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� RUL is described by the difference among battery terminal voltage curves.
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An accurate battery remaining useful life (RUL) estimation can facilitate the design of a reliable battery
system as well as the safety and reliability of actual operation. A reasonable definition and an effective
prediction algorithm are indispensable for the achievement of an accurate RUL estimation result. In this
paper, the analysis of battery terminal voltage curves under different cycle numbers during charge pro-
cess is utilized for RUL definition. Moreover, the relationship between RUL and charge curve is simulated
by feed forward neural network (FFNN) for its simplicity and effectiveness. Considering the nonlinearity
of lithium-ion charge curve, importance sampling (IS) is employed for FFNN input selection. Based on
these results, an online approach using FFNN and IS is presented to estimate lithium-ion battery RUL
in this paper. Experiments and numerical comparisons are conducted to validate the proposed method.
The results show that the FFNN with IS is an accurate estimation method for actual operation.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Due to global energy crisis and environmental pollution, the
past decade has witnessed the rapid development of new energy
technologies such as Electric Vehicles (EVs), Hybrid Electric Vehi-
cles (HEVs) and Microgrids. As a power source with high energy–
density, low pollution and long service life, lithium-ion battery
has been widely used in a large amount of new energy systems
[1–4]. Throughout the life span of a battery, its electrical property
would change with battery RUL which can be regarded as the
length of time from present time to the end of useful life [5]. As
shown in Refs. [6,7], the safety and stability alterations of the bat-
tery would occur as well when battery RUL changes. Therefore, an
accurate RUL estimation for lithium-ion battery which can help
predict the battery performance variance is necessary in order to
get a more scientific battery management method, a longer battery
service life and a safer battery system.

Batteries would have different electrical properties, such as bat-
tery charge/discharge performance, total available capacity, peak
power and so on, under different RULs. In the past 5 years, several
descriptions have been utilized to characterize battery RUL. Miao
et al. [8] applied an exponential growth model to fit lithium-ion
battery capacity degradation curves, because capacity could grad-
ually decrease with various aging and failure process. A sum of
two exponential functions of discharge cycles were applied to
model the battery capacity fade as well by He et al. [9] based on
the analysis of lithium-ion battery data. Furthermore, resistance
can serve as a health indicator for describing the RUL of lithium-
ion batteries. Eddahech et al. [10] used a single parameter identi-
fied from Electrochemical Impedance Spectroscopy (EIS) tests,
which refer to the impedance real-part at a defined frequency, to
identify the battery RUL. A battery RC model was built in Kim’s
work [11] where capacity fade and resistance deterioration were
obtained by cell characterization test data and used for battery
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health condition indication. However, the definition of RUL using
one or two battery parameter values may not be robust enough
and may be lopsided. To address this issue, six influential factors
were considered based on the evaluation of the battery perfor-
mance characteristics, analyses on their disparities, and opinions
of the experts to characterize RUL in Ref. [12]. A model fused an
empirical exponential and a polynomial regression model to track
the battery’s degradation trend over its cycle life based on experi-
mental data analysis is proposed in Ref. [13]. He et al. [14]
described the battery aging state by several battery state of charges
(SoCs) since battery with different aging states would have differ-
ent SoC-OCV (open circuit voltage) curves. However, it is difficult
to obtain precise OCVs in actual application. Accordingly, a reason-
able definition for battery RUL is indispensable for practical
operation.

