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ABSTRACT

Proteins often interconvert between different conformations in ways critical to their
function. While manipulating such equilibria for biophysical study is often challenging, the
application of pressure is a potential route to achieve such control by favoring the population of
lower volume states. Here, we use this feature to study the interconversion of ARNT PAS-B
Y456T, which undergoes a dramatic +3 slip in beta-strand register as it switches between two
stably-folded conformations. Using high pressure biomolecular NMR approaches, we obtained
the first quantitative data testing two key hypotheses of this process: the slipped conformation is
both smaller and less compressible than the wildtype equivalent, and the interconversion
proceeds through a chiefly-unfolded intermediate state. Data collected in steady state pressure
and time-resolved pressure-jump modes, including observed pressure-dependent changes in the
populations of the two conformers and increased rate of interconversion between conformers,
support both hypotheses. Our work exemplifies how these approaches, which can be generally
applied to protein conformational switches, can provide unique information that is not easily

accessible through other techniques.



32

33

34

35

36

37

38

39

40

41

42

STATEMENT OF SIGNIFICANCE

Proteins often interconvert between conformations via processes that can be difficult to
characterize due to the low populations and short lifetimes of intermediate and end states. This
can be addressed with high-pressure perturbation stabilizing conformations with smaller system
volumes, as elegantly applied in high pressure NMR studies of protein folding. Here we
demonstrate comparable utility for probing the thermodynamics and kinetics of a protein
interconverting between two stably-folded conformations. Combining steady-state and time-
resolved pressure NMR, we measured volumes and compressibilities of ground and intermediate
states which are otherwise challenging to access, letting us test a proposed interconversion
mechanism. These data establish both fundamental parameters of the process and guide artificial

control via ligand binding.
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INTRODUCTION

The energy landscape theory of folding states that proteins sample many conformations
before reaching the native state (1, 2). Although the native conformation is usually the lowest
free energy state under physiological conditions, proteins can be trapped in stably-folded local
minima that are markedly different from the native conformation (3-5). Transitions between
conformations, which can be spontaneous or triggered by changes in environmental conditions
(e.g. pH, temperature, light) or ligand binding, are often critical for shifting proteins between
functionally inactive and active forms (3-7). Such shifts can range from simple local
rearrangements to ‘metamorphic’ proteins, which reversibly adopt different stable folds in
different environmental conditions (8-10). However, identifying and characterizing alternative
conformational states of proteins can be challenging, as they are often high-energy states and
sparsely populated (11, 12). Several techniques currently allow quantitative characterization of
conformational sub-states despite challenges introduced by low population, particularly solution

nuclear magnetic resonance (NMR) techniques such as relaxation dispersion experiments (11-

14).

To aid in characterizing such excited states, it is routine for one to manipulate their
populations by adding small molecule ligands or changing experimental conditions, such as pH
or temperature (11, 15-17). Increasingly, pressure has also been utilized to control
conformational equilibria, aided by the introduction of commercially-built pumps and sample
cells compatible with NMR and other biophysical instrumentation (18-20). Pressure directly
affects such equilibria by acting on differences in the partial volumes and compressibilities of
different conformers, with increasing pressure favoring those with lower volumes (21). Given

that unfolded proteins are generally smaller than their folded forms, pressure studies have been
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particularly useful at investigating protein unfolding reactions, which typically occur above 2000
bar under native conditions (20-25). However, the application of sub-unfolding pressures can
cause proteins to shift populations among multiple folded states (18, 26-28), providing an easy

way to manipulate protein conformational equilibria to facilitate their study.

These advantages of pressure-NMR led us to examine its applicability to characterize a
protein domain which slowly exchanges between two folded states via an unusual B-strand slip
(29, 30). This system is derived from the human ARNT (Aryl hydrocarbon Receptor Nuclear
Translocator) protein, a bHLH-PAS (basic helix-loop-helix / Per-ARNT-Sim) transcription
factor which binds a variety of partners via its two PAS domains, PAS-A and PAS-B (31-35).
PAS domains adopt a mixed o/ fold, with helical and sheet layers often encapsulating internal
cavities between them (31, 32, 34). In many cases, these internal cavities provide binding sites
for natural or artificial regulatory molecules (36). For ARNT PAS-B, 105 A® of interconnected
internal cavities are seen in the crystal structure, suggesting that small molecules may bind there

and control the role of ARNT in several signaling pathways (29, 32, 37, 38).

We have previously reported that the ARNT PAS-B B-sheet can surprisingly adopt an
alternatively-folded conformation in certain settings. For example, a Y456 T point mutation at a
site preceding the final -strand enables the domain to adopt a new conformation that coexists in
a 1:1 equilibrium with the WT fold at room temperature (29, 30) (Fig. 1). Additional mutations
to nearby residues (F444Q/F446A/Y456T, hereafter called the TRIP variant) stabilized this
alternative conformation, letting us characterize the new structure and show that it differs from
the WT conformation by a three residue slip of central IB-strand of the domain’s five-stranded [3-

sheet. This slip inverts the topology of the IB-strand and isomerizes the neighboring N448-P449
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~1:1.5 at 278
WT ~1:1atRT

Chiefly unfolded intermediate

Figure 1. Current model of ARNT PAS-B Y456T interconversion between the WT and SLIP
conformation. Prior work demonstrated that this protein interconverts between the folded WT and SLIP
conformations on the same timescale as the unfolding rates of either conformer, implying a slow transition
process requiring a chiefly unfolded intermediate state. The two conformations are in 1:1 equilibrium at room
temperature, but lower temperature favors the SLIP conformation (1:1.5 at 278K). The F444Q/F446A/Y456T
variant (TRIP) locks the protein in the SLIP conformation, structural comparison between WT (blue) and TRIP
(green) is displayed in the middle, with mutation sites labeled.

peptide bond, collectively abolishing the domain’s ability to interact with some other binding
partners (29). Notably, the threonine side chain introduced by the Y456T mutation fills an
internal cavity (29, 30), leading us to suspect that interconversion process could be manipulated
by pressure perturbations (18, 39-42) to obtain thermodynamic and kinetic information

complementary to our prior structural studies.

