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Surfing and crawling macroscopic active particles under strong confinement: Inertial dynamics
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We study two types of active (self-propelled) macroscopic particles under confinement: camphor surfers and
hexbug crawlers, using a combined experimental, theoretical, and numerical approach. Unlike widely studied
microscopic active particles and swimmers, where thermal forces are often important and inertia is negligible,
our macroscopic particles exhibit complex dynamics due expressly to active nonthermal noise combined with
inertial effects. Strong confinement induces accumulation at a finite distance within the boundary and gives rise
to three distinguishable dynamical states; both depending on activity and inertia. These surprisingly complex
dynamics arise already at the single-particle level—highlighting the importance of inertia in macroscopic active

matter.
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I. INTRODUCTION

Active matter is a rapidly growing field of research that
studies the behavior of self-driven entities that exhibit rich dy-
namics and collective phenomena in systems covering a wide
range of length scales [1-3]. This ranges from molecular-scale
systems such as driven biopolymers [4] up to meter-scale
systems like dense crowds of people [5—7]. Physical con-
finement of active systems, critical not only to understand
the effect of boundaries but also for applications to real-life
systems, triggers interesting dynamical behavior, e.g., collec-
tive motion, accumulation, segregation, phase separation, and
freezing or fluidization [8—15]. While experimental observa-
tions in starling flocks have shown the importance of inertial
effects in flocking transitions [16], how inertia modifies some
peculiar features of active systems, such as accumulation
at the boundaries or anomalous density fluctuations remains
unknown.

For a system in thermal equilibrium the density follows
the Boltzmann distribution [17]. This means, for instance,
that a Brownian particle in a container will uniformly
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explore the accessible space, without developing currents. In
stark contrast, systems of active particles exhibit a steady-state
density profile with an accumulation peak at the confining
wall [12,18-23], as has been observed in experiments [9,15].
Most studies have focused on overdamped systems due to
the ubiquity of experimental work at the microscopic scale
[3]; however, a growing number of experimental observations
highlight the importance of inertia in macroscopic active mat-
ter systems [22,24-27].

In this work we study the role of a strong confining bound-
ary on the dynamics of single macroscopic active particles,
at two length scales (mm and cm) where inertia is non-
negligible. We use two different systems, comprising both
wet and dry active matter: camphor surfers, which glide at
the fluid air interface via a surface tension-driven motion
[28]; and hexbug crawlers, which are propelled on a solid
surface by a vibrating motor [22]; hereafter, referred to as
surfers and crawlers. In both systems, a single surfer or
crawler is confined to a circular container with rigid walls.
Strikingly, due to the interplay of inertial dynamics and
strong confinement we observe rich dynamics already at the
single-particle level. We observe (1) steady-state density dis-
tributions that exhibit an accumulation peak at a finite distance
within the confining wall (Fig. 1), and (2) transitions between
three dynamical states that we call “orbits,” “epicycles,” and
“collisions” (Fig.5). Through experiments, modeling, and
simulations we show that the self propulsion speed of the in-
ertial active particles controls the location of the density peak
and drives transitions between the three dynamical states.
Including inertia in models is critical in capturing the observed
dynamics.
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FIG. 1. Probability distribution of the position of an isolated ac-
tive particle in the presence of strong boundaries for camphor surfers
(green) and hexbug crawlers (violet). These distributions are peaked
at a distance A within the system boundary (dashed vertical line),
unlike in overdamped systems. Insets show a representative angular
probability distribution (left, units in radians) and the time-lapse of a
surfer’s trajectory (right).

