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Abstract

In this paper, we propose algorithms that
leverage a known community structure to
make group testing more efficient. We con-
sider a population organized in disjoint com-
munities: each individual participates in a
community, and its infection probability de-
pends on the community (s)he participates
in. Use cases include families, students who
participate in several classes, and workers
who share common spaces. Group testing
reduces the number of tests needed to iden-
tify the infected individuals by pooling di-
agnostic samples and testing them together.
We show that if we design the testing strat-
egy taking into account the community struc-
ture, we can significantly reduce the number
of tests needed for adaptive and non-adaptive
group testing, and can improve the reliability
in cases where tests are noisy.

1 Introduction

Group testing pools together diagnostic samples to
reduce the number of tests needed to identify in-
fected members in a population. In particular, if in
a population of » members we have a small frac-
tion infected (say k < n members), we can iden-
tify the infected members using as low as O(klog(%))
group tests, as opposed to n individual tests [Du and
Hwang, 1993, Aldridge et al., 2019, Kucirka et al.,
2020]. Triggered by the need of widespread testing,
such techniques are already being explored in the con-
text of Covid-19 [Gollier and Gossner, 2020, Broadfoot,
2020, Ellenberg, 2020, Verdun et al., 2020, Ghosh et al.,
2020, Kucirka et al., 2020]. Group testing has a rich
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history of several decades dating back to R. Dorfman
in 1943 and a number of variations and setups have
been examined in the literature [Dorfman, 1943, Du
and Hwang, 1993, Aldridge et al., 2019, Yaakov Mali-
novsky, 2016].

The observation we make in this paper is that we can
leverage a known community structure to make group
testing more efficient. The work in group testing we
know of, assumes “independent” infections, and ig-
nores that an infection may be governed by community
spread; we argue that taking into account the commu-
nity structure can lead to significant savings. As a use
case, consider an apartment building consisting of F
families that have practiced social distancing; clearly
there is a strong correlation on whether members of
the same family are infected or not. Assume that the
building management would like to test all members
to enable access to common facilities. We ask, what is
the most test-efficient way to do so.

Our approach enlarges the regime where group test-
ing can offer benefits over individual testing. Indeed,
a limitation of group testing is that it offers fewer or
no benefits when & grows linearly with n [Riccio and
Colbourn, 2000,Hu et al., 1981, Ungar, 1960, Aldridge,
2019, Aldridge et al., 2019]. Taking into account the
community structure allows to identify and remove
from the population large groups of infected members,
thus reducing their proportion and converting a lin-
ear to a sparse regime identification. Essentially, the
community structure can guide us on when to use in-
dividual, and when group testing.

Our main results are as follows. Assume that n popu-
lation members are partitioned into F' groups that we
call families, out of which k; families have at least one
infected member.

e We derive a lower bound on the number of tests,
which for some regimes increases (almost) linearly with
ks (the number of infected families) as opposed to k
(the number of infected members).

e We propose an adaptive algorithm that achieves the
lower bound in some parameter regimes.

e We propose a nonadaptive algorithm that accounts
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for the community structure to reduce the number of
tests when some false positive errors can be tolerated.
e We propose a new decoder based on loopy belief
propagation that is generic enough to accommodate
any community structure and can be combined with
any test matrix (encoder) to achieve low error rates.
e We numerically show that leveraging the community
structure can offer benefits both when the tests used
have perfect accuracy and when they are noisy.

We present our models in Section 2, the lower bound in
Section 3, our algorithms for the noiseless case in Sec-
tion 4, and loopy belief propagation (LBP) decoding
in Section 5. Numerical results are in Section 6.

Note: The proofs of our theoretical results (in Sec-
tions 3—4) are in the Appendix, along with an extended
explanation of the rationale behind our algorithms.

2 Background and notation

2.1 Traditional group testing

Our work extends traditional group testing to infection
models that are based on community spread. For this
reason, we review here known results from prior work.

Traditional group testing typically assumes a popu-
lation of n members out of which some are infected.
Two infection models are considered: (i) in the combi-
natorial model, a fixed number of infected members £k,
are selected uniformly at random among all sets of size
k; (ii) in the probabilistic model, each item is infected
independently of all others with probability p, so that
the expected number of infected members is k = np.
A group test 7 takes as input samples from n. individ-
uals, pools them together and outputs a single value:
positive if any one of the samples is infected, and neg-
ative if none is infected. More precisely, let U; =1
when individual 7 is infected and 0 otherwise. Then
the traditional group testing output Y. takes a binary
value calculated as Y> = \/;c5 U;, where \/ stands for
the OR operator (disjunction) and ¢, is the group of
people participating in the test.

