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Abstract The projected discovery and exclusion capa-
bilities of particle physics and astrophysics/cosmology
experiments are often quantified using the median ex-
pected p-value or its corresponding significance. We ar-
gue that this criterion leads to flawed results, which for
example can counterintuitively project lessened sensi-
tivities if the experiment takes more data or reduces
its background. We discuss the merits of several alter-
natives to the median expected significance, both when
the background is known and when it is subject to some
uncertainty. We advocate for standard use of the “exact
Asimov significance” Z* detailed in this paper.

1 Introduction

Consider the problem of assessing the efficacy of a planned

experiment that will measure event counts that could
be ascribed either to a new physics signal or a stan-
dard physics background. The criteria for discovery or
exclusion of the signal can be quantified in terms of
the p-value. In general, for a given experimental result,
p is the probability of obtaining a result of equal or
greater incompatibility with a null hypothesis Hy. In
high-energy physics searches, for example, the one-sided
p-value results are usually reported in terms of the sig-
nificance

Z = 2erfc™ ! (2p), (1)

and the criteria for discovery and exclusion have often
been taken, somewhat arbitrarily, as Z > 5 (p < 2.867 x
10~7) and p < 0.05 (Z > 1.645), respectively.

Here, we suppose for simplicity that both signal
and background are governed by independent Poisson
statistics with means s and b respectively, where s is
known and b may be subject to some uncertainty. For
assessing the prospects for discovery, one simulates many
equivalent pseudo-experiments with data generated un-
der the assumption Hgata = Hsyp that both signal
and background are present, obtaining observed events
ni, N2, N3, .... One then calculates the p-value for each
of those simulated experiments (p1, p2,ps,...) with re-
spect to the null hypothesis Hy = H} that only back-
ground is present. For exclusion, the roles of the two
hypotheses are reversed; the pseudo-experiment data

is generated under the assumption Hy.tn = Hp that
only background is present, and the null hypothesis
Hy = Hsyyp is that both signal and background are
present, so that a different set of p-values is obtained.
The challenge is to synthesize the results in the limit of
a very large number of pseudo-experiments into a sig-
nificance estimate Zgjsc Or Zoxel- There is no agreement
on this step, which is the primary focus of this paper.

A common measure [1] of the power of an experi-
ment is the median expected significance Z™¢d for dis-
covery or exclusion of some important signal (i.e., the
median of Z(p1), Z(p2), Z(p3), ... for the simulated p-
values). A reason to use the median (rather than mean)
is that eq. (1) is non-linear, so that the mean of a set
of Z-values is not the same as the Z-value of the corre-
sponding mean of p-values.

However, Z™ has a counter-intuitive flaw, which
is most prominent when s and b are not too large, and
especially for exclusion. As we show in the following
examples, for a given fixed s, Z™°d can actually sig-
nificantly increase as b increases. Similarly, for a given
fixed b, Z™°d can decrease as s is increased. This leads
to the paradoxical situation that an experiment could
be judged worse, according to the Z™ed criteria, if it
acquires more data, or if it reduces its background. In
this paper, we discuss this problem, and consider some
alternatives to Z™ed.

2 Known background case

The Poisson probability of observing n events, given a
mean p, is

P(nu) = e~*yu" /n. (2)

Consider first the idealized case that the signal and
background Poisson means s and b are both known
exactly. One can then generate pseudo-experiment re-
sults for n, using 4 = s + b for the discovery case, and
i = b for the exclusion case. A large number of sim-
ulated pseudo-experiments can be generated randomly
via Monte Carlo simulation methods, as described in
the Introduction. However, for all cases in this paper,
it is equivalent but much more efficient and accurate to
consider exactly once each result n that can contribute



non-negligibly, and then weight the results according to
the probability of occurrence.
The p-value for discovery, if n events are observed,
is
oo

=Y P(klp) =

k=n

v(n,b)/I(n), 3)

DPdisc (n, b)

while that for exclusion is

ZPk|s+b

where I'(z), v(z,y), and I'(x,y) are the ordinary, lower
incomplete, and upper incomplete gamma functions,
respectively. The median p-value among the pseudo-
experiments can now be converted, using eq. (1), to
obtain Z1¢d(s b) and Zmed (s, b).