II. MATERIALS AND METHODS

A. Experimental systems

Experiments consist of two separate systems: (1)
Millimeter-scale camphor surfers were created by infusing
agarose gel disks with camphor solution as studied previously
[28,29]. The resulting self-propelled surfer has a radius of
~3 mm and a mass of ~40 mg. The dynamics is then studied
by placing the surfer at the water-air interface in a circular
petri dish of 10 cm diameter with 20 g of ultrapure water.
Self-propulsion is driven by gradients in surface tension. (2)
Centimeter-scale crawlers were created by using a hexbug
nano [22] that is trapped under an inverted rigid isotropic cup
of radius ~3 cm and a combined mass of ~10 g. The hexbug is
4.5 cm in length, which allows it to move freely within the cup
and collide with its walls—this combined hexbug-cup system
is referred to as the crawler. The crawler is then placed on a
flat circular table of ~1 m diameter that has a vertical wall
around its edge. Self-propulsion is driven by a mechanical
vibrating motor. Thus these two systems comprise wet and dry
active matter systems and differ in scale by an order of mag-
nitude. For both systems motion was recorded at 20-30 Hz.
In both systems, the active particle is free to move in-plane
(Fig. 2) but experiences a vertical wall at the boundary. For a
surfer, collision with the boundary is likely mediated through
capillary effects [29]. For a crawler, the collision with the
boundary is mediated directly through physical contact of
the cup with the wall. Therefore, both surfers and crawlers
experience strong confinement to a circular container of size
R =5 cm and 50 cm, respectively, and exhibit a typical speed
of Vexpr & 9 cm/s. This defines a typical timescale to traverse
the container, T = R/ V., as ~0.5 s for surfers and ~5.5 s
for crawlers.

B. Image capture and analysis

Representative images of a camphor surfer and hexbug
crawler are shown in Fig. 2, where the dotted line indicates

(b) hexbug crawler. The dashed line indicates the boundary of the
container.

the container boundary. In both experiments the container
was painted with antireflective black paint to enhance contrast
and images were captured by using identical CMOS cam-
eras (Basler acA3088-57um, from Graftek Imaging) where
4x pixel binning was used at the time of acquisition,
resulting in an image of 768 x 516 pixels and saved as in-
dividual linearly encoded TIFF files. A different lens for
each type of experiment was used to accommodate the dif-
ference in scale: (1) Computar M3Z1228C-MP for surfers
and (2) Kowa LMVZ4411 for crawlers—both purchased
from Graftek Imaging. Captured image sequences were an-
alyzed in MATLAB to determine particle trajectories using a
custom-written image processing code. Briefly, images were
thresholded, and background noise was removed via filtering,
and the centroid of the single particle was recorded for each
frame. Working with single macroscopic particles that remain
in-plane and exhibit large contrast with their background is
relatively straightforward and thus the centroid of the parti-
cle could be consistently determined in every single frame.
Tracking precision was determined to be &1 pixel for both
surfers and crawlers, resulting in an uncertainty of 0.2 mm
and 0.2 cm, respectively. This tracking precision corresponds
to &1 /30th of the particle diameter.

C. Numerical model

For modeling the dynamics of both surfers and crawlers,
we consider the following stochastic dynamics for the transla-
tional and rotational degrees of freedom

mf = —yr + yyon +f, (1

1) = —yr@ + yrv/2D; . 2)

In Eq. (1), r = (x(¢), y(¢)) is the position of the center of
mass of the macroscopic disk at time ¢, m is the mass of
the disk, / is the moment of inertia, y and yg are the trans-
lational and rotational friction coefficients, respectively. The
moment of inertia is due to the fact that, in the underdamped
regime we have to take into account also the finite size of
the particle. The particle is self-propelled along the direction
given by the vector n = (cos ¢(t), sin¢(t)). vy is the self-
propulsion speed, 7 is a random noise that satisfies (n) = 0
and (n(t)n(s)) = &(t — s), and D, is the rotational diffusion
coefficient. In writing Eq. (1), we consider as negligible the
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random fluctuations acting on translational degrees of free-
dom. This is motivated by the fact that, in our experiments,
the self-propulsion is the leading stochastic force acting on
the system, i.e., the diffusion due to the thermal bath is orders
of magnitude smaller than the displacement due to the self-
propulsion. Since we are considering the system confined by
a circular container, f is the force exerted by the boundaries on
the particle. In particular, the boundaries are modeled by using
a conservative central potential ¢ (ry,,) = (A/ryp)'> with A a
coupling constant that fixes the equilibrium distance between
the particle and the wall. We consider a circular container of
radius R [30,31]. r,, indicates the wall-particle distance.