The performance of a group testing algorithm is mea-
sured by the number of group tests T'= T'(n) needed
to identify the infected members (for the probabilistic
model, the expected number of tests needed). Setups
that have been explored in the literature include:

e Adaptive vs. mon-adaptive testing: In adaptive test-
ing, we use the outcome of previous tests to decide
what tests to perform next. An example of adaptive
testing is binary splitting, which implements a form of
binary search. Non-adaptive testing constructs, in ad-
vance, a test matriv G € {0,1} 7" where each row
corresponds to one test, each column to one mem-

ber, and the non-zero elements determine the set d,.
Although adaptive testing uses less tests than non-
adaptive, non-adaptive testing is more practical as all
tests can be executed in parallel.

e Scaling regimes of operation: assume k = O(n?%), we
say we operate in the linear regime if a = 1; in the
sparse regime if 0 < o < 1; in the very sparse regime
if k is constant.

Known results. The following are well estab-
lished results (see [Johnson, 2017, Du and Hwang,
1993, Aldridge et al., 2019] and references therein):

e In the combinatorial model, since T tests allow to
distinguish among 27 combinations of test outputs,
then to identify all £ infected members without error,
we need: 27 > (Z) < T > log,y (Z) This is known as
the counting bound [Johnson, 2017, Du and Hwang,
1993, Aldridge et al., 2019] and implies that we cannot
use less than 7' = O(k log ) tests. In the probabilistic
model, a similar bound has been derived for the num-
ber of tests needed on average: T > nhy (p), where
hs is the binary entropy function.

e Noiseless adaptive testing can achieve the counting
bound for £k = ©(n®) and « € [0,1); for non-adaptive
testing, this is also true of a € [0,0.409], if we allow
a vanishing (with n) error [Aldridge et al., 2019, Coja-
Oghlan et al., 2020, Coja-Oghlan et al., 2020].

e In the linear regime (a = 1), group testing offers lit-
tle benefits over individual testing. In particular, if the
infection rate ¥/» is more than 0.38, group testing does
not use fewer tests than 1-by-1 (individual) testing un-
less high identification-error rates are acceptable [Ric-
cio and Colbourn, 2000, Hu et al., 1981, Ungar, 1960].

2.2 Community and infection models

In this paper, we additionally assume a known commu-
nity structure: the population can be decomposed in
F disjoint groups of individuals that we call families.
Each family j has M; members, so that n = Zle M;.
In the symmetric case, M; = M for all j and n = FM.
Note, that the term “families” is not limited to real
families—we use the same term for any group of peo-
ple that happen to interact, so that they get infected
according to some common infection principle.

We consider the following infection models, that par-
allel the ones in the traditional setup:

e Combinatorial Model (I). ks of the families are
infected—namely they have at least one infected mem-
ber. The rest of the families have no infected members.
In each infected family j, there exist k7, infected mem-
bers, with 0 < kJ, < M;. The infected families (resp.
infected family members) are chosen uniformly at ran-
dom out of all families (resp. members of the same
family). For our analysis, we sometimes consider only
the symmetric case, where kJ, = k,, for each family j.
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e Probabilistic Model (II). A family is infected
with probability ¢ i.i.d. across the families. A member
of an infected family j is infected, independently from
the other members (and other families), with proba-
bility p; > 0. If a family j is not infected, then p; = 0.
When k), = p; M; the two models behave similarly.

Our goal is two-fold: (a) provide new lower bounds for
the number of tests T needed to identify all infected
members without error; and (b) design community-
aware testing algorithms that are more efficient than
traditional group-testing ones, in the sense that they
can achieve the same identification accuracy using sig-
nificantly fewer tests and they can also perform close
to the lower bounds in some cases.

2.3 Noisy testing and error probability

In this work we assume that there is no dilution noise,
that is, the performance of a test does not depend
on the number of samples pooled together. This is
a reasonable assumption with genetic RT-PCR tests
where even small amounts of viral nucleotides can be
amplified to be detectable [Saiki et al., 1985, Kucirka
et al., 2020]. However, we do consider noisy tests in
our numerical evaluation (Section 6) using a Z-channel
noise model!. We remark that this is simply a model
one may use; our algorithms are agnostic to this and
can be used with any other model.

Additionally, some of our identification algorithms
may return with errors. For this, we use the following
terminology: Let U; denote the estimate of the state
of U; after group testing. Zero error captures the re-
quirement that [72 = U, for all ¢ € N/. Vanishing error
requires that all error probabilities go to zero with n.
Sometimes we also distinguish between Fulse Negative
(FN) and False Positive (FP) errors: FN errors occur
when infected members are identified as non-infected
(and vice-versa for FP).

2.4 Other related work

The idea of community-aware group testing is explored
to some extent in our preprint [Nikolopoulos et al.,
2020]. Also, a similar idea of using side-information
from contact tracing in decoding is proposed by [Zhu
et al., 2020, Goenka et al., 2020], independently from
our work. That work is complementary to ours; we
focus more on test designs rather than decoding, for
which we use well-known algorithms such as COMP
and LBP. Finally, test designs, lower bounds and de-

'In a Z-channel noise model, a test output that should
be positive, flips and appears as negative with probability
z, while a test output that is negative cannot flip. Thus:

P(Y, = 1[Us,) = (Vies, U) (1= 2).

coding algorithms for independent but not identical
priors are investigated by [Li et al., 2014].

