterates can be continuously steered to
stay close to the time-varying optimal solutions.

Let us reformulate problem (1) as follows. First, we rewrite
the time-varying constraint sets X*), Y(¥) into indicator func-
tions in the objective; and then we separate objective into non-
differential functions fék) {x); g,gk) (¥) and differential functions

fl(k)(x), ggk)(y). At time k& we consider the following time-
varying problem:

(P2) min_ f®(x)+g®)(y) (2a)
xcR™ yeRn
s.. AFx 4+ By = p(k) (2b)

where

P00 = £ (%) + 17 (%), 6%(v) = 06" (v) + 617 (¥),
A®) = A(ty), B® := B(t),b® := b(t),

XE) = X (1), YF) = Y(ti).

Throughout the paper we will assume that the following assump-
tion holds.

"Throughout this paper, boldface characters denote vectors or matrices;
characters with superscript (k) denote time varying iterates and parameters; for
a given vector X and matrix G, l|x[|%} :=xT Gx; < x,y > denotes the inner
product between the vectors x and y. Given a non-differentiable function h, the
proximal operator is defined as proxy, (x) = arg min, ||z — x| + h(z).
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Assumption 1: For each time k, f(¥), g(F) satisfy

(OF B (x1) = 0f M (x2), x1 = X2) > Fyl[x1 = o, V32, %
3

09™ (y1) — 89™ (v2),y1 — y2) = Fgllyr — y2ll, ¥y1,¥2
4)
where vf,7, are uniform lower bounds of strongly convex

constants for f®), g®. Functions f*), ¢\*) have Lipschitz-
continuous gradients, i.e.,

IVF® (x1) = VP (xa)l| < Lyllxs — %o, Vx1,%2 (5)

Ve (y1) = Vol (ya)ll < Lgllys — yal, ¥y1,¥2  (6)

where L T f,g are uniform upper bounds of Lipschitz constants
for Vfl(k), Vggk).

Assumption 2: For each
F®)(x), g™ (y) are coercive; i.e.,

time &, the functions

F®(x) = 00 as [|x|| =+ 00,g™ (y) = co as [ly|| = oo.

Assumption 2 will be instrumental to ensure that the it-
erates are bounded. Since continuous coercive functions’
level sets {x|f(x) < pu1, Y1}, {¥lg(y) < 2, Ypio} are always
compact, the optimal solutions to problem (2), defined as
x°Pt(K) yopt:(k) are bounded, i.e.,

[[x°PH @ < oy, [lyPH B < oy

for some positive constants oy, o3.

III. ONLINE PROXIMAL-ADMM USING PERTURBATIONS

This section presents an ADMM-based algorithm to track an
optimal solution trajectory of the time-varying problem (1). As
summarized in Table I, the proposed algorithm exhibits linear
convergence guarantees under less stringent conditions relative
to existing ADMM-based methods (even for static problems). In
fact, although classic ADMM is conceptually simple and easy
to implement, the conditions under which it is convergent is
shown to be quite restrictive [26]. We propose a new algorithm by
leveraging the idea of dual perturbation [32], [33] and gradient
steps; this will provide a way to demonstrate convergence for a
larger family of problems. However, a linear convergence rate
at milder conditions comes at the cost of ensuring tracking of an
approximate Karush-Kuhn-Tucker (KKT) point [5], [32], [33].

Accordingly, we propose to add a small perturbation to the
dual variable A in the form of 1 — 3+, where v > 0 is the per-
turbation parameter and B~ € (0, 1). The perturbed augmented
Lagrangian function is then defined as

LB (x,y;2) = L% y:0) + P+ 6Py @
where
£ (x,y;0) = fP ) + ¢ (v)
2
+ g “A<’=)x +B®y — pk) H

— (1 =BT (APx - BWy — h®).

Mirroring [34], to update x and y, one can performs the follow-
ing steps in an online fashion (where £ is here the time index):

agg’f“)(x(k}‘ y(®); 1(8)) By
By(") 1=y

y(k'H) = arg min
y

1

k+1

+ g () + e e Al
as

a£(k+1)(x(k) y(k+1). 3 (k)
(k4+1) _ - 1 ’ 1 _ (k)
X = argmin < (%) X=X

1

k+1

+ & )(x)+—2 [lx —x®))12,
aq

where oy, ap are step sizes. We are now ready to outline the
online proximal-ADMM algorithm with perturbations, whose
steps are the following (we stress again that k is the time index):

(k+1) o (k) (k). 3 (K)
y &+ — prox (y(k) = QQ‘%] (x®,y*;x )) ,

(k+1) Ay k)
In
(8a)
(k+1) (o (K k+1).q (k)
X(k+l) = prox X(k) — 6£1 (}(( ), z( )?l ) 1
fék+l} 8){( )
(8b)

aE+1) {1 ﬁy)l(k)

_B (A(k+1)x(k+1) 4+ By (k1) _ b“‘“)) _
(8¢)

The underlying assumption here is that for each time k, the
interval 7 is sufficient to run at least one iteration of (8).