Here we report results from high-pressure solution NMR studies of ARNT PAS-B
Y456T, letting us for the first time obtain quantitative measurements of several thermodynamic
and kinetic parameters of the WT:SLIP interconversion. We found that the WT conformation is
not only larger in volume than SLIP, but also more compressible as perhaps due to the cavities
unique to the WT conformation (29, 32). Additionally, we tested a hypothesis that WT:SLIP

interconversion proceeds through a chiefly unfolded intermediate state, previously suggested
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from the similarities of interconversion and unfolding rates (30). We found that pressure
increases the rate of interconversion, letting us measure both the activation volume and
compressibility (30), both validating this model and allowing us to quantitate how unfolded the
transition state is. Finally, we demonstrated that both residue-specific compressibility and
pressure-dependent chemical shift changes can predict whether residues are near cavities,
providing insights into locations of such cavities within the protein. Taken together, our
approach exemplifies the ability of high-pressure NMR to enable thermodynamic and kinetic

analyses of protein conformational transitions that are otherwise inaccessible.

MATERIALS AND METHODS
Protein Purification and Expression

Hise-tagged human ARNT PAS-B (residues 356-470) WT and mutants (Y456T and
F444Q/F446A/Y456T) were uniformly labeled with '*C and "N and overexpressed in BL21
(DE3) E. coli. Isotopically-labeled proteins were obtained by growing cells in M9 media
supplemented with 3 g/L U-'3Cs glucose and 1 g/L '"NH4Cl as the carbon and nitrogen sources,
respectively. Cells were incubated at 37 °C until an ODeoo of 0.6-0.8. Protein expression was
induced with 0.5 mM Isopropyl-B-D-thiogalactopyranoside (IPTG) and incubated overnight (~
16-18 hr) at 18 °C. Cells were harvested next day, cell pellets were resuspended in 50 mM Tris
(pH 7.5), 150 mM NacCl, 10 mM imidazole, ]| mM DTT buffer containing 1| mM PMSF, lysed
with sonication, and centrifuged. Supernatant was incubated with 5 mL of Ni*" Sepharose™
High Performance beads and eluted with 500 mM imidazole buffer. Hise-Tagged ARNT PAS-B
proteins were exchanged into a low imidazole buffer (8 mM imidazole, 50 mM Tris (pH 7.5),
150 mM NaCl, and 1 mM DTT) and incubated overnight with Hiss-tobacco etch virus (TEV)

protease for tag cleavage. The freed Hiss-tag and Hise-TEV were removed by a second round of
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Ni?" column purification. ARNT PAS-B proteins were further purified by passing through a
Superdex 75 size exclusion column and exchanged into baroresistant buffer (44.7 mM Tris pH
7.0, 5.3 mM phosphate, 17 mM NaCl, ]| mM DTT) (43) and concentrated with an Amicon stirred
ultrafiltration unit with a 3 kDa filter to 320 uM. Samples were flash frozen with liquid nitrogen

and were stored at -80 °C for later use.

Pressure-Jump NMR Experiments

Solution NMR experiments were performed on a Bruker Avance III HD 700 MHz NMR
spectrometer equipped with a 5-mm QCI-F cryoprobe. NMR samples were prepared by mixing
80% of the purified protein samples with 20% D20 yielding a final concentration of around 250
uM. Samples were loaded into a commercially-available pressure resistant NMR cell (Daedalus
Innovations, Aston, PA, USA), with pressure between 20 bar to 2500 bar applied through a
Xtreme-60 Syringe Pump from the same vendor. The baseline pressure was set to 20 bar as it is a
low pressure that can be stably maintained by the pump. We performed two types of pressure-
jump experiments, direct pressure-jump experiments where pressure was increased directly from
20 bar to the destination pressure of up to 2500 bar, and cumulative step pressure-jump
experiments with constant intervals, where pressure was increased incrementally from baseline
pressure to the final pressure of 2500 bar. To set up direct pressure-jump experiments, samples
were thawed and stored on ice, and first equilibrated at 20 bar and 278.1 K for 1 hr and raised to
a higher pressure (between 125 bar to 1500 bar) and equilibrated at that pressure. As identified in
preliminary experiments, the duration of equilibration process varies depending on the pressure:
interconversion of the two populations at 20 bar takes around 12 hours to complete, while it
occurs more quickly as pressure increases (30). Equilibration time under pressure was therefore