The line of work on graph-constrained group testing
(see for example [Cheraghchi et al., 2012, Karbasi and
Zadimoghaddam, 2012, Luo et al., 2019]) solves the
problem of how to design group tests when there are
constraints on which samples can be pooled together,
provided in the form of a graph; in our case, individu-
als can be pooled together into tests freely.

3 Lower bound on the number of tests

We compute the minimum number of tests needed to
identify all infected members under the zero-error cri-
terion in both community models (I) and (II).

Theorem 1 (Combinatorial community bound).
Consider the combinatorial model (I) (of Section 2.2).
Any algorithm that identifies all k infected members
without error requires a number of tests T satisfying:

ky
F M;
T > log, < > + Zlog2 < j]>. (1)
For the symmetric case: T > log, (:;) + kyr log, (éw)

Observations: We make two observations regard-
ing the combinatorial community bound, in the case
where the number of infected family members follows
a “strongly” linear regime (k, ~ M;) and the num-
ber of infected families &y follows a sparse regime (i.e.,
ky = ©(F) for ay € [0,1)):

(a) The bound increases almost linearly with k¢ (the
number of infected families), as opposed to k (the over-
all number of infected members). This is because,
if the infection regime about families is sparse, the
following asymptotic equivalence holds: log, (,f; ) ~

ks log, k—l’; ~ (1 —ay)kslog, F'.

(b) If additionally to the sparse regime about families,
an overall sparse regime (k = O(n®) for o € [0,1))
holds, then the community bound may be significantly
lower than the counting bound that does not take into
account the community structure. Consider, for ex-
ample, the symmetric case. The asymptotic behav-
ior of the counting bound in the sparse regime is:
log, (Z) ~ klogy 7 ~ kykn, logy kEf, where the latter is
because k,, =~ M. So, the ratio of the counting bound
to the combinatorial bound scales (as F' gets large) as:

logs (;) N

M

logy (i) + Fr log (i)
Although simplistic, observation (b) is important for

practical reasons. Many times, the population is com-
posed of a large number of families with members that

Figkim log £

=kn. (2)
Ky logy %
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have close contacts (e.g. relatives, work colleagues,
students who attend the same classes, etc.). In such
cases, we do expect that almost all members of infected
families are infected (i.e. k., ~ M;), even though the
overall infection regime may still be sparse. Eq. (2)
shows the benefits of taking the community structure
into account in the test design, in such a case.

Theorem 2 (Probabilistic Community bound). Con-
sider the probabilistic model (II) (of Section 2.2). Any
algorithm that identifies all k infected members with-
out error requires a number of tests T satisfying:

F 1— q
T> th(q)JrZ qM;he(p;) — wjhe (w) (3)
j=1 ’

where w; =1 — g+ q(1 — p;)M.

Two observations: (a) If for each family j, p; and M;
are such that ¢(1 — p;)™ — 0 (i.e. the probability of
the peculiar event, where a family is labeled “infected”
and yet has no infected members, is negligible), the
combinatorial and probabilistic bounds are asymptot-
ically equivalent. In particular, using the standard es-
timates of the binomial coefficient [Ash, 1990, Sec. 4.7],
the combinatorial bound in (1) is asymptotically
equivalent to Fhg(%/F) + fozl M; hy (k. /M;), which
matches the probabilistic bound in (3): Fhe(q) +

_ k —
43,1 Mihe(p)) = Fha(B/r) + S50, Mo (Fn/u),
with ky = ks + o(1) and &}, = kJ, + o(1) in place of
their expected values k; = F'qg and ki

(b) Theorem 2 extends from zero-error recovery to
constant-probability recovery by applying Fano’s in-
equality (similarly to Thm 1 of [Li et al., 2014]), and
in doing so, the right-hand side of (3) gets multiplied
by the desired probability of success P(suc).

4 Algorithms

4.1 Adaptive algorithm

Alg. 1 describes our algorithm for the fully adaptive
case, which consists of two parts (the interested reader
may find the detailed rationale for our algorithm in
Appendix B). In both parts, we make use of a clas-
sic adaptive-group-testing algorithm AdaptiveTest(),
which is an abstraction for any existing (or future)
adaptive group-testing algorithm. We distinguish be-
tween 2 different kinds of input for AdaptiveTest():
(a) a set of selected members, which is the typical in-
put of group-testing algorithms; (b) a set of selected
mized samples. A mixed sample is created by pooling
together samples from multiple members that usually
have some common characteristic. For example, mixed
sample z(r;) denotes an aggregate sample of a set of

Algorithm 1 Adaptive Community Testing

Ui is the estimated infection status of member 3.

LA/m is the estimated infection status of a mixed sample
x.

