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Reporting specific modelling methods and metadata is essential to the reproducibility of ecological studies, yet guidelines
rarely exist regarding what information should be noted. Here, we address this issue for ecological niche modelling or species
distribution modelling, a rapidly developing toolset in ecology used across many aspects of biodiversity science. Our quantita-
tive review of the recent literature reveals a general lack of sufficient information to fully reproduce the work. Over two-thirds of
the examined studies neglected to report the version or access date of the underlying data, and only half reported model param-
eters. To address this problem, we propose adopting a checklist to guide studies in reporting at least the minimum information
necessary for ecological niche modelling reproducibility, offering a straightforward way to balance efficiency and accuracy. We
encourage the ecological niche modelling community, as well as journal reviewers and editors, to utilize and further develop this
framework to facilitate and improve the reproducibility of future work. The proposed checklist framework is generalizable to
other areas of ecology, especially those utilizing biodiversity data, environmental data and statistical modelling, and could also

be adopted by a broader array of disciplines.

of 1,576 researchers from various disciplines found that more

than 70% of researchers were unable to reproduce research by
others, and 50% were not even able to reproduce their own results'.
Indeed, the issue of reproducibility has been raised across many
fields of science. For instance, the estimates of non-reproducible
studies are as high as 89% in cancer research’ and 65% in drug
research’, and even high-profile, landmark’ studies are not free of
reproducibility issues®. New scientific research builds on previous
efforts, allowing methods for testing hypotheses to evolve con-
tinually’. Therefore, research results must be communicated with
enough context, detail and circumstance to allow correct inter-
pretation, understanding and, whenever possible, reproduction.
Reproducibility is a cornerstone of the scientific process and must
be emphasized in scientific reports and publications. Although
best-practice guidelines have been published and adopted for areas
such as computer science® and clinical research”, for various rea-
sons, guidelines for ensuring reproducibility are still largely absent
in many (even large) research communities.

Along these lines, the issue of reproducibility may be especially
difficult to address in ecology, given the less-controlled aspects of
many studies (for example, natural community surveys, field exper-
iments). The issue of reproducibility has been noted only recently
in ecology”'’, but is likely prominent'"'?. Because ecological stud-
ies often encompass uncontrollable or unaccountable factors”, it is
especially important to report in detail the circumstances and meth-
ods that apply. Furthermore, ecological studies often depend on sta-
tistical models, such that reporting specific modelling methods and
decisions and how they are intended to reflect biological knowledge
or assumptions holds particular importance for reproducibility in
ecology'*">. More than ever before, it has become critical to report

f cience is facing a reproducibility crisis. A recent Nature survey

these aspects, as the data and analytical tools underlying ecological
studies are accumulating and evolving at an unprecedented rate in
the age of big data'®; ecological niche modelling (ENM) is a promi-
nent example.

Ecological niche modelling

Also known as species distribution modelling (SDM)""-"*, ENM
uses associations between known occurrences of species and envi-
ronmental conditions to estimate species’ potential geographic dis-
tributions. Although ENM and SDM are often used interchangeably
in the literature®, ENM typically has a stronger focus on estimat-
ing parameters of fundamental ecological niches, whereas SDM is
more focused on geographic distributions of species. ENM is widely
applied across many aspects of ecology and evolution, and is increas-
ingly incorporated in decision-making regarding land use and con-
servation’’. ENM studies are proliferating rapidly; in particular, a
popular ENM algorithm, Maxent?, has been cited in tens of thou-
sands of research papers in the past decade alone. Though methods
and assumptions in these studies vary greatly, to our knowledge,
no evaluation of reproducibility of ENM or SDM studies has been
conducted to date (but see ref. * for scoring key model aspects for
biodiversity assessments). Furthermore, no guidelines on reporting
essential modelling parameters exist, hindering accurate evalua-
tion (for example, scoring®') of model methodology and reuse of
published research. It is concerning that such a fast-growing and
fast-evolving body of literature lacks assessment and guidelines for
reproducibility.

Typically, ENM analyses take biodiversity data and environ-
mental data (such as point observations of a species and climate)
as input and use correlative or machine-learning methods to quan-
tify underlying relationships, which then are used in making spatial
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predictions. This typical workflow of ENM — obtaining and pro-
cessing data, model calibration, model transfer and evaluation
— is shared widely across disciplines that rely on statistical mod-
els. Therefore, the fast development, broad use and application,
and existence of a rather established workflow for ENM makes it
an excellent and representative example to tackle the challenges of
reproducibility. Here, we assess the reproducibility of ENM stud-
ies via a comprehensive literature review and introduce a checklist
to facilitate reproducibility of ENMs that can be extended to other
areas of ecological research or other disciplines.

A checklist for ecological niche modelling

Although the role of ‘methods’ sections of scientific publications
is to provide information that makes the study replicable, they are
often highly condensed and lacking details needed for reproduc-
ibility, owing in large part to space limitations in journals. What is
needed is a standardized format for reporting the full suite of details
that comprise the critical information to ensure reproducibility.
Therefore, a compendium of crucial parameters and qualities — in
effect a metadata standard for ecological niche models — would
be highly useful. A metadata standard establishes a common use
and understanding through defining a series of attributes and
standardized terminology to describe them. Such standards have
been applied in various fields, such as GeoTIFF for spatial rasters®
and Darwin Core and Humboldt Core for biodiversity data***. A
metadata standard can provide a straightforward way to balance
efficiency and accuracy in facilitating research reproducibility* in
ENM, as well as scientific studies in general”-*.