Compared to classical ADMM-based algorithms (for both
static and time-varying optimization), key differences here are in
the proximal gradient steps in the primal update and the pertur-
bation added to A. The proximal gradient steps may provide
favorable computational gains when applied to a large-scale
problem; it also facilitate ones to develop measurement-based
algorithms as discussed in, e.g., [16]. The perturbation added to
A emerges when considering a regularized Lagrangian function
of the form £*)(x,y;1) — Z|A||? as in e.g., [5]. [32], [33].
This additional term renders the regularized Lagrangian strongly
concave in A. Adding a (small) perturbation in dual variable (or,
equivalently, considering a regularized Lagrangian) is a very
useful technique to ensure convergence of the ADMM, and even
obtain a linear convergence behavior as explained shortly. To
gain intuition, let us consider a toy example as follows:

min 0, st. Ax=0 ©)]
x
where A is some fixed matrix, not necessarily positive semidef-

inite. The optimality condition for the above problem can be
written down as the following saddle point problem

mj_nmfuc xT AL
xX

(10)

One can apply the alternating gradient descent/ascent method
for solving problem (10), whose steps are similar as (8) and are
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Fig. 1. Example of trends of the objective value of (10) for methods with and
without perturbation.

given below
x(E+1) — (k) _ Q(Al(k)),

A1) — g (R) + ,B{ATX(k)).

InFig. 1, we plot x” A using arandom matrix A. Aninteresting
observation is that the algorithm will diverge if no perturbation
is added to y as shown in Fig. 1(a) also see [35] for a formal
proof. However, once a small perturbation is added to y in both
primal and dual updates, i.e.

x5+ = 58 _ o(ALB(1 - 48)),
A+ = 2K(1 - 4B) + B(ATx®),

where v > 0 is a small number, the algorithm will converge as
shown in Fig. 1(b). This example serves as a motivation to use
the perturbation technique.

IV. CONVERGENCE ANALYSIS

In this section we provide analytical results for convergence
and tracking ability of the proposed algorithm.

From [26], it is known that existing ADMM has relatively
strict conditions for linear convergence and these conditions may
not hold true in some applications; for example, the coefficient
matrices in constraints (2b) might not have full row rank (this is
the case for the application presented later in the paper). Further,
in some applications, the objective function of (2) may also
contain non-smooth terms, which can jeopardize the Lipschitz
continuity property. In contrast, the proposed algorithm could be
utilized in a wider range of time-varying optimization problems.

It is also worth pointing out that [26] deals with static optimiza-
tion problems; here, the focus is on time-varying settings. We
begin by first making the following assumption.

Assumption 3: For each time k, there exists a saddle point
woPt (k) — (xopt:(k) yopt.(k) }oPt:(k)) tg problem (2) that sat-
isfies the KKT condition:

(B(k))Tkopts(k) c @g(a’c)(yopt,(k))1

(A(k))Tlopt,(k) c af(k){x"pt’(k)),
AR)yopt,(k) B(k)yopt‘(k) o b(k),

where A°P%() s dual variable associated with (2b). The optimal
dual variable has a uniform bound, i.e. [[A°P“®)|| < M, where
M is a constant.

Assumption 3 is a standard assumption to for convergence
analysis [26]. If Assumption 3 does not hold at a time k, the
problem formulation would not be well posed since there is no
solution trajectory to track.

Next, we analyze the convergence of the algorithm.
To proceed, we concatenate primal and dual optimizer as
{w*} = {x*;¥*;1"} (for static case) as the optimizer of
max;, miny y £*) at time k. For notation simplicity we neglect
superscript k for static case and we have:

ATL* — Vi (x*) € Bfp(x*) (11a)
B™\" — Vgi(y*) € dg0(y") (11b)
AxX*+By" —b+~4* =0. (11c)

Condition (11) is a perturbed version of KKT conditions, related
to approximate KKT (AKKT) [36], [37]. Basically, optimizer
w* is not necessarily the KKT point of original problem (1), but
rather an approximate solution. Let {x°Pt:(k) yopt,(k) jopt,(k)}
be a KKT point of problem (1), which is also the solu-
tion to (11) when « = 0. From Assumption 3, we know that
any optimal dual solution A°?*(®) is bounded. Let voPt:(¥) =
{Xop‘t,(k),yﬂpt,(k)},vt,(k) — {X*’(k),y*’(k)}; we can then di-
rectly use the result in [33, Proposition 3.1] to show that the
distance between v* (%) and voPt-(%) js hounded. that is,2

w8 — yopt,() 2 4 %“l*,(k)nil < %Hl”l’t’(k)ﬂz, (12)

where & > 0 is a constant. We can further derive that

v = v W) < Fmax PO -, VE - (13)

where ¢ > 0 is some constant; see [33, Proposition 3.1] for a de-
tailed discussion and the proof of the result. Since every optimal
dual variable A°P%(®) to the original problem (1) is bounded, i.e.
[|xePt) || < M, it follows that the distance between the AKKT
point and a KKT point is bounded too, and such a bound depends
on the choice of « (the smaller the ~, the smaller the distance
since ||A°P%:(¥)|| is independent of ). In the following analysis,
we focus on bounding the distance between iterates generated by
(8) and AKKT points. To proceed, we first state the assumptions
on x*(*) y*) and on problem parameters as follows.