SelectRepresentatives() is a function that selects a rep-
resentative subset from a set of members.
AdaptiveTest() is an adaptive algorithm that tests a
set of items (mixed samples or members).

1: for j=1,...,F do

2 r; = SelectRepresentatives ({i: 1 € j})

3: end for R

4: UI(T1)7 ey Uz(rp) =
AdaptiveTest (z(r1),...,z(rr))

5: Set A:=10

6: for j=1,...,F do

7 if UE(T]) = “positive” then

8: Use a noiseless, individual test for each fam-
ily member: (A]z = U;, Vi €.

9: else

10: A=AU{i:iej}

11: end if

12: end for

13: {Ul NS A} = AdaptiveTest (A)
14: return [ffl, ce 04

representative members r; from family j. A mixed
sample is “positive,” if at least one of the members
that compose it is infected, and “negative” otherwise.
Because in some cases we only care about mixed sam-
ples, we can treat them in the same way as individual
samples—hence use group testing to identify the infec-
tion state of mixed samples as we do for individuals.

Part 1 (lines 1-4): The goal of this part is to de-
tect the infection regime inside each family j, so that
the family is tested accordingly at the next part: us-
ing group testing, if j is “lightly” infected, or individ-
ual testing, otherwise. Our idea is motivated by the
result presented in Section 2.1 that group testing is
preferable to individual, only if infection rate is low
(i.e. p; < 0.38). Therefore, the challenge is to ac-
curately detect the infection regime spending only a
limited number of tests. In this paper, we limited our
exploration to using only one mixed sample in this re-
gard, but more sophisticated techniques are also pos-
sible, some of which are discussed in Appendix B.2.

First, a representative subset r; of family-j
members is selected using a sampling function
SelectRepresentatives() (lines 1-3). Then, a mixed
sample z(r;) is produced for each subset 7;, and an
adaptive group-testing algorithm is performed on top
of all representative mixed samples (line 4). If our
choice of AdaptiveTest() offers exact reconstruction
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(which is usually the case), then: [AJI(TJ) = Us(r))-

Part 2 (lines 5-13): We treat f]z(m as an estimate
of the infection regime inside family j: if AUx(m is posi-
tive, then we consider the family to be heavily infected
(i.e k/M; or p; > 0.38), otherwise lightly infected (i.e.
k,/M; or p; < 0.38). Since group testing performs bet-
ter than individual testing only in the latter case (sec-
tion 2.1), we use individual testing for each heavily-
infected family (lines 7-8), and adaptive group testing
for all lightly-infected ones (line 13).

Analysis for the number of tests. We now com-
pute the maximum expected number of tests needed
by our algorithm to detect the infection status of all
members without error. For simplicity of notation, we
present our results through the symmetric case, where
M; = M, k), = k,, (combinatorial case) or p; = p
(probabilistic case), and |r;| = R for all families:
Let SelectRepresentatives() be a simple function that
performs uniform (random) sampling without replace-
ment, and consider 2 choices for the AdaptiveTest()
algorithm: (i) Hwang’s generalized binary splitting al-
gorithm (HGBSA) [Hwang, 1972], which is optimal if
the number of infected members of the tested group is
known in advance; and (ii), traditional binary-splitting
algorithm (BSA) [Sobel and Groll, 1959], which per-
forms well, even if little is known about the number of
infected members.

Lemma 1 (Expected number of tests - Symmetric
combinatorial model). Consider the choices (i) and
(i) for the AdaptiveTest() defined above. Alg. 1 suc-
ceeds using a maximum expected number of tests:

N

T(“-) <kro. (10g2 F+1+ M) +

+k (1 - ¢c) (IOgZ (n - ka¢c) + 1) ) (5)
where the inequalities are because of the worst-case per-
formance of HGBSA and BSA, and ¢. is the expected
fraction of infected families whose mixzed sample is pos-
itive:
0 JifR=0
1 - (M}km)/(%) ) Zf 1 S R S M - km
1 yif M-k, <R M.

¢c:

Lemma 2 (Expected number of tests - Symmetric
probabilistic model). If Alg. 1 uses BSA in place of
AdaptiveTest(), then it succeeds using a mazimum ez-
pected number of tests:

T <Fyg, (logy F + 1+ M) (6)

+ngp (1 = ¢p) (logy (n (1= q¢p)) +1),  (7)

where the inequality is due to the worst performance
of BSA, and ¢, =1—(1 — p)R 1s the expected fraction
of infected families whose mixed sample is positive.

Lemmas 1 and 2 are derived (in Appendix B) as a re-
peated application of the performance bounds of HG-
BSA and BSA: if out of » members, k are infected uni-
formly at random, then HGBSA (resp. BSA) achieves
exact identification using at most: log, (Z) + k (resp.
klogy, n + k) tests [Aldridge et al., 2019, Baldassini
et al., 2013].

