VALUES OF RANDOM POLYNOMIALS IN SHRINKING TARGETS
DUBI KELMER AND SHUCHENG YU

ABSTRACT. Relying on the classical second moment formula of Rogers we give an effective
asymptotic formula for the number of integer vectors v in a ball of radius ¢, with value Q(v)
in a shrinking interval of size t~*, that is valid for almost all indefinite quadratic forms in n
variables for any A < n—2. This implies in particular, the existence of such integer solutions
establishing the prediction made by Ghosh, Gorodnik, and Nevo [GGN18]. We also obtain
similar results for random polynomials of higher degree.

1. INTRODUCTION

Let @@ be a non-degenerate indefinite quadratic form in n > 3 variables. We say @) is
wrrational if () is not a multiple of a quadratic form with rational coefficients. The Oppenheim
Conjecture, proved by Margulis [Mar87], states that if @ is irrational, then Q(Z") = R. Going
beyond this one can ask about an effective rate for the density, that is, given £ € R and a
large parameter ¢ > 0, one would like to establish how small can |Q(v) — &| be, for v € Z™
with ||v||< t bounded. This type of problem has a long history [BD58, BG99, GM10], and
we refer to [Mar97] for an extensive review. As an example we note that for n > 5 it was
shown in [GM10] , that under a suitable Diophantine condition on the coefficients of () there
is A > 0 such that the inequality

Q) — €< [lo]
has infinitely many integer solutions (when £ = 0 this holds for all forms). For ternary forms
the best bounds are due to Lindenstrauss and Margulis [LM14] who showed that under
suitable Diophantine conditions on @ the inequality |Q(v) — &|< log(||v||)~ has infinitely
many integer solutions.

Improving on these bounds for any given form () seems like a very difficult problem,
nevertheless, much more can be said when considering a generic form. In [GGN18], Ghosh,
Gorodnik and Nevo considered the problem of values of generic polynomials and gave a
heuristic argument based on the pigeon hole principal predicting that for a generic degree d
polynomial F' in n variables, one should expect that the system of inequalities

(1.1) [F(v) —&l<t™, [oll<t

would have integer solutions for any positive A < n — d, and in particular, for quadratic
forms this should hold for any A < n — 2.

To make the notion of a generic form more precise, we denote by Y, , the space of unit
determinant quadratic forms of signature (p, ¢) and note that the natural action of SL,(R) on
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this space (via change of variables) is transitive, and hence the Haar measure of SL,,(R) gives
a natural measure on Y, ,. In this setting, by utilizing the fact that an indefinite quadratic
form is stabilized by a large semisimple group, and studying a shrinking target problem for
the action of this group, [GGN18] showed that there is some Ao such that for all A < \q for
any £ € R, for almost all forms () € Y, , the inequality (1.1) has integer solutions for all
sufficiently large t. While in general the value of )y is smaller than n — 2, for n = 3 they
show that A\p = 1 in agreement with the heuristic prediction (see also [GK17] for a similar
result for £ = 0). For the special case where £ = 0, in [AM18] Athreya and Margulis used
a completely different approach relying on lattice point counting, and showed that for any
n > 3 and for any A < n—2, for almost all ) € Y, there are integer solutions to |Q(v)|< ¢t~
with ||v]|< t for all sufficiently large ¢.

A different way to try and quantify the density of integer values of forms, is to study the
asymptotics for the number of integer solutions v € Z", ||v||< t with Q(v) € I for some fixed
small interval /. Here Eskin, Margulis and Mozes [EMMO98| showed that for any irrational
quadratic form @ of signature (p,q) with p > 3, ¢ > 1, and any interval I C R the number
of solutions is asymptotic to cg|I|t" 2 with cg an explicit constant depending on the form
@. This is no longer true for forms of signature (2,2) or (2,1) where one can find examples
for which the number of solutions grows logarithmically faster than cg|/|t"~2. Nevertheless,
they showed that the same asymptotic holds for almost all quadratic forms of signature (2, 2)
or (2,1).

As in the problem for the rate of density, for this problem one can also expect more when
considering a generic form. Indeed, [AM18] improved the asymptotic formula to give an
effective estimate with a power saving. Explicitly, they showed that there is v > 0 such that
for any fixed interval I and for almost all Q € Y, 4,

# {U E ZTL . Q(U) G _[, ||/U||§ t} — CQ’IH”_Q + OQ,] (tn—Q—y) 7

where here and below we use notation A = O(B) to mean that A < ¢B for some constant
¢ > 0, and we use the subscript to emphasize the dependence of this constant on additional
parameters.

In this paper, we refine the result of [AM18], by considering the same problem when we
allow the interval I to shrink as ¢ grows. As already pointed out in [AM18], since we do
not use the action of the stabilizer of the form, this method is also suitable to deal with
polynomials of higher degree having no stabilizer, and we illustrate this by considering the
problem in this generality. To do this, for d > 2 and n = p + ¢ let

P n
Fy(v) = vi = > o,
i=1 i=p+1

and consider the space Y},,(f;) of homogenous polynomials of degree d that are of the form g- Fj
with ¢g- Fy(v) = Fy(vg) and g € SL,(R). The Haar measure of SL,,(R) then gives a measure
on Ypf,l , giving us a natural notion of almost all polynomials in this space. We note that

when d = 2 the space Yp(?q) =Y, , is the full space of unit determinant quadratic forms of
signature (p, q).