The original result is for smooth strongly convex function, but it is easy to
check that it still holds true to our problem.
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Assumption 4: The successive difference between AKKT
points is bounded:

||x*’(k+1) s X*,(k)” < s ”y*‘.(k-i-l) = y*,(k)” < ay, (14
where x*(¥)_ y*(¥) are primal optimizer of (11) at time k; o5, >
0, oy > 0 are some constants. Also, the variation of the problem

parameters is bounded as:

”A(k-i-l) =

AR | < oa, ”B(-'H-l) -

B¥|<op (19

1A < &a, IBX|| < &5, [[b*+D —b®|| < o, (16)
where oA, 08,04, 0B, Op are Some given positive constants.

Assumption 4 is common in time-varying optimization
[2]-[5], [14], [16], [38]; worst-case bounds for (14) can be ob-
tained assuming that the sets X *), J*) are compact uniformly
in time. Another approach is to measure the distance based on the
optimal drift, without assuming a specific bound; see, e.g., [28],
[29]. The parameters oy and oy quantify the maximum variation
of the optimal solutions over two consecutive time steps. Since
the paper deals with a tracking problem, conventional wisdom
would suggest that better tracking performance can be achieved
when (1) is not changing rapidly; this will be confirmed in the
convergence results presented later (see also [16]).

The main result of the paper is stated next. For notation
simplicity, let {w(®)} = {x®); y(*¥); 1(¥)} be the iterates gen-
erated by (8), and let {w*(®)} = {x**) y=(*) %)} pe an
optimizer of max; miny y £*

Theorem 1: Suppose that Assumptions 3—4 hold for each time
k. Let G = diag(Z-I, .-, 11) be a positive definite matrix.
Assume that the step 51ze ﬁﬁ and the perturbation constant ~
satisfy: By + 8 < 1,8 < 1. Finally, assume that the step sizes
satisfy the following:

£
~2 f
0<a < ((1 + By)aa + ﬁ_)
¥

Then, at every time £, the tracking error of the algorithm (8)
evolves as:

(k) _ (k) (k—1) _ *(k-1)
Iw la < W = wh Dl
1
1 02 02 2
e X 392 17
where oy :=G6A0x + B0y + 0K +0aT(01) + 0BT (02),

J(o1) = o1 + \/AMe, T (02) = 02 + /7 Mc and § satisfies

the condition:

" e
Uy Yg

0<d <min ~
(1—1—6’)/)5’%—[——‘; 4,820 +2L

=, By

(18)

Corollary 1: Under the assumptions of Theorem 1, one has
the following asymptotic behavior for the tracking error:

1

; (%) ®) ., <1 C’;% o3 N
limsup |[w' —w"'W|lg <= Z2+—=L+4+20; | . (19
k—oo 5 (s5]
The proofs of Theorem 1 and Corollary 1 are provided in the
Appendix.

Remark. We also provide a comment on the boundedness of
the dual iterates; specifically, A%) can be bounded as follows:

||)L(k)|| - ||)J’“) LG l*,(k)”

< [A® — 2B 4 a2,

From Corollary 1, one has that |[A*) —1*®)|| is bounded;
further, from [33, Proposition 3.1] and (12) it follows that
A% | < ||a°Pt () ||, where A°P%(¥) is the optimal dual solu-
tion (without perturbation), which is assumed to be bounded
as ||A°PH()|| < M. Therefore, |A(*)|| is bounded too. The
distance between w(¥) and the optimal solution woPt(k) =
{xopt:(K) yopt,(k) 30opt,(k)} can be bounded as follows:

(k) _ WOPt,(k)”G = “w(k) w(k) + wh(k) _ wﬂpt-,(k)”G

l[w

< ||w(k) — w(k) le + ”w*,(k) = Wupt,(k)”G

191 (62 o2 o I
< 3 (Q_J; + a_z 1+ 203 + ||w (k) _ Wﬂptf(k)”G

From (13) and ||A°P%(®)|| < M, we know that

w8 — wort:()) 2,
= ||vR) — Vnpt’(k)”?; e . || ) — popti(k)| 2
aytag B
1+ 4 2
< max(—, —)yM? + Z M2
a1’ oz B
This eventually gives us
||w(k) s wcpt,(k)”é
el 8] i, 4
e T e AR 2 e 24 M2,
<3 ( o ol) + 2max(—, —)xM* + M

The result (17) asserts that the proposed algorithm exhibits linear
convergence with a contraction coefficient of 1/(1 — §) [16];
the evolution of the tracking error depends on the temporal
variability of the optimal trajectory, which is bounded by the
second term on the right-hand-side of (17). It is worth pointing
out that, if the problem (1) is static, then (17) boils down to

(k-1)

lw® W™ —w'|a

“WleLim 1+0

showing linear convergence of the proximal-ADMM method in
batch optimization (w* is in this case the solution of the static
problem).