Observations: (a) If heavily /lightly infected families
are detected without errors in Part 1, our algorithm
can asymptotically achieve (up to a constant) the lower
combinatorial bound of Theorem 1 in particular com-
munity structures. We show this via 2 examples:

First, consider a sparse regime for families (i.e. kf =
O(F*) for oy € [0,1)) and a moderately linear regime
within each family (i.e. k=»/m ~ 0.5). In this case:
log, (;1;) ~ kylogy (¥ /kr), logy (%) ~ Mhg(Fn/M) ~ M
and the bound in (1) becomes: ky (logy /i + M). If R
is chosen such that all infected families (which are also
heavily infected as #=/m > 0.38) are detected without
errors (e.g. if R > M — k), then ¢. = 1; thus, the
RHS of (4) becomes almost equal (up to constant ky)
to the lower bound (1).

Second, consider the opposite example, where the in-
fection regime for families is very high, while each
separate family is lightly infected. In this case, k =
krkm = kp; therefore, the lower bound becomes: 1" ~
by 108 (P i) + ky ki 10gy (M k) ~ klogy (k). Tf R is
chosen such that none of the (lightly infected) fam-
ilies is marked as heavily infected in Part 1 (e.g. if
R = 0, which reduces to using traditional community-
agnostic group testing), then ¢. = 0, and the RHS
of (4) is almost equal (up to k) to the bound in (1).

(b) The upper bound in (5) shows that our algorithm
achieves significant benefits compared to classic BSA
when the infected families are heavily-infected and R
is chosen such that ¢, =1 (e.g. R > M — k,,); this is
because T(;;) < kf (logy F +1+ M) < klogyn + k).
Also, it achieves the same performance as BSA, when
families are lightly-infected and R is chosen such that
¢. =0 (e.g. R=0); this is because T(”) < klogyn +
k). Since the former case (heavy infection) is more
realistic, our algorithm is expected to per. form a lot
better than classic group testing in practice.

The examples in observation (a) and the above anal-
ysis indicate two things: First, the knowledge of the
community structure is more beneficial when families
are heavily infected; traditional group testing performs
equally well in low infection rates. Our experiments
showed that the community structure helps whenever
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p > 0.15 and the benefits increase with p. Second,
a rough estimate of the families’ infection rate has to
be known a priori in order to optimally choose R. In
Appendix B, we demonstrate that this is unavoidable
in the symmetric scenario we examine and when only
one mixed sample per family is used to identify which
families are heavily/lightly infected.

(¢) In the most favorable regime for our community-
aware group testing, where very few families have al-
most all their members infected (i.e. ky = ©(F ) for
ay € [0,1) and ky, = M), even if R is chosen optimally
such that ¢, = 1, the ratio of the expected number of
tests needed by Algorithm 1 (see (4)) and HGBSA can-
not be less than 1/log(n/k), which upper bounds the
benefits one may get. In Appendix B.2, we detail this
observation and provide an optimized version of our
algorithm that improves upon the gain of 1/log(n/k).

4.2 Two stage algorithm

The adaptive algorithm can be easily implemented as a
two-stage algorithm, where we first perform one round
of tests, see the outcomes, and then design and per-
form a second round of tests. The first round of tests
implements part 1, checking whether a family is highly
infected or not; the second round of tests implements
part 2, performing individual tests for the members
of the highly infected families, and in parallel, group
testing for the members of the remaining families.

As we did before for the adaptive case, we here make
use of a classic non-adaptive group-testing algorithm,
which we call NonAdaptiveTest(), and abstracts any
existing (or future) non-adaptive algorithm in the
group-testing literature. Thus to translate Alg. 1 to
a two-stage algorithm, lines 4 and 13 simply become:

4: [Uz(rl), ...,[A]I(TF)} = NonAdaptiveTest (z(r1), ...,

13: {U, NS A} = NonAdaptiveTest (A) . (8)

Number of tests: In some regimes, the two-stage
algorithm can operate with the same (order) number
of tests as the adaptive algorithm, at a cost of a van-
ishing error probability: for example, for the tests in
line 4, if ky = O(F*) with oy < 0.409, we can use
approximately (1 — ay)F® log, F tests and achieve
vanishing error probability leveraging literature non-
adaptive algorithms [Aldridge et al., 2019, Scarlett and
Cevher, 2016, Johnson et al., 2019, Coja-Oghlan et al.,
2020, Coja-Oghlan et al., 2020].

4.3 Non-adaptive algorithm

For simplicity of notation, we describe our non-
adaptive algorithm using again the symmetric case.

