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Abstract

Besides the spirals induced by the Lindblad resonances, planets can generate a family of tightly wound spirals
through buoyancy resonances. The excitation of buoyancy resonances depends on the thermal relaxation timescale
of the gas. By computing timescales of various processes associated with thermal relaxation, namely, radiation,
diffusion, and gas–dust collision, we show that the thermal relaxation in protoplanetary disks’ surface layers (Z/
R 0.1) and outer disks (R 100 au) is limited by infrequent gas–dust collisions. The use of the isothermal
equation of state or rapid cooling, common in protoplanetary disk simulations, is therefore not justified. Using
three-dimensional hydrodynamic simulations, we show that the collision-limited slow thermal relaxation provides
favorable conditions for buoyancy resonances to develop. Buoyancy resonances produce predominantly vertical
motions, whose magnitude at the 12CO emission surface is of the order of 100 m s−1 for Jovian-mass planets,
sufficiently large to detect using molecular line observations with ALMA. We generate synthetic observations and
describe characteristic features of buoyancy resonances in Keplerian-subtracted moment maps and velocity channel
maps. Based on the morphology and magnitude of the perturbation, we propose that the tightly wound spirals
observed in TWHya could be driven by a (sub-)Jovian-mass planet at 90 au. We discuss how non-Keplerian
motions driven by buoyancy resonances can be distinguished from those driven by other origins. We argue that
observations of multiple lines tracing different heights, with sufficiently high spatial/spectral resolution and
sensitivity to separate the emission arising from the near and far sides of the disk, will help constrain the origin of
non-Keplerian motions.

Unified Astronomy Thesaurus concepts: Protoplanetary disks (1300); Spiral arms (1559); Hydrodynamical
simulations (767); Submillimeter astronomy (1647)

1. Introduction

Recent observations have revealed a plethora of substructures in
protoplanetary disks (e.g., ALMA Partnership et al. 2015;
Andrews et al. 2018; Avenhaus et al. 2018). Spiral arms, along
with concentric rings and gaps, are found to be one of the most
common types of substructures. They are often interpreted as an
outcome of the gravitational interaction between the disk and
embedded planets therein (e.g., Bae et al. 2016c), although we
cannot rule out other possibilities, such as gravitational instabilities
(e.g., Meru et al. 2017; Hall et al. 2018), stellar flybys (e.g., Cuello
et al. 2019, 2020), or infalling materials (e.g., Lesur et al. 2015),
until we directly detect companions.

So far, most of the spiral arms are detected in optical/near-
infrared scattered light or (sub)millimeter continuum observations
(e.g., Hashimoto et al. 2011; Muto et al. 2012; Grady et al. 2013;
Benisty et al. 2015; Pérez et al. 2016; Benisty et al. 2017; Kraus
et al. 2017; Andrews et al. 2018; Canovas et al. 2018; Huang et al.
2018b; Reggiani et al. 2018; Uyama et al. 2018; Gratton et al.
2019; Monnier et al. 2019; Keppler et al. 2020; Muro-Arena et al.
2020). Spirals in these observations could be results of the
increase in the density of emitting materials (i.e., dust grains), the
increase of the temperature at the shock front, and/or the increase
in the height of the scattering surface.

With the unprecedented high spatial/spectral resolution and
sensitivity the Atacama Large Millimeter/submillimeter Array
(ALMA) offers, it is now possible to use molecular line

observations to probe the kinematics associated with spiral arms
(e.g., Christiaens et al. 2014; Tang et al. 2017; Teague et al. 2019;
Huang et al. 2020; Phuong et al. 2020), which can help better
understand the origin of the spirals. It is also worth mentioning the
so-called velocity kinks (Pinte et al. 2018, 2019, 2020) and
Doppler flips (Pérez et al. 2018b, 2020; Casassus & Pérez 2019)
seen in ALMA molecular line observations. While these are
localized features rather than large-scale spirals, they are generally
interpreted as the velocity perturbations associated with planet-
induced spirals.
Using the ALMA 12CO line observations, Teague et al. (2019)

reported three spiral arms in the velocity and temperature space in
the TWHya disk. One of the interesting features about the spirals
is that the pitch angle is very small, decreasing from 9° to 3°
between 70 and 200 au. This tightly wound morphology
distinguishes itself from a large number of spirals having pitch
angles of 10°–30° in other protoplanetary disks (e.g., Huang et al.
2018b; Reggiani et al. 2018; Uyama et al. 2018; Monnier et al.
2019; Yu et al. 2019), bringing into question their origin. Because
Lindblad spirals’ pitch angle decreases as a function of the
distance from the planet (e.g., Zhu et al. 2015; Bae & Zhu 2018a),
it is not completely impossible to explain such a tightly wound
morphology with the traditional view of Lindblad resonance-
driven spirals (Goldreich & Tremaine 1979, 1980; Ogilvie &
Lubow 2002; Bae & Zhu 2018a, 2018b). One may argue that a
small pitch angle could be reconciled if the planet is located
sufficiently far inward of the observed spirals. In this case,
however, it is unclear why we do not observe spirals near the
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planet but only far from it because we expect spirals to generate
stronger perturbations closer to the planet.

1.1. Theoretical Background: Buoyancy Resonances

Here we examine an alternative: buoyancy resonances (Zhu
et al. 2012; Lubow & Zhu 2014; McNally et al. 2020). Let us
consider a gas parcel that is vertically displaced from the
equilibrium position. Its response to the perturbation can be
described with the vertical buoyancy frequency (a.k.a. Brunt–
Väisälä frequency):
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adopting the ideal gas law. In the above equations, g is the
gravitational acceleration, γ is the adiabatic index, P is the gas
pressure, ρ is the gas density, and T is the gas temperature.
When the disk temperature is dominated by the stellar
irradiation, the disk is hotter near the surface and colder near
the midplane (Chiang & Goldreich 1997; D’Alessio et al. 1998;
Dartois et al. 2003; Rosenfeld et al. 2013). With a positive
vertical temperature gradient and γ� 1, Equation (2) yields

>N 0Z
2 . We thus expect the gas parcel to vertically oscillate

around its equilibrium position with a frequency NZ.
When the buoyancy frequency matches with the forcing

frequency which, in this case, is the planet’s orbital frequency,
buoyancy resonances can develop (Zhu et al. 2012; Lubow &
Zhu 2014). Buoyancy resonances give rise to the density and
velocity perturbations along a family of trailing spirals. As we
will show below, one of the main characteristics of buoyancy
spirals is that they are very tightly wound compared with
Lindblad spirals, in particular in the vicinity of the planet.

It is worth pointing out that the thermodynamic properties of
the disk are important in the development of buoyancy
resonances. In order for buoyancy resonances to fully develop,
the timescale for the gas to respond to thermal perturbations
(hereafter relaxation timescale trelax) has to be longer than the
timescale associated with the buoyancy: -t NZrelax

1. When
-t NZrelax
1 , the gas behaves isothermally, and buoyancy

resonances are expected to be weak or absent.
In this paper, we show that planets can excite spirals through

buoyancy resonances, which can be detectable using molecular
line observations with ALMA. The paper is organized as
follows. In Section 2, we describe three processes that
determine the relaxation timescale of the gas—radiation,
diffusion, and gas–dust collision—and compute the corresp-
onding timescales using a TWHya disk model. We show that
thermal relaxation in the surface layers (Z/R 0.1) and outer
regions (R 100 au) of protoplanetary disks can be limited by
insufficient gas–dust collision. In Section 3, we present three-
dimensional hydrodynamic simulations and show that the
collision-limited slow thermal relaxation provides favorable
conditions for buoyancy resonances. In Section 4, we generate
synthetic observations and show that the spirals driven by
buoyancy resonances are observable with molecular line
observations using ALMA. Based on the tightly wound
morphology and the magnitude of velocity perturbations, we

propose that the velocity spiral seen in TWHya could be driven
by a (sub-)Jovian-mass planet at 90 au. In Section 5, we show
that the relaxation timescale is comparable to or longer than the
dynamical timescale under a broad range of conditions and
discuss its implications for the development of buoyancy
resonances, planet-induced gap profiles, and hydrodynamic
instabilities. We also discuss potential ways to discriminate
non-Keplerian motions driven by buoyancy resonances from
those driven by other mechanisms, including Lindblad
resonance, corrugated vertical flows, and gas pressure changes.
We summarize our findings and conclude in Section 6.