On the basis of a rational battery RUL definition, a prediction
algorithm is also quite necessary for RUL estimation. State
estimation algorithms, like unscented Kalman filter (UKF), particle
filter (PF), unscented particle filter (UPF), have been utilized for
real-time prediction of battery RUL. Zheng et al. [15] employed a
relevance vector regression method to simulate battery degrada-
tion. Then UKF was utilized to estimate the battery parameters
for predicting RUL recursively. Similarly, PF was used for predicting
RUL and time until end of discharge voltage of a lithium-ion bat-
tery in Ref. [16]. In their papers, PF was verified to have a more
accurate prediction performance over UKF based on three
lithium-ion battery models. Miao et al. [8] used UPF algorithm to
obtain prediction results of lithium-ion batteries RUL based on a
degradation model which can predict the actual RUL with an error
less than 5%. RUL prediction based on machine learning tools has
also been widely studied. Considering the impacts of different val-
ues of ambient temperature and discharge current, a naive Bayes
(NB) model is proposed for the prediction of battery RULs under
different operating conditions in Ref. [17]. A classification and
regression model for RUL was built based on the critical features
using Support Vector Machine (SVM) in Ref. [18] and the goal of
accurate RUL prediction was achieved by using Support Vector
Regression (SVR). An optimized relevance vector machine (RVM)
algorithm to improve the accuracy and stability of RUL estimation
and to provide an uncertainty representation for the resulting RUL
estimates was presented by Liu et al. [19].

However, since (1) these advanced nonlinear filters and
machine learning techniques, such as UPF in Ref. [8], SVM in Ref.
[18] and RVM in Ref. [19], generally have high demands for hard-
ware support, it is very hard to apply these algorithms in a micro
controller unit (MCU) in actual battery management systems
(BMS) for RUL estimation online. For example, as a binary classifier
and also a non-parametric model, there may be large numbers of
support vectors in SVM when it is applied to estimate RUL. This
disadvantage is resulting in longer times for computation and
makes SVM predominantly used as an offline tool [20]. (2) Some
variables for RUL definition are hard to measure in actual opera-
tions, such as battery capacity [8,11], electrochemical impedance
spectroscopy [10], and open circuit voltage [14]. The measure-
ments of these variables require either specific equipment or par-
ticular charge/discharge schedule which make it hard to obtain the
required variables. Thus the above methods may be inadequate for
lithium-ion RUL estimation online.

In this paper, the RUL of lithium-ion battery is described by
charge process and battery terminal voltage curve to make this
characterization robust and reasonable. Batteries under different
RULs would have different charge and discharge performance,
which may lead to the variation of the shapes of charge and dis-
charge curves. Afterward, FFNN with fixed hidden neurons is
employed to simulate the relation between battery charge curves
at constant current and battery RUL. A suitable number of hidden
neurons helps to reduce hardware cost and makes the FFNN real-
izable to predict RUL for actual operation. In addition, IS is used
for FFNN input selection to reduce the number of input neurons
reasonably while also reconstitute the terminal voltage curve accu-
rately. Then, the RUL can be estimated online by a set of weight and
bias values which make up the FFNN and are stored in the MCU of
BMS.

The rest of the paper is organized as follows. In Section 2, bat-
tery charge process in actual application is introduced. On the basis
of this general routine, the description and definition for lithium-
ion battery RUL is discussed. The FFNN and IS are introduced in
Section 3. Afterward, FFNN with different hidden neuron numbers
are compared in Section 4. Meanwhile, in order to evaluate the
proposed FFNN with IS, comparison is accomplished as well.
2. Description and definition of RUL

Batteries would have different performance in different life
states or ages. Based on this, a RUL definition is proposed in this
paper.

2.1. Battery charge and discharge process in actual operation

There are three status of battery in actual practice: charge, dis-
charge and rest. Under the influence of the rapidly changing cur-
rent passing through batteries, the external and internal
parameters are hard to measure or calculate accurately during
the discharge process. In the stage of rest, battery parameters are
generally constant or changing slowly, which would lead to a dif-
ficult estimation of internal battery parameters since they can’t
be calculated based on the amount of indistinctive data. However,
batteries usually have a peaceable charge process in which the nec-
essary external electrical performance can be easily measured
because the charge process is controllable to battery management
system. Hence, several internal battery parameters, such as battery
direct current internal resistance and battery open circuit voltage,
can be calculated or estimated during charging.