Test Matrix Structure. Our test matrix G is di-
G
G

> The sub-matrix G of size T} x n identifies the in-
fected families using one mixed sample from each fam-
ily, similar to line 4 of Alg. 1. We want G; to identify
all (non-)infected families with small error probability.
If the number of tests available is high, we set T} = F,
i.e., we use one row for each family test. Otherwise, in
sparse ky regimes, we set T closer to O(ks log %)

vided into two sub-matrices: G =

> The sub-matrix Gq of size T5 X n has a block ma-
trix structure and contains F' identity matrices Iz,
one for each family. G is designed as follows: (i) each
block column contains only one identity matrix I,
i.e., each member is tested only once; (ii) each block
row ¢ (i € {1,2,---,b}) contains ¢; identity matrices
Iy, i.e., there are ¢; members included in the corre-
sponding tests. As a result: T, = bM. An example
with F=6,b=3,¢c1 =2, =1, cg=31is:

Ine Opexcms Omxr Iy Ongescnr Opexcms

G2 = |Omxm Im Omxnr Onrxnr Onexar Ongxs

Ormxmt Omxme I Omxe I Im

Decoding. From the outcome of the tests in Gy we
identify the F' — k; non-infected families, and proceed
to remove the corresponding columns (non-infected
members) from Go. We use the remaining columns
of G to identify infected members according to the
rules (which follow the logic of combinatorial orthogo-
nal matching pursuit (COMP) decoding [Chan et al.,
2014, Cai et al., 2017)):

(1) A member is identified as non-infected if it is in-
cluded in at least one negative test in Go.

(74) All other members, that are only included in pos-

z(rp)) itive tests in Go, are identified as infected.

Error Probability. It is perhaps not hard to see that:
after the removal of the columns, the block structure
of G helps us obtain a test matrix that is close to an
identity matrix — hence perform “almost” individual
testing?. Also, note that our decoding strategy for Go
leads to zero FN errors. Building on these ideas, the
following lemmas guide us though a design of G2 that
minimizes the (FP) error probability.

e Requiring zero-error decoding is too rigid: the op-
timal solution is the trivial solution that tests each
member individually, but this would require T5 > n.

o The symmetric choice ¢; = ¢ minimizes the error
probability. As said, we design G such that FP errors
are minimized. A FP may happen if identity matri-
ces Iy corresponding to two or more infected families

2An extended analysis about G is in Appendix C.2.
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appear in the same block row of Gsy. In this case,
some non-infected members may be included in the
same test with infected members from other families
and identified as infected by mistake.

Lemma 3. Under models (I) and (II), the probability
that there is some block row containing two or more
infected families is:

[ e

|Bl=kf: BC{1,2,---,b} i€B
]P)j[omt 1- F ) (9)
(i)
b
P]I({znt =1- H [(1 - Q)Ci + Czq(l - Q)Ci_l] . (10)

=1

The following lemma offers a test-matrix design that
minimizes the system FP probability, defined as:

P(any-FP) = P(3i : @; = 1 and u; = 0). (11)

Lemma 4. The P(any-FP) is minimized for both mod-
els (I) and (II), if ¢; = ¢ for all i € {1,--- ,b}.

Lemma 5. For Gs as in Lemma 4, the system FP
probability for models (I) and (II) equals:

T2/ MY (FN ) Ty)s
Pl(any-FP) =|1-— (1\1/[)‘| [1 _ ( k¢ )((F) /T2)
P (any-FP) = Z M,Z-]z (;4)]

- [1 = ((1 g (1 —q+ F%q»TQ/M] .

P(any-FP) can be pessimistic; a more practical metric
is the average fraction of members that are misidenti-
fied (error rate): R(error) £ I{i: &% # ui}|/n.

Lemma 6. For Gy as in Lemma 4, the error rate is
calculated for models (1) and (II) as:

k (M B km)
fT P} ints (12)

(1-p)q[1—(1—¢q) ] (13)

Ry (error) <

Ryr(error) <

5 Loopy belief propagation decoder

We now describe our new algorithm for decoding infec-
tion status of the individuals (and families). This is ac-
complished by estimating the posterior probability of
the corresponding individual (or family) being infected
via loopy belief propagation (LBP). LBP computes the
posterior marginals exactly when the underlying factor
graph describing the joint distribution is a tree (which
is rarely the case) [Kschischang et al., 2001]. Never-
theless, it is an algorithm of practical importance and

has achieved success on a variety of applications. Also,
LBP offers soft information (posterior distributions),
which can be proved more useful than hard decisions
in the context of disease-spread management.

We use LBP for our probabilistic model, because it
is fast and can be easily configured to take into ac-
count the community structure leading to more reli-
able identification. Many inference algorithms exist
that estimate the posterior marginals, some of which
have also been employed for group testing. For ex-
ample, GAMP [Zhu et al., 2020] and Monte-Carlo
sampling [Cuturi et al., 2020] yield more accurate de-
coders. However, taking into account the statistical
information provided by the community structure was
proved not trivial with such decoders. Moreover, the
focus of this work is to examine whether benefits from
accounting for the community structure (both at the
test design and the decoder) exist; hence we think that
considering a simple (possibly sub-optimal) decoder
based on LBP is a good first step; we defer more com-
plex designs to future work.

We next describe the factor graph and the belief prop-
agation update rules for our probabilistic model (II).
Let the infection status of each family j be V; ~
Ber(q). Moreover, let V(U;) denote the family that
U, belongs to.