2. Thermal Relaxation of the Disk Gas

2.1. Disk Model

As one of the motivations of this work is to explain the
tightly wound spirals observed in the TWHya disk (Teague
et al. 2019), we adopt the disk density and temperature profiles
similar to the one constrained for the disk in Huang et al.
(2018a).
The gas surface density follows

S = S -R R R , 3p p
p

g( ) ( ) ( )

where Σp is the surface density at Rp= 90 au and p= 0.9. We
choose Σp= 3.8 g cm−2 such that the total disk gas mass within
210 au is 0.05Me, broadly consistent with observational
estimates for the TW Hya disk (Bergin et al. 2013). Throughout
this paper, we use q=R r sin for the cylindrical radius and

q=Z r cos for the height, where r and θ are the radius and the
polar angle in the spherical coordinates, respectively.
Following the prescription in Dartois et al. (2003), the gas

temperature is parameterized as follows:
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Here, the midplane and atmosphere temperatures are a function
of the cylindrical radius R following

= -T R T R R 5p
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where Tatm,p= 44.5 K, Tmid,p= 14.2 K, and q= 0.47 (Zhang et al.
2017; Huang et al. 2018a). In Equation (4), Zq(R)= 4Hmid(R),
where Hmid is the gas scale height determined with the disk
midplane temperature. In terms of the disk aspect ratio, the
above temperature profile at the midplane corresponds to

= ´H R R R0.075 pmid
0.265( ) , assuming 0.88Me for the stellar

mass (Andrews et al. 2012; Huang et al. 2018a) and 2.4 for the
mean molecular weight of the gas.
Using the above surface density and temperature profiles, we

construct the three-dimensional gas density distribution that
satisfies the vertical hydrostatic equilibrium:
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Solving the above equation results in the vertical density
distribution that follows
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where cs,mid and cs(Z) denote the sound speed at the disk midplane
and at height Z. We then compute the angular velocity Ω that
satisfies the radial force balance, taking into account the gas
pressure gradient:
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Here, W = GM RK
3

* is the Keplerian angular velocity. The
initial radial and meridional velocities are set to zero.

2.2. Thermal Relaxation Timescale

Protoplanetary disks are a mixture of gas and dust. Hydrogen
molecules dominate the total mass and thermal energy, but they
are inefficient at emitting radiation. Let us consider a situation
where a gas parcel has been perturbed from its equilibrium state
to have a higher temperature. In order for the gas to lose its
thermal energy, hydrogen molecules first have to transfer their
kinetic energy to the surrounding dust grains. Dust grains then
radiate away the excess thermal energy. This process can thus
be understood as a sequential, two-step process (see Figure 1
for a schematic diagram).

When the collision between hydrogen molecules and dust
grains is sufficiently frequent, the gas cools at the rate dust
grains radiate away their thermal energy; in this case, gas and
dust are thermally coupled. In the optically thin regime, thermal

photons emitted by dust grains can freely escape from the disk.
The relaxation timescale of the gas can be described by the
radiative timescale of dust grains,

k s
=t

c

T16
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where cV denotes the specific heat capacity of the gas, κP is the
Planck mean opacity of the dust, and σSB is the Stefan–
Boltzmann constant.
In the optically thick regime, thermal photons emitted from

dust grains are absorbed and emitted by other grains multiple
times before they eventually escape the disk. In this case, the
cooling timescale can be characterized by the diffusion of
photons. The diffusion timescale associated with the length
scale λdiff can be written as

l
=

á ñ
t

D
, 11diff

diff
2

( )

where D is the diffusion coefficient defined as
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with κR being the Rosseland mean opacity of the dust and the
brackets 〈〉 denoting an average over λdiff (Malygin et al.
2017). While the density, temperature, and opacity are
expected to vary moderately along the radial and azimuthal
directions, their variation can be larger along the vertical
direction due to the vertical stratification of the disk. We thus
define the in-plane diffusion timescale tdiff,P and vertical
diffusion timescale tdiff,⊥, for which the diffusion coefficient
is averaged along the radial and vertical directions, respec-
tively. The overall diffusion timescale considering both in-
plane and vertical diffusion can be estimated as
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For a given length scale λdiff, we find that tdiff,P and tdiff,⊥ are
comparable when λdiff=Hg, not surprisingly, where Hg is the gas
scale height. However, one can be larger than the other by a factor
of a few when λdiffHg. It is also worth mentioning that it is
possible that the length scale of the temperature perturbation along
the radial/azimuthal direction and that along the vertical direction
differ (see e.g., Miranda & Rafikov 2020a).
We note that, with the assumption that the disk has a

constant temperature vertically, along with τR≡ ∫κRρgdZ and
Σg; ρgHg, combining Equations (11) and (12) approximates to
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a formula that is often adopted to account for optically thick
cooling in a vertically integrated, one-/two-dimensional
framework.
Let us now move on to the situation where the gas–dust

collision is not sufficiently frequent. In this case, cooling of the
gas is limited by the gas–dust collision rate (assuming lack of
other cooling mechanisms, such as molecular/atomic line
cooling; see below). Because the assumption of thermal
equilibrium is no longer valid, we define the dust temperature

Figure 1. A schematic diagram showing the cooling process of the gas in
protoplanetary disks. The cooling of the gas is a sequential, two-step process.
Hydrogen molecules—the most abundant but poorly emitting species—first
have to collide with dust grains to lose their energy. Dust grains subsequently
radiate away the excess thermal energy. The thermal photons from dust grains
escape the disk freely when the disk is optically thin (the upper half of the
diagram), while they do so after multiple reabsorption/emission (i.e.,
diffusion), when the disk is optically thick (the lower half of the diagram).
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Td. The gas–dust collisional timescale tcoll can be written as
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where Λcoll is the cooling rate per unit volume via gas–dust
collisions for which we follow Burke & Hollenbach (1983):
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In the above equation, amin and amax denote the minimum and
maximum dust grain sizes, kB is the Boltzmann constant,
a = 0.5T̄ is the thermal accommodation coefficient that
characterizes the efficiency of the heat transfer between gas
molecules and dust grains, ng is the number density of gas
molecules, nd(a) is the number density of dust particles with
size a, σd= πa2 is the geometrical cross section of dust
particles, and p=v k T m8 B gth g

1 2( ) is the thermal velocity of
the gas. Using the second and third moments of the dust grain
size, which are defined as
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where ρs is the bulk density of dust grains while ρd is the mass
density of dust grains. Then, combining Equations (15) and
(19), the collisional timescale can be written as
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Note that the collisional timescale depends on the mean dust
grain size and the local dust-to-gas mass ratio, which are
dependent upon the grain size distribution and the level of
turbulence of the disk among many others.

Then, taking into account radiation, diffusion, and gas–dust
collisional timescales, the relaxation timescale of the gas can be
written as

= +t t t tmax , . 21relax coll rad diff( ) ( )

Again, this equation shows that the collision between gas and
dust has to precede thermal emission of dust grains. When the
gas–dust collision is not sufficiently frequent, the collisional
energy exchange can be the bottleneck of the cooling process,
and thus, the overall cooling timescale is determined by the
collisional timescale (i.e., trelax; tcoll). When the gas–dust
collision is frequent, the gas and dust are in thermal equilibrium
and the gas cools over the timescale trad or tdiff depending on
the optical thickness of the disk (i.e., t t tmax ,relax rad diff( ) ).
The transition between the optically thick and thin regimes
occur when tdiff; trad (Malygin et al. 2017).

In order to make a quantitative comparison between trad, tcoll,
and tdiff, we compute the timescales using the disk model

described in Section 2.1. To do so, we first need to define the
spatial/size distribution of dust grains as it dictates the gas–
dust collision rate but also the radiative/diffusion timescales
through the opacity. We adopt a maximum grain size that is
decreasing over radius: = -a R R1 mm 30 aumax

2( ) ( ) . This
choice is motivated by the fact that the (sub)millimeter
continuum emission of the TWHya disk is confined within
about 60 au (e.g., Andrews et al. 2016; Tsukagoshi et al. 2016).
With the vertically integrated total dust-to-gas mass ratio fixed
to 0.01 at each radius (i.e., Σd/Σg= 0.01), we distribute the
dust mass between 0.1 μm and amax adopting a power-law dust
size distribution with a power-law index −3.5: nd(a)∝ a−3.5.
We then determine the vertical scale height of each dust species
assuming that vertical settling is balanced by turbulence mixing
characterized by α= 10−3. This results in a dust scale height of
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(Dullemond & Dominik 2004; Birnstiel et al. 2010), where
St (a)≡ (ρsa/ρgvth)ΩK is the Stokes number of particle having
size a, and we assume a grain internal density ρs= 1.67 g cm−3