II1. RESULTS AND DISCUSSION
A. Spatial distributions and mean square displacements

First, we focus on the average properties of active particles
interacting with the boundaries in the presence of both inertia
and friction. To characterize the statistical behavior of the
system, we tracked the positions (using custom code written
in MATLAB), computed the polar coordinates r(r, 6) with the
origin at the center of the container, and calculated the prob-
ability distributions of their positions, p(r) and p(8) (Fig. 1).
As expected, p(6) shows a uniform distribution because the
containers are rotationally symmetric about their origin. The
uniform distribution in angle likely arises from the rotating
dynamics of particles along the boundary of the container, see
below for details, but is also consistent with random motion.
Interestingly, the radial distribution p(r) of these active parti-
cles under confinement is new: it is not uniform, as one might
expect in the case of Brownian particles, nor peaked at the
boundary, as was found for active Brownian particles—e.g.,
microswimming bacteria [9]. Instead, here, the most probable
configuration is at some finite distance within the boundary
of the container, as shown in Fig. 1 by A. This observation,
along with our analytic and numerical models showing that A
depends on the activity vy, is the first main result of this work.

To gain insight into this behavior, we computed the radial
and angular mean squared displacement (MSD), as shown in
Fig. 3. For both surfers and crawlers the radial MSD initially
grows ballistically in time, followed by a crossover to a flat
plateau as expected for the motion of a particle confined to a
circular region. This suggests the persistence length of a surfer
or crawler is greater than our system size. Often oscillations
are observed for surfers in the crossover region [Fig. 3 (left)].
The angular displacement instead is simpler: typically ballis-
tic for surfers and nearly diffusive for crawlers. Sometimes
kinks and crossovers between two regions with similar slope
are observed. We interpret these as signatures of a multiscale
dynamics: for instance, local rotational motion [see inset of
Fig. 3 (right)] followed by an overall large-scale rotation along
the boundary.

An important difference with respect to microscopic sys-
tems is that these particles are too large to be sensitive to
thermal fluctuations. However, we still observe noise, e.g.,
fluctuations in position and in the speed. Surfers provide
an example of a macroscopic nonthermal suspension where
fluctuations are active in origin, and when activity is ab-
sent (e.g., the camphor is exhausted), then the noise is also
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FIG. 3. Mean square displacements (MSDs). (a) MSD for the
radial coordinate r(¢) normalized to the container size R. A crossover
from ballistic to a flat plateau indicates confinement. In most experi-
mental runs, oscillatory behavior is observed (inset shows theoretical
fit for surfers). From this fit we estimate m/y =~ 40 and 5 s for
surfers and crawlers, respectively. (b) MSD for the angular coordi-
nate 6(¢). The angular dynamics is consistent with ballistic motion in
surfers and diffusive motion for crawlers. Kinks, describing multiple
timescales, are observed, e.g., during epicycles (inset). Data shown
for epicycles, collisions, and orbits are from surfers. Power laws of
ballistic (solid red) and diffusive (solid black) dynamics are shown
as a guide for the eye.

absent. Crawlers are similar where the activity or noise comes
from the vibrating motor. From our measurements, the speed
fluctuations have Gaussian behavior when the particle is far
from the boundaries of the system (Fig. 4). Collisions and in-
teractions with the boundary result in a distribution of speeds
near the boundary, which has large tails in the case of surfers,
but which is qualitatively similar to the bulk distribution for
crawlers. Presumably for crawlers this is due to the fact that
the collisions with the container are mediated by the sur-
rounding isotropic cup, which is present also when particles
are far from the boundaries and could be responsible for a
similar randomization of the speed both in the bulk and close
to boundaries, as shown in Fig. 4.

