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Penalty Dual Decomposition Method for Nonsmooth
Nonconvex Optimization—Part I: Algorithms and

Convergence Analysis
Qingjiang Shi and Mingyi Hong

Abstract—Many contemporary signal processing, machine
learning and wireless communication applications can be formu-
lated as nonconvex nonsmooth optimization problems. Often there
is a lack of efficient algorithms for these problems, especially when
the optimization variables are nonlinearly coupled in some non-
convex constraints. In this work, we propose an algorithm named
penalty dual decomposition (PDD) for these difficult problems and
discuss its various applications. The PDD is a double-loop iterative
algorithm. Its inner iteration is used to inexactly solve a nonconvex
nonsmooth augmented Lagrangian problem via block-coordinate-
descent-type methods, while its outer iteration updates the dual
variables and/or a penalty parameter. In Part I of this work,
we describe the PDD algorithm and establish its convergence to
KKT solutions. In Part II we evaluate the performance of PDD by
customizing it to three applications arising from signal processing
and wireless communications.

Index Terms—Penalty method, dual decomposition, BSUM,
KKT, augmented Lagrangian, nonconvex optimization.

I. INTRODUCTION

MANY important engineering problems arising from sig-
nal processing, wireless communications and machine

learning can be modeled as nonconvex nonsmooth optimiza-
tion problems. These problems are generally difficult to solve,
especially when the optimization variables are nonlinearly cou-
pled in some (possibly nonconvex) constraints. This two-part
paper provides an algorithmic framework that can fully exploit
the problem structure, for optimizing a nonconvex nonsmooth
function subject to nonconvex but continuously differentiable
coupling constraints.
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Nonconvex problems with constraints that couple a few de-
sign variables often arise in contemporary applications. For
example, in the joint source-relay design of many multiple-
input-multiple-output (MIMO) relay systems [2]–[4], the relay
power constraints often couple the source or relay precoders
in a bi-quadratic manner, meaning that fixing one variable
(i.e., the source precoders), then the constraint function be-
comes quadratic with respect to the other variable (i.e., the
relay precoders). Another popular example arises in the fam-
ily of quality-of-service (QoS)-constrained power minimization
problems, in which the signal-to-interference-plus-noise ratio
(SINR) functions or the (weighted) mean-square-error (MSE)
functions are also quadratic in the beamformers [5]–[9]. In prob-
lems such as dictionary learning [10], [11], nonnegative matrix
factorization [12]–[14], and geometry-based blind source sepa-
ration [15], the variables are coupled in a bi-linear manner by
certain equality constraints. Other problems with nonlinear and
nonconvex constraints coupling can be found in [16]–[19]. Such
constraint coupling makes developing efficient low-complexity,
and parallel algorithms a very challenging task.

Generally speaking, when designing algorithms for an engi-
neering problem, it is important to exploit, as much as possible,
its fundamental structures in order to improve solution quality
and/or speed. For problems with multi-blocks and coupling con-
straint, it is the block structure that often gets exploited. One such
popular method is the alternating optimization (AO) method,
which replaces difficult joint optimization over all variables
with a sequence of easier optimization over individual (block)
variable. For instance, for two-hop relay broadcast channel, the
authors of [9] considered joint source-relay design for achieving
power minimization subject to SINR constraints, where the
source precoder and relay precoder are coupled with each other.
Observing that the power minimization problem is convex with
respect to the source precoder or the relay precoder, the work [9]
used the AO method to address the power minimization problem.
Similar to [9], the work [2] also used the AO method to address
the joint source-relay design to achieve sum rate maximization in
a MIMO relay interference channel. However, the AO method
can only provide feasible solutions in the coupling constraint
case and cannot guarantee convergence to stationary solutions
(or KKT points) unless the objective has some special structure;
see for example [8]. In particular, the AO method easily gets
trapped in some unexpected points in the equality coupling
constraint case; see [20] for illustrative examples. To deal with a
special class of equality coupling constraint Z = XY (where
X, Y and Z are all matrix variables) that arises from relay
network design, the work [21] first transformed the equality
coupling constraint into two matrix inequalities and then used
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concave-convex procedure to solve the resulting problem. How-
ever, this method is not only computationally expensive, but also
lacks convergence guarantee to stationary solutions.

Another popular approach that can deal with the coupled
constraint, especially the equality coupling constraints, is the
penalty method [22]. The basic idea of penalty method is to
move the difficult constraints to the objective function as a
penalty term, so that infeasible points can get relatively high
cost compared with the feasible ones. For example, in [17],
Kuang et al. used penalty method to approximate the solution
of the symmetric nonnegative matrix factorization problem. In
[3], Shi et al. used penalty method to solve the joint source-relay
design problem for full-duplex MIMO relay systems. The work
[23] showed that penalty method can be applied to solve the
rank minimization problem, an important class of problems that
often arises from signal processing. However, penalty methods
could be very inefficient, because it usually requires that certain
penalty parameter goes to infinity, resulting in ill-conditioning
for its subproblems. Augmented Lagrangian (AL) methods [24],
[25] were proposed to overcome the limitations of penalty
methods by introducing an additional dual-related term. In the
AL methods, a sequence of AL subproblems (i.e., the problems of
minimization of the augmented Lagrangian) need to be exactly
or approximately solved [22]. When the AL subproblems are
easily solvable, the AL methods are attractive as they can be
often easily implemented (often in a matrix-free manner) [26]
and have at least local convergence guarantees under relatively
mild assumptions [27], [28]. However, the AL subproblems are
generally hard to solve especially when they have complicated
constraints. Further, the AL method generally cannot deal with
nonsmooth penalty function in the objective.

As an important variant of augmented Lagrangian method, al-
ternating direction method of multipliers (ADMM) has recently
regained popularity due to its applicability in many large-scale
problems [29]. Differently from the standard AL method, a
single iteration of block coordinate descent (BCD) or AO is used
to approximately minimize the augmented Lagrangian at each it-
eration of ADMM. That is, the AL subproblem is minimized only
approximately, by solving a sequence of smaller, and potentially
easier, subproblems generated by the block coordinate decom-
position. Indeed, it is the idea of combining block decomposition
and approximate AL subproblem minimization that enables the
ADMM to fully exploit the block structure of the problem.
Although the ADMM has been widely used in the areas of signal
processing [15], [30], [31], wireless communication [5], [7],
[32], [33], and machine learning [14], [29], [34], [35], they are
primarily developed for convex problems with linearly coupling
constraints. Generally speaking, ADMM does not converge for
nonconvex problems, except for a few special cases; see recent
developments in [36]–[39] and the references therein.

Other relevant works in the literatures include [40]–[45]. In
[40], the authors proposed to use sequential quadratic program-
ming (SQP) based method to optimize a nonsmooth problem
with both equality and inequality constraints. In particular, the
proposed algorithm is based on solving certain smooth version
of the problem, by using adaptive smoothing parameters, and by
utilizing the state-of-the-art SQP solvers. This is a very general
scheme that can deal with a fairly wide class of problems.
However, the proposed algorithm requires the computation of
Hessian matrices, or some approximation of them, which could
be expensive to obtain in practice. Further, it is not clear how to
deal with block structures. The work [41] dealt with nonconvex

nonsmooth optimization variables assuming that, at each step
certain proximity operator can be evaluated exactly. In [42], the
authors dealt with difference of convex (dc) problems, where
both the objective and constraints can take the nonconvex dc
structure. The authors developed feasible and infeasible algo-
rithms for these problems, and discussed various extensions
such as distributed schemes for problems with finite-sum struc-
tures. The authors of [45] proposed distributed and/or parallel
algorithms to deal with nonsmooth objective function and dif-
ficult constraints. The algorithm generates feasible iterates by
solving certain strongly convex subproblem with inner convex
approximation of the original feasible set. The authors of [44]
considered problems where both the objective function and the
constraints can be represented by certain LC1 functions. The
authors proposed methods based on the idea of combining SQP
methods and successive convex approximation with appropri-
ately diminishing stepsizes. We note that these algorithms and
the associated analysis can be extended to the multiple-block
setting, but it is not trivial to include constraints that couple all
the variables, while still being able to fully utilize the block
structure of the problem.

In this work, we propose an optimization framework named
penalty dual decomposition (PDD), which integrates the penalty
method, the AL method and the ADMM method. Specifically,
our framework is a double-loop algorithm where the inner loop
approximately solves the AL subproblem, while the outer loop
updates the dual variable and/or a certain penalty parameter.
To exploit the problem structure as fully as possible, a block-
coordinate-descent (BCD) based method is used to approxi-
mately solve the AL subproblem. In Part I of the paper, we
first introduce the notion of generalized gradient [47], [48] and
provide conditions under which a KKT point exists. We then
rigorously prove the convergence of the PDD to KKT points
under some constraint qualification (CQ) condition. Further-
more, to address AL problems with nonconvex constraints using
BCD-type algorithms, we propose stochastic BSUM algorithm
and prove its convergence. Our proof is critically dependent on
the randomization introduced to the original BSUM algorithm,
which provides the algorithm with good convergence behavior
even in the presence of nonconvex constraints. In the second
part of this paper, we customize the PDD to several engineering
problems arising from signal processing and wireless commu-
nications. Our numerical results show that PDD outperforms
a number of state-of-the-art algorithms, therefore validating
the effectiveness of the PDD method in solving nonconvex
nonsmooth problem with coupling constraints.