Here we present a checklist for ENM, to demonstrate how to
define general and flexible reproducibility standards that can be
used across a wide range of sub-fields of ecology. We compiled a list
of essential elements required to reproduce ENM results based on
the literature to date, and organized the elements into four major
topics: (A) occurrence data collection and processing, (B) environ-
mental data collection and processing, (C) model calibration and
(D) model transfer and evaluation (labels correspond to elements
in Table 1). We justify the design of the checklist briefly, and pro-
vide detailed definitions, examples of reporting for each element,
and related literature, in Table 1. We do not distinguish the rela-
tive importance among the checklist elements, as all are necessary
to assure full reproducibility. We provide a template of the checklist
for easier use (Supplementary Table 1). We envision this checklist
as a dynamic entity that will continue to be developed and refined
by the ENM/SDM community to keep pace with the state of the
art in the field. We also provide access to the checklist on Github,
as an open-source project where users can comment and suggest
changes (https://github.com/shandongfx/ENMchecklist or https://
doi.org/10.5281/zenodo.3257732).

Occurrence data (A). Across many fields, online databases are
growing and changing rapidly®, such that reporting data versions
or providing complete datasets used in analyses is crucial to repro-
ducibility. Occurrence data are increasingly available owing to mass
digitization of museum specimens and increased interest and par-
ticipation in observational data collection by citizen scientists’.
Because the quality of occurrence data can vary significantly among
data sources, data types and taxa®*, it is vital to record data cura-
tion details to assure consistent quality and accuracy. The first attri-
bute to report is the source of the data (Al; labels correspond to
elements in Table 1 hereafter). If the occurrence data were the result
of an online database query, the Digital Object Identifier (DOI),
query and download date, or the version of a database must also be
reported (A2), as online biodiversity data are accumulating rapidly
and these data are often edited, corrected, improved or excluded
over time™ . The final dataset (that is, after editing and quality
control), with the exception of sensitive information (for example,
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specific locations of endangered taxa), should be deposited in a data
archive when reserving rights allow it, thereby assuring reproduc-
ibility in case of changes to the original data source.

Whenever available, the ‘basis of record’ (A3) as used in Darwin
Core, a community-developed standard for sharing biodiversity
data*, should be reported. This field describes how records were
originally collected, and thus can indicate different levels of qual-
ity and different auxiliary information available. For instance,
‘MachineObservation’ via automated identification may be more
prone to error compared with a ‘PreservedSpecimen’ collected and
identified by an expert and deposited in a museum. Further, with
a deposited specimen and catalogue number, researchers have the
opportunity to examine the specimen physically to verify the iden-
tification’”, whereas an observation may not be verifiable. Spatial
uncertainty (see A6-3) can vary with the type of occurrence data, as
well as the time when the data were collected. For example, coordi-
nates associated with older ‘PreservedSpecimens’ are usually geo-
referenced from descriptions of administrative units (for example,
township, county or country), thus involving higher spatial uncer-
tainty, whereas coordinates linked to recent ‘HumanObservations’
may have been directly reported from GPS devices, making them
more accurate. Information regarding the uncertainty of occur-
rences can also facilitate evaluation of whether the spatial resolu-
tion of environmental data utilized is appropriate (see B3). The
spatial uncertainty in biodiversity data has long been recognized**,
though the quantification of such uncertainty has not been imple-
mented systematically at large scale (thus A6-3 was excluded from
our literature review; see below); this task could be facilitated by
recently developed informatics tools*>*.

Increasingly, ecological research uses data from large-scale data
aggregators (for example, the Global Biodiversity Information
Facility (GBIF)). As with many sciences relying on observational,
rather than design-based data collection, biodiversity data used in
ENM have generally not been collected explicitly for this purpose.
Thus, the spatial and temporal attributes of occurrences, and how
they have been parsed or filtered in preparation for modelling, are
essential details required to model ecological niches adequately"”.
Checking the extent of occurrences (A4) against expert-defined
distributions (for example, regional floras) may reduce errors in
identification or data transcription. Underrepresentation of the
known distribution may suggest inadequate or biased sampling of
occurrences, whereas spatial outliers may represent recent range
expansion’***, occasional or vagrant occurrences®, sink popula-
tions?, or errors of identification or georeferencing. The collection
date of occurrence records may influence spatial accuracy; in gen-
eral, records from before the 1980s will lack precise point location
data (that is, GPS coordinates) and are often georeferenced by hand
from locality descriptions and with less precision®. Also, because
environments change over time (for example, seasonal change, cli-
mate change, land-use changes), the temporal range of the occur-
rence data (A5) must be specified to connect it appropriately to the
temporal dimension of environmental conditions*. Often, occur-
rence data are processed before modelling (A6). Common proce-
dures include removing duplicate coordinates, excluding spatial
and/or environmental outliers, and eliminating records with high
spatial uncertainty* or erroneous coordinates*’. Additionally, schol-
ars have proposed various ways to address the well-known issues of
sampling bias*~** and spatial autocorrelation®, often by imposing
distance-based filters on occurrence data or incorporating spatial
structure as a component in the modelling process® (A7).

Environmental data (B). Similar to occurrence data, sources for
environmental data are numerous, and data often require processing
before inclusion in ENM analyses. The source (B1), and database
query/download date or version of the database must be reported
(B2),asenvironmental data maybe updated periodically (for example,
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WorldClim**°) or may accumulate new data regularly through
time (for example, PRISM™). Such information is also important
for environmental variables derived from remotely sensed data
(such as MODIS, Landsat). For example, NASA conducts regular
quality assessments of MODIS data products and reprocesses data
that may have been influenced by algorithm or calibration issues™.

The spatial resolution of the environmental variables used
(B3) can affect ENM results, as different ecological processes
occur at different spatial scales™. It has been hypothesized that
at broad scales, abiotic conditions have a more dominant role
in determining species’ distributions than biotic conditions®*®',
though increasing numbers of reported exceptions suggest that
this pattern is context dependent®®. In practice, using different
spatial resolutions of environmental variables can produce differ-
ent results®~*. Reporting the spatial resolution of environmen-
tal variables can also facilitate checking the match or mismatch
with the spatial uncertainty of occurrences, given that coordinates
are at times georeferenced from county centroids at coarse reso-
lution®. In addition to reporting the spatial resolution used for

modelling, aggregation or disaggregation methods used to align the
spatial resolutions of variables (for example, if they came from dif-
ferent data providers) should also be reported.