0 100
dv (mm/s) dv (mm/s)

FIG. 4. Distribution of speed fluctuations dv (where v = v —
(v) and v = |v|), for (a) surfers and (b) crawlers. Blue squares and
orange circles indicate near boundaries and in the bulk, respectively.
Fluctuations in the bulk (orange) look nearly Gaussian, while near
the boundary (blue), non-Gaussian tails are evident, particularly for
(a) surfers. Dashed and dotted-dashed lines show Gaussian distribu-
tions with experimental variance.
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B. Analytical model

To gain insight we examine a simple model similar to
active Brownian particles (ABPs) with inertia. We consider
a particle centered at position x. Then X = v is the particle’s
velocity whose dynamics is described by

mv = —y(v—vo)—i'a—U. 3)

ar

Here vy is the active velocity, which includes both determin-
istic and fluctuating terms. This is the main difference from
the usual ABP model [32]: in our system there are no thermal
fluctuations and the noise is directly linked to the activity. This
is sometimes referred to as active Langevin motion [33]. i‘%
is the force (U is the potential) acting on the radial direction
7 due to confinement. Writing the particle position x in polar
coordinates as x = r(cos 6, sin9), then # = x/r. To compute
the radial MSD we use the simplest model to describe the
boundary effect: a harmonic potential U = kr?/2 (see numer-
ical simulations for strong confinement). The velocity vector x
is written X = 7% + r08 and the acceleration v = (¥ — ro?)f +
(270 + rf)8. The radial and angular equations are obtained
by projecting Eq. (3) onto # and @ = (—sin 6, cos ), respec-
tively. We note that these equations are coupled if inertia is
non-negligible, m # 0. Projecting the equation on the radial
direction, we write the active speed (vo - ) = vo[1 + £(¢)] as
the sum of two terms: a constant part vy, and a fluctuating
part &(t), which has zero mean and correlations (£ (£)&(t')) =
AS8(t —1"). A describes the strength of fluctuations in the ra-
dial velocity, which has a nonthermal origin that can be related
to fluctuations in the activity due to chemical reactions for the
surfers or the vibrating motor for the crawlers, see Fig. 4.

To study the radial MSD, for simplicity we assume con-
stant angular dynamics, 6 = €. This represents an overall
rotational motion, as often observed in experiments (see
Fig. 5), and allows us to decouple the radial equation from the
angular one, obtaining mi = —y7 + yvy + Y vo&(t) — mwér
where @ = k/m — Q2. This result is the classical equation
of the Brownian oscillator [34]. The radial MSD is computed
(once we subtract the average contribution) from the re-
lation (Ar?(t)) = ([r(t) — r(0)]?) = 2(r?) — 2(r()r(0)). We
obtain

(AF2 (1)) = 2y2v3m_w§(1 — e‘zﬁ’[cos (w1t)
Y .
ST sm(a)lt)]), 4)

2
where o} = 0§ — L.

The fit reproduces the experimental data accurately for
surfers, see the inset of Fig. 3. The oscillations near the plateau
could be related to the bouncing dynamics of the particles near
the boundary—which only occurs in the presence of inertia.
In the case of surfers, the fit yields the values m/y = 40 s,
w; = 189.48 rad/s, and a plateau of ~300 mm?2. For crawlers,
we obtain m/y ~ 5 s, and a plateau of ~215 000 mm?, with no
appreciable oscillations (w; =~ 0.6 rad/s), see violet curve of
Fig. 3 (left). These extracted values of m/y suggest that the
effect of inertia is stronger in surfers than in crawlers in our
experimental setup. This is further supported by comparison
of m/y, the timescale of inertial relaxation, to T ~ R /vy, the
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FIG. 5. Characterization of different dynamical states: (a) orbits,
(b) epicycles, and (c) collisions. The left column shows the dis-
tribution of the curvatures. Curvatures are truncated at the value
10k, where ko = 1/R is the container curvature. The horizontal red
lines indicate the boundary curvature, k = =£k,. The middle column
shows the curvature as a function of time, corresponding to the
time-lapse trajectories shown in the right column. A «/k, value
of zero indicates motion in a straight line. (a) Orbiting dynamics
exhibit a sharp peak at the curvature corresponding to the boundary
|ko|. (b) Epicycles exhibit a wider distribution of curvatures peaked
at a higher value, ~|2ky|, indicating “sharper” turns. (c) Collisions
exhibit more complex dynamics, with a central peak in curvature
similar to the container’s boundary, and two large shoulders at
very high curvature, +10k, associated with collisions where abrupt
changes in direction take place. Shaded green regions in the time
dynamics (middle column) correspond to abrupt changes in curvature
indicated in trajectories (right column).