(see below). Then, the vertical density distribution of each dust
species is obtained following
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The resulting mean dust particle size 〈a3〉/〈a2〉 and dust-to-
gas mass ratio ρd/ρg are shown in Figures 2(a) and (b). Larger
grains settle near the midplane due to shorter settling times.
Because larger grains contain a larger fraction of the total dust
mass, the dust-to-gas mass ratio decreases over height. Dust
grains with sizes 100 μm, which are believed to dominate the
(sub)millimeter continuum emission, are confined in radius
within the inner ∼60 au, while micron-sized grains extend
much farther out, consistent with both (sub)millimeter and
optical/near-infrared observations of TWHya (e.g., Debes
et al. 2013, 2017; Andrews et al. 2016; Tsukagoshi et al. 2016;
van Boekel et al. 2017).
Next, we calculate the dust opacity in each grid cell based on

the dust distribution obtained as above, adopting the opacity
model from the DSHARP collaboration (Birnstiel et al. 2018).
In this opacity model, grains are assumed to be a mixture of
water ice, astronomical silicates, troilite, and refractory organic
material, having a bulk density of 1.67 g cm−3. The optical
constants to compute the DSHARP opacity are originally from
Henning & Stognienko (1996), Draine (2003), and Warren &
Brandt (2008). The absorption and scattering opacities are
calculated following
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where the subscript ν shows the frequency dependence of the
opacity. The Rosseland and Planck mean opacities are
calculated as
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Figure 2. (a) The mean dust grain size º á ñ á ña a a3 2¯ . (b) The dust-to-gas mass ratio ρd/ρg. The (c) radiative, (d) diffusion, and (e) collisional timescales in units of the
local orbital time. (f) The relaxation timescale trelax, defined as in Equation (21). In panel (f), the shaded region in gray shows where tdiff � tcoll. We emphasize that the
thermal relaxation of the gas is limited by infrequent gas–dust collision in most regions of the disk (Z/R  0.1) and trelax is comparable to or longer than the orbital
timescale. The white curves in panel (f) show the emission surfaces of the (upper) 12CO J = 3−2 and (lower) 13CO J = 3−2 lines from the synthetic observation
presented in Section 4, based on the standard model with a 0.5 MJup planet.
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The radiation timescale trad calculated as in Equation (10) is
shown in Figure 2(c). The radiation timescale is orders of
magnitude shorter than the dynamical timescale everywhere in
the disk. At a given radius, the radiation timescale decreases
over height because of its steep temperature depen-
dency ( µ -t Trad g

3).
Figure 2(d) presents the diffusion timescale tdiff. Diffusion is

slower when the optical depth is larger. So, tdiff is greater at
smaller radii and near the midplane, and is a decreasing
function of R and Z. In particular, note that tdiff drops
exponentially over height because of the density dependency
( rµtdiff g

2). We also note that the diffusion timescale depends

on the temperature perturbation length scale as lµtdiff diff
2 .

Here, we opt to use λdiff=Hg. In reality, the length scale of any
perturbations can range from=Hg to the thickness of the disk,
which is a few scale heights. However, as we will show below
(see also Section 5.1), the thermal relaxation in the surface
layers (Z/R 0.1) is limited by infrequent gas–dust collision,
insensitive to the choice of λdiff.

Figure 2(e) shows the gas–dust collisional timescale tcoll. For
given gas density and temperature structures, the collisional
timescale is set by the mean grain size and the dust-to-gas mass
ratio ( r rµ á ñ á ñ -t a a ,coll

3 2
d g

1( ) ). As the dust-to-gas mass
ratio drops exponentially over height, gas molecules have
significantly less frequent collisions with dust grains. This
makes the collisional timescale orders of magnitude longer than
the dynamical timescale in the surface layers.

The relaxation timescale trelax, calculated as in Equation (21),
is shown in Figure 2(f). The plot clearly shows that the
assumption of thermal equilibrium between gas and dust is not
necessarily valid in the outer and surface regions of the disk
because of the long collisional timescale there. Note that this
picture is in good agreement with previous studies of thermal
relaxation in protoplanetary disks (e.g., Malygin et al. 2017;
Barranco et al. 2018; Pfeil & Klahr 2019). In Section 5.1, we
explore how different assumptions on the diffusion length
scale, level of disk turbulence, grain size distribution, disk

mass, and the existence of a gap in the disk can affect the
cooling timescales. As we will show, the thermal relaxation of
the gas in surface layers of protoplanetary disks is limited by
infrequent gas–dust collision over a broad range parameter
space.
As we mentioned in Section 1, buoyancy resonances require

adiabatic responses to thermal perturbations to fully develop
(i.e., -t NZrelax

1). To see how trelax compares with -NZ
1, we

present trelaxNZ in Figure 3. As shown, when gas–dust collision
is taken into account, -t NZrelax

1 in the entire disk except at
the midplane where NZ is zero due to the symmetry across the
midplane. This suggests that most parts of the disk, including
the surface layers the CO lines probe, has favorable conditions
for buoyancy resonances to develop. In contrast, if gas–dust
collision is ignored, the surface layers have -t NZrelax

1 ,
suggesting that buoyancy resonances are weak or unlikely to
develop there.
In addition to the cooling processes we considered above,

atomic and molecular line cooling plays a role in the surface
layers of protoplanetary disks (e.g., Gorti et al. 2011; Du &
Bergin 2014; Kama et al. 2016; Facchini et al. 2018). The exact
height beyond which line cooling dominates depends on the
underlying thermal/chemical properties of the disk as well as
the stellar/external irradiation. While including comprehensive
thermo/photochemistry requires full thermochemical radiative
transfer calculations, which is beyond the scope of the paper,
here we test the potential effect line cooling would have on
buoyancy resonances by assuming that the disk gas cools
efficiently beyond a certain height of the disk Z= Zline. Taking
this into account, we adopt the following form for the
relaxation timescale considering diffusion, radiation, gas–dust
collision, and line cooling:

= + -
-

t t t t
Z

Z
max , exp . 27relax coll rad diff

line

12

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥[ ( )] ( )

The exponential term on the right-hand side of the equation is
added to mimic the effect of line cooling.5

In our fiducial models, we adopt Zline= 4Hg, which
corresponds to Z/R= 0.3 at the radial location of the planet
in our simulations, 90 au. This choice is motivated by the

Figure 3. trelaxNZ in a logarithmic scale (left) considering gas–dust collision and (right) without considering gas–dust collision. Note that when gas–dust collision is
considered, -t NZrelax

1 in the entire disk except near the midplane, providing favorable conditions for buoyancy resonances to develop. The shaded region in gray
shows where tdiff � tcoll.

5 The exponent −12 is chosen such that trelax falls sufficiently rapidly over
height so trelax = torb at the upper boundary of the simulation domain.
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thermochemical model of TWHya presented in Kama et al.
(2016), where the major atomic line emission, including [C I],
[C II], and [O I] lines, originates from Z/R∼ 0.3–0.4 (see their
Figure D2.). However, it is important to note that the exact line
cooling rate is dependent upon various factors, including the
gas-phase abundance of the coolants and electron number
density, which is determined by UV flux as well as full
chemical chains. To test the effect of line cooling, we ran
additional simulations adopting Zline= 2Hg (Z/R= 0.15 at
90 au; Section 5.2). In this model, the 12CO molecular line
probes the layers where cooling is rapid, dominated by line
cooling.

For the sake of reproducing the hydrodynamic simulations
we will present in the following sections, we provide
parameterized fits to the diffusion and collisional timescales:

= -
-t

t

R Z

Z
2.4

90 au
exp , 28diff

orb

3.9

diff

0.9

⎜ ⎟⎛
⎝

⎞
⎠

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥ ( )

where Zdiff= 2.0 au (R/90 au)1.4, and

=
-t

t

R Z

Z
0.4

90 au
exp , 29coll

orb

1.1

coll

2.2
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⎝

⎞
⎠

⎡

⎣
⎢
⎛
⎝

⎞
⎠

⎤

⎦
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where Zcoll= 11.7 au (R/90 au)1.2.

3. Hydrodynamic Simulations

3.1. Hydrodynamic Equations Solved

We solve the hydrodynamic equations for mass, momentum,
and energy conservation in the three-dimensional spherical
coordinates (r, θ, f) using FARGO3D (Masset 2000; Benítez-
Llambay & Masset 2016):

r
r

¶

¶
+  =

t
v 0, 30

g
g· ( ) ( )

r r
¶
¶

+  = - -  F + F +  P
v

t
v v P , 31pg g *

⎛
⎝

⎞
⎠

· ( ) · ( )

¶
¶

+  = -  +
e

t
ev P v Q . 32relax· ( ) · ( )

In the above equations, ρg is the gas density, v is the velocity
vector, P is the gas pressure, Φ* =−GM*/r is the gravitational
potential of the central star having mass M*, Φp is the
gravitational potential of the planet, Π is the viscous stress
tensor, e is the internal energy per unit volume, and Qrelax is the
rate at which the gas thermally relaxes to the initial state (see
Section 2.2). Note that Qrelax can be either a positive or a
negative value depending on whether the gas is colder or hotter
than the initial equilibrium temperature.