Providing the temporal range covered by the environmen-
tal variables (B4) is important for two reasons®. First, shorter
temporal ranges can capture finer variation of environments (for
example, extremes of daily temperature®), whereas longer temporal
ranges capture longer-term trends in environmental conditions (for
example, temperature seasonality). Second, it is helpful to evaluate
how the temporal range of environmental data relates to the tempo-
ral range of occurrence data. For instance, associating occurrence
data with environmental data from completely different time peri-
ods (for example, Last Glacial Maximum versus present) could be
problematic, though the environmental data may need to include
time lags to correspond to the life history of particular species’™.
The same reporting should be applied to information on future or
past environments, as appropriate (D9-12). Similarly, the details of
methods for processing and resampling of environmental data in
temporal dimensions should also be reported.

Table 1| Details of the ENM checklist and representation of its elements (percentage) in a review of recent ecology and evolution

literature (2017-2018; 163 papers)

Category What to report Why reporting this element is Exemplar papers reporting the element Relevant  Papers
important references (%)
(A) Obtaining and processing occurrence data
Metadata (A1) Source of Reporting occurrence data sources “Species distribution records were collected from NA 93
occurrence data  allows one to assess data quality and  the Ocean Biogeographic Information System (OBIS;
trace/correct any possible issues that  http://iobis.org, accessed February 2016), from
may be detected. the Global Biodiversity Information Facility (GBIF;
http://gbif.org, accessed January 2016), the Reef
Life Survey (RLS; http://reeflifesurvey.com, accessed
February 2016) and for a few species via personal
communications.”%”
(A2) Download Databases and datasets change over  “Occurrences were downloaded from GBIF.org on 28 NA 22
date; version of time. January 2016 (https://doi.org/10.15468/dl.iou7qq)." "
data source
(A3) Basis of Biodiversity databases comprise "“Before fieldwork, we obtained locality information 12-114 48
records many different types of data, each from C. canescens herbarium specimens and online
with specific uses and caveats. biodiversity databases such as the Southwest
Relevant distinctions include whether Environmental Information Network and the Rocky
data are collected opportunistically, Mountain Herbarium (University of Wyoming). In
as part of structured surveys, as addition, the Rocky Mountain Herbarium and the
part of repeated surveys, as part Colorado State University Herbarium were visited to
of comprehensive checklists of examine potentially misidentified specimens from
co-occurring species, by scientists, by outlying portions of the species’ distribution.”™"
citizen scientists and so on.
(A4) Spatial Spatial extent of occurrences is “We integrated missing countries by obtaining 16,117 67
extent crucial for interpretation of model occurrences from the literature — that is, for France,
predictions, including whether Italy and Switzerland. To increase the accuracy of
potential sink populations are the analysis, we excluded the following records: (1)
included, whether sampling is biased localities for which we were not able to obtain precise
or whether records outside the native coordinates; [...] (4) record of M. bourneti in the Canary
range are used. Islands, due to taxonomical issues currently unresolved
(C. Ribera, personal communication, 2016).""™
(A5) Temporal Environments can change over time,  “Although the sightings dataset extended over 257 70 26
range thus the timestamp of occurrence years, 79% of sightings occurred between 2000 and
records is crucial for linking themto ~ 2015. Therefore only this subset of 5,419 sightings
the relevant environmental conditions was retained for further analysis. These sightings were
experienced by the species, and divided into each quarter of the year (Jan-Mar, Apr-
hence correctly describing the niche.  May, Jun-Aug and Sep-Dec) and matched with recent
climate data available through online data sharing
platforms.""®
Continued
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Table 1| Details of the ecological niche modelling checklist and representation of its elements (percentage) in a review of recent
(2017-2018) ecology and evolution literature (163 papers) (continued)