Some typical results for Z5¢d and Z72ed as a func-
tion of b are shown in Figure 1. They each have a
“sawtooth” shape, rather than monotonic as one might
perhaps expect. This illustrates the unfortunate fea-
ture mentioned in the Introduction that the median ex-
pected Z can increase with increasing b. As noted in [2,
3] for Z{f}gf, the underlying reason is that the allowed
values of n are discrete (integers), causing the median to
remain at a fixed value instead of varying continuously
in response to changes in s or b. We emphasize that this
sawtooth behavior is exactly reproducible for any suf-
ficiently large number of pseudo-experiments, and has
nothing to do with randomness from insufficient sam-
pling. It is more prominent for exclusion than for dis-
covery, because the number of events relevant for the
median pseudo-experiment is smaller. Also, note that
for larger b, the sawteeth get closer together as the in-
teger n of the median gets larger, but the height of
the sawtooth envelope remains significant. This is effec-
tively a sort of practical randomness in 2™, as tiny
changes in s or b will move one between the top and
the bottom of the sawtooth envelope.

We now consider several alternatives to Z™¢4. First,
one can take the arithmetic mean of the Z-values di-
rectly, which we call Z™°*". (In computing ZJ",
use Z = 0 for no observed events, n = 0. A reason-
able alternative definition for both Z}i$*" and Z&e"
would be to use Z = 0 for all outcomes n that give a
negative Z. That would give slightly larger values for
zmean hut usually negligibly so except when Z™" is
uninterestingly small anyway.) Second, one can take the
arithmetic mean of the p-values, and then convert these
to Z values, which we call ZP ™" Third, one can con-
sider the Z-value obtained for the mean n (i.e., average
over the simulated nq,n9,ng,...); the use of the mean
data for computing the expected significance has been
used in [5,6] and [2,3] and was called the Asimov data

I'(n+1,s+b)

rrn W

pexcl n, b 5

we

in the latter three references. Refs. [2,

. : : med.
Asimov approximation to Z3%:

ZdC&GV \/2 s+b)In(1+ s/b) — s], (5)

3] obtained an

and ref. [4] gave a similar result for exclusion:

ZEM — .\ /2[s — bIn(1 + s/b)]. (6)

These are both based on a likelihood ratio method ap-
proximation (valid in the limit of a large event sample)
for Z given in [7] in the context of v-ray astronomy.
They both approach the familiar but cruder approxi-
mation s/v/b, but only in the limit of very large b.

In this paper, we propose instead to simply use for
the Asimov approximation the exact p-values in egs. (3)
and (4) with n replaced by its expected means:

<ndisc> =s+ ba <nexcl> = b; (7)
so that

PR = (s +b,b)/T'(s +b), (8)
Pasel™™ = T'(b+ 1,5 +b) /(b + 1), (9)

which can be readily converted to Z-values using eq. (1).
We call this the “exact Asimov significance” and denote
it by ZA.

Along with Z™¢d Figure 1 also shows Z™¢" and
ZA for the discovery and exclusion cases, together with
ZgisCCGV, and Zexcl, as a function of b, for fixed s =
3,6,12. Both Z™®* and Z4 are within the Z™°d saw
tooth envelopes, but decrease monotonically with b.
We conclude that they are both sensible measures of
the expected significance. In the discovery case, Z™e"
is generally slightly more conservative than Z*, and
the reverse is true for the exclusion case. The previ-
ously known Asimov approximations Z$S%Y and ZXM
of refs. [3,2] and [4] are considerably less conservative,
lying near the upper edges of the Z™°d sawtooth en-
velopes.

Not shown in Fig. 1 is ZP™*" which we find is
much lower than all of the others, due to being dom-
inated by unlikely outcomes with large p-values, and
therefore not a reasonable measure of the expected sig-
nificance. Although we do not recommend its use, we
note the amusing fact Z} 7" = ZP %" the proof of
which does not rely on the assumed probability dis-
tribution, and so also holds exactly in the case of an
uncertain background discussed below.

One sometimes sees s/ Vb used as an estimate, but
this is much larger than the Z’s shown in Fig. 1, and, as
is well-known, is not a good estimate of the significance
for discovery or exclusion except when b is large.

We close this section by considering the extreme no-
background limit b — 0, with varying s. Background
predictions much smaller than 1 can realistically come



1071

T
10!