Notations: Throughout this paper, we use uppercase bold
letters for matrices, lowercase bold letters for column vectors,
and regular letters for scalars (unless otherwise specified). The
notations Rn, Rn

+ and Rn
− denote the n-dimensional space of

real number, nonnegative real number, nonpositive real number,
respectively. For a vector x, ‖x‖ and ‖x‖∞ denote Euclidean
norm and element-wise infinity norm, respectively. Bδ(x0) de-
notes a Euclidean ball centered at x0 with radius δ. For a scalar
function f(·), f ′(·) and ∇f(·) respectively denote its derivative
and gradient with respect to its argument. For a multivariate
function f(x,y), ∇xf(x,y) denotes its gradient with respect
to x. For vector functions g(x) and h(x,y), ∇g(x) denotes the
Jacobian matrix of g(x) and ∇xh(x,y) denotes the Jacobian
matrix of h(x,y) with respect to x. For a convex function �(x),
∂�(x) denotes its subdifferential. TZ(z) andNZ(z) denotes the
tangent cone and normal cone [49] of the set Z at point z,
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respectively, and these definitions are formally given in Ap-
pendix A. The notation intZ denotes the interior of the set
Z while the notation (xi)i denotes a vector stacked by all
subvectors xi’s.

II. NONCONVEX NONSMOOTH OPTIMIZATION AND

KKT CHARACTERIZATION

Consider the following problem

minx∈X ,y F (x,y) � f(x,y) +
∑ny

j=1 φ̃(yj)
s.t. h(x,y) = 0,

gi(xi) ≤ 0, i = 1, 2, . . . , n
(P)

where
� the feasible set X is the Cartesian product of n closed

convex sets: X � Πn
i=1Xi with Xi ⊆ Rni and

∑n
i=1 ni =

N ;
� the optimization variable x ∈ RN is decomposed as x =
(x1,x2, . . . ,xn) with xi ∈ Xi i = 1, 2, . . . , n, and y ∈
RM is decomposed as yj ∈ Rmj , j = 1, 2, . . . ,m, with∑m

j=1 mj = M ;
� f(x,y) is a scalar continuously differentiable function;
φ̃(yj) is a composite function in the form of φj(sj(yj)),
with each sj(yj) being a convex but possibly nondiffer-
entiable function while φj(x) being a nondecreasing and
continuously differentiable function;

� for each i, gi(xi) ∈ Rqi is a vector of qi continuously
differentiable functions, and we define q �

∑n
i=1 qi;

� h(x,y) ∈ Rp is a vector of p continuously differentiable
functions.

� The feasible set of problem (P ), given below, is nonempty

Z � {(x,y) ∈ RN × RM | x ∈ X ,

h(x,y) = 0, gi(xi) ≤ 0, ∀ i}.
(1)

In the above problem, the constraint coupling is mainly rep-
resented by the equality constraint h(x,y) = 0, while for each
i, the inequality constraint gi(xi) ≤ 0 represents the possibly
nonconvex constraints forxi. Note that we do not explicitly write
down the constraint set for the block y for ease of exposition.
However, the constraint on y can be similarly treated as that
for x.

Further, we remark that the term
∑ny

j=1 φ̃(yj) represents the
nonsmooth part of the objective function. Typically, the compos-
ite function φ̃(yj) = φj(sj(yj)) can take the form of sparsity
promoting functions. For instance, in the case of log-based
sparsity promotion function, we haveφj(z) = λ log(1 + z

ε ) and

sj(yj) = ‖yj‖, and thus φ̃(yj) = λ log(1 +
‖yj‖
ε ). Here λ and

ε are two positive sparsity-related control parameters. We refer
readers to [50, Table I] for more examples of sparsity promotion
functions, e.g, lasso penalty function, SCAD penalty function,
etc. Since the term

∑ny

j=1 φ̃(yj) could be neither convex nor
differentiable, we need to use generalized gradient [48] to char-
acterize the first-order optimality condition, which is the main
topic of the following two subsections.

A. Preliminaries

First, we introduce the definition of the local Lipschitz conti-
nuity and the locally Lipschitz function.

Definition 2.1 (Local Lipschitz continuity [47], [48]): A
function �(x) is Lipschitz near a point x0 ∈ int dom� if there
exists K ≥ 0 such that |�(x)− �(x′)| ≤ K‖x− x′‖, ∀x,x′ ∈
Bδ(x0)where δ > 0 is sufficiently small so as to haveBδ(x0) ⊂
dom�. A locally Lipschitz function is a function that is Lipschitz
near every point in int dom�.

Two important special cases of locally Lipschitz functions are
continuously differentiable functions and convex functions [47],
[48]. Combining this with the boundedness of continuous func-
tions over a compact set, it can be shown that each φj(sj(yj)) is
locally Lipschitz. As a result, the objective function of problem
(P ) is locally Lipschtiz as well. This fact will be used in
establishing the optimality condition.

Next, we introduce the concept of generalized gradient which
is defined for nonconvex nondifferentiable functions.

Definition 2.2 (Generalized gradient [46], [47], [48]):
Clarke’s generalized directional derivative of �(x) at x0 in the
direction d, denoted as �o(x0;d), is defined by

�
o(x0;d) = lim sup

u→0
λ↓0

�(x0 + u+ λd)− �(x0 + u)

λ

= lim
δ↓0

sup
u∈Bδ(0),λ∈(0,δ)

�(x0 + u+ λd)− �(x0 + u)

λ

(2)

Also, Clarke’s generalized subdifferential of � at x0 is defined
by

∂̄�(x0) = {ξ : �o(x0;d) ≥ ξTd, ∀d}.

For any ξ ∈ ∂̄�(x0), we refer to it as generalized gradient of �
at x0.

As compared to the conventional directional derivative [51],
the generalized directional derivative in (2) is defined with a new
“base point”, i.e., x0 + u, for taking the difference. Moreover,
due to the supremum taken before the limit, it is shown in
[47, Lemma 2.6] [52] that the generalized directional derivative
�
o(x0;d) is convex with respect to d even when � itself is

nonconvex. Hence, by convex analysis, we have Theorem 2.1,
whose proof is relegated to Appendix B.

Theorem 2.1: Let �(x) be Lipschitz near x0 with local Lip-
schitz constant K. Then the following holds:

1) �
o(x0;0) = 0;

2) ∂̄�(x0) is not empty and is a compact set;
3) ‖ξ‖ ≤ K, ∀ ξ ∈ ∂̄�(x0);
4) �

o(x0;d) = maxξ∈∂̄�(x0) ξ
Td, ∀d.

Furthermore, the following theorem establishes the connec-
tions between the generalized gradient and two classical con-
cepts: the ordinary gradient and the subdifferential of convex
analysis. The proof can be found in [52], [47, Prop. 2.7 & 2.8].

Theorem 2.2: The following holds
1) If �(x) is continuously differentiable at x0, then

∂̄�(x0) = {∇�(x0)}.
2) If �(x) is a convex function, then the Clarke’s general-

ized gradient coincides with the subdifferential of �, i.e.,
∂̄�(x) = ∂�(x).

Theorem 2.2 implies ∂̄φ̃(yj) = ∇φ(sj(yj))∂sj(yj), ∀j.More-
over, considering that both convex functions and continuously
differentiable functions are locally Lipschtz, according to the
result of the above two theorems, we can deduce that ∇�(x0)
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is bounded if �(x) is continuously differentiable at x0, and that
any subgradient of �(x) is also bounded if �(x) is convex.

B. KKT Characterization Under Robinson’s Condition

To describe optimality condition for nonlinear optimization,
it is often required to assume that the problem satisfies some
regularity conditions [22], [49]. In this paper, we use Robinson’s
condition, whose precise definition is given below. Note that we
have provided in Appendix A some basics for understanding
Robinson’s condition.

Definition 2.3 (Robinson’s condition [22], [49]): Robin-
son’s condition is satisfied at ẑ � (x̂, ŷ) for problem (P ), if
the following holds [49, Chap. 3]

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

∇h(x̂, ŷ)dz

∇g1(x̂i)dx1
−v1

...
∇gn(x̂n)dxn

−vn

⎞

⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣

dx ∈ TX (x̂),dy ∈ RM ,
v ∈ Rq,vi,� ≤ 0,
∀� ∈ Ii(x̂i), ∀ i

⎫
⎪⎪⎬

⎪⎪⎭

= Rp × Rq (3)

where dz � (dx,dy), v � (vi)i, vi,� denotes the �-th element
of vi, Ii(x̂i) is the i-th index set of active inequality constraints
at x̂, i.e.,

Ii(x̂i) � {�|gi,�(x̂i) = 0, 0 ≤ � ≤ qi},
where gi,�(x̂i) denotes the �-th component function of gi(x̂i).