The asymptotic result (19) matches existing results in online
methods for time-varying optimization [5], [16], [39]. In partic-
ular, the bound depends on the é (which affects the contraction
coefficient) and the maximum variation of the optimal trajectory
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over two consecutive time steps, and it shows how the variation
of the problem parameters and optimal solutions can affect the
tracking performance.

Although (19) asserts that the maximum tracking error is
bounded, its tightness is to be investigated on a case-by-case
basis (i.e., based on the particular evolution of the solution).?

The following corollary presented shows how to maximize &
(and, hence, how to minimize the worst-case tracking bound).

Corollary 2: 1f the step sizes are selected as

3 T
= 1 ~32 i
ap = (( + Bv)oa + ’f’f) )

e |
232 max o2 L2
gl (u+_9)

Ug Ug

then one has that the contraction coefficient ﬁ(; can be com-
puted using the following expression:

~ ~o
vf Yg

=3 3 = 1}87
2 =4
(1+By)5% + 2 P +2U;

(20)

d = min

Notice that, for example, if we specify § = 0.5 and v = 1,
then vy, avp, § depend only on the problem itself; i.e,

o v, _ 1
6 = min i si L arara e 2D
STt en B TS
1 1
o = 8 ' S - (22)
L3 max & L2
%U%+?f " e e

As long as one picks 4 as in (21), there exist suitable a1, o to
ensure convergence (see (43)—(44) in the proof).

V. EXAMPLE OF MOTIVATING APPLICATIONS
A. Multi-Area Power Grid Optimization

In this section, we briefly outline an example in power grids.
We consider a distribution network featuring distributed energy
resources (DERs), and we apply the proposed methodology to
drive the DER output powers to the solution of an optimization
problem encapsulating voltage constraints and given perfor-
mance objectives. We demonstrate that the proposed method-
ology is amenable to settings where the distribution system is
partitioned in areas; each area is autonomously controlled, and
it “trades” power with adjacent areas based on given economic
objectives [31]. In contrast, previous works in the context of
real-time optimal power flow involve centralized algorithms [8],
[9] or algorithms with a gather-and-broadcast architecture [7].

Similar to [31], consider partitioning a power distribution
network into C clusters, and denote as C; the set of electrical
nodes within cluster : = 1,...,C. Two clusters ¢ and j are
adjacent if there is at least an electrical node 7 such that 7 € C;
and i € C;. Let B; ; :== C; N C; be the set of boundary nodes

3For example, [38] showed that a bound of the form (19) is actually tightly
met for online gradient and proximal-gradient descent for a particular sequence
of adversarial cost functions.

connecting cluster i to cluster j, and define B; := U;x;B; ;.
Further, let Z; := C;\B; be the set of internal nodes for cluster
i. For future developments, let N; := |Z;| be the number of
internal nodes if cluster i, and let N; C {1,...,C} be the set of
neighboring clusters of the ith one (i.e., cluster connected to the
ith one).

Let x} := [P}, Q;]T € R? collect the net active and reac-
tive powers injected by DERs at the node j € Z; of cluster
1. Particularly, x} can represent the powers injected by one
DER located at node j, or the aggregate net power injections
of a group of DERs located at node j (e.g., a household with
multiple controllable devices) and we stack the setpoints
{x}}jez, in the vector x* € R*":. If no controllable DERs are
present at a given location, the corresponding vector x:; is set to
0.* On the other hand, £; € R? denotes the net non-controllable
loads at node j € Z;, and £' € R?V: stacks the loads {£}}jcz,.
It is assumed that no DERs and no non-controllable loads are
located at the boundary nodes B; ;.

Let V; € C denote the complex line-to-ground voltage phasor
atnode j of clusteri,andletv* := [{|V}}|, j € Z;}]" be the vector
of voltage magnitudes of the internal nodes Z;. For each pair
of neighboring clusters (i, ), let xJ.* := [P Qi~1]T € R?
represent the active and reactive powers flowing into area ¢ from
area j through node n € B; ;; on the other hand, x4/ € R?
contains the active and reactive powers flowing into area j
from area i through node n € B; ;. From Kirchhoff’s Law,
it holds that xJ~* + x777 = 0. To facilitate the syntheses of
computationally-affordable algorithms, we leverage the follow-
ing approximate linear relationship between net injected power
and voltage magnitude (see e.g., [7] and references therein):