In this paper, the experimental IFP1865140-12Ah type lithium-
ion battery which is widely used in EVs and Microgrids is devel-
oped by Hefei GuoXuan High-Tech Power Energy CO. LTD of China.
Generally, charge process consists of two subprocesses in actual
operation: constant current (CC) and constant voltage (CV). As
shown in Fig. 1, the red1 line is charge current curve which is con-
stant C/2 (A rate of C/n is the equal of a full charge or discharge in n
hours.) before battery terminal voltage reaches the cut-off voltage of
3.65 V. Afterward, battery is charged by a constant voltage of 3.65 V
with a decreasing current and stops charging when the current
became C/100. Battery terminal voltage of this IFP1865140 type
lithium-ion battery that clearly indicates the severe nonlinearity is
plotted in blue.

2.2. RUL description based on charge curve

It is known that the internal parameters of the battery are influ-
enced by its RUL, and would be reflected by its external electrical
performance. The battery should be replaced when it moves
toward the end of its life due to the irreversible electrochemical
degradation and poor discharge performance in practical opera-
tion. Obviously, internal electrochemical variation has effects on
the external electrical performance and parameters. For example,
battery impedance would impact battery terminal voltage, voltage
drop and temperature rise. The terminal voltage is also affected by
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Fig. 1. Charge process in actual operation.
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the state of charge of the battery. Thus, the variations of internal
battery parameters can be calculated based on the measurement
of external battery parameters. By analogy, battery RUL and health
condition likewise have relationships with some measurable bat-
tery parameters.

The terminal voltage curve during charge process is applied to
reflect battery RUL in this paper. Some of the reasons for using this
method can be expatiated as follows. (1) As stated in Section 2.1,
battery terminal voltage can be measured easily and accurately
during practical battery charge process because of the mild charac-
teristic of this process. (2) The battery would have diverse proper-
ties which can impact the performance of charge and discharge
process when battery RUL varies. Accordingly, battery under differ-
ent cycle numbers would have different internal property and
external performance, and then lead to different terminal voltages
and curve shapes during charging. This is proved by Fig. 2 which
shows the shapes of battery charge curve in CC mode under differ-
ent cycle numbers. As described in Fig. 2, characteristics like volt-
age of the platform, duration of platform, voltage boost points
(process that battery voltage reach to 3.65 V from the platform)
and length of the curve are all diverse among batteries under dif-
ferent cycle numbers. Thereupon, an approach based on the differ-
ence in battery terminal voltage curve among batteries under
different cycle numbers is proposed in this paper.
2.3. Definition of the RUL

Lithium-ion battery RUL can be expressed as follows:

NRUL ¼ NEOL � NECL ð1Þ

where NRUL represents the cycle number of battery RUL. NEOL is the
cycle number when battery comes to its end of life, which is often
reached if battery actual capacity drops below 80% of its initial
value in actual application. NECL is the equivalent circle life (ECL)
of the battery. It is obvious that a battery has a polytropic charge/
discharge current rate in actual operation. NECL is applied to formu-
late the cycle life via actual operation into cycle life under experi-
ment in which battery is charged with 0.5 C and discharged with
1 C under 25 �C.

NEOL is achieved by the experiment of more than 2000 charge
and discharge cycles taken with the same type of batteries. As
for the lithium-ion batteries studied in this paper, NEOL is equal
to 2063 according to the experiment data. Therefore, in order to
predict NRUL, an approach for NECL estimation is required and will
be introduced in Section 3.
3. Methodology

3.1. Feed forward neural network

There are no explicit quantitative formulas for relationship
description between the RUL and lithium-ion battery terminal
voltage curves during the charge process or relationship between
ECL and the curves. The relationship between battery voltage
curves and battery cycle number is very difficult to perceive owing
to the complex electrochemical reactions and mechanism inside
the battery during its lifetime.