According to Theorem A.2 in Appendix A, when the system
of constraints of problem (P ) satisfies Robinson’s condition
at point ẑ � (x̂, ŷ), the tangent cone to the feasible set Z of
problem (P ) exists and takes the following form [49, Chap. 3]

TZ(x̂, ŷ) =
{

dz � (dx,dy)|dx ∈ TX (x̂),dy ∈ RM ,

∇h(x̂, ŷ)dz = 0,∇gi,�(x̂i)
Tdxi

≤ 0, � ∈ Ii(x̂i), ∀ i

}

(4)

where dxi
∈ Rni is the i-th subvector of dx with dx = (dxi

)i.
Now we are ready to establish the KKT condition for prob-

lem (P ) in the following theorem. As shown in Appendix B,
our proof for this theorem is extended from Theorem 3.25 in
[49] which deals with the case where the objective function is
differentiable. Here we deal with the possibly nonconvex and
nondifferentiable objective function of problem (P ) by using
the notion of generalized directional derivative/gradient.

Theorem 2.3: Let (x̂, ŷ)be a local minimum of problem (P ).
Assume that Robinson’s condition holds for problem (P ) at
(x̂, ŷ). Then there exist multipliers μ̂ ∈ Rp and v̂i ∈ Rqi , i =
1, 2, . . . , n, such that the following generalized KKT system is
satisfied

(∇xi
f(x̂, ŷ) +∇xi

h(x̂, ŷ)T μ̂+∇xi
gi(x̂i)

T v̂i

)T

× (xi − x̂i) ≥ 0, ∀ xi ∈ Xi, (5a)

0 ∈ ∂̄φ̃(yj)+∇yj
f(x̂, ŷ)+∇yj

h(x̂, ŷ)T μ̂, ∀ j, (5b)

(v̂i)
Tgi(x̂i) = 0, ∀i, (5c)

gi(x̂i) ≤ 0, ∀ i, (5d)

v̂i ≥ 0, ∀ i, (5e)

h(x̂, ŷ) = 0. (5f)

TABLE I
ALGORITHM 1: PDD METHOD FOR PROBLEM (P)

Robinson’s condition is more general than the well-known
Mangasarian-Fromovitz constraint qualification (MFCQ) con-
dition. Their relation will be discussed in Section V.A. Here,
it is worth mentioning that, if Robinson’s condition is replaced
with MFCQ condition in Theorem 2.3, the above result is readily
implied by the standard KKT conditions [[46] Theorem 6.1.1].

III. PDD METHOD AND ITS CONVERGENCE

Besides the nonconvexity and nondifferentiability, the vari-
able coupling introduced by the equality constraint h(x,y) = 0
further complicates problem (P ). Without such a coupling con-
straint, efficient block decomposition algorithms such as BCD,
BSUM or FLEXA [53] can be applied to decompose problem
(P ) into a sequence of small-scale problems. Unfortunately,
these block decomposition methods can fail to reach any in-
teresting solution in the presence of coupling constraint [20].
In this section we propose the PDD algorithm that relaxes the
difficult coupling constraints (by using Lagrangian relaxation),
performs block decomposition over the resulting augmented
Lagrangian function, and utilizes appropriate penalty parameters
to eventually enforce the relaxed equality constraint.

A. The Basic PDD Method

To introduce the algorithm, denote by L(x,y;λ) the aug-
mented Lagrange function with penalty parameter � and
dual variable λ corresponding to the coupling constraint
h(x,y) = 0. Further, let us define an AL problem (P�,λ) as
follows

(P�,λ) min
xi∈ ˜Xi,y

{

L(x,y;λ) � f(x,y) +

ny∑

j=1

φj(sj(yj))

+ λTh(x,y) +
1

2�
‖h(x,y)‖2

}

(6)

where X̃i � {xi | gi(xi) ≤ 0, xi ∈ Xi}.
The basic PDD method, presented in Table I, is a double-loop

iterative algorithm, where the inner loop approximately solves
the AL subproblem (6) while the outer loop updates the dual
variable or the penalty parameter if necessary. In Table I, the no-
tation ‘optimize(P�k,λk

, zk−1, εk)’ represents some optimiza-
tion oracle used to iteratively solve problem (P�k,λk

). It returns
the tuple (zk,vk), where vk is the dual variable associated with
the constraint g(x) ≤ 0, and such a tuple approximatley solves
(P�k,λk

) to some accuracy εk. In particular, we require that the
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output (zk,vk) should satisfy the following condition (for some
properly chosen sequence {εk})

max

(

‖ek‖∞, ‖Δk‖∞
)

≤ εk, ∀k (7)

where ek and Δk are defined in (8) and (9), respectively. It
is easy to show that, when the problem (P�k,λk

) is solved to
a KKT solution, then condition (7) should be satisfied with
εk = 0. Typically, to fully exploit the problem structure, one
could instantiate the optimization oracle using some BCD-type
algorithms, such as the classical BCD algorithm [22], or some
inexact variants of BCD, such as the BSUM [54] algorithm.

Furthermore, we update the dual variable λk when the con-
straint violation ‖h(zk)‖∞ is relatively small (i.e., Step 4);
otherwise we decrease the penalty parameter �k (i.e., Step 8).
Therefore, the PDD method adaptively switches between the AL
and the penalty method. This adaptive strategy is expected to find
an appropriate penalty parameter �, with which the AL method
could eventually converge. In the PDD method, the parameter
ηk > 0 measures the constraint violation and the parameter
εk > 0 controls the accuracy of the optimization oracle, with
both parameters going to zero as the number of outer iterations
k increases.

B. Convergence Analysis for PDD

In the following, we address the convergence issue of the PDD
method. To do so, we define ek and Δk

j in (8) and (9) (see the

bottom of the page), where g(x) � (gi(xi))i. We will show
that, when these two terms go to zero, the first order optimality
condition of the AL problem with respect to x and y holds true.
The main convergence result is presented in Theorem 3.1.

Theorem 3.1: Let {xk,yk,vk} be the sequence generated
by Algorithm 1 for problem (P ), where vk = (vk

i )i denotes the
Lagrange multipliers associated with the constraints gi(xi) ≤
0, ∀i. The termination condition for the optimization oracle
involved in Algorithm 1 is

max

(

‖ek‖∞, ‖Δk‖∞
)

≤ εk, ∀k (10)

with εk, ηk, �k → 0 as k → ∞. Suppose that (x∗,y∗) is a limit
point of the sequence {xk,yk} and at the limit point (x∗,y∗)
the Robinson’s condition holds for problem (P ). Then (x∗,y∗)
satisfies h(x∗,y∗) = 0, and it is a KKT point of problem (P )
that satisfies (5).

Proof: Our proof consists of two steps, in the first step we
will utilize Robinson’s condition to argue that {μk} (cf. (13))
is a bounded sequence. Then based on this result we will argue
that the sequence converges to KKT points.

Step 1: First, we show that a key inequality [see (17)] holds
for {(xk,yk)}. Without loss of generality, we assume that the
sequence {(xk,yk)} converges to (x∗,y∗) (otherwise we can
restrict to a convergent subsequence of {(xk,yk)}). By noting

that X is a closed convex set, we have x∗ ∈ X . By the definition
of ek and using projection theorem [22, Prop. 2.1.3 (b)], we have
(
x−(xk + ek)

)T ((
xk −∇xLk(x

k,yk)

−∇g(xk)Tvk
)−(xk + ek)

)≤0, ∀x∈X , ∀k. (11)

It follows that

− (x− (xk + ek)
)T (∇xLk(x

k,yk)

+∇g(xk)Tvk + ek
) ≤ 0, ∀x ∈ X , ∀k. (12)

Let us define a “virtual” multiplier vector as

μk � 1

�k
h(xk,yk) + λk. (13)

Then we have

∇xLk(x
k,yk) = ∇xf(x

k,yk) +∇xh(x
k,yk)Tμk.

Plugging the above equality into (12) , we obtain

− (x− (xk + ek)
)T (∇xf(x

k,yk) +∇xh(x
k,yk)Tμk

+∇g(xk)Tvk + ek
) ≤ 0, ∀x ∈ X , ∀k. (14)

On the other hand, by the definition of Δk
j and (13), we have

that for all j the following identity holds

yk
j −Δk

j = argmin
yj

{

φ′
j(sj(y

k
j ))sj(yj) +

1

2
||yj − yk

j ||2

+
(∇yj

f(xk,yk)+∇yj
h(xk,yk)Tμk

)T
(yj−yk

j )

}

(15)

By the optimality condition of the above problem, we have,
∃ξkj ∈ φ′

j(sj(y
k
j ))∂sj(y

k
j −Δk

j ), ∀j such that

ny∑

j=1

(
ξkj −Δk

j +∇yj
f(xk,yk) +∇yj

h(xk,yk)Tμk
)T

× (yj − yk
j +Δk

j )) = 0. (16)

Combining (16) with (14), we have

(∇f(xk,yk) + χk +∇h(xk,yk)Tμk)T

× (x− xk − ek,y − yk +Δk) ≥ 0, ∀x ∈ X ,y ∈ RM.
(17)

where

χk �
{∇g(xk)Tvk + ek

ξk +Δk

}

Δk � (Δk
j )j , ξ = (ξkj )j .

