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Abstract The projected discovery and exclusion capa-

bilities of particle physics and astrophysics/cosmology

experiments are often quantified using the median ex-

pected p-value or its corresponding significance. We ar-

gue that this criterion leads to flawed results, which for

example can counterintuitively project lessened sensi-

tivities if the experiment takes more data or reduces

its background. We discuss the merits of several alter-

natives to the median expected significance, both when

the background is known and when it is subject to some

uncertainty. We advocate for standard use of the “exact

Asimov significance” ZA detailed in this paper.

1 Introduction

Consider the problem of assessing the efficacy of a planned

experiment that will measure event counts that could

be ascribed either to a new physics signal or a stan-

dard physics background. The criteria for discovery or

exclusion of the signal can be quantified in terms of

the p-value. In general, for a given experimental result,

p is the probability of obtaining a result of equal or

greater incompatibility with a null hypothesis H0. In

high-energy physics searches, for example, the one-sided

p-value results are usually reported in terms of the sig-

nificance

Z =
√

2 erfc−1(2p), (1)

and the criteria for discovery and exclusion have often

been taken, somewhat arbitrarily, as Z > 5 (p < 2.867×
10−7) and p < 0.05 (Z > 1.645), respectively.

Here, we suppose for simplicity that both signal

and background are governed by independent Poisson

statistics with means s and b respectively, where s is

known and b may be subject to some uncertainty. For

assessing the prospects for discovery, one simulates many

equivalent pseudo-experiments with data generated un-

der the assumption Hdata = Hs+b that both signal

and background are present, obtaining observed events

n1, n2, n3, . . .. One then calculates the p-value for each

of those simulated experiments (p1, p2, p3, . . .) with re-

spect to the null hypothesis H0 = Hb that only back-

ground is present. For exclusion, the roles of the two

hypotheses are reversed; the pseudo-experiment data

is generated under the assumption Hdata = Hb that

only background is present, and the null hypothesis

H0 = Hs+b is that both signal and background are

present, so that a different set of p-values is obtained.

The challenge is to synthesize the results in the limit of

a very large number of pseudo-experiments into a sig-

nificance estimate Zdisc or Zexcl. There is no agreement

on this step, which is the primary focus of this paper.

A common measure [1] of the power of an experi-

ment is the median expected significance Zmed for dis-

covery or exclusion of some important signal (i.e., the

median of Z(p1), Z(p2), Z(p3), . . . for the simulated p-

values). A reason to use the median (rather than mean)

is that eq. (1) is non-linear, so that the mean of a set

of Z-values is not the same as the Z-value of the corre-

sponding mean of p-values.

However, Zmed has a counter-intuitive flaw, which

is most prominent when s and b are not too large, and

especially for exclusion. As we show in the following

examples, for a given fixed s, Zmed can actually sig-

nificantly increase as b increases. Similarly, for a given

fixed b, Zmed can decrease as s is increased. This leads

to the paradoxical situation that an experiment could

be judged worse, according to the Zmed criteria, if it

acquires more data, or if it reduces its background. In

this paper, we discuss this problem, and consider some

alternatives to Zmed.

2 Known background case

The Poisson probability of observing n events, given a

mean µ, is

P (n|µ) = e−µµn/n!. (2)

Consider first the idealized case that the signal and

background Poisson means s and b are both known

exactly. One can then generate pseudo-experiment re-

sults for n, using µ = s+ b for the discovery case, and

µ = b for the exclusion case. A large number of sim-

ulated pseudo-experiments can be generated randomly

via Monte Carlo simulation methods, as described in

the Introduction. However, for all cases in this paper,

it is equivalent but much more efficient and accurate to

consider exactly once each result n that can contribute
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non-negligibly, and then weight the results according to

the probability of occurrence.

The p-value for discovery, if n events are observed,

is

pdisc(n, b) =

∞∑

k=n

P (k|b) = γ(n, b)/Γ (n), (3)

while that for exclusion is

pexcl(n, b, s) =

n∑

k=0

P (k|s+ b) =
Γ (n+ 1, s+ b)

Γ (n+ 1)
, (4)

where Γ (x), γ(x, y), and Γ (x, y) are the ordinary, lower

incomplete, and upper incomplete gamma functions,

respectively. The median p-value among the pseudo-

experiments can now be converted, using eq. (1), to

obtain Zmed
disc (s, b) and Zmed

excl (s, b).