The gravitational potential of the planet is computed as

q fF = -
- +r r

r
GM

s
, , , 33p

p

p
2 2 1 2

( )
(∣ ∣ )

( )

where Mp is the mass of the planet, r and rp are three-
dimensional radius vectors of the center of the grid cell in
question and of the planet, and s is the smoothing length.
Because the smoothing length in three-dimensional calcula-
tions is used only to avoid the singularity in the potential on the

grid scale, we adopt the cell diagonal size at the position of the
planet for the smoothing length. We insert the planet at
Rp= 90 au with a fixed, circular orbit. We use three planet
masses: Mp= 0.5, 1, and 2MJup. We run simulations for 500
planetary orbits. The planet mass is linearly increased over the
first five planetary orbits.
For the thermal evolution, we adopt an adiabatic equation of

state with an adiabatic index γ= 1.4. The gas pressure and the
internal energy are related as P= (γ− 1)e. In addition to the
thermal energy evolution via PdV work, which is accounted for
by the first term of the right-hand side of Equation (32),
cooling/heating of the gas is realized through the relaxation of
the temperature Tg toward the initial temperature Tg,init
(described in Equations (4)–(6)) over the thermal relaxation
timescale trelax computed in Section 2. The thermal relaxation
rate can be written as

r= -
-

Q c
T T

t
. 34Vrelax g

g g,init

relax
( )

In practice, we use Dt tmax ,relax hydro( ) in the denominator of
Equation (34), where Δthydro is the hydrodynamic time step, in
order to avoid the overrelaxation that can happen when
trelax<Δthydro.
For our standard model, we take into account radiation,

diffusion, gas–dust collision, and line cooling (Section 3.3.1). In
practice, this is done by adopting a prescribed relaxation timescale
using Equation (27), along with the fits in Equations (28) and
(29). As a comparison to the standard model, we additionally
carry out simulations without gas–dust collision: i.e., =trelax

- -t t Z Zmax , exprad diff line
12( ) [ ( ) ] (Section 3.3.2; hereafter the

gas–dust thermal equilibrium model). This model is similar to
what is often used in three-dimensional protoplanetary disk
simulations where it is implicitly assumed that the gas and dust
have instantaneous energy balance.

3.2. Simulation Setup

The simulation domain extends from 30 au (=0.33 Rp) to
210 au (=2.33 Rp) in r, from π/2− 0.4 to π/2 in θ, which
covers 5.6 scale heights at the radial location of the planet, and
from 0 to 2π in f. We adopt 460 logarithmically spaced grid
cells in the radial direction, 96 uniformly spaced grid cells in
the meridional direction, and 1482 uniformly spaced grid cells
in the azimuthal direction. With this choice, one gas scale
height at the location of the planet is resolved with about 18
grid cells in all directions.
At the radial boundaries, we adopt a wave-damping zone to

suppress wave reflection (de Val-Borro et al. 2006). At the
lower meridional boundary, which is the disk midplane, we
adopt the symmetric boundary condition for all variables but
the meridional velocity for which we apply the reflecting
boundary condition. At the upper meridional boundary, we
adopt the zero-gradient boundary condition.
We adopt a kinematic viscosity characterized by α= 10−3, a

value broadly consistent with the level of turbulence observa-
tionally constrained for the TWHya disk (Teague et al. 2016;
Flaherty et al. 2018).
In order to ensure that no other hydrodynamic instabilities

operate in the disk, we ran both the standard model and gas–
dust thermal equilibrium model in the absence of a planet. We
found that no hydrodynamic instabilities develop in these runs.
The vertical shear instability (Urpin & Brandenburg 1998;
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Nelson et al. 2013) is suppressed due to the nonzero viscosity
and a long thermal relaxation time, in agreement with previous
studies (Nelson et al. 2013).

3.3. Simulation Results

3.3.1. Standard Model

We start by discussing the results from our standard model
where we consider radiation, diffusion, gas–dust collision, and
line cooling for the thermal relaxation of the disk gas. Figure 4
shows the perturbed density, perturbed temperature, and
vertical velocity in a f−r plane at Z/R= 0.23 for the
Mp= 0.5MJup model. This height corresponds to about three
scale heights above the midplane at the radial location of the
planet and is close to the 12CO emission surface in the synthetic
observation we will present in Section 4.

As most clearly shown in the perturbed density distribution,
the planet excites a pair of primary Lindblad spirals, one in the
inner disk (the arc crossing the r= 40 au boundary at f∼ 3π/
4) and one in the outer disk (the arc crossing the r= 140 au
boundary at f∼− π/4). The Lindblad spirals are nearly
perpendicular to the azimuth axis near the planet, suggesting
that they have a large pitch angle close to 90° there. In addition
to the primary Lindblad spirals, the planet excites a secondary
Lindblad spiral in the inner disk, which emerges at r∼ 50 au
and f∼ π. At Z/R= 0.23, density, temperature, vertical
velocity perturbations created by the Lindblad spirals of the
0.5MJup planet are a few to 10% of the background values or
the local sound speed.

Along with the Lindblad spirals, the planet excites a family
of spirals via buoyancy resonances, which can be most clearly
seen in the vertical velocity plot. Two main features that

distinguish buoyancy spirals from Lindblad spirals are (1) the
tightly wound morphology and (2) the large vertical motions,
which we will explain in detail one by one.
In Figure 5, we show the measured pitch angle of Lindblad and

buoyancy spirals with a 5 au interval in radius. For Lindblad
spirals, we measure the pitch angle using the peak in the density
perturbation. For buoyancy spirals, we measure the pitch angle
using the peak in positive vertical velocities. We opt to use the
vertical velocity instead of the density because (1) buoyancy

Figure 4. Results from the standard model with Mp = 0.5 MJup taken at t = 5 torb. From left to right, the perturbed density δρ/〈ρ〉f, perturbed temperature δT/〈T〉f,
and vertical velocity vZ in units of local sound speed at Z/R = 0.23 (;3 H at 90 au) in a f − r plane. Here, 〈〉f denotes the average over the azimuthal direction and
δρ ≡ ρ − 〈ρ〉f and δT ≡ T − 〈T〉f. The planet is located in the midplane, at (f, r) = (0 rad, 90 au). The vertical velocity vZ is computed from radial and meridional
velocities in the spherical coordinates. For a more straightforward comparison with observations later in Section 4, motions toward the disk midplane are shown with
red colors and positive numbers while motions toward the disk surface are shown with blue colors and negative numbers, such that they match with the red- and
blueshift convention.

Figure 5. The pitch angles of (black curves) Lindblad and (red curves) buoyancy
spirals calculated based on the linear theory. For each spiral, the lower and upper
curves show the linear theory prediction at Z= 1 Hg and 3 Hg, respectively.
Square and diamond symbols present measured pitch angles from the
hydrodynamic simulation withMp = 0.5MJup at (square) Z= 1 Hg and (diamond)
3 Hg. Blue dots present the pitch angle of the spirals observed in the TW Hya disk
(Teague et al. 2019). The gray shaded regions show ±1, ±2, and ±3 scale heights
from the planet in the radial direction.
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spirals are more clearly identifiable with the vertical velocity and
(2) we can make a more direct comparison to the TWHya spiral
detected in the velocity space (Section 4.1.1).

We also present the pitch angle derived with linear theory.
For Lindblad spirals, the phase angle fL (i.e., the azimuthal
angle from the spiral to the planet) as a function of the
cylindrical disk radius R is
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following Zhu et al. (2015), where n is a positive integer and g
is the gravity from the star. Compared with the analytic
form given in Zhu et al. (2015), note that Equation (36)
has an additional term in the parentheses of the right-hand
side, (2cs/g) ∂cs/∂Z, which takes the vertical temperature
stratification into account. When there is no vertical temper-
ature stratification, Equation (36) reduces to the phase angle
derived in Zhu et al. (2015). The pitch angles of the Lindblad
and buoyancy spirals are computed as b fº - - dR Rdtan 1( ),
using the phase equations in Equations (35) and (36).

As shown in Figure 5, the buoyancy spirals’ pitch angle is
smaller than the Lindblad spirals’ pitch angle over a broad
range of distance from the planet. In particular, within a few
scale heights from the planet, the Lindblad spirals’ pitch angle
increases to 90° toward the planet, whereas buoyancy spirals’
pitch angle remains 10°. We note that Figure 5 shows pitch
angles of the first-order buoyancy spirals only (i.e., n= 1 in
Equation (36)) for both linear theory prediction and measure-
ment from the simulations. For higher-order buoyancy spirals
(i.e., n> 1), the pitch angle is smaller than that of first-order
buoyancy spirals by a factor of ;1/n, meaning that they are
more tightly wound.

It is also worth pointing out that the buoyancy spirals’ pitch
angle varies continuously as a function of radius without a
singularity at the radial location of the planet, unlike Lindblad
spirals. From the observational point of view, this implies that
the inner and outer buoyancy spirals can appear connected to
each other as a single spiral, especially when the spatial
resolution is insufficient.