Theorem 1. For any d > 2 even andn =p+q > d with p,q > 1, let 0 < A <n —d. Let

{I,}+~0 be a decreasing family of bounded measurable subsets of R with measures |I;|= ct=>
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for some ¢ > 0. Then there is v > 0 such that for almost all F & Y})(,Z) there is a constant
crp > 0 such that

B ez F) €T, oll< t} = cplL|m + Op("1-0),

Remark 1.2. We point out that the main novelty in this approach is that it allows us to
consider targets that are shrinking (with the fastest possible rate) and still obtain a power
saving on the remainder. This feature is new even for the case of quadratic forms. The
fact that we can consider more general homogenous polynomials of higher degree is another
added feature that we get essentially for free from this method.

Remark 1.3. From our proof one can extract an explicit value for v, and in particular any
v < % will work. We did not try to obtain the optimal power saving here and our
main point is that there is some positive power saving.

This result is valid for any family of shrinking targets, in particular, taking the shrinking
sets to be the intervals I, = (¢ —t=*, & +¢) it implies the following corollary, verifying the
prediction of [GGN18].

Corollary 2. Let n =p+ q > d be as in Theorem 1. For any 0 < A < n —d and for any

¢ e R, for almost all F' € Yp(,fll) the system of inequalities (1.1) has integer solutions for all
sufficiently large t.

For the results described above, one first fixes the shrinking sets, or for the case of intervals
the center point ¢, and only then obtain a result for almost all polynomials, so that this full
measure set of polynomials may depend on £. A natural question is then, how well can
one polynomial (chosen at random), approximate all target points {7 This question was
addressed in [Boul6] for the case of indefinite diagonal ternary quadratic forms, and in
[GK18] for general indefinite ternary quadratic forms. In these cases they showed that given
a sequence N (t) and §(t) such that % — 0 with @ < 1 then for almost all @) € Y5; and
for all sufficiently large ¢,

sup min |Q(v) — &|< §(t).
[E|<N () VEZ™, |lv[|<t

Using our method we are also able to give the following effective counting estimate in this

setting.

Theorem 3. Let n = p+q > d be as in Theorem 1. Let 0 < n < min{d,n — d} and let

0< A< ”_g_”. Let N(t) be a non-decreasing function satisfying that N(t) = O(t"). Then

there is v > 0 such that for almost all F € Y,\¥ for any interval I C [—N(t), N(t)] with
|I|> t=* we have

(14) # {U c7Z" . F(U) € I, HUHS t} = CF‘[’t”_d + OF(|I|tn_d_”),

As a consequence we get the following generalization of the result of [GK18] to higher
dimensions n > 3 as well as higher degrees.

Corollary 4. Let n = p+ q > d be as in Theorem 1. Given a non-decreasing function
N(t) = O(t") with n < min{d,n — d} and a non-increasing function 6(t) satisfying that
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% — 0 for some a < n — d, we have that for almost all F' € Y}f,‘;) and for all sufficiently

large t
sup min  |F(v) —&|< §(t).
€| <N () vEZ™, HvHSt| (v) < 3()
Remark 1.5. Taking the function N(t) to be a constant implies that in order for (1.1) to
have integer solutions for all sufficiently large ¢ and for all £ in some compact set, we need
an exponent A < "T_d rather than n — d as we got for a fixed £. It is unclear if this is really
the best one can hope for or if it is just an artifact of the proof.

1.1. Outline of proof. As some parts of the proof can get a bit technical, for readers’
convenience we outline here the general strategy. The main idea is the following general
principle: Given a nice enough large set in R"™ we expect the number of lattice points in the
set to be close to its volume. In particular, we consider here sets of the form

FYI)NB,={veR": F(v)el, |jv||<t},

whose volume is expected to grow like cp|I[t"~%. Here and below we denote by B, C R®
the closed ball centered at the origin with radius ¢. In particular, for || of order ¢~* with
A < n — d the volume of these sets grows with ¢ and we expect them to contain integer
points.

More explicitly, writing an element F € Y,? as F (v) = Fo(vg) with g € SL,(R), since
FYI) = Fy'(I)g™! we can write

#{veZ": |v|<t, Flv) €I} =#(Z"gN Fy (1) N Byg).

Next we recall the result of Schmidt [Sch60], relying on Rogers’ second moment formula
[Rogh5], who showed that given any increasing family of sets A; in R", for almost all lattices

A = Z"g with g € SL,(R) one has that # (A N A,) = vol (A4,)+0 <\/Vol (A, log? (vol (At))).

When the interval I is fixed, the family A, = F; Y(I)N B, is an increasing family and hence we
have a very good estimate for # (AN A;) = # (Z"g NF )N Bt). This is still not enough,
since for our purpose, the expanding sets Fo_l(l ) N Byg also depend on g. To overcome this
problem we replace them with sets of the form F;'(I) N B;h with h € SL,(R) fixed and
taken from a sufficiently dense set.

This was the approach used in [AM18] for the case of a fixed interval. When considering
shrinking intervals I;, we encounter another difficulty, that our family of sets F, ' (I;) N Big
is no longer an increasing family so the results of Schmidt do not apply. The main new
ingredient in our proof is using a different (simpler) interpolation argument, relying again on
Rogers’ second moment formula, which allows us to handle families of sets that are increasing
in one aspect and decreasing in another, as long as their volume grows sufficiently regularly.
Of course, we pay a price that we no longer have a square-root bound for the remainder, but
we do get some power saving which is sufficient for our result.