Some typical results for Zmed
disc and Zmed

excl as a func-

tion of b are shown in Figure 1. They each have a

“sawtooth” shape, rather than monotonic as one might

perhaps expect. This illustrates the unfortunate fea-

ture mentioned in the Introduction that the median ex-

pected Z can increase with increasing b. As noted in [2,

3] for Zmed
disc , the underlying reason is that the allowed

values of n are discrete (integers), causing the median to

remain at a fixed value instead of varying continuously

in response to changes in s or b. We emphasize that this

sawtooth behavior is exactly reproducible for any suf-

ficiently large number of pseudo-experiments, and has

nothing to do with randomness from insufficient sam-

pling. It is more prominent for exclusion than for dis-

covery, because the number of events relevant for the

median pseudo-experiment is smaller. Also, note that

for larger b, the sawteeth get closer together as the in-
teger n of the median gets larger, but the height of

the sawtooth envelope remains significant. This is effec-

tively a sort of practical randomness in Zmed, as tiny

changes in s or b will move one between the top and

the bottom of the sawtooth envelope.

We now consider several alternatives to Zmed. First,

one can take the arithmetic mean of the Z-values di-

rectly, which we call Zmean. (In computing Zmean
disc , we

use Z = 0 for no observed events, n = 0. A reason-

able alternative definition for both Zmean
disc and Zmean

excl

would be to use Z = 0 for all outcomes n that give a

negative Z. That would give slightly larger values for

Zmean, but usually negligibly so except when Zmean is

uninterestingly small anyway.) Second, one can take the

arithmetic mean of the p-values, and then convert these

to Z values, which we call Zpmean. Third, one can con-

sider the Z-value obtained for the mean n (i.e., average

over the simulated n1, n2, n3, . . .); the use of the mean

data for computing the expected significance has been

used in [5,6] and [2,3] and was called the Asimov data

in the latter three references. Refs. [2,3] obtained an

Asimov approximation to Zmed
disc :

ZCCGV
disc =

√
2[(s+ b) ln(1 + s/b)− s], (5)

and ref. [4] gave a similar result for exclusion:

ZKM
excl =

√
2[s− b ln(1 + s/b)]. (6)

These are both based on a likelihood ratio method ap-

proximation (valid in the limit of a large event sample)

for Z given in [7] in the context of γ-ray astronomy.

They both approach the familiar but cruder approxi-

mation s/
√
b, but only in the limit of very large b.

In this paper, we propose instead to simply use for

the Asimov approximation the exact p-values in eqs. (3)

and (4) with n replaced by its expected means:

〈ndisc〉 = s+ b, 〈nexcl〉 = b, (7)

so that

pAsimov
disc = γ(s+ b, b)/Γ (s+ b), (8)

pAsimov
excl = Γ (b+ 1, s+ b)/Γ (b+ 1), (9)

which can be readily converted to Z-values using eq. (1).

We call this the “exact Asimov significance” and denote

it by ZA.

Along with Zmed, Figure 1 also shows Zmean and

ZA for the discovery and exclusion cases, together with

ZCCGV
disc , and ZKM

excl , as a function of b, for fixed s =

3, 6, 12. Both Zmean and ZA are within the Zmed saw-

tooth envelopes, but decrease monotonically with b.

We conclude that they are both sensible measures of

the expected significance. In the discovery case, Zmean

is generally slightly more conservative than ZA, and

the reverse is true for the exclusion case. The previ-

ously known Asimov approximations ZCCGV
disc and ZKM

excl

of refs. [3,2] and [4] are considerably less conservative,

lying near the upper edges of the Zmed sawtooth en-

velopes.

Not shown in Fig. 1 is Zpmean, which we find is

much lower than all of the others, due to being dom-

inated by unlikely outcomes with large p-values, and

therefore not a reasonable measure of the expected sig-

nificance. Although we do not recommend its use, we

note the amusing fact Zpmean
disc = Zpmean

excl , the proof of

which does not rely on the assumed probability dis-

tribution, and so also holds exactly in the case of an

uncertain background discussed below.

One sometimes sees s/
√
b used as an estimate, but

this is much larger than the Z’s shown in Fig. 1, and, as

is well-known, is not a good estimate of the significance

for discovery or exclusion except when b is large.