set to 12 hr at 125 bar, and gradually reduced to 5 hr for pressures between 500 to 1000 bar, and
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finally 4 hr for pressures beyond 1000 bar. During the equilibration, a series of 1D '°C edited 'H
NMR experiments were recorded to detect the rate of interconversion, with each spectrum
requiring ca. 4.25 min to acquire. The system was relaxed for 12.5 hr at 20 bar post
equilibrations at different pressures, 1D *C-edited '"H NMR experiments were also recorded
during relaxation. For step pressure-jump experiments, samples were first equilibrated at 20 bar
and 278.1K, then pressurized and equilibrated in steps of 250 bar, until reaching 2500 bar.
Equilibration time was set to 9 hr at 250 bar, 6 hr at 500 bar, 5 hr for 750 and 1000 bar, and 4 hr
for 1250, 1500, 1750, 2000, and 2250 bar. Equilibration time was extended to 6 hr at 2500 bar to
monitor any unfolding effects at the highest pressure safely accessible with our instrumentation.
1D NMR spectra were acquired as described earlier. "'N/'H and *C/'H HSQC spectra were also
acquired at system equilibrium at 20, 250, 500, 750, 1000, 1250, 1500, and 2500 bar. °N/'H
HSQC experiments were acquired with 16 scans and FIDs of 2048x256 complex points. *C/'H
HSQC experiments were acquired with 8 scans and FID of 2048x256 complex points. All NMR
spectra were processed and analyzed with NMRFx Analyst and NMRViewl] (44, 45). Chemical
shift assignments from previous NMR assignments of ARNT PAS-B WT and

F444Q/F446A/Y456T mutant were used for all analyses (29, 31).

Unfolding measurements of ARNT PAS-B WT and the F444Q/F446A/Y456T variant
under pressures accessible by our apparatus (20-2500 bar) was achieved by the addition of urea
(up to 3.0 M). SN/'H HSQC spectra were acquired between 20 and 2500 bar with increments of
250 bar. Peak assignments from previous work were obtained (29, 31), and transferred to the

acquired spectra following urea titration experiments between 0.5 and 3.0 M.
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NMR Data Analysis

In the 1D *C-edited "H NMR experiments, two peaks corresponding to the L391-51
methyl group of the WT and SLIP conformations were used to determine the populations of each
conformational state of the protein in the sample. The relative populations (SLIP/WT) at
different pressures were obtained by taking the ratio of the integrals of the two peaks. The
equilibration (change in relative population) under different pressures and the rates of

interconversion were obtained by plotting the relative population as a function of time.

The equilibrium constant K between the two conformers of the ARNT PAS-B Y456T is
given by the relation

[SLIP]
SO

— efAG/RT ( 1 )

Since the temperature T was kept constant during the pressure jump experiments, the free energy
AG scales only with pressure p. The free energy as a function of pressure can be approximated by
a Taylor expansion

AG"(p,)

l (p—p,) )

AG(p):AGO+AV°(p—p0)—%xAﬂV0(p—po)2 .

AGP is the free energy between the two conformers at ambient pressure, AV is the volume
difference between the two conformers, representing the first derivative of free energy with
respect to pressure, and compressibility between the two conformations, ARV, is the second
derivative of free energy, with respect to pressure. The equilibrium constants were plotted as a
function of pressure, and fit to the following equation, incorporating up to the third term of the

Taylor series (18):

10
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The pressure was referenced to atmospheric pressure, p,=1 bar.

The observed rate of increase of one conformation (or decrease of the other

conformation) as a function of pressure could be fit to a biexponential equation:

k, = kme_( PAVZ,-\2ABVE, P )/RT 4 kwsge_{ PAVE 1208V p? )R @)

[+

yielding the activation volumes (AVSﬁ, and AV“?S) and compressibility differences between the two

folded conformations (WT and SLIP) to the previously-proposed, chiefly unfolded intermediate

state (&ﬁl{qﬁ, and Aﬁl{fs) (30). Together with the two 1nitial rate constants at ambient pressure
(kgwo. SLIP to WT, and k0, WT to SLIP), there were 6 unknown parameters to be fit. To
better approximate the two exponential terms, rates at different pressures were solved

numerically using the following differential equation pair:

@ -k [Tk W] O

P s]uv] ©

The fittings were done in R, using the package deSolve as the ordinary differential equation
solver, and Levenberg-Marquardt Nonlinear Least-Squares Algorithm in minpack.lm for
parameter fitting (46). The uncertainty of the fitting was estimated by calculating the 95%
confidence intervals from the variance covariance matrix of the fit rate constants. 95%
confidence intervals were further verified with a bootstrapping procedure. Random noises with

mean of 0 and variance of the mean square error from the model were added to the raw data and

11
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fit repeatedly. The estimated parameters were computed to determine if they fall within the 95%
confidence interval. The rates of interconversion at any given pressure (kg,, for SLIP to WT, k.,

for WT to SLIP) were plotted separately as functions of pressure, and fit individually to:

~(p1¥i, 112875 p* )/ RT

ksw = kswoe (7)

~( PV 1288V p* ) RT

kws = kwsOe (8)

obtaining rates at ambient pressure (kswo, kwso), activation volumes, and activation

compressibilities as described earlier.

The temperature dependence of the relaxation rates was calculated as the apparent rates
during the 1000 to 20 bar re-equilibration step at temperatures of T = 278.1, 283.1, 288.1, and
291.1 K. The change of relative population ([SLIP]/[WT]) over time was fit to a single

exponential with the apparent rate of

kapp = kws + ksw (9)

An Eyring relationship between rate and temperature was found by plotting In(kspp/T) against
1/T. The plot was fit to a linear equation to extract the entropic and enthalpic contributions of

activation energy of transition from SLIP to WT during relaxation at 20 bar.