We further note that, for this approach to work, it is not enough to know the asymptotics
of vol(F~Y(I) N By) as t — oo, and one needs an explicit estimate for the volume with a
power saving bound for the remainder of the form

(16) vol (F~{(I) N By) = cplI|t" " + O (T[t").

Following some preliminary results in section 2, we devote section 3 to establish such a volume

estimate. Then in section 4 we use this approach to prove Theorem 1. Then in section
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5 we follow a similar argument, but instead of considering a single target ¢ we consider
a sufficiently dense collection of targets at once, in order to get the uniform estimate in
Theorem 3.

Remark 1.7. We note that this method is quite soft and works in general as long as one
has a volume estimate of the form (1.6). While we establish this estimate here only for
homogenous polynomials in the orbit Y}D(f;) for even d, we expect that such an estimate (and
hence similar results on integer values) should hold also for other homogenous polynomials.

Remark 1.8. Another key ingredient for this method is Rogers’ second moment formula (see
section 2.3). Recently, in [KY19], we showed how such a second moment formula can be
generalized from the space of lattices X = SL,(Z)\SL,(R) to other homogenous spaces.
Using such a generalization will allow one to apply this method in even greater generality.
For example, replacing SL,(Z) with a congruence subgroup allows one to deal with certain
inhomogeneous forms (see [GKY19]), and considering different semisimple groups G allows
one to tackle this problem for polynomials on other varieties with a transitive G-action as
will be shown in [KY20].

2. SETUP AND SOME PRELIMINARY RESULTS

In this section, we set up some notation and provide some preliminary results that are
needed for the proofs of our main theorems.

2.1. Notation. In what follows we fix n > 3, p,¢ > 1 and d > 2 even with n = p + ¢ and
n > d. Let G = SL,(R) and I = SL,,(Z) and K = SO(n). We denote by p the Haar measure
of G normalized to be a probability measure on I'\G.
For any g € G we denote by ||g||op the operator norm given by
gllop= sup {llvgll: veR", [lv]=1},
with |[v]|= /3, v7 the standard Euclidean norm on R”. Here and thereafter a vector v € R”
is a row vector. We then define a symmetric norm on G by
lgll= max {{lgllop [l9™ [lop }

We will use the notation A = O(B) as well as A < B to indicate that there is a constant
¢ > 0 such that A < ¢B, and we will use subscripts to emphasize the dependence of this
constant on additional parameters. We will also use the notation A < B to mean that
A < B < A. Since we fix p,q,n and d, all implied constants may depend on them.

2.2. A covering lemma. For € > 0 small we consider the norm balls
O.={g€CG: |gll<1l+e},

and note that for any g € O, with 0 < € < 1 and any ¢ > 0 we have

(21) B(l—e)t C Btg C B(1+£)t~

Noting that the norm |/g|| is right K-invariant, since the Haar measure is absolutely
continuous with respect to the volume measure on the Lie algebra, we have that for any
O<e<1

(2.2) w(O,) < e,
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with d,, = dimg(G/K) = % Any compact set in G can be covered by finitely many
translates of O,, and we will use the following estimate for the number of translates that are
needed.

Lemma 2.1. Let K C G be a fized compact set. Then for any 0 < e < 1 there exists a finite
set I, C K such that #I. = Ox (e*dn) and K C Uz, Och.

Proof. Since IC can be covered by a finite number of translates of O; it is enough to show
this for K = O;. Now for ¢ > 0 let Z. be a maximal set of points in O; such that the
translates O,/3h with h € Z, are pairwise disjoint. Note that for 0 < ¢ < 1 and for h,h' €
Oy, if M & Och then O.3h N O3k’ = 0, and hence, the maximality of Z. implies that
0, C UhGL O.h. Moreover, since UheZE O,/3h is a disjoint union contained in O, then

w(02) > 1 (UheIE (96/3h) =H#T.u (06/3) so #Z. < u(Os) p ((’)6/3)_1 < e by (2.2). dJ

2.3. Discrepancy bounds. As explained in the introduction, we can translate the problem
of counting integer values of a homogeneous polynomial to a problem of counting lattice
points in a region of R™, and the notion of a generic polynomial can be translated to counting
lattice points from a generic lattice.

Recalling our expectation that the number of lattice points in a set should be roughly the
volume we define the discrepancy for a lattice A in R"™ and a finite-volume set A C R" as

(2.3) D(A, A) = [#£(A N A) — vol(A)|.

By using Siegel’s mean value formula together with Rogers’ second moment formula we
can get very good mean square bounds for the discrepancy when averaged over the space of
lattices. Recall the space of rank n unimodular lattices can be parametrized by X = I'\G,
where we identify the coset I'g with the lattice A = Z"g, and let p be the probability measure
on A coming from the Haar measure of G' as before. We recall that the Siegel transform,
f: X — C, of a bounded compactly supported function f : R™ — C is defined by

fy= 3 fw),

veA\{0}

and the Siegel’s mean value formula states that

/X Fdu) = [ sy

Moreover, a direct consequence of Rogers’ second moment formula [Rogh5] for n > 3 implies

that )
J 7] duta) - vo( [ k).