In order to obtain NECL which does not have a detailed expres-
sion, FFNN is applied in this work. FFNN is widely used as a
machine learning method in statistical model because of its facile
realization and ability for nonlinear simulation [21,22]. In this
paper, a 3-layers FFNN consisting of input layer, hidden layer and
output layer is proposed. Moreover, a Levenberg Marquardt (LM)
based gradient descent back propagation algorithm is utilized in
training the FFNN. It is expected that battery cycle life could be
estimated when the network parameters are determined from
the training process. The structure of this FFNN is shown in Fig. 3.

To diminish the difficulty of neural network training and
improve the accuracy of estimation result, the training data of
FFNN should reflect the difference in the voltage curves among bat-
teries under different cycle numbers, and the input should repre-
sent the voltage curves during the whole CC charge subprocess
exactly. Thus, battery terminal voltages during CC charge subpro-
cess which were selected by IS are set as the inputs of the FFNN
and battery equivalent circle life is the output. Moreover, the num-
ber of the neurons in FFNN’s input layer is set to 11 with the pur-
pose of equilibrating network complexity and accuracy. The hidden
layer and output layer of the proposed neural network are the pro-
cessing layers with activation functions at each neuron. Further-
more, the activation functions in these two layers are both
hyperbolic tangent sigmoid function, as written in Eq. (2).

f ðuÞ ¼ 2
1þ e�2u � 1 ð2Þ

Thus, the mathematical equation of the hidden layer of the
FFNN can be expressed as in Eq. (3).

Hi ¼ f
X11
i¼1

ViwH
i;j þ bH

j

 !
; j ¼ 1;2; . . . ;n ð3Þ

where Hi is the ith output note of the hidden layer, Vi is the input
battery terminal voltage, wH

i,j is the weight value connecting the
ith input neuron and the jth hidden neuron, bHj is the threshold
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value of the jth neurons in the hidden layer, n is the number of the
neurons in the hidden layer.

Subsequently, based on Eq. (3), the output of this neural net-
work can be calculated as follows:

NECL ¼ f
Xn
j¼1

HjwO
j;k þ bO

k

 !
; k ¼ 1 ð4Þ

where wO
j,k is the weight value connecting the jth hidden neuron

and the kth output neuron, bOk is the threshold value of the kth neu-
ron in the output layer, k is the number of the neuron in the output
layer and k is equal to 1 in this paper since NECL is the only output of
the FFNN.

Battery terminal voltages during constant current charge sub-
process of each charge/discharge cycle in the experimental situa-
tion are measured and selected for network training. The values
of the weight and bias in the FFNN are determined after the train-
ing process. In addition, these values can be written in the EEPROM
of battery management system and makes it possible to estimate
battery RUL by the FFNN during the actual operation of the EVs,
HEVs and Microgrids. The equation applied to calculate battery
RUL can be defined as follows:

NRUL ¼ NEOL � f WT
O � f WT

H � V þ BH

� �
þ BO

� �
ð5Þ

where WH ¼ wH
1;1; . . . ;w

H
j;k; . . . ;w

H
j;1

� �T
is the weight matrix of the

neurons in the hidden layer, WO ¼ wO
1;1; . . . ;w

O
i;j; . . . ;w

O
11;n

� �T
is the

weight matrix of the neurons in the output layer,

V ¼ ðV1; . . . ;V11ÞT is the input vector of the input layer,

BH ¼ bH
1 ; . . . ; b

H
j

� �T
is the threshold value of the neurons in the hid-

den layer, BO ¼ bO
k is the threshold value of the neurons in the out-

put layer.

3.2. Importance sampling

It is obvious that there would be a large number of sampling
points during 0.5 C rate CC charge process even if the sample per-
iod of battery management system is 1 s. Measured voltage data
should be selected to make them possible to act as the inputs of
FFNN. As shown in Fig. 2, the terminal voltage of the lithium-ion
battery during CC charge process is nonlinear, especially at the
beginning and the end of the process. It is also shown that the ter-
minal voltage curve shapes of the battery in different cycle num-
bers are quite dissimilar. As mentioned earlier in this paper, the
input of FFNN should reflect the difference in the voltage curves
among batteries under different cycle numbers and represent the
voltage curves during the whole CC charge subprocess exactly. IS
is applied in this paper for FFNN input selecting instead of tradi-
tional uniform sampling to reduce the number of input neurons
of FFNN reasonably and reconstitute the terminal voltage curve
accurately.