For the pressure-dependent unfolding experiments, '’N/'H HSQC spectra at different
pressures were collected, maximum peak intensities in each spectrum were obtained and
compared with the peaks corresponding to the same residues collected at different pressures.
Overlapping peaks were excluded from the analysis. The intensity averages at different pressures
were plotted as a function of pressure, and fit to a two-state unfolding model with XMGrace (47,

48),

12
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I, 14 e—(AG(} +PAV; )/RT

where [, is the peak intensity at initial (20 bar) pressure, R is gas constant, and T is temperature.

The apparent volume difference between the folded and unfolded state (AVy) and the free energy
of folding (AGIQ ) were extracted. For simplicity, the max and min plateau values were set to 1

and 0.

For the pressure-jump '>N/'"H HSQC experiments, we analyzed the peaks under different
pressures and determined the change in chemical shifts and intensities under pressures compared
to the reference chemical shifts (positions of peaks at 20 bar). We fit the change in chemical

shifts to the following equation to determine the nonlinear coefficients(18, 26, 49):
AS, =bAp+chp®  (11)

Where p is pressure (bars), b; (parts per million per bar) and c; (parts per million per square bars)
are the first and second order pressure dependence coefficients on chemical shifts for the ith
residue. A large c; value suggests high nonlinear response to pressure. Fittings were performed
with the built-in pressure-analysis function of NMRView] (44). Residue-specific nonlinear
coefficient differences between the two conformations were calculated by subtracting the

absolute values of ¢; corresponding to each conformation:
Ac; = |Ciwt| _‘cislip‘ (12)
Values were mapped to the crystal structure of WT ARNT PAS-B (32) and visualized with

PyMOL (50).

13
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Void Volume Calculation

Void volumes of ARNT PAS-B WT and SLIP conformations were calculated with the
ProteinVolume software package by Chen and Makhatadze (51). Briefly, the total solvent-
excluded volume of the protein is calculated by filling the space within the protein’s molecular
surface with 0.02 A probes. The van der Waals volume is calculated with the same process but
counting only the probes that are within the van der Waals radius of any atoms. The void volume
Void 1s given by the difference between the two volumes calculated. Solution NMR structures of
WT and SLIP were used for the calculation (29, 31), using the average void volume of all 20

conformers in these ensembles.

RESULTS AND DISCUSSION

Equilibrium Analyses: Pressure Dependence of ARNT PAS-B Conformation Equilibrium
We previously determined the solution and crystal structures of WT ARNT PAS-B and
the solution structure of the F444Q/F446A/Y456T (TRIP) variant (29, 31, 32). By comparing the
average void volumes of the two solution structure ensembles with ProteinVolume (51), we
found that the SLIP conformation had approximately 600 A* smaller void volume than WT,
leading us to anticipate that the equilibrium between these conformations might be pressure
sensitive. To test this possibility, we recorded '"N/'H and *C/'H HSQC spectra of ARNT PAS-B
Y456T at increasing pressures (20, 250, 500, ... up to 2500 bar). Overlaying these spectra (Fig.
2A, S1), we noticed that signals from all three ("H, '°N, *C) nuclei showed pressure-dependent
chemical shift and intensity differences between the two conformations, as predicted from the
volume differences between them. In general, we observed that increased pressure decreased the
intensities of WT signals while concomitantly increasing SLIP signal intensities with good

reversibility (Fig. S2), confirming the smaller calculated volume of the SLIP conformation (30).

14
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Figure 2. NMR evidence for pressure-induced equilibrium shifts between WT and SLIP conformation of
ARNT PAS-B Y456T. A) Methyl region of *C/'"H HSQC spectra of ARNT PAS-B Y456T recorded after
equilibration between 20-2500 bar. Pressure-dependent intensity changes at several sites, including the L391 81
methyl group, reflect a shift in the SLIP:WT equilibrium. B) *C-edited 1D 'H spectra of L391 H31 equilibrated
at 278.1K and 20 bar. K., (SLIP: WT) is approximately 1.5, as assessed by the areas of the two conformer-
specific peaks. C) 3C-edited 1D 'H NMR of L391 H51 recorded at pressures between 20-2500 bar as shown in
inset. Spectra were collected during sample equilibration at each pressure. D) Fitting pressure dependence of
equilibrated K., from datasets shown in C. K., above 1750 bar are not included for the fitting as another SLIP
peak moves close to SLIP L391 81, interfering with the baseline and leading to overestimation of the SLIP
population.

To characterize the thermodynamics and kinetics of the WT:SLIP conformational
interconversion, we acquired a series of ’C-edited 1D '"H NMR spectra as the system
equilibrated after pressure changes. We have previously shown that the upfield-shifted L391 Hol
methyl signal of both WT and SLIP conformations are well resolved in multiple types of NMR
spectra, likely due to its location adjacent to a cavity only found in the WT conformation (Fig.
S3) (30). Using this methyl group as a probe, we determined the equilibrium constant Keq

(=[SLIP]/[WT])) at different pressures (20 to 2500 bar) by measuring the ratios of the peak

15
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integrals corresponding to these two conformations (Fig. 2B, C). Of note, we performed all
experiments at 278.1K instead of room temperature to slow down the interconversion process,

and thus improving the temporal resolution of the subsequent kinetic analysis.