Category What to report Why reporting this element is Exemplar papers reporting the element Relevant  Papers
important references (%)
Processing (A6-1) Duplicate  Duplicated coordinates can “We constructed potential distributions for each 120 23
coordinates potentially bias model training. Also,  species in the program Maxent 3.3.3k (Phillips et al.,
different modelling algorithms may 2006) using the default settings, including removing
have different default options for duplicate species records from the same grid
handling duplicated coordinates, square."”
either at point level or at
pixel level.
(A6-2) Outliers or errors may lead to model  “Finally, we plotted all the points on maps and 16 35
Spatial and errors. Also, the model prediction excluded any point falling far outside the proven
environmental may be sensitive to outliers or errors.  distribution described in Krapovickas et al. (2007).""!
outliers; error
(A6-3) Spatial The coordinates of a record may “For this study, precise locality coordinates for P. 33,40-43 NA
and coordinate not represent the exact location solenopsis were not available, so the district-level
uncertainty of collection. Coordinates are occurrence data published by Nagrare et al. (2009)
often recorded or processed to were used (n = 42 records). The centroid method
different degrees of specificity may be acceptable if the target scale of prediction
(for example, two decimal points is global but may not be appropriate at national,
versus four). Further, coordinates state or finer scales; districts are not homogeneous,
are often georeferenced from and some of them can be quite large. We calculated
locality descriptions to, for example,  district-level averages of climatic variables in ArcMap
centroids of political boundaries. The  (version 9.3, ESRI, Redlands, CA, USA) and used
mismatch between the coordinate those as predictors. This is a relatively unconventional
uncertainty and spatial resolution use of ENM/SDM, and the results may be useful for
of environmental variables can designing detailed surveys and making district-level
significantly affect the results state, regional or national pest management policies
and interpretation of the model before more detailed, precise data for this species
predictions. Thus, spatial uncertainty become available."”??
should be reported when adequate “With the GeoClean function from speciesgeocodeR
information is available. R Package we also removed coordinates assigned
to capital cities, coordinates with latitude equal
to longitude, coordinates equal to exactly zero;
coordinates based on centroids of provinces, and
corrected country references (cleaned
GBIF records)."?
(A7-1) Sampling  Biased sampling, unequal sampling “To reduce the effects of sampling bias, we spatially 50-52, 34
bias of a species’ distribution, may cause filtered the occurrence dataset to ensure that no two 120,
the model to overfit environmental localities were within 10 km of one another."'** 125-129
conditions associated with such
samples. Also, different algorithms
may have different default methods
for handling spatially biased
occurrences.
(A7-2) Spatial Spatial autocorrelation, here referring  “In order to account for autocorrelation in the 53,127, 18
autocorrelation to the non-independent spatial observations, models were also fitted in which 131-133
distribution of occurrences, could contagion (see below: spatial interpolators) was
violate the modelling assumption of  included as an autocovariate term in the initial
independent and identical residuals,  variable set (AGLM). These models are termed
thus could bias estimations of model  autologistic (Smith, 1994; Augustin et al., 1996; Araujo
parameters. & Williams, 2000). Measures of aggregation for point
and lattice data, such as Kernel estimation and nearest
neighbour measures (for example, Bailey & Gatrell,
1995), can be used to model species’ probabilities
of occurrence. This uses the idea of positive spatial
autocorrelation (Legendre, 1993), in which the
occurrence of a species in one area is expected to be
more likely if the species occurs in many surrounding
areas (Aratjo & Williams, 2000, 2001; Aradjo et al.,
2002). A measure of contagion (CONT) for each cell,
based on a two-order neighbourhood, was used
to estimate a distance-based probability of
occurrence.”’*°
Continued
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Table 1| Details of the ecological niche modelling checklist and representation of its elements (percentage) in a review of recent
(2017-2018) ecology and evolution literature (163 papers) (continued)

Category What to report Why reporting this element is Exemplar papers reporting the element Relevant  Papers
important references (%)

(B) Obtaining and processing environmental data

Metadata and (B1) Source Reporting the source of “Climate data comprised the 19 BIOCLIM variables NA 99
processing environmental data enables the available from WorldClim (Hijmans et al., 2005)

reader to access them and assess at a resolution of 2.5 arc-min. Elevation data were

their relevance to study goals. obtained from the Digital Elevation Model at PRISM

(Precipitation-elevation Regressions on Independent
Slopes Model; Daly et al., 1994) at 2.5 arc-min

resolution.”""
(B2) Download Data and databases are not static —  “Out of the available WorldClim data (http://www. NA 27
date; version of they change over time. Thus reporting worldclim.org), we used the 19 bioclimatic variables,
data source the access/query/download date or which express 11 temperature and 8 precipitation
version of the dataset is necessary to  metrics at about 1-km resolution (WorldClim version
ensure reproducibility. 1.4; Hijmans, Cameron, Parra, Jones, & Jarvis,
2005)."
(B3) Spatial Environmental data usually have “Four static variables were derived from the digital 64-66,135 82
resolution various spatial resolutions that need  elevation model (DEM) of the EMODnet Bathymetry
to be reconciled for model training. portal: depth (the DEM); slope and curvature,

Also, the decision of spatial resolution calculated using DEM Surface Tools for ArcGIS 10.2;

is both a technical and an ecological  distance to the nearest 200 m bathymetric line,

issue. calculated using QGis 2.12. Curvature was used as a
proxy of sea bottom roughness, providing an estimate
of sea floor relief, which can influence some cetacean
species (Lindsay et al., 2016). All static variables were
calculated at a spatial resolution of 0.5 x 0.5 km."®®

(B4) Temporal The temporal range (time period “We summarized occurrence of passerine bird 68 42
range across which the variable was species at BBS routes in the conterminous U.S. during
measured and averaged) is needed historical (1977-1979) and recent (2012-2014)
to determine the temporal match or ~ periods. Land use covariates were the proportion of
mismatch with species’ occurrences.  the buffer surrounding each route in developed and
conservation or low human use classes based on
the 1974 and 2012 versions of the U.S. conterminous
wall-to-wall anthropogenic land use trends dataset
(NWALT; Falcone, 2015)."3¢

(C) Model calibration

Data input (C1) Modelling The geographic domain of a model “In the second approach, locality data were overlaid 52,71, 50
domain has to be specified because it is on terrain base maps in ArcGIS 10.2 (Environmental 72,74,
associated with the underlying Systems Research Institute, 2011) together with a world  138-140
assumptions of the relationship ecoregions layer (World Wildlife Fund, 2011). These

between species’ distribution and the were used to identify breaks in habitat and ecological

environments, as well as background  regions in topographically homogeneous areas. [...]

selection for some ENM algorithms.  Restricting calibration areas to regions bounded by
significant abiotic barriers (for example, large rivers,
mountain ranges) and known or hypothesized dispersal
distances yielded more accurate models and reduced
these errors (Barve et al., 2011; Owens et al., 2013;
Royle, Chandler, Yackulic, & Nichols, 2012; Saupe et al.,
2012). Thus, in our study, Ms were constrained by deep
valleys (for example, the Maranon Valley), the crests of
mountains (for example, the Andes) and ~other distinct
features likely to act as barriers to species distributions
(for example, the llanos of northern South America).”™”

(C2) Number of  Background data are assumed "“For each geographical background we selected 73,142 54
background data  to represent the environmental 10,000 random cells that did not hold a species

composition of species’ accessible presence record (or all available cells if fewer than

area, thus the optimal number of 10,000 were available)."™

background data may depend on
the extent of the study area and
resolution of environmental data, as
well as computation capacity.