We close this section by considering the extreme no-

background limit b → 0, with varying s. Background

predictions much smaller than 1 can realistically come
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background mean b. Shown are Zmed, Zmean, ZA, and the approximations ZCCGV and ZKM from refs. [2,3] and [4]. The
median expected significances show a sawtooth behavior, rather than decreasing monotonically with b.
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Fig. 2 Expected significances for discovery for an extremely small background mean b = 10−6 (left), and exclusion for the
strict limit b = 0 (right), as functions of the signal mean s. Shown are Zmed, Zmean, ZA, and the approximations ZCCGV

and ZKM from refs. [2,3] and [4].

about from extrapolations from other regions. For dis-

covery, if one takes b = 0 exactly, then the significance

for every pseudo-experiment is either zero (the value we

have chosen to assign if no events are observed) or infi-

nite (if even one event is observed). Since any non-zero

s would provide a non-zero mean number of events, one

obtains ZA =∞ for all s in that case. The limit b→ 0

in eq. (5) is also seen to give ZCCGV =∞. For the me-

dian expected significance, we instead get an infinitely

large sawtooth. This is because the median number of

events is 0 if s < ln(2), resulting in Zmed = 0, and is at

least 1 for all s > ln(2), resulting in Zmed =∞. There-

fore, for the discovery case it is perhaps more interesting

to take b extremely small, but non-zero. In Fig. 2(a),

we show Zmed, Zmean, ZA, and ZCCGV, all for the case

b = 10−6, as an example of a non-zero but very small
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expected background. The median number of events in

the pseudo-experiments is n = 0 for 0 < s ≤ s1, and is

n = 1 for s1 ≤ s ≤ s2, where s1 ≈ ln(2) ≈ 0.693 and

s2 ≈ 1.678 is close to the solution of s = ln(2)+ln(1+s).

In contrast, in the exclusion case there is nothing

singular for b = 0. In particular, eq. (6) gives ZKM
excl(b =

0) =
√

2s. In each exclusion pseudo-experiment, the

number of events observed is always n = 0 because

b = 0, so that Zmed
excl = Zmean

excl = ZA
excl =

√
2erfc−1(2e−s)

are all obtained from pexcl = Γ (1, s) = e−s. These re-

sults are illustrated in Figure 2(b), which shows that

the estimate ZKM
excl in this extreme limit is larger than

the others. We note if b = 0, then s > 2.996 is needed

to given an expected 95% confidence level exclusion

Zmean
excl = Zmed

excl = ZA
excl > 1.645.

3 Uncertain background case

More realistically, the expected mean number of back-

ground counts can be subject to uncertainties of vari-

ous sorts. In high-energy physics, the background un-

certainty for a future experiment is often dominated by

limitations in perturbative theoretical calculations or

systematic effects, both of which are unknown (and in-

deed difficult to rigorously define) but can be roughly

estimated or conjectured. There are also statistical un-

certainties that will arise from a limited number of

events in control or sideband regions. Here, we will con-

sider, in part as a proxy for other types of uncertainties,

the “on-off problem” (see for example [7,8,9,10,11,12]),

in which the background is estimated by a measure-

ment of m Poisson events in a supposed background-

only (off) region. The ratio of the background Poisson

mean in this region to the background mean in the sig-

nal (on) region is assumed to be a known number τ .

It would also be interesting to consider the case of an

uncertainty in τ itself, but that is beyond the scope

of the present paper. The point estimates for the Pois-

son mean and the uncertainty of the background in the

signal region are then

b̂ = m/τ, ∆b̂ =
√
m/τ. (10)

While this Poisson variance is certainly not a rigorous

model for systematic or perturbative calculation uncer-

tainties, we propose that it can also be used as a rough

proxy for them, in the sense that a proposed estimate

for b̂ and ∆b̂ can be traded for (m, τ) in the on-off prob-

lem.

We now assign probabilities ∆P to each possible

count outcome n in the on region, given m events in

the off region, following a hybrid Bayesian-frequentist

approach by averaging [13,10,14,11,12] over the possi-

ble background means using a Bayesian posterior with
a flat prior,

P (b|m, τ) = τ(τb)me−τb/m!, (11)

(normalized so that
∫∞
0
db P (b|m, τ) = 1), from which

we then find

∆P (n,m, τ, s) =

∫ ∞

0

db P (b|m, τ) e−(s+b)
(s+ b)n

n!

=
τm+1e−s

Γ (m+ 1)Γ (n+ 1)

∫ ∞

0

db bm(s+ b)ne−b(τ+1)

=
τm+1e−s

Γ (m+ 1)

n∑

k=0

sk

k! (n− k)!