V=) AN —£)+ ) Y AlXIPita, (23a)
JET; JEN; neB; ;
=A'X — )+ ) A4,
JEN®
where A’ = [Al]jer,, A7 = [A]|ne, ;,a are time-
varying problem parameters derived from linearized power
flow equation. Another linear relationship between net injected

power and power between clusters is captured in the following
equation:

xI=t .— Z Mi—n(xi = L) _’_mj—)i,
kel;
33
keNi\{j} neBik
_ Mj—ri(xi P gi) & mj—r‘a' £ Z Mk‘j—}ixj—n"
keNi\{i}

(23b)

(24a)

(24b)

where M7 = [M';;_)i]kEIHMk’j_n = Mﬁ?j_}i]ﬂEBi,ksmj_ﬂ
are also time-varying problem parameters depending on the

“4For notation simplicity, the model is outlined for balanced systems and for
the case where one household/building with DERs is located at a node. However,
the model can be trivially extended to multiphase networks [40] and for the case
where multiple households/buildings with DERs are located at a node (at the
cost of increasing the complexity of the notation).
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actual network physics. All model parameters in (23)—(24) can
be obtained as shown in [40]. Now we are ready to state our
real-time OPF problem as follows:

BB Z[f (x') +g"({x’ "} (P3)
(x*h{xn j =
s.t. x}ey;,Vj et i=1,...0 (25a)
v < <™ Vi=1,...C (25b)
X_',I'—H' — Mj—}i(xn' L Ei) g mj—}i ¥ Z Mk,j—}ixj—i-i
keN;\{j}
e N d=dy, 00 (25¢)
xI 7 + x** = 0, V neighboring areas (3, j) (25d)

where the time-varying objective function models the amount of
real power curtailed and the amount of reactive power injected or
absorbed (which leads to non-smooth term in the objective, e.g.,
£4 term). For notation simplicity, we write objective function in
(P3) as ¥(x). Consider M7 " consists of 1, 0, with 1 for real
power, 0 for reactive power. Putting (24b) back to (23b), adding
slack variables v, 3! to (25b) formulate equality constraints,
and adding strongly convex term w.r.t v = {7}, 3 = {3'} we
have the following formulation:

i e B e i T E ally|l* +blIBI1*  (P4)
s.t.x}ey'i,‘v'jejfg, =" G (26a)

pyoil] 4t =0,Yi=1,...C (26b)

Vi@ — ™1 =0,¥Vi=1,...C (26¢)

I = WA — ) Ll L Z MFEd i

keN;\ (4}
VieN, i=1,...,C (26d)
xJ7% 4+ x77 = 0, V neighboring areas (i, j). (26e)

We can now clearly see a mapping from (P4) to (1): objective
functions are ¥(x) and alvy||? + b||3||*(Where a,b> 0 are
small); two blocks of variables are {x’, x/~*} and {~*%, 3'};
constraints are all linear and separable w.r.t each network node.
Problem (P4) is time varying in both objective function and con-
straint parameters. In order to better illustrate how the proposed
algorithm can be applied, we use a 4-cluster network (see Fig. 2)
as anexample. First, we substitute x7~% in (23b) with (26d); then,
we substitute ¥? in (26b)—(26¢) with (23b); last, we define the
corresponding augmented Lagrangian function as follows:

¥(x) + allvl|* + blIB|I>

M

k ieCy

L£(x,7,8,1) =

D (A +Af)x; +a
JeCk
MA=-]P

P

_’_ﬁi_vmax+

o R A R Y & =4 |
: .]li .:n..:ia I & T 2“:1"_.-‘_I =i
. 1) | [
| . . . . L |
I W o% 2 . lie—a |
r 1B L. 5 ’
] I I ._I.._-—'_—' Ed
- - g e .
bl gt ()
e et
| n B | | e
: e 4 ] 1n 73 I i . o
|
I . B _: 16 s | | 12 k]
---------- . - - .
Fig.2. power distribution network with 4 clusters, node 3 is a boundary node

that belongs to all 4 clusters.
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k ieCp jeCr
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2 || &= p
i#]

The detailed updates follow the same way as (8) and from
Table I we know that linear convergence to AKKT is guaranteed.
To further improve our algorithm for this particular application.
We incorporate system measurements in both primal and dual
updates in the following way:

3T (AL+ ANXE +ap = $(x), Y ¥ = h(x),

JeCk JECk

(27)

where ¢(x), 1(x) are measurements. This is beneficial in that:
i) A natural distributed computing scheme is achieved while
without feedback it is not clear whether the algorithm can be
implemented in a distributed way; ii) feedback terms are much
less than uncontrollable terms, which essentially shrinks the
measuring time; iii) it is easier to satisfy power flow equations
with the help of system measurements,