Continued
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Table 1| Details of the ecological niche modelling checklist and representation of its elements (percentage) in a review of recent
(2017-2018) ecology and evolution literature (163 papers) (continued)

Category What to report Why reporting this element is Exemplar papers reporting the element Relevant  Papers

important references (%)
(C3) Sampling Random selection of background data “We used Maxent with default settings, except that we 72,73, 53
method for has been used as the default strategy applied a targeted background sampling to reduce the 75,76,
background data  in some algorithms, but new methods influence of sample selection bias (Phillips et al., 2009) 142,144,

have been developed for different by using 666 vertebrate fossil site localities (excluding  145-147

purposes. moa bones [Order Dinornithiformes] and swamp sites)

throughout New Zealand as background points.”'*?

(C4) Variable Selection of variables is biologically "“Four 'bioclimatic’ layers were used to calibrate 7787148 70
selection and/or statistically relevant, thus models: mean temperature of the warmest quarter,

criteria and justification are needed. =~ mean temperature of the coldest quarter, precipitation
of the wettest quarter, and precipitation of the driest
quarter. These four layers were chosen because
they represent the climatic extremes that often
constrain species distributions and because most
other bioclimatic layers are derived from different
combinations of or are tightly correlated with these
variables (Root, 1988).""*

Algorithm (C5) Name Reporting the name of modelling “ENM was performed using the maximum entropy NA 100
algorithm is the basis of approach as implemented in MAXENT 3.3.3k (Phillips,
reproducibility. Anderson, & Schapire, 2006)."'%°
(C6) Version of Modelling algorithm, default settings, “For BRTs, different combinations of learning rates 17151152 59
algorithm and and dependent libraries can change (0.005, 0.01, 0.05) and tree complexity (1, 2, 3) were
software over time, so providing the version tested. Folds were set at random and other parameters
will enhance the reproducibility of a were left as default in the gbm R package (version
study. 2.1.1). Runs on R version 3.3.2.1°°
(o)) Parameter or modelling settings “Selecting the best settings for the regularization 72,8183, 45
Parameterization  can influence the resulting model, multipliers and number of feature classes, which 154-157
and default settings may not be determine the model complexity, requires quantitative

appropriate for a study. Thus specific  evaluation (Merow et al., 2013). The optimal

settings should be reported, including model parameters were tuned using the function

default ones. ENMevaluate in the package ‘ENMeval’ (Muscarella
etal., 2014) for R. Within ENMevaluate, we jackknifed
each species presence record and evaluated models
with the following feature classes: linear, quadratic,
and hinge, and the following values of regularization
multipliers: 0.75, 1, 1.25, 1.5."%

(D) Model transfer and evaluation

Evaluation (D1) Evaluation Proper understanding of model "We evaluated the performance of the models by three 89,90, 90
index performance requires the use of model different methods using an independent dataset of 159-165
evaluation indices. Also, different occurrences for model evaluation: (a) an omission error
evaluation indices may be informative test [...] (b) the binomial cumulative probability [...] (c)
of different aspects of a model. the partial receiver operating characteristic [...]""*®
(D2) Threshold Calculation of some evaluation “A threshold to convert continuous predicted 9293166 36
for evaluation indices requires a threshold. The probabilities into a binomial output was estimated
index threshold will vary by study because  for each model run, using the threshold value that
there is no single, default method for ~ maximized specificity (true negative rate) and
choosing a threshold. sensitivity (true positive rate) over the evaluation

dataset predictions (Liu, Newell, & White, 2016).
Using this threshold, two metrics of predictive
performance were derived: the sensitivity of

models when predicting ARGOS tracking locations
(“sensitivity. ARGOS", in% correctly classified as
presences), and the true statistic skill when predicting
the evaluation datasets (“TSS"; Allouche, Tsoar, &
Kadmon, 2006).""°

(D3) Dataset Evaluation of a model is usually based  “All these methods used observed presences as input ~ 81,91,168 39
used to evaluate  on another independent dataset, or with a 70% random sample for model development
models part of the dataset not used in model  and the remaining 30% sample for model

training. The choice of dataset can evaluation."™®’

influence the evaluation results and the
subsequent interpretations.

Continued
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Table 1| Details of the ecological niche modelling checklist and representation of its elements (percentage) in a review of recent
(2017-2018) ecology and evolution literature (163 papers) (continued)

Category What to report Why reporting this element is Exemplar papers reporting the element Relevant  Papers

important references (%)

Output (D4) Format/ The raw model predictions are “[...1 we used the logistic output format [...]"'** 80,169,170 51
transformation sometimes transformed (for example,

logistic transformation) via different
methods under different assumptions.
(D5) Threshold Often, the model predictions are “We repeated this procedure 20 times for each 92,93172 92
in continuous format, which is algorithm and used the Lowest Present Threshold
subsequently transformed into a values (Pearson et al., 2007) to transform each map
binary prediction under a particular in binary."”!
threshold. Researchers have proposed
different ways of thresholding for
different purposes and under varied
assumptions.