In particular applying this estimate for f = x4 the indicator function of a bounded measur-
able set A C R"™ and noting that f(A) = #((A\{0}) N A) we get that there is some C], > 0
such that

fv)dv
R

/ ID(A, AP dp(A) < €', vol(A) + 1,
X
6



where the term 1 is only needed if A contains the origin. In particular, there exists some C,
such that for all bounded measurable sets A C R"™ with vol(A) > 1

(2.4) /X |D(A, A)|* du(A) < C, vol(A).

Using this bound we get a good estimate on the measure of the collection of lattices with

large discrepancy. For a fixed compact set K C G for any large parameter 7' and a set
A C R" define the set

(2.5) M) ={gek: DZ"g,A) > T}

We then get the following estimate.

Lemma 2.2. Fiz K C G compact. For any bounded and measurable subset A C R™ with
vol(A) > 1 and any T > 0

K VOI(A)
a (M(Aﬂ)“) KT

Proof. Let F C G be some fixed fundamental domain for X'. Since G is tessellated by
translates vF with v € I' and K is compact, it is covered by a finite number of translates,

say, Fr = Uz»Lzl ~v;F. Thus M%C% C K C FL and we can bound

(K) < i n 2 < i n 2
I (MA,T) < 7% /Mff% [D(Z"g, A)|" dulg) < 7 5 |D(Z"g, A)|” du(g).

Now, since any of the translates of F is also a fundamental domain, by (2.4) we can bound
| 1p@9. A duto) = L [ 1D, A du(g) < CoLvol(4). O
Fi X

We conclude this section with a simple interpolation argument relating the discrepancy of
different sets, we omit the proof which is straightforward.

Lemma 2.3. For any finite-volume sets Ay C A C Ay C R™ and any A € X we have that
D (A, A) <max{D (A, A1),D (A, Ay)} + vol (A2 \ Ay).

3. VOLUME ESTIMATES

Given a homogenous polynomial F of degree d and an interval I C R, the heuristic
argument given in [AM18] leads to the expectation that vol(F~1(I) N B;)) is asymptotic to
cp|I|T™ 4. Such asymptotics were established for quadratic forms in [EMMO98], and we refine
their method and use it to give an explicit estimate with a power saving on the remainder
for vol(F~1(I) N B)) for any F' € Y,%) with d < p + ¢ even.

Theorem 5. Fiz d > 2 even, and let n = p+q > d with p,q > 1, and let N > 1. For
F e Y}D(,Zl) and I C [~N, N] measurable, there exists cy > 0 such that for any T > 2N we
have

(3.1) vol (F~1(I) N By) = cp|I|T™* + Op (|[I|NYIT"~* " 1og(T)),

where the implied constant is uniform over compact sets and the log(T') factor is only needed
when n = 2d — 1.

We first give the following smoothed version.
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Lemma 3.1. Let n = p+q > d be as in Theorem 5. Let h € C°(R") be a nonnegative
smooth function on R™ that is supported on B, for some a > 1. For any measurable set
I C [-1,1] with indicator function x; and for any T > 1 we have

(3.2)

O (Si(h)|I|a(aT)"2) n>2d+1
(||h||oo|1|10g(aT)) +O0(Si(h)]a) n=2d
(Il 1) + O (Si D) = 2d 1
(

0
v _

/nh () X1 (Fow)) dv = ST+ ¢

O (Il + 0 (S100) n<od—1,

where

1 o0
J(h) = 3/ / Lo h (w1 + wy) r) r™ ™ dw dwsdr,
SP=r x84

where Sg_l C R? and Sfl_l C RY denote the unit spheres with respect to the (*-norm with
dwy, dws the corresponding cone measures, and

S1(h) = max { |, | 2/l ;1 < i < .

Proof. Denote by

Tpr = / () xr (Fo(w) d

the integral we want to compute. First we note that Z,; = Zj 1nj—1,0) + Zn,1n[0,1], S0, up
to replacing Fy by —Fp, or equivalently, switching p and ¢, we can assume that I C [0, 1].
Identify R" = RP x R? and write v = (uy,uz) so that Fy(v) = |Juy||4—|luz||4. For each factor
we use spherical coordinates writing u; = rw; with r; = |Ju;|q and w; = IIJW in the unit
sphere with respect to ¢4-norm. To simplify notation we denote by SP¢ = Sg_l X Sg_l. With
these coordinates we can write

o0 o
T = / / / h (—rlwl + 7“20.;2) X1 (Tf — rg) P dwy dwodry drs.
’ o Jo Jsra T

Make a change of variable s = r¢ — r¢ so that r; = (r¢ + s)"/¢ and dr; = —) With
d(r§+s) d

this change of variable, writing r = 2

ot = d, s\l A s\ a1
Ihr = g x1(s) h (wl (r'+ %) "+ w2r> (r'+22) T 7 ldwidwodrds.
0 0 Sp.q

For 0 < r < 1/T and 0 < s < 1, using the estimates (r¢ + 7%)% < o= if p > d and

(rd + 7%)% < r?~4if p < d we can bound the contribution to this integral of the range
0<r<1/T by O(|I|||h]«) to get that

we get

p—d

Tn—d 1 0 p—d
Lo = — / xi(s) / / h(wn (194 52) " ) (1 i) Tt ddusgdrds
0 1/T J Sp-a
)