typical time for a particle to traverse the container. The inertial
relaxation time for surfers (m/y =~ 40 s) is much larger than
the timescale to traverse the container (t ~ 0.5 s), and for
crawlers the two timescales are comparable (m/y ~ 5 s, and
T & 5.5 ). In both cases the extracted value of m/y indicates
inertia is important for the dynamics.

How a simple model approximating the confining bound-
ary as a harmonic potential fits the MSD data for both surfers
and crawlers is not entirely clear. For surfers, presumably in-
teractions with the boundary of the container are mediated by
capillary forces (a meniscus is visible in the proximity of the
boundary) [35]. To first approximation, a spring-like potential
could represent the meniscus force felt by the particle when
colliding. A similar effect can be envisaged for the crawlers
for interactions of the isotropic cup and container wall. A dif-
ference worth noting is that, because the particles are actively
driven, the oscillations (albeit damped) do not vanish in the
radial MSD. B

The equation for the angular coordinate is mr = —(yr +
2mi‘)9 + v(t), where v(¢) represents noise, which in the
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simplest case is zero except at the instant of collision with the
boundary. As we see, the equation is still coupled to the ra-
dial position. To decouple these variables, we write r(t) ~ ry,
which represents some average radial position (e.g., the peak
of the distribution in Fig. 1). Hence, the equation for the angle
is 0 = V@ + ”(’ ) . The solution for the angle in this case
is obtalned by con51der1ng 8-correlated noise (v(t' )v(”)) =

L8t —1t"), as (AG?) ~ Q%? in the regime where inertia
dominates [36]. If we neglected m, following the same cal-
culation the angular MSD would become diffusive, (A6?) &

e —L ¢ with I the strength of fluctuations in angular velocity.

Together this analysis suggests that the surfers exhibit strong
inertial effects because of the ballistic angular dynamics and
oscillations in radial dynamics, while the inertial effects of
our crawlers! is less apparent—consistent with the ratio m/y
extracted from the radial analysis.

C. Dynamical transitions between states

So far we have discussed statistical properties of these
single-particle systems. However, this does not distinguish the
finer dynamical features that are associated with a particle’s
individual trajectory. By focusing on such dynamical details,
we find three states:

(1) Orbits, where particles move, approximately, on cir-
cular trajectories with curvature similar to the size of the
confining boundary;

(2) Epicycles, where rotation at small scales is coupled to
rotation along the container’s boundary;

(3) Collisions, where relatively straight trajectories are
followed by abrupt changes in direction due to the collisions
with the boundary.

While orbits have been observed in soft confinement [22],
the richer dynamics of epicycles and collisions are unique.
This observation, along with our numerical model suggesting
transitions between dynamical states is tuned by activity, is
the second main result of our paper.

These three dynamical states are shown for surfers in
Fig. 5, and transitions between them are possible even for a
single particle in time. Signatures of these dynamical states
also emerge in the MSDs shown in Fig. 3. While all three
states have ballistic dynamics at short times, they exhibit
different plateau values in the radial dynamics at longer
times—epicycles exploring the largest radial area, followed
by collisions which typically avoid the center of the container,
and finally orbits where particles typically stay in a small
region near the boundary Fig. 3 (left). These dynamics are
also visible in the angular MSDs where orbits and collisions
have the fastest angular motion, and epicycles exhibit mul-
tiscale dynamics with comparable motion at short-times but
a transition to a slower overall angular motion at long time
due to the local rotations [Fig. 3 (right)]. We show represen-
tative examples of time-lapse trajectories in Fig. 5 (right).
In crawlers, which have smaller inertial effects (m/y), we
see similar dynamical states and transitions between states,

IThis is not a fundamental difference between crawling vs surfing.
Other choices of model systems considering different crawlers could
yield larger m/y.

however, less pronounced. The observation that these states
are less pronounced in crawlers suggests that the difference in
inertia between surfers and crawlers may play a key role. We
explore this further in the following section using numerical
simulations.