From these data, we extracted the pressure dependence of K4, noting that it
monotonically increased until approximately 1500 bar. Beyond 1500 bar, we observed that it
remained approximately constant, showing that K., does not scale exponentially with pressure
and correspondingly that the free energy AG is not linearly dependent on pressure p (Eq. 1 and
Fig. 2D), necessitating the inclusion of a nonlinear compressibility term for our analyses. Fitting
these data to obtain differences in free energy between the two conformations at ambient
pressure (referenced to 1 bar, AG?), volume (AV?), and compressibility (ABV?) (Eq. 3), we
found that the SLIP conformation was 40.5 ml/mol smaller than the WT conformation, agreeing
reasonably with the ca. 105 A? (= 63 ml/mol) internal cavities unique to the WT structure. We
note that these values differ from the ~600 A® void volume difference calculated above (= ~360
ml/mol) from the WT and SLIP structures, as the experimentally-measured value includes
contributions from both protein and solvent effects. Additional support for the pressure-driven
loss of these cavities came from the measurement that the WT conformation was more
compressible than the SLIP by 0.0285 ml/(mol bar). We attribute both the volume and
compressibility differences to the collapse of internal cavities and increased packing

accompanying the WT to SLIP transition (29, 32).

Finally, we compared the pressure-dependent Keg changes of several other cavity-
oriented side chain methyl groups that can be readily identified with '3C/'"H HSQC experiments
(L391 82, L408 81, M439 ¢, shown in Fig. S4), and found that they all exhibit similar behavior
as L391 81, with negative volume (ranging from -20 to -36 ml/mol) and compressibility (ranging

16
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from -0.012 to -0.025 ml/(mol bar)) changes upon WT to SLIP transition. We note that
identifying peak pairs that are not interfered by other peaks at multiple pressure points is
challenging, and further studies are warranted to investigate the intrinsic variability of the

thermodynamic parameters among different residues.

Pressure Jump Kinetic Analyses: WT and SLIP Interconvert by Transitioning into an
Intermediate State with Small Volume and Compressibility

To complement the above equilibrium pressure analyses, we used a pressure jump
protocol to obtain complementary kinetics measurements. To do so, we jumped the sample
pressure from 20 bar to various higher values, acquiring 1D '*C-edited '"H NMR spectra as the
system re-equilibrated and measuring the populations of the two conformations by the area of the
respective L391 Ho1 signals (Fig. 3A). Notably, we conducted these studies with commercially-
available instrumentation capable of completing even the largest of these jumps within 30-60
sec, making it possible for us to perform the kinetic analyses due to the slow kinetics of the
interconversion process (Fig. 3A). Custom-built, NMR-compatible pressure systems have

recently been reported which are capable of such jumps approximately 100-fold faster (23, 24).

As an initial control of this approach, we extracted the Keq values from these direct jump
experiments and fit them for the same parameters mentioned in the equilibrium analyses (Fig.
S5). This yielded a AV® of -46.1 ml/mol, and a ABV® of -0.0433 ml/(mol bar) (Table 1),
comparable to values we noted above. While direct pressure jumps may induce convergence of
Keq at a slightly lower pressure, as indicated by the bigger difference in compressibilities
between the two states, we otherwise believe that these values are similar despite different

experimental routes.
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Figure 3. Kinetic analysis of the ARNT PAS-B interconversion. A) Examples of independent fits of the rate
constants using the L391 H31 'H methyl signals at the indicated pressures. Total population of the WT and SLIP
was normalized to 1 for each analysis. B) Fitting of the decoupled rates (k. in blue, k., in red) as functions of
pressure. Two models (without and with compressibility implemented) were used to fit the experimental data,
using dashed (solid) lines to indicate fits without (with) compressibility included. C) Comparison of fit model
(red) to experimental data (black). Equilibrium constants from the model are calculated from the rates derived
from the kinetic analysis. D) Decoupled rates of relaxation. Each rate pair is plotted against the pressure the
system was relaxed from. Relaxation rates appear to be independent of the initial pressure.

To analyze the kinetics of the interconversion process, we assumed that a two-state model
could be applied by our prior observation that the intermediate state of ARNT PAS-B Y456T is
only transiently visited during interconversion (30). We validated this assumption by establishing
that the sum population of the two states remained constant at pressures below 2500 bar,
suggesting the intermediate is not accumulating (Fig. S6). In the two-state transition model, the
apparent exchange rate is the sum of the two rate constants corresponding to the individual
Eq. 9) (52). To obtain the pressure

transitions from SLIP to WT and vice-versa (k,,, =k, +k

sw’

dependence on both rates, we initially fit the apparent exchange rate vs. pressure to a
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biexponential equation (Eq. 4), to yield the initial rates at 1 bar (kg,,o and ko), the activation

volumes (AVSfV and AVMTS), and the activation compressibilities (Af V;T,V and AS vas). To avoid
needing to simultaneously fit six parameters, we decoupled the two rates by solving them
numerically under different pressures as described in Materials and Methods (Eq. 5, 6; Fig. S7,
S8). This allowed us to independently fit each rate as a function of pressure with three

parameters (Eq. 7, 8; Fig. 3A, B), summarized in Table 1.