AR
100

b

Fig. 1 Expected significances for discovery (left) and exclusion (right), for signal means s = 3, 6, and 12, as functions of the
background mean b. Shown are Z™ed zmean ZA and the approximations Z€CGV and ZX¥M from refs. [2,3] and [4]. The
median expected significances show a sawtooth behavior, rather than decreasing monotonically with b.
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Fig. 2 Expected significances for discovery for an extremely small background mean b = 10~ (left), and exclusion for the
strict limit b = 0 (right), as functions of the signal mean s. Shown are Zmed, Zmean ZA, and the approximations ZCCGV

and ZXM from refs. [2,3] and [4].

about from extrapolations from other regions. For dis-
covery, if one takes b = 0 exactly, then the significance
for every pseudo-experiment is either zero (the value we
have chosen to assign if no events are observed) or infi-
nite (if even one event is observed). Since any non-zero
s would provide a non-zero mean number of events, one
obtains Z4 = oo for all s in that case. The limit b — 0
in eq. (5) is also seen to give Z°CGV = co. For the me-

dian expected significance, we instead get an infinitely
large sawtooth. This is because the median number of
events is 0 if s < In(2), resulting in Z™d = 0, and is at
least 1 for all s > In(2), resulting in Z™°d = co. There-
fore, for the discovery case it is perhaps more interesting
to take b extremely small, but non-zero. In Fig. 2(a),

we show zZmed  zmean 74 and ZCCGV all for the case
b = 1079, as an example of a non-zero but very small



expected background. The median number of events in
the pseudo-experiments is n = 0 for 0 < s < s, and is
n =1 for 571 < s < sg, where 51 &~ In(2) ~ 0.693 and
s2 ~ 1.678 is close to the solution of s = In(2)+In(1+s).

In contrast, in the exclusion case there is nothing
singular for b = 0. In particular, eq. (6) gives ZXM(b =
0) = V2s. In each exclusion pseudo-experiment, the
number of events observed is always n =20 because
b =0, so that Zme{ = Zmean — 74 = — \[erfc 1(2e%)
are all obtained from pexa = I'(1,s) = e~*. These re-
sults are illustrated in Figure 2(b), which shows that
the estimate Zggg{ in this extreme limit is larger than
the others. We note if b = 0, then s > 2.996 is needed
to given an expected 95% confidence level exclusion

zmenn — zmed — 72 1 > 1.645.

excl excl

3 Uncertain background case

More realistically, the expected mean number of back-
ground counts can be subject to uncertainties of vari-
ous sorts. In high-energy physics, the background un-
certainty for a future experiment is often dominated by
limitations in perturbative theoretical calculations or
systematic effects, both of which are unknown (and in-
deed difficult to rigorously define) but can be roughly
estimated or conjectured. There are also statistical un-
certainties that will arise from a limited number of
events in control or sideband regions. Here, we will con-
sider, in part as a proxy for other types of uncertainties,
the “on-off problem” (see for example [7,8,9,10,11,12]),
in which the background is estimated by a measure-
ment of m Poisson events in a supposed background-
only (off) region. The ratio of the background Poisson
mean in this region to the background mean in the sig-
nal (on) region is assumed to be a known number 7.
It would also be interesting to consider the case of an
uncertainty in 7 itself, but that is beyond the scope
of the present paper. The point estimates for the Pois-
son mean and the uncertainty of the background in the
signal region are then

b=m/r, A, =+m/T. (10)

While this Poisson variance is certainly not a rigorous
model for systematic or perturbative calculation uncer-
tainties, we propose that it can also be used as a rough

proxy for them, in the sense that a proposed estimate
for b and A; can be traded for (m, 7) in the on-off prob-
lem.

We now assign probabilities AP to each possible
count outcome n in the on region, given m events in
the off region, following a hybrid Bayesian-frequentist
approach by averaging [13,10,14,11,12] over the possi-
ble background means using a Bayesian posterior with
a flat prior,

P(b|lm, 1) = 7(7b)™e " /ml, (11)

(normalized so that [;~db P(blm,7) = 1), from which
we then find

AP(n,m,1,s) = / db P(blm, T) e*(”b)w
0 n:

7_m+1675 o
= dbb™ b)"
Tm+ DI (n+1) /0 (s+0)

rmtle—s O P I'in—k+m+1)

- I'(m+ 1) Z k' (n—k)! (7 + 1)n—ktmt1 (12)

efb(‘r+1)

Note that here the true background mean b appears
only as an integration variable, and that

Z AP(n,m,1,s) =1, (13)
n=0
for any m, 7, s. The limit lim,_,oc AP(n,m,7,s), with
m/T = b held fixed, recovers the Poisson distribution
P(n|s + 13) In the second equality of eq. (12), we have
written a form valid for non-integer n and m, both to
define Z* below and to account for the fact that an
estimated b and A; may correspond to non-integer m.
The third equality is more useful when n is an integer,
and also in the case s = 0 where only the £k = 0 term
survives and one can replace n! by I'(n + 1).