The local curvature «(¢) along the particle trajectory pro-
vides a convenient way to characterize the dynamical features.
The curvature is computed from the (x, y) coordinates of the
particles using a standard two-dimensional (2D) formula

() = T30

(8 +y%)2

In interpreting these dynamics, «(t) > 0 corresponds to a
counterclockwise motion and «(¢#) <O corresponds to a
clockwise motion. Asymmetry in the distribution of « /¢ for
a single trajectory arises due to persistent rotational motion in
one direction (k is the container curvature). In Fig. 5 we show
curvature dynamics for our three dynamical states. The orbits
state [Fig. 5(a)] is the most straightforward, exhibiting a single
relatively narrow peak at a value of |k /kg| = 1 because the
surfer is consistently undergoing rotational motion along the
boundary. The epicycles state [Fig. 5(b)] is mainly character-
ized by a single large, wide peak. The peak is wide and biased
towards larger values of |k /ko| due to multiscale rotational
dynamics, and thus a wider distribution of curvatures. The
collisions state [Fig. 5(c)] is characterized by two large peaks
at =10k that correspond to collisions with the boundary
generating high-curvature turns and a third more central peak
at ~|kg| due to overall rotating dynamics near the boundary
reminiscent of orbits. It is worth noting that there is always
an overall rotational motion (i.e., nonzero peak in k /xy and
ballistic angular MSD). This means an active particle with
non-negligible inertia in a rotationally symmetric container
generates persistent rotational motion in one direction. This is
an example of spontaneous breaking of rotational symmetry
at the single-particle level.

These three dynamical states are observed not only in
different realizations of the same experiment, but transitions
between states are also observed as a function of time for a
single particle. Since the influence of inertia on a particle does
not change in time, this observation suggests that the dynam-
ical states are tuned by some other parameter. We propose
that activity tunes the observed dynamical states, which we
explore in the following section using simulations.

D. Numerical simulations

Our simulations show that the dynamical states observed in
experiments can be rationalized in terms of a simple model of
an active Langevin disk in the underdamped regime [24,33].
This goes beyond the analytical model described above, by
including the dynamic inertial equation for the disk’s orien-
tation, n, and introducing a “strong” confining boundary. In
the numerical model, a disk of radius ¢ and mass m moves
confined in a circular container of radius R. The disk ex-
periences a self-propulsive force along the direction n that
causes a self-propulsive velocity of magnitude vy. Because
of its finite size, the disk is also characterized by its moment
of inertia I. The orientation n is subjected to a random and
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FIG. 6. Numerical simulations. (a) Representative trajectories
of the numerical model for vy/v., = 0.1, 1, 10, 25 (red, green,
blue, and magenta, respectively). (b) Distribution of local curvatures
P(x /Kko) averaged over many trajectories. (c) The radial distribu-
tion function with parameters suitable for reproducing surfers and
crawlers. Inset corresponds to velocities in panels (a) and (b). (d) A
phase diagram of the position of the peak in the radial distribu-
tion function (yellow corresponds to r/R = 1, violet is r/R = 0).
Crawlers (black diamond) exhibit a single peaked distribution within
but near the boundary. Surfers exhibit a peak well within the bound-
ary with a depletion region near the wall. Red, green, blue, and
magenta symbols refer to the location in the phase diagram of the
trajectories shown in panel (a).

uncorrelated noise whose fluctuations are characterized by a
rotational diffusion constant D, = 1.