(18)

Next, we prove that μk is bounded by contradiction and us-
ing Robinson condition. Assume, to the contrary, that μk is

ek = PX{xk −∇xLk(x
k,yk)−∇g(xk)Tvk} − xk, (8)

Δk
j = yk

j − argmin
yj

{
φ′
j(sj(y

k
j ))sj(yj) +

1
2 ||yj − yk

j ||2
+
(
∇yj

f(xk,yk) +∇yj
h(xk,yk)T

(
1
�k
h(xk,yk) + λk

))T
(yj − yk

j )

}

(9)
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unbounded. Define μ̄k � μk

‖μk‖ . Since {μ̄k} is bounded, there

must exist a convergent subsequence {μ̄kr}. Let μkr → μ̄ as
r → ∞. On the other hand, since f(x,y) and g(x) are con-
tinuously differentiable, ∇f(xk,yk) and ∇g(xk) are bounded.
Moreover, by Theorem 2.1, we know that ξk is bounded. Also,
by Robinson’s condition and Lemma 3.26 in [49], we conclude
thatvk is bounded. As a result,χk is bounded.1 By dividing both
sides of (17) by ‖μk‖ and using the boundedness of∇f(xk,yk)
and χk, we have for sufficiently large r

− (x− (xkr + ekr ),y − (ykr −Δkr )
)T

× (∇h(xkr ,ykr )T μ̄kr
) ≤ 0, ∀x ∈ X . (19)

Note that ∇h(x,y) is continuous in (x,y). Moreover, by as-
sumption

max
(‖ek‖∞, ‖Δk‖∞

) ≤ εk, ∀k, (20)

we have ek → 0 and Δk → 0 due to εk → 0 as k → 0. In
addition, it holds that (xkr ,ykr ) → (x∗,y∗) and μkr → μ̄ as
r → ∞. Hence, taking limits on both sides of (17), we have

− (x− x∗,y − y∗)T ∇h(x∗,y∗)T μ̄ ≤ 0, ∀x ∈ X ,y ∈ RM .
(21)

Utilizing the first part of the Robinson’s condition, that is
{∇h(x∗,y∗)(dx,dy) : dx ∈ TX (x∗),dy ∈ RM

}
= Rp,

(22)

it follows that there exists some x ∈ X , y ∈ RM and c > 0
such that −μ̄ = c∇h(x∗,y∗)(x− x∗,y − y∗). This together
with (21) implies μ̄ = 0, contradicting the identity ‖μ̄‖ = 1.
Hence, {μk} is bounded.

Step 2: Next we show that the algorithm indeed reaches the
KKT points. From Steps 3-9, we observe that, either both {μk}
and {λk} are bounded with �k → 0 (i.e., case 2 in Algorithm
1) , or μk − λk → 0 with �k bounded (i.e., case 1 in Algorithm
1). Hence, from the definition (13) we must have

h(xk,yk) = �k(μ
k − λk) → 0.

which implies that h(x∗,y∗) = 0. That is, the equality con-
straint will be satisfied in the limit. In addition, due to the
boundedness of {μk}, there exists a convergent subsequence
{μkr} that we assume converge to μ∗. By restricting to the
subsequence {μkr} and taking limits on both sides of (14), we
have

(x− x∗)T
(∇xf(x

∗,y∗) +∇xh(x
∗,y∗)Tμ∗

+∇g(x∗)Tv∗) ≥ 0, ∀x ∈ X , (23)

On the other hand, since problem (15) has a unique solution,
by restricting to a convergent subsequence, we can take limit on
both sides of (15), leading to

y∗
j = argmin

yj

φ′
j(sj(y

∗
j))sj(yj) +

1

2
||yj − y∗

j ||2

+
(∇yj

f(x∗,y∗) +∇yj
h(x∗,y∗)Tμ∗)T (yj − y∗

j), ∀j.
(24)

1Note that the objective function of problem (P�,λ) is continuously differ-
entiable in x. Thus we can apply here Lemma 3.26 in [49].

TABLE II
ALGORITHM 2: PDD ALGORITHM FOR PROBLEM (P)

It follows that

0 ∈ φ′
j(sj(y

∗
j))∂sj(y

∗
j) +∇yj

f(x∗,y∗)

+∇yj
h(x∗,y∗)Tμ∗, ∀j (25)

In addition, g(xk) ≤ 0 implies g(x∗) ≤ 0. Moreover, since
vk are the Lagrange multiplier associated with the constraints
g(x) ≤ 0, we have g(xk)Tvk = 0 and vk ≥ 0. It follows that

g(x∗)Tv∗ = 0 and v∗ ≥ 0. (26)

Combining Eqs. (23), (25), (26) and the fact h(x∗,y∗) = 0,
g(x∗) ≤ 0, and x∗ ∈ X , we conclude that (x∗,y∗) satisfies the
KKT condition of problem (P ). This completes the proof. �

Remark 3.1: We note that in the above proof, the Robinson’s
condition has been used in a slightly different way than in
the proof of Theorem 2.3. In particular, in Theorem 2.3, the
condition is assumed on a local minimizer (x̂, ŷ), which is
obviously a feasible solution for problem (P). On the other hand,
in Theorem 3.1, the Robinson’s condition is assumed on a limit
point (x∗,y∗) generated by the PDD algorithm, and such a point
may not be feasible for the constraints h(x∗,y∗) = 0 to begin
with. Therefore, in practical applications, in order to use Theo-
rem 3.1, one has to check whether Robinson’s condition holds for
all (x,y) satisfying the constraints that x ∈ X , gi(y) ≤ 0, ∀i
(but not necessarily satisfying h(x,y) = 0). This will be done
for each application that we will study in Part II of this paper.

C. PDD Method With Increasing Penalty

We expect that in practice, the basic PDD method can achieve
convergence with finite penalty in many applications. However,
it requires frequent evaluation of constraint violation, an oper-
ation that can be costly for certain applications. To overcome
this weakness, we propose a simple variant of the basic PDD
method; see Table II for the detailed description. The main
difference lies in that we always keep increasing the penalty
and updating the dual variable. Hence this variant is referred to
as increasing penalty dual decomposition (IPDD) method. The
following theorem shows that every limit point of the iterates
generated by the IPDD is a KKT point of problem (P ) under
Robinson’s condition.

Theorem 3.2: Let {xk,yk,vk} be the sequence generated
by Algorithm 2 for problem (P ), where vk = (vk

i )i denote the
Lagrange multipliers associated with the constraints gi(xi) ≤
0, ∀i. The termination condition for the optimization oracle
involved in Algorithm 2 is given in (10) with εk, ηk, �k → 0 as
k → ∞. Suppose that (x∗,y∗) is a limit point of the sequence
{xk,yk} and the condition (22) holds at (x∗,y∗), then the
point (x∗,y∗) satisfies h(x∗,y∗) = 0. Furthermore, suppose
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that Robinson’s condition holds for problem (P ) at (x∗,y∗).
Then (x∗,y∗) is a KKT point of problem (P ), i.e., it satisfies
the KKT system (5) of problem (P ).

Proof: Following the same argument as that of the proof of
Theorem 3.1, we can show 1) all the KKT equations except
h(x∗,y∗) = 0 and 2) that the sequence {μk} is bounded. By
checking the definition of μk and the dual update in Step 4 of
Algorithm 2, we have λk+1 = μk. It follows that the sequence
{λk} is bounded, implying ‖λk+1 − λk‖ is bounded. Since it
holds that �k → 0 as k → ∞, we have from the dual update
that ‖h(xk,yk)‖ = �k‖λk+1 − λk‖ → 0 as k → ∞, implying
h(x∗,y∗) = 0. This completes the proof. �

IV. RANDOMIZED BSUM FOR PROBLEM (P�k,λk
)

In the PDD/IPDD method, BCD-type algorithms are typically
used as optimization oracles in Step 2 to solve problem (P�k,λk

),
and it is assumed to be able to guarantee Eq. (10). However,
the convergence theory of the basic BSUM algorithm [54]
(which includes the exact BCD method [22] as a special case)
is established only for convex constraint cases. By considering
a random block update rule, we here provide an extension of the
basic BSUM algorithm, termed rBSUM, which is applicable
for problems with nonconvex constraints. In the following, we
present the rBSUM algorithm with a convergence analysis. In
particular, we show that the proposed rBSUM can reach KKT
solutions of problem (P�k,λk

), therefore ensuring Eq. (10).
To proceed, we define z = (zi)i with zi = xi for i =

1, 2, . . . , n andzn+j = yj for j = 1, 2, . . . , ny , i.e.,z = (x,y).
Letnz = n+ ny denote the total number of block variables, and
define the set [n1 : n2] � {n1, n1 + 1 · · · , n2}. Hence, the sets
[1 : n] and [n+ 1 : nz] contain the indices of the xi variables
and yj variables in z, respectively. Furthermore, for notational
simplicity, we omit k for problem (P�k,λk

) and denote its objec-
tive function simply as L(z). Thus, let us consider the rBSUM
algorithm for solving

min
z

L(z1, z2, . . . ,znz
)

s.t. zi ∈ Xi, i ∈ [1 : n],

gi(zi) ≤ 0, i ∈ [1 : n]. (27)

At each iteration, the rBSUM updates one block variable by
minimizing a locally tight upper bound ui(·; ·) of the objective
function, while fixing the rest of the blocks. Let X̃i+n = Rmi ,
i ∈ [1 : ny] and define X̃ � X̃1 × X̃2 × · · · × X̃nz

. The rBSUM
algorithm is summarized in Table III, where Steps 3 and 4
generate a random index set I specifying the update order of
block variables. In what follows, we study the convergence of
the rBSUM algorithm.