B. Simulations

In this section, we test our algorithm using the same power
systems settings. We consider a similar system as in [7], where
a modified IEEE 37-node test feeder is utilized. The network
is obtained by considering a single phase equivalent, and by
replacing the loads on phase “c” specified in the original dataset
with real load data measured from feeders in a neighborhood
called Anatolia in California during a week in August 2012.
It is assumed that the aggregations of photovoltaic systems
are located at nodes 4, 7, 10, 13, 17, 20, 22, 23, 26, 28, 29,
30, 31, 32, 33, 34, 35, and 36. The rating of these inverters
are 300 kVA for 7 = 3, 350 kVA for ¢ = 15,16 and 200 kVA
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Fig. 3. Real power at feeder head during 12:00-12:30.
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Fig. 4. Voltage profile achieved (only some nodes are considered for illustra-
tion purposes).
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Fig. 5. Index for the overall voltage violation across the system
fnw(maX(lefl — ™, 0) + max(v™" — |V;¥],0)).

for the remaining ones. The objective is set to be fi(x') =
Cp{Pav?i - R)Z +Cq{Q'x')2 + quQil:gi(Xj_H:) = 0 where Pav,i
is the maximum real power available from the PV system i,
and cp = 3,¢c4 = 1,&; = 0.1. The voltage limits are set to be
Vmin — 0.95 pu, V™a* = 1,05 pu. The generation profiles are
simulated based on real solar irradiance data and have a granular-
ity of 1 s. First we specify a given trajectory for the power at the
common coupling, which is color-coded inred in Fig. 3 (negative
power indicates reverse power flows). It can be seen that our
algorithm is able to regulate Py close to Py, in real time.
Fig. 4 illustrates the voltage profiles for selected nodes. From
10:00 to 12:00 we observe a few flickers, which is caused by
rapid variations of the solar irradiance. Other than that, it can be
seen that voltage regulation is enforced and a flat voltage profile
is obtained. Note that even there are some relatively large jumps
from around 12:00 to 14:00, our algorithm is still able to track
the optimal trajectory. A comparison with double smoothing
algorithm [7] is presented in Fig. 5. The proposed strategy

Cluster 1 Power Violation

6:00 8:00 10:00 1200 1400 1600 1800 2000
Time

Fig. 6. Power violation of Cluster 1: power violation for each cluster is defined

CTTDIMINTS Lac el e <o

10 T T T T T T T

=
Ml e om |«

3
=
-]

1000 2000 3000 B

Consensus Violation

15 . L L L L . .
1 600 8:00 10:00 12:00 14:00 16:00 18:00 20:00

Time

Fig. 7. Consensus violation: [|x(*=7) 4 x(7=9) 2,

has potentially better voltage regulation ability, especially for
extreme cases e.g., the two spikes from 10:00 to 12:00.

We proceed to test in the same setting except we are adding
consensus constraints. In Fig. 6 we can see that for all 4 clusters,
power violation decreases dramatically in first a few minutes and
remains at a low level of 1071, The power consensus violation
is shown in Fig. 7, where a steep drop at the begging and flat
low line after that are observed.

VI. CONCLUSION

This paper gives a general online optimization problem for-
mulation and proposes a online algorithm based on alternating
direction method of multipliers that can continuously track
optimal solution in real time. The steps of ADMM are prox-
imal gradient steps with modification of adding perturbation
to dual variable and incorporating system feedback for certain
applications. The resulting algorithm is proved to converge to
a neighborhood of optimal solution for each time instance. Nu-
merical results for power systems applications also demonstrate
the practicality of the proposed algorithm. Our future research
will focus on general online nonconvex optimization problems.

APPENDIX A
PROOF OF THEOREM 1

To show the result of Theorem 1, we start from the following
lemma.
Lemma 1: Under the assumptions of Theorem 1, it holds that:

[w® —w® g > (14 8)|w*D —w @8 (28)
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Proof: Since the lemma focuses on a particular time instant

k, we replace w*(*) with w* for notation simplicity. Also, to
better fit the equations in the columns, we replace the subscript
(%) and (*+1) with ¥ and *+1, respectively, in the proof.
From the optimality condition of subproblem (8a), one has
that:
ATA*(1 - By) — BAT (Ax* + By*+! —b)
1
—V fi(x*) + —I(x* — x**1) € afp(x*+1).
231
Rearrange terms we get
Ale_'_l + ,BATA(XEJFI == Kk) 4 Vfl(xk—‘,-l) = Vf]_(xk)
1
+ —I(x* —x**1) € fo(x*1) + Vfi(x*1).  (29)
aq

Also from optimality condition of subproblem and (8b), one has
that

BTA*(1 — By) — BBT(AX**! + By**! —b)
T ﬁBTA(Xk+1 T Kk) A JSBTB(yk—l-l = yk)
s él(yk — y**1) — Vi (v*) € dao(y* ).
Rearrange terms we get
BT(A* 4 A —x*) + BB(y* ! — y*))

: 1
+ Vi (y*) = Vai (y*) + a—zl(y’“ -y

€ dgo(y* ™) + Va1 (y"*). (30)
Furthermore, from the dual update (8c), one can obtain:
1
E(lk — M) —F L (AT L By*t —b),  (31)
and, together with optimality condition, one obtains:
1
F(F A =9 (F 1) + AR —x)
LB =) (32)