Figure 6(a) shows four representative trajectories at dif-
ferent self-propulsion velocity vg/ve, = 0.1, 1, 10, 25 and
fixed yr/y = 8 x 1072 (the ratio has been chosen to describe
the surfers). v,,,, =~ 90 mm/s is the typical scale of velocity
measured in experiments for both surfers and crawlers. As the
self-propulsion velocity vy increases, trajectories transition
from Brownian-like to richer dynamical features of epicycles,
collisions, and orbits. This is an indication that the presence
of different regimes observed in experiments may be due
to the magnitude of the self-propulsion velocity vy, i.e., a
quantity that that is not directly accessible in experimental
measurements because it characterizes only the active process,
yvon, and is different from the observed speed vey, = (|¥]).
We look at the statistical distribution of local curvatures P(x),
as shown in Fig. 6(b). At small velocities, trajectories are
almost Brownian and the distribution is flat (red). As vy in-
creases, ballistic dynamics give rise to a peak at « = 0 (green).
When epicycles dominate the dynamics, P develops a shallow
double-peaked structure (blue). The double peak is due to
averaging over a large number of trajectories, where in each
simulation the disk may be persistently rotating in the posi-
tive or negative k direction. This persistent rotation emerges
where collisions with the boundary are observed (blue) at

intermediate activity but at higher activity orbits dominate and
exhibit a deep double-peaked structure (magenta), as shown in
Figs. 6(a) and 6(b).

To compare the numerical model with the experiments
we look at the steady-state properties through the radial
distribution function (using simulation parameters compatible
with experiment). The result, shown in Fig. 6(c), is in fair
agreement with the experiment; namely, that both surfers
and crawlers show an accumulation at a finite distance A
within the container boundary, and that this effect is stronger
with increasing influence of inertia (e.g., surfers vs crawlers).
Finally, using as a criterion the distance from the boundaries,
we develop a phase diagram [Fig. 6(d)]. The color map
indicates the position of the peak of the radial distribution
function 7,.. Yellow indicates that rp./R =1, violet
indicates 7. /R = 0. The violet region suggests that the
distribution becomes flat. As one can see, as the inertial effects
become negligible (large yg values), the peak is located at the
boundary (yellow) regardless of the self-propulsion speed,
as already observed in other experiments [9,15]. However,
when inertia dominates (at lower values of yg), the phase
diagram shows rich behavior as the self-propulsion speed is
varied. Very low vy shows uniform distributions (violet), as
expected for Brownian motion, and higher vy show a peak
of the distribution at a finite distance within the boundary
(shades of green) A, as observed in our experiments, e.g.,
epicycles and collisions tend to move the peak away from
the boundary. Altogether, our simulations suggest that an
inertial active disk under strong confinement can dynamically
transition from Brownian-like to epicycles, collisions, and
orbits by increasing the self-propulsion velocity, vy.

It is worth noting that the structure of the radial distribu-
tion function shows richer features than in the overdamped
case [9]. This is made evident by the green regions in the
phase diagram (upper-left) where the peak of the distribution
not only moves away from the boundary but also exhibits a
depletion region close to the wall—visible in Fig. 6(c). This
observation is in agreement with experiments, most visibly
in surfers (green curve in Fig. 1) that exhibit a peak at finite
distance A from the boundary. Moreover, the distributions in
both experiments and simulations exhibit a “shoulder” in the
depletion region (green curves in Figs. 1 and 6(c)].

IV. CONCLUSIONS

To summarize, in “strong” confinement a Brownian par-
ticle will uniformly explore the space; and an overdamped
active particle will accumulate at the container wall. In this
article, we show that a self-propelled particle with non-
negligible inertia gives rise to two new effects: (1) Particles
accumulate at a finite distance within the container wall, and
this distance increases with activity and inertia. (2) Three
dynamical states (and transitions between them) are observed
that can be characterized by the local curvature, all of which
include breaking of rotational symmetry. Both (1) accumula-
tion and (2) transitions between dynamical states can be tuned
by the activity vy and only exist when inertia is non-negligible.
These observations open a new avenue for inertial active mat-
ter, because they show that, thanks to inertial effects, active
particles can be spatially sorted in target regions by varying
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the properties of the particle itself without introducing an
external field or opportune sculptured environments [37,38].
Further modeling and experiments are necessary to fully un-
derstand the role of inertia on the spatial distribution of active
particles, the finer features of their dynamical states, and how
this affects multiparticle interactions.
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