First, we make the following assumption on ui(·; ·).
Assumption 4.1:

ui(zi; z) = L(z), ∀z ∈ X̃ , ∀i; (28a)

ui(vi; z) ≥ L(z<i,vi, z>i), ∀vi ∈ X̃i, ∀z ∈ X̃ , ∀i; (28b)

uo
i (vi; z,di)|vi=zi

=Lo(z;d), ∀d=(0, . . . ,0,di,0, . . . ,0)

s.t. xi + di ∈ X̃i, ∀i; (28c)

ui(vi; z)is continuous in(vi, z), ∀i. (28d)

TABLE III
ALGORITHM 3: RBSUM ALGORITHM

In the above assumption, vi is the i-th block component of v,
having the same size as zi; the notations z<i and z>i represent
the block components of z with their indices less than i or
larger than i, respectively; uo

i (vi; z,di) denotes the generalized
directional derivative of ui(·; z) with respect to vi along the
direction di; and Lo(z;d) denotes the generalized directional
derivative of L(·) with respect to z along the direction d. The
assumption (28c) guarantees that the first order behavior of
ui(·, z) is the same as L(·) locally [54], hence it is referred
to as the gradient consistency assumption.

Second, we give the definition of regular functions which will
be used later.

Definition 4.1 (Regularity of a function): A function �(·) is
regular at x = (xi)i if the following implication holds

�
o(x;d) ≥ 0, ∀d = (di)i ⇐= �

o(x;d0
i ) ≥ 0,

∀d0
i � (0, . . . ,0,di,0, . . . ,0), ∀i.

Based on the above assumption and the definition of regular
functions, we next prove that, with probability one (w.p.1.) the
sequence generated by the rBSUM algorithm converges to the
set of stationary/KKT solutions of problem (27).

Theorem 4.1: Let Assumption 4.1 hold. Furthermore, as-
sume that L(·) is bounded below in X̃ and it is regular at every
point in X̃ . Then with probability one, every limit point of the
iterates generated by the rBSUM algorithm, denoted as z∞, is a
stationary point of problem (27), which satisifes the following
condition

Lo(z∞;d) ≥ 0, ∀d = (d1,d2, . . . ,dnz
)

with di ∈ TX̃i
(z∞

i ), ∀i. (29)

Moreover, if Robinson’s condition holds for problem (27) at the
limit point, then the limit point is also a KKT point of problem
(27).

Proof: It is easily seen that Steps 3 and 4 can generate nz

permutations of the index set in total. Let π denote the index
of permutation and π(1) denote the first number of the π-th
permutation. Moreover, let qπ > 0 denote the probability of
permutation π, with

∑nz

π=1 qπ = 1. Then, we have

E[L(zk+1) | zk] =

nz∑

π=1

qπL(zπ,k+1) (30)
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where zπ,k+1 denotes the update obtained by running one it-
eration of rBSUM (given zk) according to the block selection
rule specified by the π-th permutation. Due to the upper bound
assumption (28b) and the update rule, it must hold that

L(zπ,k+1) ≤ min
zπ(1)∈X̃π(1)

uπ(1)(zπ(1); z
k), ∀π. (31)

Combining (30) and (31), we have

E[L(zk+1) | zk] ≤ L(zk)−
nz∑

π=1

qπ

(

L(zk)

− min
zπ(1)∈X̃π(1)

uπ(1)(zπ(1); z
k)

)

(32)

which implies that L(zk) is a supermartingale and thus con-
verges [55], and moreover the following holds w.p.1.,

∞∑

k=1

nz∑

π=1

qπ

(

L(zk)− min
zπ(1)∈X̃π(1)

uπ(1)(zπ(1); z
k)

)

< ∞

(33)

as L(·) is bounded from below. Thus, by noting
L(zk)≥minzπ(1)∈X̃π(1)

uπ(1)(zπ(1); z
k), ∀π, we must have,

w.p.1.,

lim
k→∞

(

L(zk)− min
zπ(1)∈X̃π(1)

uπ(1)(zπ(1); z
k)

)

= 0, ∀π. (34)

Now let us restrict our analysis to a convergent subsequence
{zkj} with limj→∞ zkj = z∞. We have from (34) and the
continuity of L(·) that

lim
j→∞

min
zπ(1)∈X̃π(1)

uπ(1)(zπ(1); z
kj ) = L(z∞), ∀π,w.p.1. (35)

On the other hand, according to the update rule, we have

min
zπ(1)∈X̃π(1)

uπ(1)(zπ(1); z
kj ) ≤ uπ(1)(zπ(1); z

kj ),

∀zπ(1) ∈ X̃π(1), ∀π,w.p.1. (36)

By taking limit as j → ∞ on both sides of (36), and using (35)
and the continuity of ui(·; ·), we obtain

L(z∞) ≤ uπ(1)(zπ(1); z
∞), ∀zπ(1) ∈ X̃π(1), ∀π,w.p.1. (37)

Due to the function value consistency assumption (28a), we have
L(z∞) = u(z∞

i ; z∞), ∀i, and thus

u(z∞
π(1); z

∞) ≤ uπ(1)(zπ(1); z
∞), ∀zπ(1) ∈ X̃π(1), ∀π,w.p.1.

(38)

Note that the above inequality holds for all permutations. There-
fore, we have that w.p.1.,

ui(z
∞
i ; z∞) ≤ ui(zi; z

∞), ∀zi ∈ X̃i, ∀i. (39)

It follows that2

uo
i (z

∞
i ; z∞,di) ≥ 0, ∀di ∈ TX̃i

(z∞
i ), ∀i. (40)

2This can be proven following a similar argument as that for the first part of
proof of Theorem 2.3.

where

TX̃i
(z∞

i ) =

⎧
⎪⎪⎨

⎪⎪⎩

{
di|di ∈ TXi

(z∞
i ),

∇gi,�(z
∞
i )Tdi ≤ 0, � ∈ Ii(z

∞
i )
}
, ∀i ∈ [n]

Rmi−n , i = n+ 1, . . . , nz.
(41)

Thus, by the gradient consistency assumption (28c), we have
from (40) that w.p.1.,

Lo(z∞;d0
i ) ≥ 0, ∀d0

i � (0, . . . ,0,di,0, . . . ,0),

di ∈ TX̃i
(z∞

i ), ∀i. (42)

Since L(z) is regular at z∞, it follows that w.p.1.,

Lo(z∞;d) ≥ 0, ∀d = (d1,d2, . . . ,dnz
)

with di ∈ TX̃i
(z∞

i ), ∀i. (43)

By applying to Eq. (43) a similar argument as that for the second
part of proof of Theorem 2.3, we can show under Robinson’s
condition that, there exists multipliers (ν̂j)j associated with the
inequality constraints such that, the KKT condition of problem
(27), i.e., Eqs. (5a–5e) with (x̂, ŷ) = z∞, holds true w.p.1. This
completes the proof. �

Next, we present a result regarding the convergence rates for
the rBSUM algorithm. We start with imposing the following
additional assumptions. Let us define:

L(x,y;λ) = L̃(x,y;λ) +
ny∑

j=1

φj(sj(yj))

where L̃(x,y;λ) � f(x,y) + λTh(x,y) +
1

2�
‖h(x,y)‖2.

Further we assume that the upper bound functions only approx-
imate the smooth part L̃, that is

ui(zi; z) = qi(zi; z), ∀i ∈ [1 : n]

ui(zi; z) = qi(zi; z) + φi−n(si−n(zi)), ∀i ∈ [n+1 : nz]

where qi(·)’s are the new differentiable upper bound functions
that satisfy a set of conditions similarly as in Assumption 4.1,
given below:

Assumption 4.2:

qi(zi; z) = L̃(z), ∀z ∈ X̃ , ∀i; (44a)

qi(vi; z) ≥ L̃(z<i,vi, z>i), ∀vi ∈ X̃i, ∀z ∈ X̃ , ∀i; (44b)

∇qi(zi; z)=∇zi
L̃(z), ∀z ∈ X̃ , ∀i; (44c)

qi(vi; z)is continuous in(vi, z), ∀i. (44d)

Please note that here qi(·)’s are differentiable, so to satisfy
Assumption 4.1, the nonsmooth terms φi−n(si−n(zi))’s can be
chosen as standard convex non-smooth functions such as �1 and
�2 norms.

Further, we make the following additional assumptions on
qi’s and the Lagrangian functions:

Assumption 4.3:

qi(xi; z)− qi(yi; z) ≥ 〈∇qi(yi; z),xi − yi〉

+
θ

2
‖xi − yi‖2 , ∀xi,yi ∈ X̃i, ∀i. (45a)
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‖∇qi(xi; z)−∇qi(xi;w)‖ ≤ Hi ‖z −w‖ , (45b)

∀z,w ∈ X̃ ,xi ∈ X̃i ∀i
∥
∥
∥∇L̃(z)−∇L̃(w)

∥
∥
∥ ≤ L ‖z −w‖, ∀z,w ∈ X̃ . (45c)

gi(xi), sj(yj) are convex functions, ∀i, j (45d)

φj(sj(yj)) = sj(yj), ∀j. (45e)

In Assumption 4.3, the first item says qi(·) is strongly convex,
and the second to the fourth items are related to the Lipschitzness
of the gradients of the upper bound functions and the Lagrangian
function. We note that the Lipschitz assumption (45b) typically
holds when the original Lagrangian function has Lipschitz gra-
dient, i.e., when (45c) holds. The last two conditions restrict
the constraint gi(xi) ≤ 0 to be a convex constraint, and the
nonsmooth regularizer to be a simple convex one. The proof of
the result below can be found in Appendix C.