Another characteristic that distinguishes buoyancy spirals
from Lindblad spirals is the large vertical motions. In order to
visualize the density and velocity perturbations at different
heights, we present the perturbed density and vertical, radial,
azimuthal velocities at the midplane, Z/R= 0.08, and

Z/R= 0.23 in Figure 6. The azimuthal profiles of the perturbed
density, perturbed temperature, and vertical, radial, and
azimuthal velocities at R= Rp± 2Hg are presented in
Figure 7.
Focusing on the Lindblad spirals first, both density and

velocity perturbations driven by Lindblad spirals are the
strongest at the midplane and decrease over height. The only
exception is the near-zero vertical velocity at the midplane,
which is due to the symmetry across the midplane. For the
buoyancy spirals, on the other hand, perturbations are the
smallest at the midplane because NZ= 0 there. Between Z/
R= 0.08 and 0.23, perturbations remain comparable to or
become stronger than their Lindblad counterparts. In part-
icular, we note that the vertical velocity perturbation
associated with the buoyancy spirals becomes stronger and
more extended in azimuth over height. Compared to Lindblad
spirals, buoyancy spirals generally produce smaller perturba-
tions, but the vertical motions associated with buoyancy
spirals can be stronger especially as we move to the surface
layers. These characteristics of buoyancy spirals suggest that
the best strategy to observe buoyancy spirals is to look for
vertical velocity perturbations in the surface layers of face-on
disks.
Finally, we note that there is a π/2 phase shift between the

vertical velocity and density/temperature perturbations driven
by buoyancy resonances. At R= 103.5 au, for example, the
vertical velocity has peaks at f=−0.29, −0.91, −1.50, and
−2.23 rad, and the density and temperature perturbation are
close to zero at those azimuthal locations (see the red dashed
lines in Figure 7).

3.3.2. Gas–Dust Thermal Equilibrium Model

We now turn our discussion to the gas–dust thermal
equilibrium model in which the gas is assumed to be thermally
coupled with the dust. With this assumption, the relaxation
timescale in the surface layers is much shorter than the
dynamical time (Figure 2(c)), and buoyancy resonances are
expected to be weak or absent in the surface layers (Figure 3
right).
The perturbed density, perturbed temperature, and vertical

velocity at Z/R= 0.23 are presented in Figure 8. In Figure 9,
we present the azimuthal profiles of the perturbed density,
perturbed temperature, and vertical, radial, and azimuthal
velocities at R= Rp± 2Hg from the planet in the radial
direction. As apparent from the figures, buoyancy spirals do
not generate clear density and temperature perturbations.
Vertical velocity perturbations arising from buoyancy reso-
nances are seen, but they are much weaker compared with the
standard model. We note that the resonance is not completely
suppressed in this model, as suggested by the vertical velocity
perturbation, because the buoyancy frequency is not strictly
zero with the imposed stratified disk temperature (see
Equation (2)).
Speaking of Lindblad spirals, we find that they produce

smaller perturbations as we move toward the surface layers, in
agreement with what is seen in the standard model. However,
we note that the level of density perturbations at Z/R= 0.08
and 0.23 are larger than the standard model by about a factor of
2. Note also that the Lindblad spirals are more tightly wound—
compare the azimuthal angles where the Lindblad spirals meet
r= 40 and 140 au in Figures 4 and 8. This is because the gas
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behaves (nearly) isothermally, and thus, the sound speed is
smaller than the standard model where the gas behaves
adiabatically.

4. Simulated Observations

In order to examine the observability of buoyancy spirals,
we carry out synthetic observations of the 12CO J= 3−2 and

Figure 6. The two-dimensional distributions of (first row) the perturbed density δρ/〈ρ〉f, (second row) vertical velocity vZ, (third row) radial velocity vR, and (fourth
row) perturbed azimuthal velocity vf − 〈vf〉f, taken at the end of the simulation with Mp = 0.5 MJup. From left to right in each row, three panels present the
distributions at Z/R = 0 (the midplane), at Z/R = 0.08 (;1H at 90 au), and Z/R = 0.23 (;3H at 90 au), respectively. The two arrows in the upper-left panel point to
the inner and outer Lindblad spirals, while the four arrows in the upper-middle panel point to the first- and second-order, inner and outer buoyancy spirals. Dotted
circles show the planet’s orbit. The buoyancy spirals can be best distinguished from Lindblad spirals using vertical velocities.
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13CO J= 3−2 lines using the 3D radiative transfer code
RADMC-3D (Dullemond et al. 2012). To do so, we first
add an inner disk inward of the computational domain,
from 1 to 30 au, using the gas density profile described with
Equation (3). We assume CO is photodissociated at
the surface layers, where the sum of the vertically6 integrated

gas column density (to consider external irradiation)
and the radially integrated gas column density from the central
star (to consider the central star’s irradiation) is less than
1021 cm−2 (Visser et al. 2009). We assume CO is frozen onto
grains in the regions where the temperature is below 21 K
(Schwarz et al. 2016). We adopt a 12CO-to-H2 ratio of 10−6,
which is smaller than the canonical interstellar medium value
of 10−4, motivated by the fact that CO in the TWHya is known
to be largely depleted in the gas phase (Schwarz et al. 2016;

Figure 7. The azimuthal profiles of (from left to right) the perturbed density δρ/〈ρ〉f, perturbed temperature δT/〈T〉f, vertical velocity vZ, radial velocity vR, and
perturbed azimuthal velocity vf − 〈vf〉f from the standard model with Mp = 0.5 MJup. The upper panels present the profiles at two scale heights beyond the planet
(R = 103.5 au), and the lower panels present the profiles at two scale heights inward of the planet (R = 76.5 au). In each panel, gray, black, and red curves present the
azimuthal profiles at the midplane, at Z/R = 0.08 (;1Hg at 90 au) and Z/R = 0.23 (;3Hg at 90 au), respectively. The red dashed lines show the azimuthal locations
where the vertical velocity peaks.

Figure 8. Same as Figure 4, but for the gas–dust thermal equilibrium model. Due to the short thermal relaxation timescale in the surface layers, buoyancy resonances
do not fully develop.

6 In practice, this is done along the meridional direction in the spherical
coordinates.
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Zhang et al. 2019). For 13CO, we adopt a 13CO/12CO ratio of
1/60.

As opposed to running Monte Carlo calculations to compute
the dust temperature and assuming the gas and dust are
thermally coupled, an approach often taken in the postproces-
sing of hydrodynamic simulations, we adopt the gas temper-
ature from the hydrodynamic simulations. This is because the
gas and dust do not necessarily have the same temperature as
we discussed in Section 2.2.

For the fiducial disk geometry, we use a disk position angle
(PA) of 152°, defined as the angle from the north to the
redshifted major axis in the counterclockwise direction, and an
inclination of 5°, comparable to those of the TWHya disk. We
test the influence of varying disk inclination on the kinematic
signatures of buoyancy spirals in Section 4.3. The planet is
placed at PA= 90° (i.e., east) in all cases. The disk rotates
clockwise on the sky.

We create image cubes at 10 m s−1 velocity resolution and
average down to the desired velocity resolution of 100 m s−1.
This is because most radiative transfer codes including
RADMC-3D return emission at the central frequency of each
channel, rather than the integrated emission across the channel
(see Rosenfeld et al. 2013 for a demonstration of this effect).
We then convolve the image cubes with a circular Gaussian
beam with an FWHM of 0 1. Observations at this high spatial
resolution will be the product of multiple executions with
differing array configurations and observing conditions in order
to fill in the uv plane. As we are not trying to recreate specific
observations, where this would be a necessary step, but rather
provide a quantitative prediction, we opt to simply convolve
each channel with a circular Gaussian beam. We add correlated
(both spatially due to the beam and spectrally due to the
Hanning smoothing) noise to each channel with specified rms
of 1 K for 12CO and 0.3 K for 13CO, which correspond to 0.94
and 0.28 mJy beam−1, respectively.

We provide simulated 12CO and 13CO cubes (averaged down
to 100 m s−1 velocity resolution but without beam convolution
and correlated noise) at doi:10.5281/zenodo.4361639.

4.1. Buoyancy Spirals in Keplerian-subtracted Moment Maps

Before we present Keplerian-subtracted moment maps, we
show the vertical velocity distribution from standard 0.5MJup,
1MJup, and 2MJup models in Figure 10. Buoyancy resonances
produce vertical motions of the order of 100 m s−1, with a
larger magnitude for more massive planets. As discussed
earlier, Lindblad spirals produce much smaller vertical
perturbations compared with buoyancy spirals, especially in
the surface layers. We thus do not expect to detect them in
12CO in face-on disks.
We generate Keplerian-subtracted moment maps using the

quadratic method described in Teague & Foreman-Mackey
(2018). Using the Python package eddy (Teague 2019), we fit
a Keplerian rotation profile to the rotation maps, allowing the
source center, the disk inclination and position angle, and the
systemic velocity to vary. Given the low inclination of TWHya
(i∼ 5°), we do not include any terms describing an elevated
emission surface.
The Keplerian-subtracted moment maps are shown in

Figure 11. We note that the residual maps clearly show a
coherent, tightly wound spiral structure. It is also worth
pointing out the excellent agreement between the input velocity
field from hydrodynamic simulations and the retrieved
velocities.