+O([][[Allso) -

8



Now, noting that for » > 1/T and 0 < s < 1 we have (rf 4+ £)V4 = (1 + (T%)d)l/d =

7+ O( =7 le) and we can estimate

b (o (4 30) 7 ) = (e ) ) +0 1%

rd—17d

to get that

Tnfd 1 o p—d
Thi = y / X](s)/ / h((wy +w2)r) (1 + (ﬂs,)d) * ==L dwydrds
0 1/T JSpa

v (s (= [ / ) ) 0 1),

where for the first part in the error term we used the assumption that A is supported on
B, noting that |lw; (r? + %)Ud + worl[a> 7 for all (wy,ws) € SP9. Next, we can estimate

p—d

<1 + ﬁ)T 1+0 ( T)d> uniformly for r > 1/7 and 0 < s <1 to get that

Tn—d
1. =" /XI<S)/ / B (w1 + wn) ) 9 doydwsdrrds + O (|I]][Bl]oo)
0 0 Sp,q

+0 (HhHmmT”Qd / r“dldr> +0 (Sl(h)U]T"Zd / r“ddr) :
/T 1/T

where we used that

1 1T
/ X[(S)/ / h((wg +wsy)r) "y dwodrds < ||h||OO|I|Td_”.
0 0 Sp.q

Now estimate

a a2 n>2d+1
/ r" 2 dr < { log(aT) n=2d
T T2 < o,
and similarly
a an—2d+1 n Z 2d
/ "2y < { log(aT) n=2d—1

YT T2l p < 2d -1
to get that
O (|hllso|I|(aT)"=24) + O (Si(h)|I]a(aT)" ") n>2d+1
T T St A R o ”:M
| O ([hllcl2]) + O (1(h)| 11222 n=2d-1
O ([klll1) + O (S1(M)|113) n<2d—1.

Noting that for n > 2d+ 1 the first term is bounded by the second term gives our result. [
We can now unsmooth to obtain the following.

Proof of Theorem 5. We use the notation SP¢ = Sg_l X Sg_l as before. First assume that
N =1so that I C [—1,1]. Let hy = xp, denote the indicator function of the unit ball and

for small § > 0 let hf be smooth functions taking values in [0, 1] approximating hg in the
9



<1—
sense that hy (v) = { (1] ”Z“; } )

choose them so that Sy (hy) < §71.
Now recall that any F € Y, satisfies that F(v) = Fy(vg) for some g € G to get that

vol (F~1(I) N By) = / ho (T) i(Fo(vg))dv = / ho (“‘JT_l) 1 (Fo(v)) do,

L flof<1

0 o> 146 , and we can

and similarly A (v) = {

and we can approximate it from above and below by [5. hy ( ) X1 (Fo(v)) do.

Let h(jsfg( ) = hi(vg™'), so that hs is supported on By and satisfy Sl(h(si?g) =O(|lgllo"1).
Now applying Lemma 3.1 to these functions gives us that for any 7" > 1

(llglm=2a26=1 1|7 =>7) n>2d+1
(1log(2[|glIT)) + O ([lgl*6=*I11]) n=2d
(
(

0
§ %)

/h?,g (?)Xf(Fo@))dsz(hig) IIT""+¢ 0 |I|)+O lgllo~ 1|1r|1°g<2“9“T>) n=2d—1
o)

1) +0 (L4) n<2d—1,
Next, let ho4(v) = ho(vg™") and note that J(h;,) < J(ho,) < J(h;g) and that
J(hgg hsy) / / (hf (r(wi + wa)g ™) — by (r(wr + we)g™ ")) 1"~ drdw; dws.
Sp.q
Since hf (r(wi +wa)g™') — hy (r(wi +w2)g™") = 0 unless ||r(w; +wa)g7t|€ (1 —8,1+0), we
can bound

145 .
Twitwa)g— 1 o
" drdwy dwsy
1-6

\ﬂ@w—JWwﬂﬁﬁM/
=T

(w1 +w2)g

<35 / (@r + wa)g~ =" dwrdws < [|g]|™,
Sp.a

where in the last step we used that ||(w; + w2)g |[> ||lg]| ™! for any (wq,ws) € SP.
Plugging this estimate back in (3.3) and taking

5 { T2  n>2d
— d—n

T d<n<2d-1
we get that for any T > 2, vol(F~(I) N By) is bounded both from above and from below by

Oy (|I[|Tm=3/2) n>2d
J(ho )T+ O,([I|T™ % log(T)) n=2d—1
O,([I|T" %) n<2d-—1,

where for the n = 2d — 1 case we used the estimate log(2||¢||7") = O4(log(T")) for all T' > 2.
Setting ¢y = J(ho,,) concludes the proof for the case of I C [—1, 1], where we note that the
implied constant is bounded by some power of ||g|| and is hence uniform for g in compact
sets.