Theorem 4.2: Let Assumptions 4.1–4.3 hold. Further assume
that L(·) is bounded from below. Then if rBSUM is run for T
iterations, we have the following convergence rate estimate:

min
1≤k≤T

{max{‖Δk+1‖2∞, ‖ek+1‖2∞}} ≤ d

T
, (46)

where d is some constant independent of T .
Remark 4.1: In the derivation of the above result, we showed

that under Assumption 4.1–4.3, for each i ∈ [1 : n], j ∈ [1 : ny],
the following holds:

‖Δk+1
j ‖ ≤ Hn+j‖zk+1 − zk‖, ‖ek+1

i ‖ ≤ Hi‖zk+1 − zk‖.
Therefore, a simple way to verify the stopping criteria (7) is to
check if the following holds:

√
∑nz

i=1
H2

i × ‖zk+1 − zk‖ ≤ ε. (47)

Since the rBSUM algorithm achieves convergence to KKT
points w.p.1 under Robinson’s condition, we modify the claims
of Theorem 3.1 & 3.2 for the case where rBSUM is used as the
optimization oracle.

Corollary 4.1: Suppose that the parameter settings and the
termination conditions of the optimization oracle in Theorem
3.1 & 3.2 are used, and that rBSUM is used as the optimization
oracle. Then every limit point of the sequence generated by the
PDD/IPDD method is a KKT point w.p.1 when rBSUM is used as
the optimization oracle, provided that the Robinson’s condition
is satisfied at the limit point.

V. DISCUSSION

A. The Robinson’s Condition

It is well-known that constraint qualification (CQ) condi-
tions (or regularity conditions) are often needed to precisely
describe the first-order optimality condition for nonlinear op-
timization. In our KKT and convergence analysis, Robinson’s
condition is assumed as a type of CQ. Similarly to many other
CQs, such condition is generally difficult to check, but it is a
standard one and has been used in many existing works on
constrained optimization, e.g., [23], [49], [56], [57]. For ease
of understanding Robinson’s condition, [49, Lemma 3.16] has
provided a simple sufficient condition. That is, if the rows of
∇h(z∗) are linearly independent and moreover there exists

zint = (xint,yint) ∈ int(X × RM ) such that ∇h(z∗)(zint −
z∗) = 0 and ∇gi�(x

∗
i )(x

int
i − x∗

i ) < 0, ∀� ∈ Ii(x
∗
i ), ∀i, then

Robinson’s condition (3) holds true.
Below, we summarize the relationship between the Robin-

son’s condition and a few commonly used CQs.
1) MFCQ: When X = RN , the above sufficient condi-

tion for Ronbinson’s condition reduces to the well-known
Mangasarian-Fromovitz constraint qualification (MFCQ).
Moreover, it is shown in [49, Lemma 3.17] that Robinson’s
condition is equivalent to the MFCQ when X = RN .

2) LICQ: When X = RN and the rows of ∇h(z∗) as well
as the gradients of the active inequality constraint functions
∇gi�(x

∗
i )’s are linearly independent, we can easily find zint

such that ∇h(z∗)(zint − z∗) = 0 and ∇gi�(x
∗
i )(x

int
i − x∗

i ) <
0, ∀� ∈ Ii(x

∗
i ), ∀i. This means that Robinson’s condition is

implied by the linear independence constraint qualification
(LICQ).

3) Slater’s condition: When the constraint set of problem
(P ) is convex (i.e., h(·) is affine and gi(·)’s are convex) and
the Slater’s condition holds, i.e., there exists a point zs =
(xs,ys) ∈ int(X × RM ) such thath(zs) = 0 andgi(x

s
i ) < 0,

∀i, it can be easily shown that the following relations hold

∇gi�(x
∗
i )(x

s
i−x∗

i ) ≤ gi�(x
s
i )−gi�(x

∗
i ) < 0, ∀� ∈ Ii(x

∗
i ), ∀i,

∇h(z∗)(zs − z∗) = h(zs)− h(z∗) = 0.

Hence, the Slater’s condition is sufficient for Robinson’s condi-
tion for problems with convex constraints.

4) Linearly Constraint Qualification: When problem (P )
has linear constraints (i.e., X = RN and h(·) and gi(·)’s are
affine), as in the case of Slater’s condition, it can be readily
verified that Robinson’s condition holds true.

B. Practical Considerations on Parameter Selection and
Termination Conditions

In the PDD method, the control parameter ηk determines how
often the AL method and the penalty method are carried out.
If ηk is decreased too fast, then the penalty method will often
take place, resulting in a large penalty and slow convergence.
On the other hand, when ηk is decrease very slowly, then the
AL method will be more often performed. However, if the AL
method does not converge in this case, such a choice will also
slow down the convergence of the PDD. A more adaptive way to
set ηk is to make it explicitly related to the constraint violation.
For example, we can set ηk = τ min(ηk−1, ‖h(zk−1)‖∞)where
0 < τ < 1. Similarly, the penalty parameter �k can impact the
convergence the PDD method. Specifically, when �k decreases
too fast, the AL problem will become ill-conditioned which
impact the convergence of the optimization oracle. A simple way
to set �k is to let �k+1 = c�k where the parameter c is a fraction
which should be appropriately chosen to control the decreasing
speed of the penalty parameter. Various choices of the parameter
settings will be examined extensively in the second part of this
paper.

Besides the parameter choice, the termination condition of
the optimization oracle also affects the convergence of the
PDD/IPDD. To guarantee theoretical convergence, we have used
Eq. (10) to terminate the optimization oracle. However, it is
sometime difficult to evaluate ek and Δk when the set X is
complicated and the function sj(yj) is not simple. In practice,
it is reasonable to terminate the optimization oracle based on the
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progress of the objective value Lk(z
k), called relative objective

progress (RBP) condition, i.e.,

|Lk(z
k)− Lk−1(z

k−1)|
|Lk−1(zk−1)| ≤ εk. (48)

Another practical choice of the termination condition for the
optimization oracle is simple by setting the maximum number
of iterations. Such termination condition is very suitable for
in-network distributed implementation as it does not require co-
ordination among network agents. Although the latter condition
lacks theoretical guarantee, it is actually perform well in our
numerical experience.

C. Optimization Oracle

To make use of the problem structure, we advocate using
BCD-type algorithms as optimization oracle to address the AL
problem (P�k,λk

). Certainly, any other reasonable optimization
method can be used, as long as they can guarantee the the-
oretical termination condition (10). For example, when some
inequality constraint gj(xj) ≤ 0 is complicated, we can use
concave-convex procedure [58], [59] to address the AL problem,
i.e., we can replace gj(xj) with its simple upper bound function
[60] and solve the resulting problem (which is often easier)
instead of the AL problem. In addition, when the AL problem
can be globally solved by certain solver, the PDD/IPDD method
with such global solver (instead of the BCD-type algorithms)
could provide globally optimal solution to problem (P ).

D. Sharper Solution Concepts

We note that there is a vast literature on developing gener-
alized subdifferentials/subgradients of different types, beyond
the classical Clarke subdifferential/subgradient. For example,
in [61] Mordukhovich introduced a notion of KKT conditions
based on the generalized gradient of Mordukhovich (MGG)
(under suitable nonsmooth extensions of the Mangasarian-
Fromovitz Constraint Qualifications), which is sharper than the
condition bsed on the Clark’s subdifferential. Also there are
many extensions of the above results, see for example, those
defined using linear generalized gradient [62]–[64]. The current
work uses the relative weaker notion of KKT conditions, mainly
because of the following reasons. First, such a notion is still
a valid necessary condition for the original problem (P); Sec-
ond, it is relatively easy to design efficient algorithms (i.e., the
proposed PDD algorithm) such that, combined with relatively
easily checkable conditions (i.e., the Robinson’s condition), the
KKT condition can be computed. Indeed, in the applications
to be presented in Part II of this work. we can check that the
Robinson’s CQ are all satisfied. Third, the solutions obtained by
the PDD algorithm (which are only guaranteed to achieve those
weaker KKT conditions), achieve very good practical perfor-
mance. This may suggest that for signal processing applications
that are of interest to this work, such weaker notions of KKT are
reasonable solution concepts. We note that, by using MGG or
related notions, the problems to be covered could certainly be
more general, and solutions with better qualities can be obtained
(at least in theory). Therefore it will be an interesting future work
to analyze if one can extend the PDD algorithm to compute those
sharper KKT solutions.

VI. CONCLUSION

In this paper, we design an optimization algorithm for a class
of nonsmooth and nonconvex problems. The proposed algo-
rithm, named PDD, can deal with difficult nonconvex coupling
constraints, and it is further able to fully explore the problem
structure for efficient numerical implementation. The PDD can
be used to address a wide range of difficult engineering problems
arising from areas such as signal processing, wireless communi-
cation and machine learning. In the second part of this paper we
will demonstrate the strength of our algorithm by customizing
it to a number of applications.

APPENDIX A
SOME BASICS

To improve the readability, we here list a few definitions and
facts which are from [49, Chap 2&3] and used throughout the
paper.