4.1.1. Case Study: TW Hya

Interestingly enough, the tightly wound morphology of
buoyancy spirals resembles the spiral seen in the Keplerian-
subtracted moment map of TWHya (Teague et al. 2019).
As presented in Figure 5, the buoyancy spirals driven by a
planet at 90 au can explain the small pitch angle as well as
the monotonically decreasing pattern over the radius. The
magnitude of observed velocity perturbations (∼40 m s−1) is
also in a good agreement with our simulations.
We note that it is not impossible to explain the small pitch

angle of the TWHya spirals with Lindblad resonance; one may
place a planet far inward of the observed spirals. However, if

Figure 9. Same as Figure 7, but for the gas–dust thermal equilibrium model.
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this has to be the case, it is unclear why we do not see any large
perturbations in the inner disk from either line or continuum
observations because we expect the largest perturbations would
arise at the vicinity of the planet (Figure 6). In addition, given
the low inclination of the TWHya disk, we are likely seeing
vertical motions. Our simulations show that the outer Lindblad
spiral produces little vertical motions (= 50 m s−1), and it is
unlikely that the velocity spiral in the TWHya disk is
associated with Lindblad spirals.

We thus propose that, if the spirals in TWHya are driven by
an embedded planet, the spirals could be associated with
buoyancy resonances driven by a (sub-)Jovian-mass planet at
around 90 au.

4.2. Buoyancy Spirals in Velocity Channel Maps

When the perturbations driven by buoyancy spirals are
sufficiently large, the spirals can be seen in velocity channel
maps. We present channel maps of the synthetic 12CO line
observation from the standard 2MJup model in Figure 12.
Channel maps from standard 0.5MJup and 1MJup models are
presented in Figures 22 and 23 in Appendix B.

The main characteristic of buoyancy spirals in channel maps is
wedge-like features standing out of the so-called butterfly pattern
of the Keplerian disk. In Figure 12, these non-Keplerian features
are most clearly seen close to the planet, on the northeast side of

the disk at v= 0.2–0.3 km s−1. Along the major axis of the disk,
buoyancy spirals can appear as an arc bridging the Keplerian
wings (e.g., southeast side at v=− 0.1 km s−1, northwest side at
v= 0.1 km s−1) or as an arc beyond the inner disk (e.g., southeast
side at v= 0.5–0.6 km s−1).

4.3. Effect of Disk Inclination

In order to examine the observational appearance of
buoyancy spirals in more inclined disks, we generate additional
image cubes adopting 15°, 30°, 45°, and 60° inclinations.
Keplerian-subtracted moment maps for standard 1MJup model
are shown in Figure 13.
Although non-Keplerian velocity components arising from

buoyancy resonances are still present, they appear more as an
ellipse for more inclined geometry, making it challenging to
identify buoyancy spirals. For the i= 15° and i= 30° cases, the
redshifted buoyancy spirals appear stronger than the i= 5°
case. This is because we are more sensitive to in-plane velocity
perturbations for inclined disks. As the planet opens a gap
around its orbit, it alters the gas pressure profile from the
unperturbed one, such that the disk gas rotates at sub-Keplerian
speed inside of the planet’s orbit and at super-Keplerian speed
outside of the planet’s orbit (Teague et al. 2018). For an
inclined disk, sub-Keplerian rotation would appear as a blue-/
redshifted semiellipse on the red-/blueshifted side of the disk,

Figure 10. The vertical velocity vZ in an X−Y plane in units of m s−1 at (upper panels) Z/R = 0.23 (;3 Hg at 90 au) and (lower panels) Z/R = 0.08 (;1 Hg at 90 au),
after 500 orbits. From left to right, results from standard 0.5 MJup, 1 MJup, and 2 MJup models, respectively. The planet is located at (X, Y) = (−90 au, 0 au). Note that
the vertical motions driven by Lindblad spirals are smaller than that those driven by buoyancy spirals, especially at Z/R = 0.23. The black and white dashed curves in
the lower-left panel trace the buoyancy and Lindblad spirals, respectively.
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while super-Keplerian rotation would appear as a red-/
blueshifted semiellipse on the red-/blueshifted side of the disk
(see Figure 5 of Teague et al. 2019). The pattern we see across
the planet’s orbit in the Keplerian-subtracted moment maps in
Figure 13 exactly matches with the aforementioned expecta-
tion. If we first look at the i= 15° model, there is an elongated
blueshifted arc on the redshifted side (southeast side) of the
disk, right inward of the planet’s orbit. On the blueshifted side
of the disk, we see an elongated redshifted arc inward of the
planet’s orbit, along with the redshifted buoyancy spiral. Right
outside of the planet’s orbit on the redshifted side, the super-
Keplerian rotation adds redshifted residuals to the buoyancy
spiral, enhancing the overall magnitude of the residual. The
same pattern is consistently observed in the i= 30° model, and
the rotation modulation is stronger in this case.

It is thus reasonable to conclude that disentangling the
vertical motions induced by buoyancy resonances and the
modulation in rotational motions associated with the gap is
generally more challenging for inclined disks. However, if a
buoyancy spiral is sufficiently extended in azimuth such that
the spiral crosses the minor axis of the disk, this offers a

possibility to disentangle vertical motions from rotational
motions. This is because vertical motions do not change their
sign across the minor axis while rotational motions do change
their sign.
We now turn our attention to velocity channel maps.

Representative velocity channels for different inclination are
shown in Figure 14. Channel maps for standard 0.5MJup and
1MJup models are presented in Appendix B. While the
characteristic features of buoyancy spirals are still present,
they are clearly weaker for inclined disks due to the isin
components of the projection, in agreement with what we see in
Keplerian-subtracted moment maps. This suggests that disks
with small inclinations of 30° offer the best opportunities to
search for buoyancy spirals.

5. Discussion

5.1. Thermal Relaxation Timescale

As we have shown with hydrodynamic simulations in
Section 3.3, the development of buoyancy resonances depends
on the local thermal relaxation timescale. To examine the

Figure 11. Keplerian-subtracted moment maps with simulated (upper panels) 12CO and (lower panels) 13CO observations adopting 0 1 spatial resolution, 100 m s−1

spectral resolution, and 1.0 K and 0.3 K rms noise level, respectively. From left to right, results with standard 0.5 MJup, 1 MJup, and 2MJup models. The beam is shown
in the lower-left corner of each panel.
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development and observability of buoyancy resonances under
various disk conditions, we explore a broad range of parameter
space and compute the relaxation timescale following the
approach described in Section 2. Specifically, we vary (1) the
diffusion length scale λdiff, (2) the dust scale height, (3) the
maximum dust grain size, (4) the power-law slope in the dust
size distribution, and (5) the disk mass. The resulting thermal
relaxation timescales are shown in Figure 15. We compare trelax
with -NZ

1 in Appendix A and Figure 21. In what follows,
we focus our discussion on the surface layers of the disk

(Z/R 0.1) as we are mostly concerned about the observability
of buoyancy resonances using optically thick CO lines which
will trace elevated regions of the disk.
Due to the steep dependency ( lµtdiff diff

2 ), having a short
diffusion length scale of λ= 0.1Hg results in a diffusion
timescale that is much shorter than the dynamical timescale
almost everywhere in the disk. Even in such a case, however,
the relaxation of the gas is limited by long collisional
timescales between gas molecules and dust grains. In
particular, the relaxation timescale in the surface layers where

Figure 12. Channel maps from a simulated 12CO (3–2) line observation based on the hydrodynamic simulation with a 2 MJup planet. The channel velocity, relative to
the central channel, is presented in the upper-left corner of each panel. Buoyancy spirals are pointed out by white/black arrows in relevant panels. The beam is
presented in the lower-left corner of each panel.

Figure 13. Keplerian-subtracted moment maps with (a) 5°, (b) 15°, and (c) 30° inclination for the 1 MJup model. The dotted ellipse in each panel shows the planet’s
radial location r = 1 5 on the sky. The feather-like feature in panel (c) is due to the channelization effect owing to the channel spacing of the data. Higher spectral
resolution data can suppress this effect (see Christiaens et al. 2014 for an example).
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the 12CO lines probe is determined by the collisional timescale
and is insensitive to the choice of λdiff.

The gas–dust collision rate is dependent upon the detailed
spatial and size distribution of grains. We first vary the scale
height of dust grains by changing α in Equation (22). This has
two opposite effects on the collisional timescale. For increased
scale height, the mean dust size increases, which would
lengthen the collisional timescale (Equation (20)). At the same
time, the dust-to-gas mass ratio also increases, which would
shorten the collisional timescale. The two effects effectively
cancel out, and the collisional timescale in the surface layers
remains sufficiently long for buoyancy resonances to develop,
as can be seen in Figures 15 and 21.

When amax is decreased, the mean grain size decreases. The
dust-to-gas mass ratio increases in the surface layers because,
with a smaller amax, a larger fraction of the total dust mass is in
the grains that can be lofted sufficiently high. Together, this
shortens the collisional timescale, resulting in < -t NZrelax

1 in a
larger region of the disk as shown in Figure 21. Nevertheless,

-t NZrelax
1 near the 12CO emission surface, suggesting that

buoyancy resonances likely develop there.
Changes in the power-law index of the dust size distribution

work in a similar way. When the dust size distribution follows a
steeper power-law distribution, a larger fraction of the total dust
mass is in small grains that can be lofted up high. This will
result in a smaller mean grain size and a larger dust-to-gas mass
ratio, which would shorten the collisional timescale.