Finally, we consider the general case of an interval I C [N, N]. Denote by I' = %] -

[—1, 1] and note that for any v € R™ we have that F(v) € I if and only if F(N~"/4) € I',
10



so that writing v = N we have that
F'D)NBr={veR": Fw)el, |v|<T}={N": F(u) eI, |jul|< TN},
Since we assume T > 2N/ we can apply the previous result to get that indeed
vol (F~1(I) N Br) = N"¥vol ({u € R": F(u) € I', ||ul|< TN~'4})
O, (|I||Tn=34/2N1/2) n > 2d
= cpI|T"+{ O (T2 N2 log(T)) n=2d—1
O,(|I|T" 2 N™2r*) n<2d—1,

where for the n = 2d — 1 case we used that log(T'N~'/9) < log(T) for N > 1. Thus to prove
(3.1), it suffices to show that

n—d—1 n+l—d

max { T 32NY2, T N < eIy,

For this we note that by our assumptions 7> 2N d > 2 and n > d, we have

—d/2+1

T’n—3d/2N1/2 — Tn—d—lT—d/2+1N1/2 < Tn—d—l (Nl/d) N1/2 — j'vn—d—lj\[l/d7

and

n—d—1 __n+tl—d n—d—1 __ntl—d —"*T‘H

T2 N7 =TT N7 < T (N

n+1—d

N za — j'vn—cl—ljvl/d7

finishing the proof. O

4. APPROXIMATING A SINGLE POINT

In this section, we prove Theorem 1 by reducing it into a lattice point counting problem,
and more precisely to a discrepancy estimate.

As mentioned in the introduction, for F' = g- Fy with g € G and for any measurable subset
I C R we have that the counting function

(4.1) Np(L,t) :=#(Z'"NFY(I)NB,) = #(Z"gn F; ' (I) N Byg)

counts the number of lattice points of A = Z"g that lie inside the set F, '(I) N B;g. To
simplify notation, for any ¢ € GG, and subset I C R and any ¢ > 0 we denote by

(42) Ag,],t = Foil(]—) N Btg

In view of this relation, to get a power saving asymptotic formula for the counting function
Nr(I,t), we first prove a power saving asymptotic bound for the discrepancy D(Z"g, Ay 14).

Theorem 6. Keep the assumptions as in Theorem 1. Then there exists some § € (0,1) such
that for p-a.e. g € G there exists t; > 0 such that for allt > t,

D (Z"g, Ag1,1) < vol (Ag.1,4)° .

Proof. Fix a compact set K C G and a sequence {t; = k®}ren with the exponent o >
max{1, r}l_/\} depending on A to be determined. Let dp = 1 — L For any ¢t > 0 and

d € (do, 1) consider the set By C K defined by

a(n—d-X)

B, ={9€K: D(Z'g Agpa) = vol (Ag1)’}.
11



We will show that lim, ., B; is a null set (this will imply that for p-a.e. g € K we have that
D (Z"g, Ay 1,+) < vol (A, 1,.0)° for all sufficiently large ¢ and since this holds for any compact
set K this will conclude the proof).

Now, since the sequence {ty}ren is unbounded,

Ea-AUs-NU U &

T>0t>T meN k>m t <t<tpi1
and hence
,u(lim Bt) = lim pu U U B; | < lim g i U B
t—o00 m—00 m—>oo
k>m t <t<tp41 b <t<tp41

We thus need to estimate a; = p <Utk<t<tk+1 Bt) and show that the series ), aj, is summable.
Now for ¢, = %, by Lemma 2.1, for any k£ > 1 there exists a finite subset Z; :=Z,, C K

with #Z;, = O (k%) such that K C UheIk O, h where d, = % Thus for g € K,
there exists some h € 7, and ¢’ € O, such that g = g’h. Then by (2.1) for any ¢, <t < tp1

Bl —ep)t h C Btkg h C Big C Btk+1g hCB 1+€k)tk+1h’
and since I, C I; C I, we get that
Appn C Ay C Zk,h»
where
Ak,h = F ‘[tk+1 ﬂ B (1- ﬁk)tkh and Ak; h = ‘[tk ﬂB(1+€k tk+1h

Hence using the interpolation Lemma 2.3, we get that for any g € Utk<t <tr B; there is
h € 7, such that

max {D (2"g, Ayp) . D (29, Ac)} = D (279, Agua) = vol (Aen \ Ay))
> vol (Athﬂt)(S —vol ((Arn \ Axp))
> vol (Ak,h)é —vol ((Agn \ Axp))
implying that

(4.3) U 8clU

t <t<tpy1 heZy

. 5 —
where Cp,j, = My, , m,,, UMz, , 1., With Ty = vol (Apn)” —vol (Aen \ Ayp), and Mup =
M(AK% defined as in (2.5). Now applying Lemma 2.2 we can bound
vol (Zk,h)
Tin
Since {/;};~0 is bounded, there exists some Ny > 0 such that [, C [—Ny, No| for all ¢ > 0,

and hence for all k > ky sufficiently large we can apply Theorem 5 to Ay j, (or more precisely
to Ay h~! having the same volume) which, recalling that |I;|= ct=*, gives

vol (Zk,h) = Cth]:)\ ((1 + Ek)tk+1)n_d + O]Qc (t,;/\tz_;ilil 1Og(tk+1>) s
12
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with ¢, = ¢p., from Theorem 5. Next, plug in t; = k“ and use the estimates (1 + ek)”_d =

1+0(2) and 7] = (k+ 1)°=D = pon=d(1 4+ 0,(1)) to get
vol (Zk,h) _ Chck/,oc(n—d—k) + OIC,C,)\ (ka(n—d—)\)—l + k,oz(n—d—l—/\) log(k‘ + l)a) )

Since by assumption o > 1 we have a(n —d —1—\) < a(n —d — \) — 1 so that

(4.5) vol (Ayp) = enck®™ TN 4 O o (K27
Similarly, applying Theorem 5 to A, j, for k > ko sufficiently large we get
(4.6) vol (A1) = cnck®=N 4 O oy (KON
and hence,

vol (App \ App) Ko KOV
We also have for k > kq sufficiently large
vol (Ak,h>6 = k&a(nfdfk).