A. Tangent Cone, Polar Cone and Normal Cone

Tangent cone is the set of tangent directions whose definition
is given as follows.

Definition A.1: [49, Def. 3.11] A directiond is called tangent
to the set X ⊂ Rn at the point x ∈ X if there exist sequences
of points xk ∈ X and scalars τk > 0, k = 1, 2, . . ., such that
τk ↓ 0 and

d = lim
k→∞

xk − x

τk

Further, define the cone of feasible directions at x ∈ X:

KX(x) = {d ∈ Rn | d = β(y − x),y ∈ X,β ≥ 0}.
Then we have

Lemma A.1: [49, Lemma 3.13] Let X ⊂ Rn be a convex set
and let x ∈ X . Then the tangent cone, i.e., the set of tangent
direction, of the set X at x is

TX(x) = col KX(x)

where col X means the closure of the set X .
The polar cone is defined as follows.
Definition A.2: [49, Def. 2.23] Let K be a cone in Rn. The

set

K◦ � {y ∈ Rn | yTx ≤ 0 ∀x ∈ K}
is called the polar cone of K.

Define

K � {x ∈ K1 | Ax ∈ K2}. (49)

Given the definition of polar cone, the following fact holds true.
Theorem A.1: [49, Theorem 2.36] Assume that K1 and K2

are closed convex cones, and K is defined by (49). If

0 ∈ int{Ax− y : x ∈ K1,y ∈ K2}, (50)

then

K◦ = K◦
1 + {ATλ : λ ∈ K◦

2}. (51)
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The definition of normal cone is given as follows.
Definition A.3: [49, Def. 2.37] Let X be a closed convex set

and let x ∈ X . Then

NX(x) = {v ∈ Rn | vT (y − x) ≤ 0, ∀y ∈ X}
is called normal cone to X at x.

Following the above definitions, we have for a closed convex
set X

[TX(x)]o = [KX(x)]o = NX(x). (52)

B. Robinson’s Condition

Consider the problem

min f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p,

x ∈ X (53)

with continuously differentiable functions f : Rn → R, g :
Rn → Rm, h : Rn → Rp and with a closed convex set X . We
consider a feasible point x0 of problem (53) and define the set
of active inquality constraints:

I(x0) = {1 ≤ i ≤ m : gi(x0) = 0}.
Robinson’s condition with respect to the constraint set of

problem (53) takes on the form
{( ∇h(x0)d

∇g(x0)d− v

) ∣
∣
∣
∣d ∈ TX(x0),v ∈ Rm,

vi ≤ 0, i ∈ I(x0)

}

= Rp × Rm. (54)

Let Z denote the feasible set of problem (53). Then we have
Theorem A.2: [49, Theorem 3.15] If Robinson’s condition

holds for problem (53) at x0, then TZ(x0) takes the form

TZ(x0) = {d ∈ Rn | d ∈ TX(x0),∇h(x0)d = 0,

∇gi(x0)
Td ≤ 0, i ∈ I(x0)}. (55)

C. The Boundedness of Lagrange Multipliers

The following theorem gives a necessary optimality condi-
tion (i.e., KKT conation) for problem (53) with continuously
differentiable function f(·).

Theorem A.3: [49, Theorem 3.25] Let x̂ be a local minimum
of problem (53). Assume that at x̂ the constraint qualification
condition3 is satisfied for problem (53). Then there exist multi-
pliers λ̂i ≥ 0, i = 1, . . . ,m, and μ̂i ∈ R, i = 1, . . . , p, such that

0 ∈ ∇f(x̂) +

m∑

i=1

λ̂i∇gi(x̂) +

p∑

i=1

μ̂i∇hi(x̂) +NX(x̂),

(56)

and

λ̂igi(x̂) = 0, i = 1, . . . ,m. (57)

3If any of the sufficient conditions for (55) is satisfied, we say that problem
(53) satisfies the constraint qualification condition.

Furthermore, it is shown in the following lemma that, once
(56) and (57) are satisfied, the corresponding Lagrange multi-
pliers are all bounded under Robinson’s condition.

Lemma A.2: [49, Lemma 3.26] Let x̂ be a local minimum
of problem (53) and let Λ̂(x̂) be the set of Lagrange multipliers
λ̂ ∈ Rm

+ and μ̂ ∈ Rp satisfying (56), (57).
1) The set Λ̂(x̂) is convex and closed.
2) If problem (53) satisfies Robinson’s condition at x̂, then

the set Λ̂(x̂) is also bounded.

APPENDIX B
SOME PROOFS

A. The Proof of Theorem 2.1

Proof: Since �(x) is Lipschitz nearx0, we have �o(x0;0) =
0 and ‖ξ‖ ≤ K for all ξ ∈ ∂̄�(x0) by [47, Lemma 2.6]. More-
over, it is known from [47, Lemma 2.6] that �

o(x0;d) is a
convex function with respect to d. It follows that4 ∂̄�(x0) =
∂d�

o(x0;0) is not empty and compact [51, Lemma 2.16 &
Theorem 2.15], and moreover �

o(x0;d) = supξ∈∂̄�(x0) ξ
Td,

∀d [47, Theorem 2.5], implying part 4). This completes the
proof. �

B. The Proof of Theorem 2.3

Proof: The proof is divided into two steps. We first establish
a necessary optimality condition, which is then shown to be
equivalent to the KKT system.

Step 1: Recall that F (x,y) � f(x,y) +
∑ny

j=1 φj(sj(yj))
is the objective function of problem (P ) (5). In the first step, we
show that a local optimal solution point x̂, ŷ must satisfy the
following condition

F o(x̂, ŷ;d) ≥ 0, ∀d ∈ TZ(x̂, ŷ).

Assume on the contrary that there exists a direction d ∈
TZ(x̂, ŷ) such that F o(x̂, ŷ;d) < 0. Because d is a tangent di-
rection, there exists a sequence zk � (xk,yk) ∈ Z converging
to ẑ � (x̂, ŷ) and a sequence of nonnegative scalars τk → 0 as
k → ∞, such that [49, Def. 3.11]

lim
k→∞

zk − ẑ

τk
= d.

It follows that

lim
k→∞

wk

‖wk‖ =
d

‖d‖ , where wk � zk − ẑ. (58)

Define a sequence {δk} such that the following conditions are
satisfied

δk > ‖wk‖, ∀k and lim
k→∞

δk → 0. (59)

Then we have

lim sup
k→∞

F (zk)− F (ẑ)

‖zk − ẑ‖
= lim sup

k→∞

F (ẑ +wk)− F (ẑ)

‖wk‖
4Considering that �o(x0;d) is a convex function with respect to d, we use

∂d�
o(x0;0) to denote its subdifferential evaluated at d = 0.

Authorized licensed use limited to: University of Minnesota. Downloaded on July 07,2021 at 16:44:22 UTC from IEEE Xplore.  Restrictions apply. 



SHI AND HONG: PENALTY DUAL DECOMPOSITION METHOD FOR NONSMOOTH NONCONVEX OPTIMIZATION—PART I 4119

(i)

≤ lim sup
k→∞

sup
u∈Bδk(0),
λ∈(0, δk)

F (ẑ + u+ λ wk

‖wk‖ )− F (ẑ + u)

λ

(ii)
= lim

k→∞
sup

u∈Bδk(0),
λ∈(0, δk)

F (ẑ + u+ λ wk

‖wk‖ )− F (ẑ + u)

λ

= F o

(

x̂, ŷ;
d

‖d‖
)

(iii)
< 0,

where (i) is due to the fact that ‖wk‖ < δk and 0 ∈ Bδk(0); (ii)
follows from the existence of the limit, and (iii) is due to the the
assumptionF o(x̂, ŷ;d) < 0 as well as the positive homogeneity
of generalized gradient [47, Lemma 2.6], i.e., F o(x̂, ŷ;αd) =
αF o(x̂, ŷ;d) for all α ≥ 0. The above result contradicts to the
fact that (x̂, ŷ) is a local optimum. Hence, for any local optimum
(x̂, ŷ), we must have F o(x̂, ŷ;d) ≥ 0, ∀d ∈ TZ(x̂, ŷ).