Since the functions f = fy + f1 and g = go + g1 are strongly
convex, we leverage (3) and (4) and, by plugging the optimality
condition (29) and (30), we have

(AT(kk—H = l*) + ﬁATA(Xk+1 _ Xk) £ vfl (Xk:+1)
- VAR + ail(xk o i B
1

> vp|lx*Ht —x*|? (33)

(BT(lk-‘rl o l* +,8A_(Xk+1 _Xk) 4 ,BB(ykJrl = yk))
1
+ Vg (yk-i-l) - Vgl(yk) 4 a_gl(yk -, yk+1)?yk+1 — %

> vglly* ™ —y*|I? (34)

Next, add (33) and (34) together, define & = v [[x*+1 — x*||2 +
vg||y**! — y*||? and plug in (32) to obtain:

,8A(Kk+1 = Xk) gE l-’i‘-l-l =5 l*’ %(lk = lk-l‘l))

a2y ,.Y()Lk = lt)>
£ <ail(x" R LR )~ W ) 5 - x*>
+ <V§1 (yk-l-l) —Vgl(yk) —t—ﬁBTB(ka _yk), yk,+1 _yg)
+ <a%(y’“ =F T y*> > 9. 35)

‘We then proceed to split the cross terms and one can notice that
there are similar terms for x, y, A in the following form:

1 1
AL g Lk gk > <_ B _ k1Y
(i —a gt ae ) (Lo i),

* 1 *
o > + <a_2(yk —y*h), " -y >

We group them together and define the following quantities:

%I 0 0 xk x*
G=|0 10| wk=[y*], w=|y],
0 0 %I A At

so that one can rewrite the inequality as follows:

(W — wh)TG(wh — whHl) 4y (A" — Ak ak+1 7
+(F — AR A (xR xBY) 4 By (0% — AF, A(xFH — xF))
+EB B =y )y =57

+ M —x%, VA (™) — VAKD)

+ (P =y Vo (™) = Va (y*)) = 2. (36)

To tackle the cross terms related only to A, we consider the
following equality

la = el& = [Ib - ¢ll& =2(a—¢)"G(a~b) —[la—bllg,
(37)

and use it in (36) to arrive at the following inequality:
(Wk-i-l Wt)TG(Wk = wk-‘,—l) > %”lk-i-l i )"*”2
— 2l AR Tk -
2 2

£4 (lk-i-l = lk, A(Kk+1 = Xk»

+ By(AF — 2%, A(xFH - x¥))

2 (X* — Xk+1, vfl (Ik—i-l) e Vf[(Kk»

+ " =y, Vo (y* ) - Vai (v¥))

+ (BBTB(y*t! —y*), ¥y —y*) + @. (38)
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Then, we utilize the Cauchy-Schwarz inequality to bound the
following term:

(A(Xk-i—l s Kk), kk-i-l

= lk)

>

1
_ﬂ ||A(3‘{kJrl = Xk)“2

- %”lk-i-l — %2, Yp1 > 0
(39)
We implement same process for the rest of cross terms:

By(A(xEH —xF), 0% —1%)

By k+1 ky) 2 /9’YP2 k 2
> ——||A(x"T — e | Wy | - 0
> - AGH = x| = SR A%, Vpr >

(BBTB(y* — y**1),y**! —y*)
B *
2 - IBOH =y - BB -y
B2 (B :
> —E%maxB) it yrip _ goo2 Byttt -y 2

P3

where omax(B) is the maximal singular value of B. The remain-
ing terms in (38) are related only to gradients of f;, g1, which
can be bounded as follows:

(Xt = Xk_H, Vfl{:rk—i-l) = Vfl (Xk))
+{y =y V(™) - Va(vy*)
LZZ
> —oLxM |2 — Bt —
2 .
e At ]| el it RS )

2

where we have used the Cauchy-Schwarz inequality and we
leveraged the Lipschitz continuity of fi, g1. Also, from (37), it
can be noticed that:

Fowrg = Wt — Wi

=2(wF —w)TG(wr —w

[[w

B = w® — WG

It therefore follows that:

Wk —w*|& — [w*H —w*||%
> [|w* — W& AT =2
— ) IAF = AFFL 2y — a2
2 (A
o Uma;l( ) ||Xk+]. e Xk||2 = P]”lk_l_l — lk”Q
Byol (A 3
— B1TmaeB) s _ 2 gt — 272
P2
2
_Lf E+1 k2 _ E+1 2
—|Ix x"[|* — pa|Ix x|
P4
2
— 2|y =55 — psly* T - yIP + @
ps
Boz . (B) 5
— r“p%glly’“rl —¥*II> — Bpaopax(B) Iy —y°|I%.