Next, we vary the disk mass by a factor of 3. Having a larger
disk mass increases the number of colliders, increasing the
gas–dust collision rate. The relaxation timescale would be
therefore shortened, while -t NZrelax

1 in the majority of
the disk regions.

Lastly, we adopt the azimuthally averaged gas density from
the standard 1MJup model to examine the influence the gap has
on the relaxation timescale. Because dust grains are depleted
within the gap, the collisional timescale becomes longer,
facilitating the development of buoyancy resonances there.
In summary, we argue that the relaxation timescale of the gas

in the surface layers (Z/R 0.1) is limited by infrequent gas–dust
collisions under a broad range of conditions applicable to
protoplanetary disks (Figure 15). This is because the dust-to-gas
mass ratio is small (ρd/ρg 10−3) in the surface layers due to the
vertical settling of dust grains. The resulting thermal relaxation
timescale is comparable to or longer than the timescale associated
with buoyancy oscillations -NZ

1 (Figure 21), suggesting that
the surface layers have a favorable condition for buoyancy
resonances to develop.

5.1.1. Implications for Planet-induced Gaps

While we focused our analysis mainly on the surface layers
so far, it is worth pointing out the finite relaxation timescale
near the disk midplane. Even at large radii for which it is
typically thought that less absorbing materials would result in
more efficient cooling, we find that the infrequent gas–dust
collision could prevent the gas from cooling instantaneously.
The finite relaxation timescale in the main body of a disk

can have important implications for the formation of gaps by
planets. Adopting a constant dimensionless relaxation timescale
β≡ 2πtrelax/torb in vertically integrated two-dimensional disks,
Miranda & Rafikov (2020b) and Zhang & Zhu (2020)
independently showed that the isothermal assumption does not
provide a good approximation when β 10−3—note again that we
consistently find β 10−3 under various disk conditions (see

Figure 14. Channel maps from a simulated 12CO (3–2) line observation based on the hydrodynamic simulation with 2 MJup planet, using various disk inclination:
(from left to right) 5°, 15°, 30°, 45°, and 60°. The channel velocity, relative to the central channel, is presented in the upper-left corner of each panel in units of km s−1.
Buoyancy spirals are pointed out with white/black arrows in relevant panels. The beam is shown in the lower-left corner of each panel.
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Figure 15). In particular, when β∼ 1, the radiative dissipation of
Lindblad spirals becomes important, and the gap around the planet
becomes narrower than it otherwise would be.

In Figure 16, we present the radial profiles of the gas surface
density from the standard model and the gas–dust equilibrium
model. We additionally ran a simulation adopting an isothermal

equation of state and included the density profile from the
isothermal simulation in the same figure. The gap widths
measured at the half-maximum are Δgap= 27.4, 36.1, and
40.4 au for the three models. Note that the gap is wider in the
isothermal simulation, consistent with previous two-dimensional
simulations (Miranda & Rafikov 2020b; Zhang & Zhu 2020).

Figure 15. Same as Figure 2(f), which is shown again in the upper-left panel, but the relaxation timescale calculated with various parameters. Unless otherwise stated
in the title of each panel, the fiducial parameters adopted to compute the diffusion and collisional timescales are λdiff = Hg, α = 10−3, = -a R R1 mm 30 aumax

2( ) ( ) ,
and nd(a) ∝ a−3.5. The shaded region in gray shows where tdiff � tcoll. In the bottom-right panel, the two dashed lines show the radial locations at which the gap depth
is half of the maximum (75 and 105 au). We note that, for the broad range of parameter space explored, the thermal relaxation of the gas in the surface layers of
protoplanetary disks (i.e., Z/R  0.1) is limited due to infrequent gas–grain collisions.
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There have been many attempts to infer the masses of planets
responsible for the observed gaps, using planet–disk interaction
simulations or empirical planet mass–gap width relations (see
Bae et al. 2018; Disk Dynamics Collaboration et al. 2020 and
references therein). We note that most of the simulations were
carried out adopting an isothermal equation of state, implying
that the inferred planet masses can underestimate the actual
planet masses. Along the same lines, we argue that empirical
gap depth/width–planet mass relations that are typically
derived under the isothermal assumption need a revision.

5.1.2. Implications for Hydrodynamic Instabilities

Hydrodynamic instabilities are an important source of
turbulence in protoplanetary disks. Vertical shear instability
can be largely suppressed with finite thermal relaxation
timescales (Nelson et al. 2013; Lin & Youdin 2015; Malygin
et al. 2017; Pfeil & Klahr 2019, 2020). Spiral wave instability
is known to have a forbidden region near the disk surface
where the buoyancy frequency is larger than a half of the
Doppler-shifted forcing frequency (Bae et al. 2016a). The
forbidden region extends toward the midplane with more
adiabatic gas response (Bae et al. 2016a), so we can infer that
the spiral wave instability operates in a more confined region
with finite thermal relaxation timescales. On the other hand,
finite thermal relaxation timescales can help other instabilities
that operate with slower thermal relaxation, such as convective
overstability (Klahr & Hubbard 2014) and zombie vortex
instability (Marcus et al. 2015; Barranco et al. 2018).

5.2. Effect of Efficient Line Cooling near the Surface

As discussed in Section 2.2, exactly at which height atomic/
molecular line cooling becomes the dominant cooling mechanism
depends upon the balance between various heating and cooling
mechanisms, which in turn is determined by various factors
including the amount of dust grains, gas temperature, the
abundance of coolant atoms/molecules, and electron number
density. Here, we test the effect of efficient line cooling near the
surface, by adopting Zline= 2Hg in Equation (27) (cf. Zline= 4Hg

in the standard model).

Figure 17 presents the vertical velocity distribution. Not
surprisingly, buoyancy resonances are weaker at Z= 3Hg (Z/R=
0.23) due to the rapid cooling in the surface layers. However, we
note that buoyancy resonances are not completely suppressed. This
is because even when cooling is rapid (effectively γ; 1), the
buoyancy frequency is not strictly zero due to the stratified
temperature profile (see Equation (2)). At Z= 1Hg (Z/R= 0.08),
buoyancy resonances develop at the level they develop in the
fiducial model adopting Zline= 4Hg (see Figure 10). This suggests
that the development of buoyancy resonances depends on the local
thermodynamic properties and that, as far as line cooling is not
efficient all the way to the midplane, there will be regions where
buoyancy resonances would develop.
From the observational point of view, this suggests that we

can choose optically thinner lines that probe the adequate
heights. To support this argument, we generate Keplerian-
subtracted moment maps from the models with efficient line
cooling, which are shown in Figure 18. The residual velocities
are smaller than the fiducial model in 12CO because the line
probes the surface layers where cooling is rapid. On the other
hand, the morphology and magnitude of the buoyancy spirals
in the 13CO maps are nearly identical to the standard model
(see Figure 11).

5.3. Can We Observationally Distinguish the Origin of Non-
Keplerian Motions?

Here we discuss potential ways to discriminate the non-
Keplerian motions driven by buoyancy resonances from those
driven by other origins, Lindblad resonance, corrugated vertical
flows, and gas pressure changes.
Lindblad spirals: The vertical dependence of the perturba-

tion driven by buoyancy and Lindblad spirals is the key to
discriminate the two. Because the buoyancy frequency is
strictly zero at the disk midplane, we expect no or weak
buoyancy resonances there. On the other hand, perturbations
driven by Lindblad spirals are the strongest at the disk
midplane and decrease over height (Figures 6 and 7).
Observations of multiple lines tracing different heights in the
disk, for instance, 12CO versus 13CO or C18O, will thus help
discriminate between buoyancy spirals and Lindblad spirals.
Corrugated vertical flows: Various (magneto)hydrodynamic

processes are known to create radially alternating corrugated
vertical flow patterns, including vertical shear instability
(Nelson et al. 2013), spiral wave instability (Bae et al.
2016a, 2016b), and magnetically driven zonal flows (Johansen
et al. 2009; Flock et al. 2015; Riols et al. 2020). Vertical
velocity perturbations driven by buoyancy resonances (and
Lindblad resonance) are symmetric against the midplane, so at
a given radius, the gas motion will be either toward the
midplane or toward the surface. In contrast, vertical velocity
perturbations associated with corrugated vertical flows are not
symmetric against the midplane. Rather, instabilities develop
into corrugation modes, and the entire column oscillates
vertically (Nelson et al. 2013; Bae et al. 2016a, 2016b). This
difference suggests that we can distinguish the two scenarios if
we probe velocity perturbations at the upper and lower surfaces
of the disk separately. Optically thick tracers (e.g., 12CO), a
sufficiently high spatial resolution, and a moderately inclined
disk geometry would provide the best chance to separate the
upper and lower surface emission.