Table 1. Summary of the kinetic and thermodynamic parameters derived from pressure-induced
interconversion and unfolding of ARNT PAS-B variants
Thermodynamic Analyses Kinetic Analyses
SLIP — WT, step jumps?® with ABV
AV® (ml/mol) -40.5+£0.47 AVS*W (ml/mol) -37.6 £3.0
ABV° (ml/(mol bar)) -0.0285 + 0.00065 AVJ“vs (ml/mol) -82.4+7.4
SLIP — WT, direct jumps® ABVS*W (ml/(mol bar)) -0.00875 £ 0.0034
AV (ml/mol) -46.1 £ 0.41 ABVi ¢ (ml/(mol bar)) -0.0487 = 0.0066
ABV?® (ml/(mol bar)) -0.0433 + 0.00067 without ABV
Unfolding (U - F) AVE,, (ml/mol) -32.8+0.62
WT (ml/mol) -126.3 £3.1 AV‘TVS (ml/mol) -59.0 £ 1.38
TRIP (ml/mol) -83.3+2.3
Uncertainties were estimated by bootstrapping. Random noises with mean of 0 and variance of the standard
error were added to the raw data and fit repeatedly for n>30 times to determine the 95% confidence interval. ? step
jumps — jumping pressure incrementally with 250 bar steps. ® direct jumps — jumping pressure directly from 20
bar to various high pressures.

From these analyses, we observed negative activation volumes and compressibilities for
both transitions, implying that they proceed through an intermediate state which is both smaller
and less compressible than the starting conformations. Moreover, the magnitude of the volume
barrier is bigger for the WT to SLIP transition, with a 44.8 ml/mol difference in activation

volumes, consistent with the 40.5 ml/mol volume difference obtained from the thermodynamic
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analysis. Taking the ratios of the two rate constants (kws/ksw) at different pressures yielded
equilibrium constants matching experimental data (Fig. 3C). Since both activation volumes were
negative, the transition rates were correspondingly accelerated under pressure. Interestingly, the
activation volume for the WT to SLIP transition (-82.4 ml/mol, or 137 A3/molecule) is strikingly
similar to the cavity size of the WT conformation. The SLIP to WT transition, in contrast,
required a much smaller activation volume (Table 1). While the pressure-induced volume
change of a system is a combined effect from compressing both protein and solvent (20), we
found a positive correlation between cavity size and activation volume. From these data, we
postulate the transition between the two confirmations requires the protein to collapse its internal
cavities and voids to reduce its total volume, consistent with substantial unfolding that we
quantitate below. This claim is further supported by Roche et al.’s (53) recent work highlighting

that pressure-driven protein unfolding is a result of cavity elimination.

Additional support for an unfolded transition state is provided by the negative activation
compressibilities, as the replacement of interatomic contacts with hydration shells during
unfolding will substantially reduce compressibility (54). Notably, as compressibility is small and
neglectable at lower pressures (18), we were able to fit the sub-1000 bar data points to a model
without compressibility, leading to the same observation that the SLIP conformation is smaller

than the WT conformation, albeit to a lesser extent (Fig. 3B; Table 1).

Pressure Induced Interconversion is Reversible and Provides Thermodynamic Information
on Transition State

To validate the reversibility of the pressure-jump experiments, we recorded *C-edited 1D
"H NMR spectra as samples were dropped from higher pressures down to 20 bar. From these

data, we extracted the two rate constants kws and ksw and plotted them against the pressures prior
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to the relaxation (Fig. 3D). For all of the pressures we used for extrapolating the rates (from 125
to 1500 bar), the relaxation rates remained the same and the corresponding [SLIP]/[WT]
equilibrium constants were the same as we measured in equilibrium studies at 20 bar. These
results, together with our comparison of '’N/'H HSQC spectra recorded before and after
pressure-jump experiments (Fig. S2), provide important experimental controls by establishing
that this system is both thermodynamically and kinetically reversible up to at least 1500 bar and
that interconversion rates are solely determined by the applied pressure (and not susceptible to

hysteresis effects of prior pressure applications).

As an additional verification of the suitability of pressure jumps for kinetic studies of this
process, we compared the parameters extracted from these pressure-jumped measurements to
those from an Eyring analysis of the rates of interconversion determined after chromatographic
isolation of one of the two conformers (30). To do so, we equilibrated the protein at 1000 bar at
four different temperatures between 278.1 and 291.1K, then relaxed the system to 20 bar and
recorded *C-edited 1D 'H NMR spectra to extract the apparent exchange rates from SLIP to WT
(Fig. S9). From Eyring analysis of these data, we extracted entropic (-47.8 cal/(mol degree) = -
14.2 kcal/mol at 298K) and enthalpic (7.4 kcal/mol) contributions to the activation energy, which
are similar to our previously-reported results with chromatographic perturbations (30). These
data both support interconversion via an unfolded transition state, as indicated by the large
entropic barrier, and more generally demonstrate that the relaxation process we monitored here
after pressure perturbation is the same as we previously observed with chromatographic

separation (29, 30).
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Activation Volumes of the ARNT PAS-B Y456T are Comparable to the Unfolding Volumes
of the WT and TRIP Variant Detected by Pressure Jump NMR