P(Vi,..., Vi, Uy, ...

F T
HP(VJ-)H (U V(U H (Y+|Us,), (14)
j=1 i=1 =1

Una Yla ) Yr ) =

where 0, is the group of people participating in the
test. Equation (14) can be represented by a factor
graph, where variable nodes correspond to each ran-
dom variable Vj, U;, Y, and factor nodes correspond
to P(V;), P(Us| V(U)), P(Y~|Us,).

Given the result of each test is y,, i.e., Y. =y,, LBP
computes the marginals P(V; = v|Y1 = y1,..., Y =
yr) and P(U; = u|Y1 = y1,..., Yr = yr), by iter-
atively exchanging messages across the variable and
factor nodes. The messages are viewed as beliefs
about that variable or distributions (a local estimate of
P(variable|observations)). Since all random variables
are binary, each message is a 2-dimensional vector.

We use the factor graph framework from [Kschischang
et al., 2001] to compute the messages: Variable nodes
Y, continually transmit the message [0,1] if ¥, =

and [1,0] if Y, = 0 on its incident edge, at every iter-
ation. Each other variable node (V; and U;) uses the
following rule: for incident each edge e, the node com-
putes the elementwise product of the messages from
every other incident edge ¢’ and transmits this along
e. For the factor node messages, we derive closed-form
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non-adaptive

Figure 1: Noiseless case: Average number of tests.

expressions for the sum-product update rules (akin to
equation (6) in [Kschischang et al., 2001]). The exact
messages are described in Appendix D.

6 Numerical evaluation

In this section, we evaluate the benefits (in terms of
number of tests and error rate) from taking the com-
munity structure into account in practical scenarios,
where noiseless or noisy tests are used.

Experimental setup I: Symmetric. In our sim-
ulations, we consider 2 different use cases about the
community structure: (Community 1) a neighborhood
with F = 200 families of M = 5 members each, and
(Community 2) a university department with F = 20
classes of M = 50 students each. In each use case, we
also examine 2 different infection regimes: (a) a lin-
ear regime, where ¥/n = 0.1; and (b) a sparse regime,
where k = \/n = 32. Finally, we consider both noise-
less tests that have perfect accuracy and noisy tests
that follow the Z-channel model from Section 2.3. For
each scenario, we average over 500 randomly generated
community structures, in which the members/students
are infected according to the symmetric probabilis-
tic model (II): first a family/class is chosen at ran-
dom w.p. ¢ to be infected and then each of its mem-
bers/students gets randomly infected w.p. p.

Results. Our results were similar in all scenarios; for
brevity, we show here only the sparse regime. Further
results can be found in the Appendix of the supple-
mentary submitted document.

(i) Noiseless testing — Average number of tests: In this
experiment, we measure the average number of tests
needed by 3 algorithms that achieve zero-error recon-
struction (Alg. 1 with R = 1, Alg. 1 with R = M,
and classic BSA), and a nonadaptive algorithm (Sec-
tion 4.3) that uses Ty = F tests for G; and has FP
rate around 0.5%. Alg. 1 assumes no prior knowl-
edge of the number of infected families/classes or mem-
bers/students, hence uses BSA for the Adaptive Test().

Fig. 1 depicts our results about Community 2 and for
p € [0.4,0.8]. Both versions of Alg. 1 need significantly
fewer tests compared to classic BSA, while staying be-
low the counting bound. This indicates the potential

benefits from the community structure, even when the
number of infected members is unknown. More inter-
estingly, when R = M, Alg. 1 performs close to the
lower bound in most realistic scenarios p € [0.5,0.8]
(as also shown in Section 4.1). The relevant result in
the linear regime, was slightly worse: 50-70 tests above
the lower bound. Last, the grey line shows number
of tests needed by our nonadaptive algorithm; we ob-
serve that even that algorithm can perform better than
BSA, when p > 0.55 and small FP rates are tolerated.

(ii) Noiseless testing — Average error rate: We here
quantify the additional cost in terms of error rate,
when one goes from a two-stage adaptive algorithm
that achieves zero-error identification to much faster
single-stage nonadaptive algorithms. In each run, we
first run our two-stage algorithm (Section 4.2) that
uses a classic constant-column-weight test design at
each stage and measure the number of tests it requires
to achieve zero errors. Then, we use the same number
of tests to infer the members’ infection status through
2 nonadaptive algorithms that account for the com-
munity structure either at the test matrix (encoding)
part or the decoding and a traditional one that does
not consider it at all: “COMP with C-encoder” is our
nonadaptive algorithm that uses a COMP decoder as
described in Section 4.3; “C-LBP with NC-encoder” is
an algorithm that uses classic constant-column-weight
test design combined with our LBP decoder form Sec-
tion 5; and “COMP with NC-encoder” is a traditional
nonadaptive algorithm, that we use as a benchmark
and uses a constant-column-weight test matrix with a
COMP decoder. “C” denotes that the community is
taken into account, while “NC” denotes that it is ig-
nored. It is important to note that the number of tests
needed by the two-stage algorithm (and therefore all
other algorithms) gets lower as p gets large, something
that affects the results (as discussed further below).