Extrapolation (D6) Novelty Transferring a model across space “To assess the effect of model extrapolation on 489597, 8
of projected and/or time may lead to extrapolation values of predictor variables lying outside the training 174,175
environments if the projected environments range, that is, projecting models on non-analogous
relative to training are novel compared with training climates (cf. Nogues-Bravo, 2009), we conducted a
environments environments. Quantification of novel multivariate environmental similarity surfaces (MESS)

environments could help understand  analysis, following Elith et al. (2011)."7*

the uncertainties associated with

model predictions.
(D7) Collinearity ~ Transferring a model outside training  “We compared the correlation matrix of the 6 7796177 0O
shift between data may be affected by differences  variables in the training region to the average of the
training and in collinearity structure between correlation matrices of present and future climate
projected training and projection environments, layers in the projected area (Tables S2 & S3 in
environments which can lead to degraded Supplement 2). The highest absolute change of r was

prediction performance. Therefore, 0.3 for bio4 and biol17, and r increased above the 0.7

quantification of collinearity shift or ~ threshold for 2 pairs of variables (—0.78 for bio3 and

any steps towards correcting for it bio4; 0.71 for bio16 and bio17; Supplement 2)."17¢

should be specified.
(D8) Model extrapolation is statistically "“Five replicates of each model were conducted with 94,97, 36
Extrapolation challenging. Different extrapolation no clamping or extrapolation and with all the default 98,178
strategy strategies can lead to very different ‘features’ used."”’

model predictions, therefore the

choice of extrapolation, even the

default setting of an algorithm, should

be provided.

Metadata (D9) Source See (B1) See (B1) See (B1) 89
(D10) Download  See (B2) See (B2) See (B2) 23
date; version of
data source
(D11) Spatial See (B3) See (B3) See (B3) 72
resolution
(D12) Temporal See (B4) See (B4) See (B4) 94
range

Model calibration (C). Typically, an ENM study first has to deter-
mine the geographic domain of interest (C1). Delimitation of the
domain requires both ecological and practical justification, such
as focusing on areas that have been accessible to a species’’?, and
areas that have been sampled. Many ENM algorithms make use of
background points® that represent environmental conditions con-
trasting those known to be occupied by the taxa of interest. Several
aspects of background point selection can influence model out-
comes, including the number of points (C2)”*’* and the algorithms
used to select these points™”® (C3).

The suite of environmental predictors that are used in ENM
should be directly relevant to a species’ distributional ecology",
and the rationale for selecting those variables should be transparent
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(C4). However, as mechanistic relationships are often unknown,
justification of variable selection procedures is necessary. Further,
collinearity of environmental variables, a well-recognized issue in
regression models, affects parameter estimation during model cali-
bration’’; one common strategy is to remove highly correlated envi-
ronmental variable pairs following rule-of-thumb thresholds (for
example, || > 0.4 or 0.7)”77%. Selecting one variable from a pair of
variables can be subjective (for example, based on expert knowledge),
objective (for example, using variable contribution to model fit™)
or random; hence justification is required to ensure accurate inter-
pretation and reproducibility of variable selection.

The version of the ENM software or algorithm used (C5 and
C6) also needs to be provided, as these tools are often updated®
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a
(A1) Source of occurrence data

(A2) Download date; version of data source
(A3) Basis of records

(A4) Spatial extent

(A5) Temporal range

(A6-1) Duplicate coordinates

(AB-2) Spatial/environmental outlier; error
(A7-1) Sampling bias

(A7-2) Spatial autocorrelation

PERSPECTIVE

50

40

(B1) Source of environmental data

(B2) Download date; version of data source
(B3) Spatial resolution

(B4) Temporal range

(C1) Extent of background data

(C2) Number of background data

(C3) Sampling method for background data
(C4) Variable selection

(C5) Algorithm name

30

Frequency

(C6) Version of algorithm and software
(C7) Parameterization

(D1) Evaluation index

(D2) Threshold for evaluation index
(D3) Dataset used to evaluate models
(D4) Format/transformation

(D5) Threshold

(D6) Novelty of projected environments
(D7) Collinearity shift

(D8) Extrapolation strategy

(D9) Source of projected environments
(D10) Download date; version of data source
(D11) Spatial resolution

(D12) Temporal range

[TFHH Uik

25 50 75
Papers that report a checklist item (%)

o

100

20+

104

I I I
25 50 75

Checklist items reported in a paper (%)

Fig. 1| Completeness of checklist elements reported in the current literature. Assessments are based on 163 articles published in eight ecology and
evolution journals during 2017-2018. a, Percentage of papers that report individual element of the checklist. b, Frequency of completeness (%) of checklist

elements reported in all articles.

to include bug fixes or revised default settings. For instance, the
default transformation method of Maxent raw output was changed
from ‘Tlogistic’ to ‘cloglog’ between versions 3.3 and 3.4%. Dependent
libraries for coded algorithms may change over time as well.

Parameterizations or model settings and their justification (C7)
are important to understanding how they may affect predictions.
Examples of these settings include features and regularization val-
ues in Maxent®®, covariate formulas for regression-based models,
link functions in generalized linear models (GLMs)*, learning rate
and maximum complexity in boosted regression trees (BRTs)™,
and optimizer values in generalized additive models . In practice,
authors often use the default settings provided by the software or
algorithm utilized, which may or may not yield robust models’*>%,
wheareas in other cases, authors fine-tune parameters to get best
model performance®-*’.

Model transfer and evaluation (D). Understanding model per-
formance requires model evaluation (D1). A first step is that of
assessing model precision and significance — that is, whether the
model can correctly predict independent presence (or absence)
data and whether the model prediction is better than null expec-
tations. Commonly used indices that measure model performance
can be either threshold-independent (D2; for example, area under
the receiver operating characteristic curve or ROC AUC¥), or
threshold-dependent (for example, partial ROC™, true skill statistic
or TSS, sensitivity and specificity™); the latter approaches require
reporting of thresholds and how they were derived. In addition
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to model accuracy, information criterion-based indices should be
reported if they were used to select among competing models based
on predictive performance and model complexity or used to gener-
ate ensembles of models. Authors should report whether and how
data were partitioned to calculate the evaluation indices (D3), if gen-
uinely independent testing data (that is, different sources and meth-
ods of collection) were not available. Common approaches include
random partitioning of occurrence datasets into training and testing
(for example, the default in Maxent); among other methods, parti-
tioning based on structured blocks (for example, separating occur-
rences into spatial blocks) is expected to assess model transferability
better®”'. Given the variety of options regarding data separation, it is
important to specify methods used to ensure better reproducibility.