To calibrate the degree of unfolding involved in the ARNT PAS-B Y456T transition
state, we compared the activation volumes of interconversion to the unfolding volumes of the
WT and SLIP conformations (as adopted by the WT and TRIP variant). As neither protein
substantially unfolded within our 2500 bar experimentally-accessible pressure range, we added 3
M urea to slightly lower the stability of both samples. From "N/'"H HSQC spectra we acquired at
different pressures in the presence of this denaturant, it was clear that all the resolved backbone
peaks showed pressure-induced reductions in intensity, with no obvious peak broadening (Fig.
S10). This was accompanied by the appearance of intense peaks with sharp linewidths and poor
'H chemical shift dispersion, consistent with pressure-induced protein unfolding that completed
at approximately 1750 bar (WT) and 2500 bar (TRIP) (Fig. 4A, S10). By fitting the protein
unfolding curves for both proteins to a two-state model (Eq. 10, Fig. 4B), we extracted two key
parameters: the average volume difference between the folded and the unfolded protein (AVy)
and the free energy of folding (AGIQ ) (20, 55) (Table 1). The unfolding volumes indicate a 43.0
ml/mol difference between the two folded structures, and the folding energies predict a 2.7:1
ratio between the SLIP and the WT conformation at ambient pressure, both similar to what we
observed for ARNT PAS-B Y456T (40.5 ml/mol and 1.5:1, respectively). The activation
volumes of the ARNT PAS-B Y456T, which represent the volume differences between the two
folded states to the intermediate state, are smaller but comparable to the unfolding volumes of
the WT and TRIP variant (-82.4 ml/mol vs. -126.3 ml/mol for WT, -37.6 ml/mol vs. -83.3

ml/mol for SLIP). These data, coupled with the correlation between the interconversion and
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Figure 4. Unfolding profile of ARNT PAS-B WT and TRIP mutant detected by high-pressure NMR N/'H
HSQC at 278 K and 3.0 M urea. A) Example "N/'"H-HSQC spectra of WT and TRIP at different pressures. (a-
¢) NMR spectra of WT at initial pressure (20 bar), intermediate pressure (1750 bar), and final pressure (2500
bar). (d-f) NMR spectra of TRIP mutant. B) Average unfolding curves for ARNT PAS-B WT and TRIP mutant.
Peak intensities are normalized between 0 and 1.

denaturant-free protein unfolding rates we previously reported (30) and the need to significantly
remodel at least 15 of 26 inter-strand hydrogen bonds in the beta sheet, lead us to strongly
support a model where ARNT PAS-B Y456T largely unfolds as it interconverts between

conformations.

We additionally compared the unfolding volumes of WT and TRIP to the unfolding
volumes of similarly-sized proteins (10-20 kDa). Indeed, the numbers are in good agreement

with several other proteins studied with pressure-dependent unfolding approaches, as
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summarized in Table S1 (42, 53, 56-60). A schematic figure describing the relationships among

the two folded conformations, the intermediate state, and the unfolded state is shown in Fig. 5.

1
AV, = -82.4 mi/mol

1
ARV, =
-0.0487 ml/(mol bar)

Volume

t
ARV, =
-0.00875 ml/(mol bar)

folded
intermediate state

AV, ., =-126.3 mlimol Unfolded state AV .., = -83.3 mlimol

LY
Ld

Reaction Coordinate

Figure 5. Summary of the volume and compressibility parameters of the folded and unfolded states of
ARNT PAS-B Y456T. Schematic representation comparing the folded, intermediate, and unfolded states of
ARNT PAS-B Y456T. The listed parameters and additional information are provided in Table 1.

Lastly, we note that we did not include compressibility changes for the unfolding analysis
of ARNT PAS-B WT and TRIP, given that these were based on global averages of signals (> 60
residues) distributed throughout both proteins which we assume to average out contributions
from sites near cavities (compressibility-dependent) and those far from cavities (compressibility-

independent) (18, 28).

Pressure-induced Nonlinear Chemical Shift Changes and Residue Compressibilities Predict
Cavity Locations
Certain types of pressure-induced NMR chemical shift changes have been related to

conformational changes within proteins (26, 27). In particular, non-linear shift changes are
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hallmarks of such conformational changes, as identified by fitting chemical shifts to pressure
using a linear and a nonlinear term (Eq. 11) (18). Of particular interest is the nonlinear
coefficient (ci) of the backbone amide '°N and 'H nuclei, where larger values are particularly
sensitive on the ability of proteins to visit multiple conformational states upon application of
pressure. Such information can be analyzed in bulk, with larger average c¢; values or broader c;
distributions reflecting the presence of internal cavities or voids which enable protein flexibility
with increased pressure (18, 26, 28, 49). At a residue-specific level, larger c; values tend to be

observed from residues located near internal cavities (18, 28).

To test if this trend holds for the WT and SLIP conformations of ARNT PAS-B, we
acquired '’N/"H HSQC spectra of both WT and TRIP samples of ARNT PAS-B at pressures up
to 2000 bar (Fig. 6A). We fit the pressure-dependent changes in '°N chemical shifts of
assignable residues to Eq. 11, using these to extract '°N ¢; values for both conformations (Fig.
6B) (29, 31). While the two conformers have similar overall structures, we observed markedly
different distributions of the backbone amide '°N ¢; values. Specifically, we observed a global
reduction of the magnitude of ¢; in the SLIP conformation, supporting the view that it has
reduced internal void volume and flexibility compared to the WT conformation. We calculated
the differences in nonlinear coefficients by subtracting the absolute values of ¢; of the SLIP
conformation from the WT conformation (Eq. 12). Residues with the largest '°N ¢; differences
were located near the internal cavities or on loops of the WT structure (Fig. 6C), with many
clustered into two regions of the protein (Fig. 6B). Intriguingly, the same clusters of residues
have also been associated with the binding of KG-548 to ARNT PAS-B, disrupting interactions
between ARNT PAS-B and the TACC3 co-activator (32). The cavities apparently collapse in the