Moreover, since we assume § > 1 — m then da(n—d—A) > a(n—d— ) —1 and hence

Ten = vol (Ayp)” = vol (A \ Ays) =i en K=Y,

Combining the above estimates with (4.4) we get that

=i e k,oz(n—d—/\)(l—Qé).

We can then use (4.3) and the fact #Z; = Ox (k%) to get for k > ko sufficiently large

1
ag < p <U Ck,h) < Z 1 (Crn) <icen ot d N5 1) dy "

hely, heTZy

Now, the assumption § > 1 — m also implies that a(n—d—\)(20 —1)—d, > a(n—d—
A) — 2 —d,, so taking a = -4 > max{1, —1—} we get that a(n—d—A)(26—1)—d, > 1

showing that the series ), a;, is summable as needed. U
We can now use this discrepancy bound to conclude.

Proof of Theorem 1. Fix 6 € (dg,1) be as above with §p = 1 — a(n_ld_/\) = Zzig, and let
0 <v < (1-0)(n—d—A\). Then by Theorem 6 for p-a.e. g € G we have that D (Z"g, Ay 1,+) <
vol (Ag’]t’tys for all sufficiently large ¢, and hence for F' = ¢ - F, with g as above and all

sufficiently large t,
‘NF ([t, t) — CFlIt’tn_d| S D (an, Ag,ft,t) + |V01 (Ag,ft,t) — CF|It|tn_d‘
<vol (Agr4)" + Oy ("1 log(1))

< (2CFtnfd—)\)5 + Og,c (tnfdflf)\ 10g<t>) < tnfdf)\fl/' ]
13




5. UNIFORM APPROXIMATION

We now use similar ideas to give a uniform bound for the discrepancy for all intervals at
once. We first prove a preliminary uniform bound for the discrepancy for all intervals of a
fixed length.

Theorem 7. Keep the assumptions as in Theorem 3. Then there exists some § € (0,1) such
that for almost all F € Yp(fé) there is tp > 0 such that for all t > tp and for all intervals
I C[-N(t), N(t)] with |I|=t* we have

(5.1) NE(I,t) — cpt™ 07| < 2=,

where cy 1s as in Theorem 5.

Proof. Fix a compact subset L C G, and a sequence {t; = k*}yeny with a > some large

n—d—x
number depending on A and n to be determined. Take § such that ¢ € ( — m, 1).

For any t > 0 we define B, C K
B,={gek: 3 C[-NW.NW), 1=t D(Z"g, Agrs) > vol (Ag) }

where A, 1, = F;'(I) N B,g as before. As in the proof of Theorem 6 it suffices to show that
the series ), ay with a; = p <Utk§t<tk+1 Bt) is summable. To do that we will bound the set

U B; by a nicer set for which we have good control on the measure.
T <t<tp41

First, for any t; <t < t;4; we reduce the collection of all intervals in [—N(t), N(¢)] into
a finite discrete collection of intervals. Let § = X + é and let

—N (th1) = ko < & < -+ < &emi) = N (teg1)

be a t,;fl—dense partition of the interval [—N(¢x41), N(tx41)] so that M (k) < N(tkﬂ)tﬁﬂ.

Now for any interval I C [—N(t), N(t)] with ty < t < tg.1, since its center point &
satisfies £ € I C [=N(t), N(t)] C [=N(tx+1), N(txs1)], there exists some 0 < ¢ < M(k)
such that & ; < & < & iy1. Note that for [ = (5 — %,f + %), since t <t <t and
ki < & < &piv1 we have

te tey t‘A t
(5.2) Syl — T,fk,i + 5 CIC|(&,i— 2 Ehit1 + 7

Next, let ¢, = % and again by Lemma 2.1 we know that for any k£ > 1, there exists a
finite subset Z; := Z,, C K with #Z; = O (k) such that K C Uhezk O, h. Thus for any
g€ Utk<t<tk+1 B;, there exists some ¢’ € O, and h € I such that ¢ = ¢’h. Then by (2.1)
for t;, <t < ty41 we have B¢, )1,h C Big C B(14,)t,,, h- Combining this with (5.2) we get
Apin CAgre C Apin Where

2 £
Ak,i,h = Fo_1 (fk,iﬂ - %,&:,i + %) ﬂB(lfﬂg)tkh

and
t—)\

_ t—A
Apin=F;! <§k,z — &kt + —) m B(iyey)tp, -

14



Then by Lemma 2.3 for any g € U, <;«y,,, Br there exist some 0 < i < M(k) and h € I
such that

n n_ A s A
. K K .
Now for any 0 <1i < M (k) and h € Z, let Cy;p = M(Ak)thh U M(Zk),i,thk,i,h with

Thin = vol (Ahi,h)é — vol (Zk;i,h \Ak,i,h) )

so that
(5.4) U scly U cm
tk<t<tk+1 heZy 0<Z<M
By Lemma 2.2 we can bound
vol Zk,i,h
(5.5) 1 (Crin) <k T(2—)
Jeyi,h

Now, we take

d d, +4
(5.6) a>max{d—n’n—d—2)\—n}'

We note that since A € (0, "_—g_q), the second value in the above set is positive (and larger
than ——). We can now use (5.4) and (5.5) to give estimates for p <Utk§t<tk+1 Bt).