The p-value for discovery has two equivalent forms,

Pdisc (n, m, 7) = Z AP(k, m,T, O)

k=n
= B(l/(t+1),n,m+1)/B(n,m+ 1), (14)

where the first form was given in [13,10,11,12] and
the second (involving the ordinary and incomplete beta
functions) was obtained in a frequentist approach by [8,
9]. Despite appearances, these two forms are equivalent
[11,12], justifying the choice made in eq. (11).

For exclusion, we find

'k+m+1)I'n—k+1,s)

Er(m+10)I'(n—k+1)

n n Tm+1
pexcl(na m,T, 5) = Z AP(k m,T, S) = (7_ 4 1)k+m+1
k=0 =0
m+1 b
= dbe ™I ( 1, b
Tt DI (m+ 1) / ¢ (nt1s+9)

19 -

/dbe

(s+b)"I'(m+1,76)/T'(m+1)| /T'(n+1), (15)



where the first form (following directly from the def-
inition) involves a double sum, the second single-sum
form is more efficient if n is an integer, while the last
two forms are valid for non-integer n, m, have differing
ease of numerical evaluation depending on the inputs,
and follow from each other by integration by parts.

We can now consider the expected significances in
the case that b and A; have been fixed, corresponding
either to a calculation of the background with limited
accuracy, or to a measurement of m for a given 7. This
is done by generating pseudo-experiments for n, dis-
tributed according to the probabilities AP(n, m, T, s)
for discovery and AP (n, m,7,0) for exclusion, and then
evaluating the p-values according to eq. (14) for dis-
covery and eq. (15) for exclusion. As before, we con-
sider Zmed  zmean and ZA obtained from the allowed
pseudo-experiment data, each as functions of s, b, Ay
Here, Z* is obtained by replacing n by its mean ex-
pected values. For the discovery and exclusion cases
respectively, we find these are

(ndisc) = 5 + b, (16)
(Nexet) = b, (17)
where

b= (m+1)/r=b+ AZ/b. (18)
Then

phamev(s, b, Ag) = Paise((Ndisc), M, 7), (19)
P (5,b, A) = Pexel (Nexcr), m, 7 5), (20)

. A A
which are converted to Z},. and ZZ, | as usual.

Note that the mean expected event count in the
absence of signal, E, is distinct from, and larger than,
the measured background estimate, b=m /7. The fact
that b > b can be understood heuristically as the state-
ment that, for finite 7, a given m is more likely to have
been a downward rather than upward fluctuation. As
an extreme example, if m = 0, this could be a down-
ward fluctuation of a non-zero true background, but
obviously it could not be an upward one. Given (m, 7),
depending on the experimental situation there may be
other justifiable probability density functions besides
eq. (11), and the subsequent discussion carries through
similarly for any other choice. If we had chosen a differ-
ent Bayesian distribution in eq. (11), then the expres-
sion for b (in terms of m and 7) would change. For this
reason, we prefer to give results directly in terms of the
independent variable b= m/7 corresponding to the di-
rect measurement (or calculation) of the background,
rather than b.

Refs. [3] and [4] had earlier provided Asimov approx-
imations to the median discovery and exclusion signif-
icances, respectively. Equations (5) and (6) above are

the limits as A, — 0. However, the significance esti-
mates defined in refs. [3] and [4] are not directly com-
parable to our definitions when A, # 0, since they take
the (unknown) true background mean b as input, rather
than the point estimate b = m/7 as we do here. If one
ignores the distinction and considers b = ?), then Z(ﬁsc
and Z2 | as defined in this paper give more conserva-

exc
tive significances than those obtained from [3,4].