IS [23,24] is a wildly used variance reduction technique based
on Monte Carlo theory. The basic idea of IS is that certain samples
would be more important than others and would have more
impact on the result of signal reconstitution or rare event simula-
tion. Thus, the main purpose of IS is to select an appropriate distri-
bution to increase the relative frequency of these important
samples. In order to make IS unbiased, the contribution of every
sample is weighted by the importance function.

As shown in Fig. 4, some voltage samples in the battery CC
charge curve are more important than others for curve reconstitu-
tion. These samples would have greater impacts on the shape of
the voltage curve. The purpose of IS is to select 11 suitable impor-
tant samples from hundreds of the terminal voltage samples. The
difference in the voltage curves among batteries under different
cycle numbers could be held by IS for its unbiasedness. In order
to apply IS in actual operation, the key issue is to find an impor-
tance function for the voltage samples in the battery CC charge
curve. Unfortunately, there are no general rules for selecting an
importance function that is appropriate for all occasions.

Obviously, the samples which have a bigger terminal voltage
variation make greater contributions than others to changing the
shape of battery terminal voltage curve. Hence, the voltage differ-
ence between two adjacent sample points is defined as the impor-
tance function in this paper. The mathematical expression is
shown as follows:

f IðkÞ ¼ Vk � Vk�1 ð6Þ

where fI(k) is the importance function of kth voltage; Vk and Vk�1 are
the kth and k � 1th voltage respectively.

In Fig. 4, battery terminal voltage during CC charge subprocess
is the blue line, and the red one is the curve of the importance
function. As a more important interval, the end of charge has val-
ues of the importance function of nearly 0.1 V which is much big-
ger than platform’s 0 V. Hence, more samples from the end of
charge will be selected as the input of FFNN. Furthermore, a non-
sampling interval is defined since batteries usually are not fully
discharged when charging started in the practical use. On the basis
of massive actual data analysis and project application, the non-
sampling interval is about from 0% to 30% SoC in this paper.

To encourage the contribution of the important samples, 8 sam-
ples are chosen from the boosting voltage interval. 3 samples are
picked from the platform to make sure that the IS is unbiased.
Eventually, 11 samples are selected from the regions of 80 min
before end of charge to the end, such as end of charge, 1 min before
the end, 2 min before the end and so on, as shown in Fig. 4. The
count backwards form of time is applied to acquire the samples
in order to eliminate the influence of different total charging time.
4. Experiments and analysis

With the purpose of testifying the RUL estimation method pro-
posed in this paper, several experiments and simulations are taken.
Lithium-ion battery cell voltages are measured by a battery testing
system comprised of a 63640-80-80 type DC electronic load and a
programmable 62006P-30-80 type DC power supply model both
develop by Chroma ATE Inc. Selected IFP1865140 type batteries
were developed by HeFei GuoXuan High-Tech Power Energy CO.
LTD of China in this platform. MATLAB is used to simulate the
experiment data in this paper.
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4.1. FFNN with different hidden neuron numbers

In order to identify the reasonable number of FFNN hidden neu-
rons, different hidden neuron numbers have been essayed. The
threshold number is set to 60 considering the processing capacity
of the MCU in BMS. Accordingly, comparison of these four net-
works with different hidden neuron numbers are presented. Con-
sidering the actual ambient temperature of the batteries in the
real applications, the experiment data was obtained by experi-
ments under the constant temperature of 25 �C. Furthermore, to
make the result more persuasive, a FFNN with empirical number
of hidden neurons, which is twice as large as the input layer and
was suggested in Ref. [25] either, is employed as a comparison
group.