153

Rearranging the terms in a suitable way, we arrive at the follow-
ing inequality:

[wh —w*[[& — [t — Wi

2
> i . JE‘]EIX(A) £ 18701211M(A) & "xk _xk+1”2
= N 51 P2 P4

k+].||2

1 ol (B 72
+(——ﬁ——LJ——ﬂnw—y
as p3 ps

ek
B

ok pl) I — A2 4 (2 — py)JFH — x|

+ (205 — ps — Bpaoimax(B)) ly* ' — y*1?
Al — 1317 + (y = Bypa) IAF — 2412 (41)
Recall that the goal is to prove the following inequality:

Iw* =& > A+ o)W —w'lE, @2)

where § > 0is a constant. For brevity, denote the right-hand-side
of (41) as C'; then it is sufficient to prove that:

C 2 g||lwH —w|IG
é é )
= [+ — B P~y 4 AR — a2
(84 kg
which requires the following to hold true:
1 maxo?(A) PBymaxo?(A) Lfr >0
aq P P2 P4
2 L2
A BN e el g
asz p3 ps B
) 2 é
2up —pg — — > 0,205 — ps — Bpsmaxo“(B) —— >0
aq Qg

= 2 0,7 — Byp2 2 0.

B

From the inequalities above, one can notice that the constant
o, o is closely related to various constants as well as the singu-
lar values of A and B, denoted as o(A) and o(B), respectively.
Specifically, this leads to the following conditions for the step
sizes:

N —

é 1
S5 =7 <a; < (L 1 B max o2(A) 1 A (43)
P1 2] Pa
R e
2vg — ps — Bpsmaxo?(B) — 7 ﬁma"p—;‘z(ﬁ) i %E.
(44)

To ensure that there exists step sizes «;,ap that satisfy
the condition above, one can choose py =1,p2 =1,p3 =

B (Bﬁ = vy, ps = vy, and from Assumption 4,1 we
kﬂow we have all problem dependent parameters uniform
bounded. As for other parameters, one has that:

1
5—7—120,7—6720:' By+B<1,<1.

This completes the proof.
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Using Lemma 1, we can now proven the result of Theorem 1.
For notation simplicity, we define r = 1—_15 Using (28) and the
triangle inequality, we have that

||w(k) = W*i(k)"G S T”W(k_l) = w*s(k_l) + w*s(k_]-)
— wh(k) le < T”w(k—l) . w*,(k—l)”G £ 1r.||‘|,","=,(»'€—1)
— wH(k) le.

We now find a bound on |[w**~1) — w*(*)| 5. From (14),
(11c) and the fact that we have chosen v = 1, we know that

A (k1) _ AB)yn(0) | Bl gn (k41)
_BE ) | pk) _ pk1) | ye(kD) _ k) g

Move X terms to the other side of the equation and take norm
for both hand sides, it follows:

l|l*‘(k+1) = ;L*.-(k)H
< ”A(k-i-l) (X*.-(H-l) _ X*,(k)) 4+ (AUH-I) ol A(k))x*‘(k) I
+ ||B(k+1){y*,(k+1) 4 y*‘(k)) L8 (B(k-i-l) - B(k))y*,(k) I
1 ||b“°} = b(k+1)l|_
From triangle inequality of norm we know
”l*.-(FH-l) _1*,(k)||
< JJA®HD ||| E+) — x| 4 ||BEHD| ||y kD)
= y*'(k) |+ ||b(k) = b(k-i-l)” + “A(k+1) = A(k)””X*,(k) I
+[BE+D — B®|ly~®)
From (13) we know that
I ® | < o1 + /7 max [xP4M) - ¢
< o1+ FMe = T (o),
Iy @l < o3 + /Fmax|[AP-0 - ¢
< o3 + /yMe = J(o3).

Combining with Assumption 4 we can reach the following
inequality

”l*s(k‘i‘l) _l*,(k)”
< GA0x + 0BTy + 0 +0a§(01) + oB§(02) £ 0y,

which gives us

||W*"(k_1) = w"‘:(k)“G S 'Qr; — (45}

and the desired result is obtained.

APPENDIX B
PROOF OF COROLLARY 1

By recursively applying the Theorem 1, we have that
”W(k) = W*’(k)”G < Tk”W(U) — W*’(O)HG

(k)
+ ) wn e — W) g
i=1

where ||[w*(*-1) — w*(k)||q < . Taking k — +oc, we can
derive

lim ”W(k) L W*,(k)HG

k—oo
) (1 —r®) -
< lim ( ( Jy(o) +rHw® —w ’“”IIG)
k—oo =%
= lim sup ||[w® —w*®| ¢ < )= g
k—oo =¥ J

The desired result is then obtained.

APPENDIX C
REMARKS ON COROLLARY 2

The result is obtained by choosing the biggest step sizes; that
is:

1 1
o] = ==t Y =
s 2 232 54 2
(1+By)o’a + 55 ﬁ+jmﬂ+?§'
Recall that:
§< g 5 < ] (46)
= ~p L}’ T apaf | 2027
(1+Bv)oa + 5+ o g

We already know that & < 3~; therefore, based on (43)—(44),
one can pick 4 as

vf Vg

4 = min - —, B~
- L2 7 4B254 212’
2 i B 2
(1+Bv)oa+35 —=, -t
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