Γ (n− k +m+ 1)

(τ + 1)n−k+m+1
. (12)

Note that here the true background mean b appears

only as an integration variable, and that

∞∑

n=0

∆P (n,m, τ, s) = 1, (13)

for any m, τ, s. The limit limτ→∞∆P (n,m, τ, s), with

m/τ = b̂ held fixed, recovers the Poisson distribution

P (n|s + b̂). In the second equality of eq. (12), we have

written a form valid for non-integer n and m, both to

define ZA below and to account for the fact that an

estimated b̂ and ∆b̂ may correspond to non-integer m.

The third equality is more useful when n is an integer,

and also in the case s = 0 where only the k = 0 term

survives and one can replace n! by Γ (n+ 1).

The p-value for discovery has two equivalent forms,

pdisc(n,m, τ) =

∞∑

k=n

∆P (k,m, τ, 0)

= B(1/(τ + 1), n,m+ 1)/B(n,m+ 1), (14)

where the first form was given in [13,10,11,12] and

the second (involving the ordinary and incomplete beta

functions) was obtained in a frequentist approach by [8,

9]. Despite appearances, these two forms are equivalent

[11,12], justifying the choice made in eq. (11).

For exclusion, we find

pexcl(n,m, τ, s) =

n∑

k=0

∆P (k,m, τ, s) =

n∑

k=0

τm+1

(τ + 1)k+m+1

Γ (k +m+ 1)Γ (n− k + 1, s)

k!Γ (m+ 1)Γ (n− k + 1)

=
τm+1

Γ (n+ 1)Γ (m+ 1)

∫ ∞

0

db e−τbbmΓ (n+ 1, s+ b)

=

[
Γ (n+ 1, s)− e−s

∫ ∞

0

db e−b(s+ b)nΓ (m+ 1, τb)/Γ (m+ 1)

]
/Γ (n+ 1), (15)
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where the first form (following directly from the def-

inition) involves a double sum, the second single-sum

form is more efficient if n is an integer, while the last

two forms are valid for non-integer n,m, have differing

ease of numerical evaluation depending on the inputs,

and follow from each other by integration by parts.

We can now consider the expected significances in

the case that b̂ and ∆b̂ have been fixed, corresponding

either to a calculation of the background with limited

accuracy, or to a measurement of m for a given τ . This

is done by generating pseudo-experiments for n, dis-

tributed according to the probabilities ∆P (n,m, τ, s)

for discovery and ∆P (n,m, τ, 0) for exclusion, and then

evaluating the p-values according to eq. (14) for dis-

covery and eq. (15) for exclusion. As before, we con-

sider Zmed, Zmean, and ZA obtained from the allowed

pseudo-experiment data, each as functions of s, b̂,∆b̂.

Here, ZA is obtained by replacing n by its mean ex-

pected values. For the discovery and exclusion cases

respectively, we find these are

〈ndisc〉 = s+ b̃, (16)

〈nexcl〉 = b̃, (17)

where

b̃ = (m+ 1)/τ = b̂+∆2
b̂
/b̂. (18)

Then

pAsimov
disc (s, b̂,∆b̂) = pdisc(〈ndisc〉,m, τ), (19)

pAsimov
excl (s, b̂,∆b̂) = pexcl(〈nexcl〉,m, τ, s), (20)

which are converted to ZA
disc and ZA

excl as usual.

Note that the mean expected event count in the

absence of signal, b̃, is distinct from, and larger than,

the measured background estimate, b̂ = m/τ . The fact

that b̃ > b̂ can be understood heuristically as the state-

ment that, for finite τ , a given m is more likely to have

been a downward rather than upward fluctuation. As

an extreme example, if m = 0, this could be a down-

ward fluctuation of a non-zero true background, but

obviously it could not be an upward one. Given (m, τ),

depending on the experimental situation there may be

other justifiable probability density functions besides

eq. (11), and the subsequent discussion carries through

similarly for any other choice. If we had chosen a differ-

ent Bayesian distribution in eq. (11), then the expres-

sion for b̃ (in terms of m and τ) would change. For this

reason, we prefer to give results directly in terms of the

independent variable b̂ = m/τ corresponding to the di-

rect measurement (or calculation) of the background,

rather than b̃.