SLIP conformation due to the +3 shift and inversion of the I3-strand, resulting in a more packed
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local environment, explaining the substantial ¢; reduction of these residues in the SLIP
conformation. Interestingly, residue Y456, the site of the Y456T point mutation that creates the

SLIP conformation, has one of the largest '°N ¢; difference between the two conformations.
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Figure 6. Residues surrounding cavities of ARNT PAS-B are rigidified in the SLIP conformation. A)
ISN/'H HSQC spectra of WT and TRIP variant ARNT PAS-B under pressures from 20 to 2000 bar, showing
large chemical shift differences between conformations despite high structural similarities between the two.
Pressure-dependent non-linear chemical shift changes are also different between WT and SLIP, which are
highlighted by red and blue arrows for several example residues. B) Pressure-dependent non-linear chemical
shift changes of the two conformations as measured by '’N ¢; (top panel) and differences in non-linearities
between the two conformations (|[WT ¢;|-|SLIP ¢/|) (bottom panel) mapped onto the sequence and secondary
structure of WT ARNT PAS-B. The standard deviation of WT ¢; (black lines, 84 x2x107'° ppm/bar?) is about 2
times the standard deviation of SLIP ¢; (red lines, 41 x2x107'° ppm/bar?). C) Mapping the residue-specific
differences in non-linear coefficients between WT and SLIP suggest that WT is globally more dynamic.
Residues with large non-linear coefficient differences (Ac; > 120) between WT and SLIP (366, 367, 369, 411,
412,413,416, 419, and 456) are located near the cavities (gray mesh) or on loop regions of WT ARNT PAS-B.
Other residues oriented toward cavities (i.e. T441 and S443) also show more non-linear chemical shift changes
in WT than SLIP. D) 'H chemical shift changes of L391 H31 for both the WT and SLIP conformations of ARNT
PAS-B Y456T are plotted against pressure. The chemical shift change of the residue in the WT conformation
shows remarkably more non-linear characteristic than it is in the SLIP conformation.
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We suspected that the residue-specific compressibility also depends on whether the
residue is near a cavity. As expected, when we fit the pressure dependence of the .391 H31 peak
to Eq. 11, we obtained a larger nonlinear coefficient for the WT conformation than the SLIP
conformation (Fig. 6D), matching the compressibility difference observed between the two
states, confirming our speculation. We also compared the pressure-dependent responses of
several other methyl peaks corresponding to the WT and SLIP conformations using the '3C/'H-
HSQC spectra of ARNT PAS-B Y456T (Fig. S11). We found several cavity-oriented methyl
groups to have markedly larger 'H or 13C ¢; values for the WT conformation (L391 82, 1396 81,
L408 81 and 62, and M439 ¢). Correspondingly, the pressure-dependent WT to SLIP transitions
were also slowed down at higher pressures as the result of negative compressibility changes,

similar to L391 51 (Fig. S4).

Since both nonlinear chemical shift changes and compressibility probe for the volume-
dependent local environment a residue resides in, measuring the nonlinear coefficient of
chemical shift changes and compressibility can complement each other for more accurate
characterization of cavities in proteins (as has been linked mathematically in the past (61)). This
is in line with the prior notion that larger compressibility is correlated with larger volume
fluctuations, which are generally observed near cavities, where residues are less tightly packed
(62). Remarkably, the cavities in the WT ARNT PAS-B were not initially observed in the
solution structure (31), showing the potential of pressure-NMR as the means of rapidly
identifying smaller cavities from moderate resolution structures where cavities and/or ligand

binding pockets are not obvious (31).
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CONCLUSION

The shift of the B-strand register at an interaction interface enabled by a single point
mutation is mechanistically intriguing and raises fundamental questions about the relative
stabilities of the ground state and energetically close alternate conformers (30, 63, 64). Using 1D
and 2D pressure-jump NMR experiments, we examined one such case by elucidating the volume
and compressibility differences between two stably folded conformations of ARNT PAS-B
which interconvert when enabled by a single point mutation, Y456T. We demonstrated that the
wildtype (WT) state has a substantially larger internal volume and compressibility compared to
the alternate slip conformation (SLIP), and that these differences can be largely attributed to the
cavities unique to the WT state. Furthermore, we show that interconversion between the two
states goes through a chiefly-unfolded intermediate state that is smaller in volume and
compressibility than both folded conformations. Additionally, we found a possible connection
between residue-specific compressibility and NMR nonlinear chemical shift responses to
pressure that could help to predict whether residues are located close to cavities. While
promising, we emphasize that a more comprehensive analysis is required to validate this

hypothesis.

In summary, we have shown how varying pressure can be easily applied to reversibly
shift the equilibrium of a protein between two stably folded conformations, letting us
quantitatively measure structural and thermodynamic parameters otherwise difficult to access
(20). We believe that this approach can be applied to other proteins which undergo large scale
conformational changes, particularly with recent instrumentation advances that allow

millisecond-timescale pressure jumps (23, 24). We anticipate that such studies will be
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particularly useful studying systems where protein flexibility is essential, including enzymatic

conformational changes, protein/ligand interactions, and metamorphic systems (9-11).
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Supplementary Table S1; Figures S1-S11.
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