Results for Zmed, zmean and ZA for discovery and
exclusion are shown in Figure 3 for Ag/l; = 0.2, this
time for s and b both taken proportional to an in-
tegrated luminosity factor [ L£dt which represents the
temporal progress of the experiment. We consider fixed
ratios 5/5 = 2,10,100 for discovery and 0.5,5 for ex-
clusion. Again, the sawtooth behavior of Z™¢d is evi-
dent, while Z™® and ZA both lie within or near its
envelope, and can be taken as reasonable and mono-
tonic measures of the expected discovery and exclusion
capabilities. Note that Z4 | is more conservative than

exc
Zmed op Zmean for higher integrated luminosities, while
zZ™mean is slightly more conservative for discovery. As
before, Z5. " = ZP """ not shown, gives far smaller
values and cannot be recommended. In Fig. 4, we show
74, and ZA  for Ay/b = 0,0.2, and 0.5. Consistent
with intuition, increasing the background uncertainty
reduces the expected significances, with a much greater

impact when s/ b is smaller.

4 Conclusion

In this paper, we have critically examined the use of
median expected significance Z™°d and possible alter-
natives. We find that either Z™°* or ZA as defined
and evaluated above would be reasonable measures of
the discovery and exclusion capabilities of counting ex-
periments with known or uncertain backgrounds. They
both give results that are similar to Z™°4, but are mono-
tonic in the expected way with respect to changes in
background and signal means and background uncer-
tainties. They are also considerably more conservative
than previous Asimov approximations, especially when
the background is small. The exclusion case with low
event counts, where the sawtooth behavior of Zéi‘c"li is
particularly prominent and problematic, is noteworthy,
as the success of the Standard Model of particle physics
suggests the future importance of limit-setting capabil-
ities for experimental signals with small rates includ-
ing rare decays, non-standard interactions, new heavy
particle production, and dark matter searches. In this
paper, we have not considered the effects of uncertainty
in the number of predicted signal events; this could be
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Fig. 3 The median, mean, and exact Asimov expected significances for discovery and exclusion, for fixed ratios s/ b as labeled,
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for fixed ratios s/ b as labeled, as a function of s = o, J Ldt, for

Al;/i) = 0,0.2, and 0.5, as labeled. For discovery we show 3/13 = 1,10, 100, and for exclusion s/i) = 0.5 and 5. The shaded areas
are the envelopes between the largest and smallest values of A;/ b, for each s/ b.

an interesting and important subject of future investi-
gations.

In comparing Z™°*" and Z*, we note that there is
no “correct” measure of the expected significance, since
the various Z definitions are simply different answers to
different questions. The Z2 measure is typically slightly
less conservative in evaluating discovery, and more con-
servative for exclusion prospects, than Z™"_ It may be

simpler to extend Z” to the case of experiments that
feature more complex statistics than just integer counts
of events. Also, the Z# measure, based on the means
of the data distributions, is not harder to evaluate than
other estimates of Z, provided that the probability dis-
tributions are known analytically or numerically. In the
counting experiments considered here, the evaluations
of Zé*isc and Z2 | require only directly plugging into

exc



egs. (8)-(9) for a known background, or egs. (10) and
(14)-(20) for an uncertain background. For these rea-
sons, we advocate that Z* be the standard significance
measure for projected exclusions and discovery sensi-
tivities in counting experiments.

Appendix: supplementary material

To give an idea of the spread of significances for the
pseudo-experiments shown in Figures 1, we consider
the 1o bands for each of Zyjsc and Zeye, bounded by
16% and 84% quantile lines for the number of pseudo-
experiments n, in Figure 5. Here, we took the case of
signal mean s = 6. The 50% quantile line is of course
just the median expected significance.

As noted above, in the case where the background
estimate is determined by the method of measuring m
in the “off region” and translating it to the “on region”
through 7, it is possible to consider different Bayesian
priors for the true background mean b, rather than the
flat prior chosen in the main text. For a simple two-
parameter class of examples, consider

Prior(b) o< b%e™%, (21)

where ¢ = 6 = 0 recovers the choice made in the main
text. Then one finds a normalized Bayesian posterior
distribution for the background, in place of eq. (11):

P(blm, 1) = (1 + 0)"Ft1pmtae=b(40) ) P 4 g 4+ 1).
(22)

The calculations of AP, pgisc, and pexc1 would then go
through as before with the replacements 7 — 74 6 and
m — m + ¢, with the results still expressible in terms
of the independent variables b and A; as defined by
eq. (10). In particular, one would have

b=(m+q+1)/(r+0) (23)
= b[1+ (g + 1) A7 /b%]/[1 + 0.A2 /b] (24)

in that case. However, in the absence of a compelling
reason to the contrary, we consider the simple flat prior
q = 0 = 0 to be preferred, as it successfully reproduces
the frequentist result eq. (14) for pgjsc, as shown in [11,
12]. In any case, the Z™°* and Z“ measures can be
defined as above with any suitable choice of prior as
dictated by realistic considerations.