Refs. [3] and [4] had earlier provided Asimov approx-

imations to the median discovery and exclusion signif-

icances, respectively. Equations (5) and (6) above are

the limits as ∆b → 0. However, the significance esti-

mates defined in refs. [3] and [4] are not directly com-

parable to our definitions when ∆b 6= 0, since they take

the (unknown) true background mean b as input, rather

than the point estimate b̂ = m/τ as we do here. If one

ignores the distinction and considers b = b̂, then ZA
disc

and ZA
excl as defined in this paper give more conserva-

tive significances than those obtained from [3,4].

Results for Zmed, Zmean, and ZA for discovery and

exclusion are shown in Figure 3 for ∆b̂/b̂ = 0.2, this

time for s and b̂ both taken proportional to an in-

tegrated luminosity factor
∫
Ldt which represents the

temporal progress of the experiment. We consider fixed

ratios s/b̂ = 2, 10, 100 for discovery and 0.5, 5 for ex-

clusion. Again, the sawtooth behavior of Zmed is evi-

dent, while Zmean and ZA both lie within or near its

envelope, and can be taken as reasonable and mono-

tonic measures of the expected discovery and exclusion

capabilities. Note that ZA
excl is more conservative than

Zmed
excl or Zmean

excl for higher integrated luminosities, while

Zmean is slightly more conservative for discovery. As

before, Zpmean
disc = Zpmean

excl , not shown, gives far smaller

values and cannot be recommended. In Fig. 4, we show

ZA
disc and ZA

excl for ∆b̂/b̂ = 0, 0.2, and 0.5. Consistent

with intuition, increasing the background uncertainty

reduces the expected significances, with a much greater

impact when s/b̂ is smaller.

4 Conclusion

In this paper, we have critically examined the use of

median expected significance Zmed and possible alter-

natives. We find that either Zmean or ZA as defined

and evaluated above would be reasonable measures of

the discovery and exclusion capabilities of counting ex-

periments with known or uncertain backgrounds. They

both give results that are similar to Zmed, but are mono-

tonic in the expected way with respect to changes in

background and signal means and background uncer-

tainties. They are also considerably more conservative

than previous Asimov approximations, especially when

the background is small. The exclusion case with low

event counts, where the sawtooth behavior of Zmed
excl is

particularly prominent and problematic, is noteworthy,

as the success of the Standard Model of particle physics

suggests the future importance of limit-setting capabil-

ities for experimental signals with small rates includ-

ing rare decays, non-standard interactions, new heavy

particle production, and dark matter searches. In this

paper, we have not considered the effects of uncertainty

in the number of predicted signal events; this could be
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an interesting and important subject of future investi-

gations.

In comparing Zmean and ZA, we note that there is

no “correct” measure of the expected significance, since

the various Z definitions are simply different answers to

different questions. The ZA measure is typically slightly

less conservative in evaluating discovery, and more con-

servative for exclusion prospects, than Zmean. It may be

simpler to extend ZA to the case of experiments that

feature more complex statistics than just integer counts

of events. Also, the ZA measure, based on the means

of the data distributions, is not harder to evaluate than

other estimates of Z, provided that the probability dis-

tributions are known analytically or numerically. In the

counting experiments considered here, the evaluations

of ZA
disc and ZA

excl require only directly plugging into
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eqs. (8)-(9) for a known background, or eqs. (10) and

(14)-(20) for an uncertain background. For these rea-

sons, we advocate that ZA be the standard significance

measure for projected exclusions and discovery sensi-

tivities in counting experiments.

Appendix: supplementary material

To give an idea of the spread of significances for the

pseudo-experiments shown in Figures 1, we consider

the 1σ bands for each of Zdisc and Zexcl, bounded by

16% and 84% quantile lines for the number of pseudo-

experiments n, in Figure 5. Here, we took the case of

signal mean s = 6. The 50% quantile line is of course

just the median expected significance.

As noted above, in the case where the background

estimate is determined by the method of measuring m

in the “off region” and translating it to the “on region”

through τ , it is possible to consider different Bayesian

priors for the true background mean b, rather than the

flat prior chosen in the main text. For a simple two-

parameter class of examples, consider

Prior(b) ∝ bqe−θb, (21)

where q = θ = 0 recovers the choice made in the main

text. Then one finds a normalized Bayesian posterior

distribution for the background, in place of eq. (11):

P (b|m, τ) = (τ + θ)m+q+1bm+qe−b(τ+θ)/Γ (m+ q + 1).