Once a model is calibrated, it may then be transferred or pro-
jected onto another landscape or time. Generally, these predictions
are initially continuous (D4) and sometimes are subsequently trans-
formed into binary predictions using a particular threshold (D5).
Researchers have proposed different ways of thresholding’” for
different purposes and under varied assumptions, so these choices
need to be reported.

Transferring a model across space and/or time may lead to
extrapolation if the projected environments are novel relative to
training environments. Several studies have found that environ-
mental novelty’®*>*> (D6) and collinearity shift (D7; changes of
collinearity structure of covariates’”®) reduce predictive perfor-
mance, and recommended quantifying the novelty of the projected
environments and the collinearity shift between the calibrated and
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projected environments®”. Further, different algorithms use dif-
ferent strategies to extrapolate (clamping, truncation, extrapola-
tion”*); for example, the default clamping function in Maxent
uses the marginal values in the calibration area as the prediction for
more extreme conditions in transfer areas.

Assessing the state of reproducibility in ENM research

To assess the state of reproducibility in ENM research in the context
of our proposed checklist, we reviewed current (2017-2018) ENM
literature in eight widely read ecology and evolution journals: Global
Ecology and Biogeography; Diversity and Distributions; Journal
of Biogeography; Evolution; Evolutionary Applications; Molecular
Phylogenetics and Evolution; Molecular Biology and Evolution; and
Systematic Biology. Additional details of our review criteria are pro-
vided in Appendix 1, Supplementary Fig. 1, and Supplementary
Tables 2 and 3.

Inclusion of elements of the checklist (32 in total) varied widely,
ranging from fully reported (100%; C5 algorithm name) to not
reported at all (0%; D7 collinearity shift), though documentation
of the importance of this latter element is still limited in the litera-
ture’”*°. Completeness of information across the checklist also var-
ied among papers, ranging from 24% to 89%, averaging 54% (s.d. =
13%) of checklist elements reported in a given paper (Fig. 1).

Most studies (93%) fully reported sources of occurrence
data (A1), but the date of access or version of the data source (A2)
was included in only 22% of papers reviewed, and the basis of
these records (A3) was described clearly in only 48% of papers.
A relatively high number of papers (67%) reported the spatial
extent (A4) of the occurrence data, but the temporal range (A5)
was mentioned less frequently (26%). Few papers gave details
of occurrence data processing, ranging between 18 and 35% in
elements A6 and A7.

Although most papers we reviewed reported the source of envi-
ronmental data (B1), they largely did not include download date
or version of the data source: only 27% of papers reported such
information for model training (B2) and only 23% for environ-
mental data in model transfer (D10). The spatial resolution and the
method of resampling layers with different spatial resolutions (B3)
were generally reported (82%), although the temporal range (B4)
was less frequently reported (42%). The pattern was opposite for
environmental layers for model transfer: temporal range (D12) was
almost always reported (94%) but spatial resolution (D11) was less
frequently reported (72%).

Only 32% of papers fully reported information regarding mod-
elling domain (C1-3). A high percentage of papers reported the
variable selection procedure (C4; 70%). The ENM algorithm or
software (C5) was always reported, though less frequently for the
corresponding version (C6; 59%). In general, less than half of papers
fully disclosed parameters for algorithms (C7; 45%).

Although model evaluation is critical for modelling studies, not
all papers (90%) presented information pertaining to model evalu-
ation (D1). Surprisingly, less than half adequately reported how the
evaluation dataset was generated (D3; 39%) or mentioned specific
values for threshold-dependent evaluation indices (D2; 36%). For
model predictions generated, 51% of papers adequately specified
output format or acknowledged that default settings were used.
Among the papers that converted continuous predictions to binary,
92% specified the adopted threshold. When transferring model
to different times and/or regions, few of the papers specified the
extrapolation strategy (D8; 36%). The novelty of projected environ-
ments (D6) was rarely evaluated (8%).

Lessons from ecological niche modelling

Reproducibility of scientific studies has been under major scrutiny
in recent years, and numerous high-profile studies have been found
to be irreproducible, in large part because current reporting and
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publishing practices do not provide sufficient information regarding
the methodologies, decisions and assumptions involved. Despite
being based on a relatively recently developed toolset, ENM is no
exception. For thorough evaluations of proper use of ENM appli-
cations (for example, use of ENM:s in biodiversity assessment?'), a
detailed and standardized description of the methods must be pro-
vided. The checklist presented here includes the bare minimum of
categories and elements necessary to evaluate and replicate ENM
analyses. However, the details reported in recent publications var-
ied greatly: on average, papers in our review included only 54% of
checklist items, a generally incomplete set of information for repro-
ducibility. This shortcoming may reflect a lack of community expec-
tations on model reporting, or even unawareness of alternative
options and underlying caveats in the modelling workflow. We high-
light several key areas that were particularly deficient in reporting,
and thus need attention to make ENM studies reproducible (Box 1).

Improving reproducibility with software solutions

The rapid development of ENM can be attributed at least in part to
increased access to relevant data; with such development, informat-
ics tools offer one route by which to improve reproducibility®'®.
Such tools include data management plans'®, standardized meta-
data'®>'”®, programming language resources to record data analysis
steps (for example, R and rmarkdown) and version-control tools
(for example, GitHub). Open-source programming languages such
as R have allowed for development of packages specifically designed
for managing and processing large datasets in preparation for anal-
ysis. Exemplary packages include biogeo, which directly detects,
corrects, and assesses occurrence data quality”’, and geoknife, a
package designed specifically for United States Geological Survey
gridded dataset management'”. Other packages help users to cre-
ate reproducible workflows, such as zoon'”, nicheA'*® kuenm®, and
Wallace'””. In particular, the package Wallace provides a graphical
user interface to build reproducible workflows, from data download
to model output'”’. Borregaard and Hart"' described how the use
of these new software tools is facilitating ecological research that
is both robust and transparent, and thus reproducible. The func-
tionality of the software solutions, however, depends on developers
monitoring changes in data, modelling algorithms and the software
platforms (for example, R), to avoid incompatibility issues. As such,
authors should report software versions for all such solutions to
ensure reproducibility.