Step 2: Based on the necessary optimality condition estab-
lished in the first step, we then show that the KKT system
holds for a locally optimal solution (x̂, ŷ). First, by noting that
F (x,y) is locally Lipschitz near (x̂, ŷ) (see the arguments under
Definition 2.1) and using the result of Part 4) of Theorem 2.1,
we have, ∃ξ ∈ ∂̄F (x̂, ŷ) such that

ξTd = F o(x̂, ŷ;d) ≥ 0, ∀d ∈ TZ(x̂, ŷ). (60)

Recall the definition of polar cone (see Appendix A). Eq. (60)
can be equivalently expressed as: −ξ ∈ (TZ(x̂, ŷ))o. Define

A �
( ∇h(x̂, ŷ)[

blkdiag{∇gi(xi)
T }i0q×M

]
)

,

K1 � TX (x̂)× RM ,K2 � {0}p × Rq
−

where the notation blkdiag{∇gi(xi)
T }i denotes a q by N

matrix which is block diagonal concatenation of matrices
∇gi(xi)

T , i = 1, 2, . . . , n, that is,

blkdiag{∇gi(xi)
T }i

�

⎛

⎜
⎜
⎜
⎝

∇g1(x1)
T

∇g2(x2)
T

. . .
∇gn(xn)

T

⎞

⎟
⎟
⎟
⎠

(61)

Assume for simplicity Ii(x̂i) = {1, 2, . . . , qi}, then TZ(x̂, ŷ)
defined by (4) can be compactly expressed as

TZ(x̂, ŷ) = {d ∈ K1|Ad ∈ K2}.
Moreover, Robinson’s condition (3) is equivalent to [49, pp. 102]

0 ∈ int ({Aθ − η : θ ∈ K1,η ∈ K2}) .
It follows that (see [49, Theorem 2.36], or Theorem A.1)

−ξ ∈ (TZ(x̂, ŷ))o = Ko
1 + {AT λ̂ : λ̂ ∈ Ko

2} (62)

where Ko
1 = NX (x̂)× {0}M and Ko

2 = Rp × Rq
+ are obtained

by the definition of polar cone; see Appendix A. Eq. (62) is
further equivalent to, ∃μ̂ ∈ Rp, v̂i ∈ Rqi

+ , and λ̂ � (μ̂, (v̂i)i)

such that

−AT λ̂ ∈ Ko
1 + ∂̄F (x̂, ŷ). (63)

By using the following facts

∂̄F (x̂, ŷ)=

n∏

i=1

{(∇xi
f(x̂, ŷ))}×

ny∏

j=1

∂̄φ̃(yj) (64)

AT λ̂ =
(
(∇xi

h(x̂, ŷ)Tμ̂+∇xi
gi(x̂)

T v̂i)i, (∇yj
h(x̂, ŷ)Tμ̂)j

)
(65)

Ko
1 =

n∏

i

NXi
(x̂)×

ny∏

j

{0}mj (66)

we can recast Eq. (63) into Eqs. (5a) and (5b). Now let us take
Ii(x̂i) into consideration. By the definition of polar cone, we
have vi,� = 0 for i �∈ Ii(x̂i). Thus Eq. (5c) follows. The rest
of equations in KKT system (5) are trivial. This completes the
proof. �

APPENDIX C
PROOF OF THEOREM 4.2

Proof: First, let us fix some notations. For simplicity, let us
assume that at a given iteration k that we are going to focus on,
the order of update is fixed as 1, 2, · · · , nz . Let us define

wk,1 = zk,

wk,i+1 = [wk,i
<i , z

k+1
i ,wk,i

>i ], ∀i,
wk,nz+1 = zk+1.

That is, wk,i is the point where block i constructs its upper
bound. Further define:

ỹk
j � argmin

yj

{

sj(yj) +∇yj
L̃(xk,yk)(yj − yk

j )

+
1

2
‖yj − yk

j ‖2
}

, ∀j ∈ [1 : ny].

Note that the computation of ỹk
j is called the proximity operator,

and for typical nonsmooth regularizers (such as �1 norm), the
above problem has closed-form solutions.

Now we can simplify Δk
j in (9) as the following:

Δk
j = yk

j − ỹk
j . (67)

Second, for a given xi, when it is optimized at iteration k, it
must satisfy

xk+1
i = PX̃i

(xk+1
i −∇ui(x

k+1
i ;wk,i))

= PXi
(xk+1

i −∇ui(x
k+1
i ;wk,i)−∇gi(x

k+1
i )Tvk+1

i )
(68)

where vk+1
i is the dual variable corresponding to the constraint

gi(xi) ≤ 0. Therefore, when block i ∈ [1 : n] has been selected
to update at iteration k + 1, we have

‖ek+1
i ‖ (8)

= ‖xk+1
i − PXi

(xk+1
i −∇xi

L(xk+1,yk+1)

−∇gi(x
k+1
i )Tvk+1

i ))‖
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≤ ‖∇xi
L(xk+1,yk+1)−∇ui(x

k+1
i ;wk,i)‖

= ‖∇ui(x
k+1
i ; zk+1)−∇ui(x

k+1
i ;wk,i)‖

(45b)

≤ Hi‖zk+1 −wk,i‖
≤ Hi‖zk+1 − zk‖, ∀i ∈ [1 : n] (69)

where the first inequality uses (68), as well as the non-
expansiveness of the projection operator; the equality comes
from (28c); the last inequality comes from the definition ofwk,i.

Next, by applying the same line of argument as above
on Δk+1

j , and by using the expression (67) and the non-
expansiveness of the proximity operator, we can also obtain that,
if yj is updated, then

‖Δk+1
j ‖ ≤ Hn+j‖zk+1 − zk‖, ∀j ∈ [1 : ny]. (70)

Since all the blocks are updated once at iteration k + 1, we have

(‖ek+1‖+ ‖Δk+1‖) ≤ Q‖zk+1 − zk‖, (71)

where Q �
√∑nz

i=1 H
2
i . Based on the above properties, let us

analyze the convergence rate of rBSUM.
Let us first investigate the optimality conditions for zk+1

i ,
i = 1, · · · , nz . If i ∈ [1 : n], then zi’s are optimized based on
the following problem:

min qi(zi;w
k,i) s.t. zi ∈ X̃i. (72)

Then we have the following optimality condition

〈∇qi(z
k+1
i ;wk,i), zi − zk+1

i 〉 ≥ 0, ∀zi ∈ X̃i (73)

where we have used the fact that gi(zi) is a convex function, so
X̃i is a convex set for all i.

If i ∈ [n+1 : nz], then zk+1
i ’s are optimized based on the

following problem:

min qi(zi;w
k,i) + si−n(zi) (74)

and the optimality condition is:

∇qi(z
k+1
i ;wk,i) + ξk+1

i = 0 (75)

where ξk+1
i is a vector belonging to the subdifferential set of

si−n(z
k+1
i ). Using the fact that for each j ∈ [1 : ny], sj(·) is a

convex function, we further have for i ∈ [n+1 : nz]

si−n(zi)−si−n(z
k+1
i )+〈∇qi(z

k+1
i ;wk,i), zi − zk+1

i 〉 ≥ 0.
(76)

Using (73) as well as the strong convexity assumption of qi(·)
in (45a), we have

qi(z
k
i ;w

k,i)− qi(z
k+1
i ;wk,i)

≥ 〈∇qi(z
k+1
i ;wk,i), zk

i − zk+1
i 〉+ θ

2
‖zk+1

i − zk
i ‖2

≥ θ

2
‖zk+1

i − zk
i ‖2, ∀i ∈ [1 : n]. (77)

Similarly (i.e., using (76) and (45a))

(si−n(z
k
i ) + qi(z

k
i ;w

k,i))− (si−n(z
k+1
i ) + qi(z

k+1
i ;wk,i))

≥ θ

2
‖zk+1

i − zk
i ‖2, ∀i ∈ [n+1 : nz]. (78)

Therefore, after each update of i ∈ [1 : n], we can estimate the
descent of the objective:

L(wk,i+1)− L(wk,i)

≤ −
(

L̃(wk,i)− min
zi∈X̃i

qi(zi;w
k,i)

)

= −
(

qi(z
k
i ;w

k,i)− qi(z
k+1
i ;wk,i)

)

≤ −θ

2
‖zk

i − zk+1
i ‖2, ∀i ∈ [1 : n],

where the first inequality is due to (44b), and the equality is due
to (44a) and the definition of zk+1

i .
Similarly, after each update of i ∈ [n+1 : nz], we can esti-

mate the descent of the objective:

L(wk,i+1)− L(wk,i)

≤ −
(

L(wk,i)−min
zi

(si−n(zi) + qi(zi;w
k,i))

)

= −
(

qi(z
k
i ;w

k,i)+si−n(z
k
i)−

(
qi(z

k+1
i ;wk,i)+si−n(z

k+1
i )
)
)

≤ −θ

2
‖zk

i − zk+1
i ‖2, ∀i ∈ [n+1 : nz].

Overall, by summing up all the indices from i = 1 to nz , and
use the definition of zk = wk,1 and zk+1 = wk,nz+1 we obtain

L(zk+1)− L(zk) ≤ −θ

2
‖zk − zk+1‖2.

Clearly, the above result is not dependent on how the set Ik is
chosen, so it holds true for all k. Using the telescope sum from
k = 1 to T , we obtain the following

T∑

k=1

‖zk − zk+1‖2 ≤ −2

θ
(L(zT )− L(z0)). (79)

Since L(·) is bounded from below, we use L to denote its lower
bound. Dividing both sides by T , we have

1

T

T∑

k=1

‖zk − zk+1‖2 ≤ 2

θT
(L(z0)− L). (80)

Utilizing (71), we obtain

min
k=1:T

max{‖Δk+1‖2∞, ‖ek+1‖2∞}

≤ 1

T

T∑

k=1

max{‖Δk+1‖2∞, ‖ek+1‖2∞}
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≤ 1

T

T∑

k=1

‖Δk+1‖2∞ + ‖ek+1‖2∞

≤ c

T

T∑

k=1

‖Δk+1‖2 + ‖ek+1‖2

≤ cQ2 1

T

T∑

k=1

‖zk − zk+1‖2

≤ 2cQ2

θT
(L(z0)− L). (81)

Here c is a constant depending on the problem dimension, which
relates �2 norm and �∞ norm. Therefore, we complete the proof
by letting d = 2cQ2

θ (L(z0)− L). �
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