(22)

The calculations of ∆P , pdisc, and pexcl would then go

through as before with the replacements τ → τ + θ and

m → m + q, with the results still expressible in terms

of the independent variables b̂ and ∆b̂ as defined by

eq. (10). In particular, one would have

b̃ = (m+ q + 1)/(τ + θ) (23)

= b̂[1 + (q + 1)∆2
b̂
/b̂2]/[1 + θ∆2

b̂
/b̂] (24)

in that case. However, in the absence of a compelling

reason to the contrary, we consider the simple flat prior

q = θ = 0 to be preferred, as it successfully reproduces

the frequentist result eq. (14) for pdisc, as shown in [11,

12]. In any case, the Zmean and ZA measures can be

defined as above with any suitable choice of prior as

dictated by realistic considerations.

We now show some further results supplementary to

our main discussion. In Fig. 6, we first show the prob-

abilities ∆P (n,m, τ, s) for discovery (left panel) and

∆P (n,m, τ, 0) for exclusion (right panel), for a fixed

b̂ = m/τ , as a function of event count n in the signal

(on) region, for various values of τ . The lines for τ =∞
in both panels correspond to the Poisson distribution

P (n|µ) with µ = s+ b̂ for the discovery case, and µ = b̂

for the exclusion case. For a fixed b̂, as τ gets larger, the

∆P distribution approaches the Poisson distribution, as

expected.

Intuitively, we also expect the discovery and ex-

clusion significance measures to dramatically decrease

when the background uncertainty gets larger. From Fig. 7,

we see that the median expected significance, once again,

suffers from the sawtooth behavior. However, the ex-

pected significances Zmean and ZA behave as we ex-

pect, and, as argued above, can be taken as reasonable

measures of the expected discovery and exclusion sig-

nificances. Also, it is evident from the figure that the

(∆b̂, b̂)→ (0, b) limit works out smoothly.

With the motivation of considering other statisti-

cal measures, we now examine some alternatives to the

median, mean, or Asimov expected Z. For a large num-

ber of pseudo-experiments simulated for the discovery

case, we can also count the number of these experi-

ments, where we have greater than 5σ discovery, and

thus obtain a probability P (Zdisc > 5). In Fig. 8, we

compare P (Zdisc > 5) for ∆b̂/b̂ = 0 (left panel), and

0.5 (right panel). As we expect, P (Zdisc > 5) decreases,

more drastically for smaller s/b̂, as the background un-

certainty increases. However, this measure also shows

a sawtooth behavior, rather than increasing monoton-

ically with s = σs
∫
Ldt. Similarly, Fig. 9 shows the

probability of obtaining greater than 95% CL exclusion

in a large number of pseudo-experiments simulated for

the exclusion case P (Zexcl > 1.645) for ∆b̂/b̂ = 0 (left

panel), and 0.5 (right panel). Once again, increasing

the background uncertainty reduces P (Zexcl > 1.645),

more drastically for smaller s/b̂. And, as was the case

with P (Zdisc > 5), this measure also shows a sawtooth

behavior with respect to changes in s = σs
∫
Ldt.

Finally, Fig. 10 shows the probability of obtaining

a significance greater than a certain Z in a large num-

ber of pseudo-experiments simulated for both discovery

(left panel) and exclusion (right panel) cases, for fixed

(s, b̂) and ∆b̂/b̂ = 0, 0.5, as a function of Z. As ex-

pected, both P (Zdisc > Z) and P (Zexcl > Z) decrease

with increasing Z, and with increasing background un-

certainty. However, for smaller s/b̂, background uncer-

tainty does not have much impact on the results.

A Python implementation of various significance mea-

sures for projected exclusions and discovery sensitivities

in counting experiments examined in this letter, includ-

ing the advocated ZA, is made available in a code repos-

itory Zstats at:

https://github.com/prudhvibhattiprolu/Zstats .

To illustrate the usage of the code, the repository also

has short programs that produce the data in each of

the figures in this paper. More information about all

https://github.com/prudhvibhattiprolu/Zstats
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in Figure 1. The shaded regions are the 1σ quantile bands.
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Fig. 6 The distributions ∆P (n,m, τ, s), for s = 5, b̂ = m/τ = 5 (left panel) and s = 0, b̂ = m/τ = 10 (right panel), for

τ = 1, 3, and ∞. In each case, the result for τ = ∞ is the Poisson distribution P (n|s+ b̂) = P (n|10).

functions in this package can also be accessed using the

Python help function.
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