Implications for other fields

The design of the checklist presented here is based on a typical
ENM workflow, involving steps of obtaining and processing data,
and model calibration, transfer and evaluation. We emphasized
reporting data origin and metadata; crucial steps in data processing,
modelling decisions and model evaluation; and potential caveats
in model transfer. Those concepts and principles are generalizable
to other disciplines. Further, the specifics of the checklist that we
have proposed for ENM studies could be readily generalized to be
adopted by other fields, especially those that involve biological data,
environmental data and statistical modelling.

Researchers have proposed similar solutions in other fields, such
as climate change research”; however, to our knowledge, our check-
list takes additional steps in refining the methodology workflow
and is therefore more comprehensive. For example, information
pertaining to occurrence data (data source, spatial and temporal
range, and data cleaning procedures) can be generalized to other
studies that rely on digitized biodiversity data and other categories
of ‘big data. The information regarding environmental data neces-
sary to reproduce studies is similar across biological research, such
as in studies of relationships between species richness and environ-
mental gradients'®. The modelling algorithm details in the check-
list are applicable to other studies that use statistical models, such
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Box 1| Improving the reproducibility of ENM studies and beyond

Reporting the use of default settings is better than not report-
ing anything. During our literature review, we came across many
cases in which default software or algorithm settings were used.
If the version of an algorithm or software is provided, others can
infer and reproduce default settings. However, simple manipula-
tions of parameter settings can lead to dramatic differences in
model performance and predictions’, and, since default set-
tings can change with upgrades to software/algorithms, we rec-
ommend listing the actual default parameters employed instead
of simply stating that default settings were used. This point ap-
plies to any scientific study that uses conventional software and
algorithms.

Random may often be the default but should not be inferred
to be so. Some modelling parameters and settings, such as data
partitioning for training and testing or selecting background
points (for example, in Maxent), are commonly set to ‘random,
which is often the default setting. However, recent developments
in ENM methodologies provide more options, such as ‘block
partitioning of occurrences® and background selection from
particular spatial extents or environmental conditions™’>'*,
Although random may be the default setting in many modelling
tools used in ENM and beyond'”~'*, it needs to be reported
explicitly to make the analysis reproducible.

Data and code change through time, so report the date
and version. Data resources available online (for example,
biodiversity records and environmental layers) are changing at
an increasing pace, thus the reproducibility of studies based on
these fast-evolving data, such as ENM studies, are particularly
vulnerable to these changes. The status quo of biodiversity data
continuously changes as more specimens or observations are
collected, digitized, and mobilized online, and existing data are
re-examined and updated. The accuracy of environmental data is
also being improved, with advances in GIS and remote-sensing
technologies. In addition to data input, existing algorithms,
software and methodologies are updated and refined, and new
ones are being developed and released. On a positive note, GBIF
implemented a DOI system to track metadata of datasets from
GBIF'®, to facilitate accurate reporting of metadata and thus
increase reproducibility.

Models can be projected in both space and time. Modelling
the ecological niche (via correlative methods'®) is based on
spatial locations of known occurrences of species and the
corresponding environments. However, in reality species’
geographic distributions are not fixed, but rather are dynamic, and
environments can also change over time. Therefore, the temporal
dimension is crucial in modelling niches accurately®**"" and
affects reproducibility. The temporal dimension of climate data
was overlooked in 58% of climate research papers reviewed by
Morueta-Holme et al.”’. Our review also revealed that temporal
dimensions of occurrence data and environmental data often
go unreported in ENM studies (74% and 58%, respectively),
although the temporal dimension tended to be better reported
when the research involved model transfers (Table 1). Similar
issues may plague many other studies that employ data that are
spatiotemporally linked, regardless of discipline.

as linear regression models of abundance as a response to resource
availability. The elements of model extrapolation (environmental
novelty and collinearity shift) are also common issues for modelling
practices that involve forecasting, for example, predictions of bio-
diversity or community changes under global change. In addition
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to these generally applicable elements, the checklist can easily be
extended to incorporate information particular to a field.

Although the methods sections of most scientific publications

lack the formal standardization needed for reproducibility and
their length is frequently influenced by journal space limitations,
the checklist approach can provide greater detail to ensure repeat-
ability. The usual methods section, combined with a standardized
checklist, will make papers easier to review and replicate. Other dis-
ciplines can and should design comparable checklists with similar
concepts and levels of detail.

Closing remarks

ENM is increasingly used in ecological studies and incorporated
into conservation decisions. Our literature review revealed numer-
ous gaps that undermine reproducibility of these studies. We rec-
ommend researchers developing ENM studies in the future to
consider our checklist, extend and adjust it to meet study needs,
with particular focus on elements that are commonly neglected
(Table 1), and include this more structured metadata in publications
(see checklist template in Supplementary Table 1). This checklist
provides an important tool for both understanding and replicat-
ing previous studies, and also provides editors and reviewers with
an efficient way to gauge and promote ENM reproducibility”. As a
general metadata framework linking observational data and statisti-
cal modelling, our checklist provides a starting point for adopting
similar standards in other fields, both within and beyond ecology
that rely on these methods.

Data availability

The checklist for ENM can be downloaded from Supplementary
Table 1 and is available as an open-source project where users can
comment and suggest changes (https://github.com/shandongfx/

ENMchecklist or

https://doi.org/10.5281/zenodo.3257732).

Details of the literature review are available in the Supplementary
Information.
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