Fig. 2 depicts the FP and FN error rates® (averaged
over 500 runs) as a function of p € [0.3,0.9] for Com-
munity 1. We observe that any community-aware non-
adaptive algorithm performs better than traditional
nonadaptive group testing (red line) when p > 0.4—
the absolute performance gap ranges from 0.4% (when
p = 0.3) to 5.5% (when p = 0.9). “COMP with C-
encoder” has a stable FP rate across for all p values
that was close to 1%, and a zero FN rate by con-
struction. Our LBP decoder, may yield both FN and
FP errors. Also, being an approximate inference algo-
rithm, it may produce worse results than COMP when
p € [0.42,0.67], but performs better when the infection
rate is higher.

Fig. 3 examines the effect of the number of tests. Start-

3FN rate is the percentage of infected individuals iden-
tified as negative and vice versa for FP.
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Error rate (%)
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Figure 2: Noiseless case: Average
error rate with few tests.
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Figure 5: Asymmetric case: Ratio of the number of
tests needed to the lower bound (2).

ing from the average number of tests used by the two
stage algorithm when p = 0.6, we compute the FP
and FN rates for larger numbers of tests. Our ex-
periment shows a transition around T = 240, after
which point “C-LBP with NC-encoder” performs bet-
ter than “COMP with C-encoder”. In fact, “COMP
with C-encoder” seems to converges to zero FP er-
rors much slower. This result was common for other
p values, the transition just occurred at different 7.
We therefore conclude that one may use our “COMP
with C-encoder” when the number of tests available
is limited or they just want to use a simple decoder;
otherwise if the testing budget is larger, one should
better go with “C-LBP with NC-encoder”.

(iii) Noisy testing: Assuming the Z-channel noise of
Section 2.3 with parameter z = 0.15, we evaluate the
performance of our community-based LBP decoder of
Section 5 against a LBP that does not account for
community—namely its factor graph has no V; nodes.

Fig. 4 depicts our results for Community 1 and for
a selected p = 0.8 and a number of tests as given
from the two-stage algorithm of the previous experi-
ments. We observe that the knowledge of the com-
munity structure (in C-LBP) reduces both FP and
FN rates achieved community-unaware NC-LBP. Es-
pecially, FN error rates drop significantly (up to 80%
when tests are few), which is important in our context
since FN errors lead to further infections. Our results
were similar for other p values as well.

Experimental setup II: Asymmetric. In our
asymmetric setup, infections follow again the proba-
bilistic model (II), but this time for each family j, M

—e— FP for COMP with
—v— FP for COMP with
—=— FPfor C-LBP with NC
~+- FN for C-LBP with NC-

Number of tests T

Figure 3: Noiseless case: Average
error rate (p = 0.6).

Error rate (%)

350 a00 450 150 200 250 300 350 a00 450
Number of tests T

Figure 4: Noisy case: Average error
rate (p = 0.8).

and p; are selected uniformly at random from the in-
tervals [5,50] and [0.4, 0.8], respectively.

Fig. 5 is a box plot depicting our results for the sparse
regime (¢ = 3%) over 500 randomly generated in-
stances, as described above. The middle line in the
box represents the mean and the ends of the box rep-
resent the lower and upper quartiles respectively. The
crosses represent outlier points. BSA needs on aver-
age 5.23x (that can reach up to 13x) more tests com-
pared to the probabilistic bound, while the two ver-
sions of Algorithm 1 with R = 1 and R = M need
only 2.4x and 1.11x (that can reach up to 9.85x and
1.8%) more tests, respectively. Also, the significantly
smaller range between the 25-th and 75-th percentiles
of the boxplots related to Algorithm 1 indicate a more
predictable performance w.r.t. BSA.

7 Conclusions

The new observation we make in this paper is that tak-
ing into account infection correlations, as dictated by
a known community structure, enables to reduce the
number of group tests required to identify the infected
members of a population and can improve the identi-
fication accuracy when the number of tests is fixed.

In this paper we make this point assuming a nonover-
laping community structure, a specific noise model and
binary group testing. We considered a combinatorial
and probabilistic model, derived lower bounds on the
number of tests needed, explored adaptive, two-stage
and non-adaptive algorithms for the noiseless case, as
well as algorithms for the noisy case. Our algorithms
are not always optimal w.r.t. the lower bounds, but
perform significantly better than community-agnostic
group testing; per our experiments, they need upto
55 — 75% fewer tests (on average) to achieve the same
identification accuracy.

We posit that such benefits are possible in a num-
ber of other community or noise or group test mod-
els; as an example, the followup work in [Nikolopou-
los et al., 2021] illustrates benefits when the families
overlap. Understanding what are benefits in more so-
phisticated models remains as an open question.
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