Figure 16. The azimuthally averaged gas surface density as a function of
radius. The Hill sphere is excluded when azimuthally averaging the density.
The red, blue, and black curves show the profiles from the standard model, the
gas–dust thermal equilibrium model, and the isothermal model, respectively.
The vertical dashed lines present the gap width at the half-maximum. The gray
shaded regions show the ±1, ±2, and ±3 scale heights from the planet.
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Gas pressure changes: Gas pressure changes across the radius
can lead the sub-/super-Keplerian rotation of the gas to maintain
the radial force balance (Teague et al. 2018). As we discussed in
Section 4.3, distinguishing non-Keplerian motions associated with
buoyancy spirals from rotation modulation can become a
challenge in inclined disks as we become sensitive to both
vertical and azimuthal velocities. As an example, we present
channel maps of the 12CO line emission of HD 143006 in
Figure 19. Morphologically, the arcs connecting the Keplerian
wings (most clearly seen on the north side of the disk at
v= 7.24 km s−1 and on the south side of the disk at
v= 8.20 km s−1) show a good resemblance to those features
expected from buoyancy resonance. However, these arcs can
instead be interpreted as rotation modulation. The non-Keplerian
features are most prominently seen as redshifted arcs in
blueshifted channels (e.g., v= 7.24 km s−1) and blueshifted arcs
in redshifted channels (e.g., v= 8.20 km s−1), which are con-
sistent with the expected modulation associated with sub-
Keplerian rotation (Teague et al. 2019). In fact, the inner arcs at
∼0 4 coincide with the outermost continuum ring, suggesting
that the arcs could arise from the rotation modulation around the
pressure peak. The outer arcs at ∼0 8 are close to where 12CO
emission fades, suggesting they could be due to a rapid drop in the
gas density at that radius. Because of the degeneracy between
vertical and azimuthal velocities in channel maps, we recommend
using Keplerian-subtracted moment maps rather than velocity
channel maps when it comes to distinguishing buoyancy spirals

and rotation modulation arising from gas pressure changes (see
Section 4.3).

5.4. Buoyancy Resonances and Dust

How would buoyancy resonances appear in scattered light
and (sub)millimeter continuum observations? Interestingly
enough, van Boekel et al. (2017) reported a tightly wound
spiral in the near-infrared polarized intensity map of the
TWHya disk. The spiral is located at the outer edge of an
annular gap centered at about 93 au,7 and extends about 90° in
azimuth on the southwest side of the disk. While we opt out of
making simulated scattered light observations from our models
because our simulations do not include dust grains, it is
interesting to point out that a buoyancy spiral produces positive
density perturbations at the exact location where the scattered
light spiral is revealed (see the lower-right quadrant of δρ/〈ρ〉f
at Z/R= 0.08 and 0.23 in Figure 6). It is interesting to
speculate that the velocity spiral in the CO observation and the
density spiral in the scattered light observation are probing
buoyancy resonances driven by a planet embedded within the
gap at ∼90 au. Future simulations including dust particles will
help further investigate this possibility.
On the other hand, given that buoyancy resonances are weak

or absent near the midplane and that buoyancy spirals are

Figure 17. Same as Figure 10 but for models with rapid cooling near the surface using Zline = 2Hg (Z/R ; 0.15).

7 This number is updated from van Boekel et al. (2017) in accordance with
the Gaia distance of 60.1 pc (Bailer-Jones et al. 2018).
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confined in the corotating region where large (sub)millimeter-
sized grains are expected to depleted due to radial drift, we
believe observing buoyancy resonances in (sub)millimeter
continuum observations is less likely.

6. Summary and Conclusion

Along with the spirals driven by the well-known Lindblad
resonance, we showed that planets can excite spirals via
buoyancy resonances, which we can detect using molecular
line observations. We summarize our findings below.

(1) Under a broad range of conditions applicable to
protoplanetary disks, we showed that infrequent gas–dust
collision can be the bottleneck in the energy exchange between
the gas and dust in the surface layers (Z/R 0.1; Figures 2 and
15). Although this has been previously suggested (Malygin
et al. 2017; Barranco et al. 2018; Pfeil & Klahr 2019), to our
knowledge, it is the first time that this effect is taken into
account in planet–disk interaction simulations.

(2) The collision-limited slow thermal relaxation provides
favorable conditions for buoyancy resonances to develop
(Figures 3 and 21). Adopting the thermal relaxation timescale
estimated by considering radiation, diffusion, and gas–dust
collision, we showed that planets can excite a family of tightly

wound spirals via buoyancy resonances, in addition to those
excited by Lindblad resonance (Figures 4 and 6).
(3) The two main characteristics of buoyancy spirals are their

small pitch angles and large vertical motions. Buoyancy spirals
have a pitch angle of a few to 10° in the corotating region of the
planet (Figure 5). The vertical motions associated with buoyancy
resonances are of the order of 100m s−1 for Jovian-mass planets,
corresponding to about 20% of the sound speed or a few percent
of the Keplerian speed. This is comparable to or larger than the
velocity perturbations driven by Lindblad resonance (Figures 6
and 7).
(4) By generating synthetic ALMA observations, we showed

that the non-Keplerian motions associated with buoyancy
resonances are detectable. Buoyancy spirals would appear as
tightly wound arcs in Keplerian-subtracted moment maps
(Figure 11). In velocity channel maps, buoyancy spirals appear
as spurs around the central velocity channel, arcs connecting
Keplerian wings, or an arc beyond the inner disk across the
semimajor axis of the disk. We summarize these features with a
cartoon in Figure 20.
(5) Because buoyancy resonances predominantly produce

vertical velocity perturbations, face-on disks provide the best
opportunities to search for their signatures. Based on the

Figure 18. Same as Figure 11 but for models with rapid cooling near the surface using Zline = 2Hg.
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morphology and the magnitude of velocity perturbations, we
propose that the tightly wound spirals seen in the near-face-on
TW Hya disk (Teague et al. 2019) could be driven by a (sub-)
Jovian-mass planet at ∼90 au.

(6) Along with the implications for buoyancy resonances, the
finite relaxation timescale has important implications for planet-
induced gaps. As shown in Miranda & Rafikov (2020b) and
Zhang & Zhu (2020), when the cooling of the disk gas is
moderate (i.e., β≡ 2πtrelax/torb∼ 1), the gap around the planet
becomes narrower than that in fully isothermal (β= 1) or fully
adiabatic (β? 1) simulations. The finite relaxation timescale
implies that the mass of planets responsible for gaps seen in

continuum observations can be underestimated if inferred based
on isothermal simulations.
(7) We discussed potential ways to distinguish non-

Keplerian motions driven by buoyancy resonances and those
driven by other mechanisms: Lindblad resonance, corrugated
vertical flows, and gas pressure changes. We recommend the
community observe multiple lines tracing different heights in
the disk. It is also crucial to have sufficiently high spatial/
spectral resolution and sensitivity to separate the emission
arising from the near and far sides of the disk.
We conclude by emphasizing that numerical simulations

have to include more realistic and complete treatments for

Figure 19. 12CO channel maps of HD 143006, originally presented in Pérez et al. (2018a). Contours are drawn at 2.4, 4.8, and 7.2 mJy beam−1. The rms noise is
0.3 mJy beam−1. The bottom-right panel shows the continuum emission of the disk. Note the CO arcs connecting the Keplerian wings at ∼0 4 and 0 8 from the
center, most clearly seen on the north side of the disk at 7.24 km s−1 and on the south side of the disk at 8.20 km s−1. These non-Keplerian velocity components
resemble what we expect from buoyancy spirals.

Figure 20. Cartoon channel maps summarizing the main features expected from buoyancy spirals: (left) spurs around the central velocity channel, standing out of the
Keplerian wings; (middle) an arc connecting Keplerian wings across the semimajor axis of the disk; and (right) an arc beyond the inner disk across the semimajor axis
of the disk.
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thermodynamics to fully capture planet–disk interaction.
Planet–disk interaction simulations often (but not always)
adopt a vertically isothermal temperature structure and/or an
isothermal equation of state. When it comes to buoyancy
resonances, such simplified models can completely suppress
the resonance. We should point out that our simulations have
caveats. We adopted a prescribed, fixed thermal relaxation
model. In reality, the spatial and size distributions of dust
grains would evolve over time, and this is ignored in current
simulations. It will be also interesting to implement a
thermochemistry model that evolves over time, coupled with
the hydro evolution. Future simulations with more complete
treatments for dust- and thermodynamics will help better
interpret state-of-the-art observations.
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Appendix A
The Relaxation Timescale

In Figure 21, we present trelaxNZ for the disk models
discussed in Section 5.1. For the broad range of parameter
space we explored, -t NZrelax

1 in Z/R 0.1, suggesting that
buoyancy resonances likely develop in the surface layers of
protoplanetary disks.
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Figure 21. Similar to Figure 15, but showing trelaxNZ.

23

The Astrophysical Journal, 912:56 (25pp), 2021 May 1 Bae, Teague, & Zhu



Appendix B
Additional Channel Maps

Figures 22 and 23 present channel maps from synthetic 12CO
observations of models with 0.5MJup and 1MJup planets.
Simulated cubes are publicly available at doi:10.5281/
zenodo.4361639.

Figure 22. Same as Figure 14, but with Mp = 0.5 MJup.

Figure 23. Same as Figure 14, but with Mp = 1 MJup.
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