‘We now show some further results supplementary to
our main discussion. In Fig. 6, we first show the prob-
abilities AP(n,m,7,s) for discovery (left panel) and
AP(n,m,7,0) for exclusion (right panel), for a fixed
b= m/7T, as a function of event count n in the signal
(on) region, for various values of 7. The lines for 7 = co
in both panels correspond to the Poisson distribution

7

P(n|p) with p = s+ for the discovery case, and pu = b
for the exclusion case. For a fixed b, as 7 gets larger, the
AP distribution approaches the Poisson distribution, as
expected.

Intuitively, we also expect the discovery and ex-
clusion significance measures to dramatically decrease
when the background uncertainty gets larger. From Fig. 7,
we see that the median expected significance, once again,
suffers from the sawtooth behavior. However, the ex-
pected significances Z™°** and Z” behave as we ex-
pect, and, as argued above, can be taken as reasonable
measures of the expected discovery and exclusion sig-
nificances. Also, it is evident from the figure that the
(4, b) — (0,b) limit works out smoothly.

With the motivation of considering other statisti-
cal measures, we now examine some alternatives to the
median, mean, or Asimov expected Z. For a large num-
ber of pseudo-experiments simulated for the discovery
case, we can also count the number of these experi-
ments, where we have greater than 50 discovery, and
thus obtain a probability P(Zgisc > 5). In Fig. 8, we
compare P(Zgisc > 5) for AZ;/Z; = 0 (left panel), and
0.5 (right panel). As we expect, P(Zgisc > 5) decreases,
more drastically for smaller s/ B, as the background un-
certainty increases. However, this measure also shows
a sawtooth behavior, rather than increasing monoton-
ically with s = o, [ Ldt. Similarly, Fig. 9 shows the
probability of obtaining greater than 95% CL exclusion
in a large number of pseudo-experiments simulated for
the exclusion case P(Zexa > 1.645) for Ag/l; =0 (left
panel), and 0.5 (right panel). Once again, increasing
the background uncertainty reduces P(Zexe > 1.645),
more drastically for smaller s/ b. And, as was the case
with P(Zgisc > 5), this measure also shows a sawtooth
behavior with respect to changes in s = o, [ Ldt.

Finally, Fig. 10 shows the probability of obtaining
a significance greater than a certain Z in a large num-
ber of pseudo-experiments simulated for both discovery
(left panel) and exclusion (right panel) cases, for fixed
(s,b) and AZ;/Z; = 0,0.5, as a function of Z. As ex-
pected, both P(Zgisc > Z) and P(Zexel > Z) decrease
with increasing Z, and with increasing background un-
certainty. However, for smaller s/ ?), background uncer-
tainty does not have much impact on the results.

A Python implementation of various significance mea-
sures for projected exclusions and discovery sensitivities
in counting experiments examined in this letter, includ-
ing the advocated Z#, is made available in a code repos-
itory ZSTATS at:
https://github.com/prudhvibhattiprolu/Zstats .
To illustrate the usage of the code, the repository also
has short programs that produce the data in each of
the figures in this paper. More information about all
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in Figure 1. The shaded regions are the 1o quantile bands.

0.14~
0.12
(LlOé
(lOSé

0.06-

AP(n,57,7,5)

0.04-

0.02-

0.00
0 5 10 15 20 25 30

n

0.147

— T =00
—7r=3
—r=1

0.12-

o o ©
=] o -
.. 2.7

AP(n,10T,T,0)
S
"

0.02-

0.00
0 5 10 15 20 25 30

n

Fig. 6 The distributions AP(n,m,,s), for s = 5, b= m/7 = 5 (left panel) and s = 0, b= m/T = 10 (right panel), for
7 =1,3, and oco. In each case, the result for 7 = 0o is the Poisson distribution P(n|s 4+ b) = P(n|10).

functions in this package can also be accessed using the
Python help function.
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