Two sets of charge and discharge data through the whole using
life, more than 2000 charge and discharge cycles, of 2 different
IFP1865140 type lithium-ion batteries were applied to train and
validate FFNN respectively in this paper. Inputs of the FFNN are
11 battery terminal voltages selected by IS proposed in Section 3.
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Table 1
Numerical results of FFNN with different hidden neuron number.

Hidden neuron number 22 30

MAEa 57.2056 40
MSEb 1.7675e+04 3.2

a MAE = Mean absolute error.
b MSE = Mean squared error.
The FFNN was trained by the experiment data of over 2000 cycles
and tested by the other data of 2000 cycles from another battery to
justify the validity of the proposed RUL estimation method. The
prediction results and errors based on FFNN with different hidden
neuron numbers are shown in Fig. 5(a) and (b) respectively. More-
over, the numerical result is shown in Table 1.

As shown in Table 1, FFNN with more hidden neurons would be
able to have better performance. A FFNN with 50 hidden neurons
would have about 55% less of MAE than the FFNN had 22 neurons.
The MSE of FFNN with 20 hidden neurons is also larger than FFNN
with more hidden neurons. However, the more hidden neurons
contained in the network, the more computing workload imposed
on MCU. To balance the demand of estimation accuracy and MCU
performance, a FFNN with 40 hidden neurons is applied in the
actual BMS for RUL prediction online.
4.2. Comparison of importance sampling and uniform sampling

To validate the IS, RUL estimation results of FFNN with two dif-
ferent battery terminal voltage reconstitution methods, IS and uni-
form sampling (US), which are applied to input neurons selection
respectively are compared in this section. Unlike the IS, uniform
sampling thinks every sample point has the same importance.
Therefore, 11 points with equal sampling interval are chosen by
US.

Battery RUL estimation results between FFNN using IS and US
are compared. To guarantee the fairness, the compared neural net-
works are trained by the same experiment data, initialized by the
same weights and biases. Moreover, the hidden neurons are both
40 as well. Fig. 6(a) is the comparison of estimation result, and
Fig. 6(b) is the estimation error. As shown in the enlarged curves,
it is clearly that FFNN utilizing IS has a better performance than
the one using US. The numerical result is shown in Table 2. The
FFNN-US method has a MAE of 36.3539, while the MAE of FFNN-
IS is 29.4218. It is a 27.3% improvement by FFNN-IS. A less MSE
is achieved by FFNN-IS as well.
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Table 2
Numerical results of FFNN using IS and US.

Method FFNN-IS FFNN-US

MAE 29.4218 36.3539
MSE 1.6184e+03 2.3232e+03
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The above comparisons show that the proposed FFNN using IS
has a reliable battery RUL prediction performance. Meanwhile, 40
is confirmed to be a reasonable number of the hidden neurons
for actual BMS application.
5. Conclusion

On the basis of RUL definition reflected by the curves of con-
stant current charge subprocess, a lithium-ion battery RUL estima-
tion method using FFNN and IS is presented in this paper. To
predict RUL online, the hidden neuron number is set to 40 via
the contrast experiment. The mean absolute error and mean square
error of the proposed method in the prediction of the RUL is
29.4218 and 1.6184e+03 respectively in about 2000 cycles. In other
words, the presented online approach using FFNN and IS can pre-
dict the actual RUL with an error less than 5% for practical opera-
tion. The experimental results indicate that the proposed method
has a reliable RUL estimation performance for online application.
Therefore, the major contributions made in this paper are listed
as follows. (1) The difference in voltage curves of battery CC charge
subprocess among batteries under different cycle numbers is used
for RUL definition for robust consideration. (2) A FFNN with 40 hid-
den neurons is employed for estimating RUL online. (3) IS is uti-
lized to select FFNN input from amount of voltage points for
accurate lithium-ion charge curve reconstitution. In the future,
RUL estimation for battery under different charge current rate will
be studied.
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