Flrst, since N(t) = O(t") with n € [0,min{d,n — d}) C [0,d), for ¢, = k* and ¢, =
there exists ky > 0 such that for any k > ko,

(1= ety > 2(N(tper) + DY and (14 e)tper > 2(N(tper) + 1)

Y

I =

1/d

Y -
Moreover, note that for each 0 < i < M (k) the intervals <§k,¢+1 — tk%»sz,i + tk;“) and

DY Y
({k,iﬂ - t"T“,&w- + t’“2+1) are all contained in [—=N(tgy11) — 1, N(txs1) + 1]. Hence for any
k > ko we can apply Theorem 5 to th to get
vol (Arin) = cn (6 4 (Erivt — &) (14 &)™ Ut 4+ O (G M N (trr) Y log (ter)) -

Now, using the assumption N(t) = O(t") and the estimates g ;41 — & < t,;fl, tpy1 < k2,
(I+e)" 4 =14+0(1/k) and t}.{ = (k4 1)*=4) = go=4(1 4+ O, ,(1/k)) and the relation
aff = a4+ 1 we can get

vol (Zk,i,h) _ Chkoc(n—d—k) + OIC,)\,n (k,oc(n—d—k)—l + k,a(n—d—l—)\-i—g) 10g(k’)> )

Sincea>%7wehavethat an—d—1-X+1) <a(n—d—A)—1,so that

(5.7) vol (ﬁmh) = ¢ kN Oxan (ka(n—d—A)—l) ‘
Similarly, we can apply Theorem 5 to Akm to get for any k > kg sufficiently large
(58) vol (Ak,i,h) — chka(nfdf)\) + OIC,)\,n (ka(nfdf)\)fl) )
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Using these estimates and that da(n —d — A) > a(n —d — X\) — 1 we get that

— 5 _ da(n—d—A
Thoin <rcam VOl (Apin)” Sicom k ( )

)

so that
1
P (Crin) <iean (20— Ta(n—d—x) "

Now, using (5.4) and the above estimate, and recalling #Z;, = Ok (k%) and M (k) < k*0+5),
we can estimate for k > kg

ap < p U U Chih <Z Z (Cryin)

heT;, 0<i<M (k) heZ =0
M(k)—1 ] 1
<K Z Z L(20-Da(n—d—) <k k(20— 1)a(n—d—X)—a(g+A) —dn—1"
hel), i=0

where we used that af = aX + 1. As in the proof of Theorem 6 for the exponent we can
estimate
(20 —Dan—d—A) —an+A) —d,—1>an—d—XN)—2—an+A) —d,—1
=an—d—2\—n)—d,—3>1,
where for the last inequality we used that o > #;j\i—n' Hence the series ), aj, is summable
and this finishes the proof. 0J

Proof of Theorem 3. Let A € (O, "7377’) and take another \' € (/\, "737"). By Theorem 7
there exists a full measure subset £ = Ey;) v C G and some constant § € (0,1) such that
for any ' = g - Iy with g € &, there exists some ¢} > 0 such that for any ¢ > ¢ and any
interval I’ C [~N(t), N(t)] with |I'|= ¢ we have

(59) |NF(I/,t) . CFljl‘tn—d‘ < té(nfdf,\/) _ |I/|5t5(n7d).

Let v =  min{\ — X, (1—-6)(n—d—X)} and for any F as above, let tp = max{t, (2+cp)v}.
Now, for this F' and any t > tp, we first assume that I C [—=N(t), N(t)] with [I|> ¢ is of
t%', is a positive integer, and we have a
partition [ = |_|f\i1 I; with each subinterval I; C I and |I;|= t~*". Applying (5.9) to each I;
we get

length an integer multiple of t=". That is, M; =

My
(NE(I,t) = cplI]t"| = Z (Ne (L, t) = cp| L")
i—1

M; s
< S Wl t) — exl | < I
= 1=1

where for the last inequality we used that 2v < (1 — §)(n — d — X’). Now we consider the

general case of an interval I C [N (t), N(t)] with |I|> ¢~*. There exist intervals I C I C I
16



such that lengths of I and I are of integer multiples of t> and |I|-|I|=t. SinceI cIC 1T
we have Np(I,t) < Np(I,t) < Np(I,t). This implies that for ¢t > tp

!NF(I, t) — CF|I‘t"fd} S max { |NF(l; t) — CF|[|t”*d NF(i t) o CF|I|tn7d|}
< max {|Ne(Lt) — eIt , [N (T, t) = cp| Tt} + ept™ 4,

Y

9

where for the second inequality we used the triangle inequality and the bound
max{[I|—|I], [I|=|1]} < [I|-|I|=t7".

Now since both I and I are of lengths integer multiples of t=', applying the above estimate
for ‘NF(L t) — cF|l|t"_d| and ‘NF(I,t) — cF|I|t”_d| and noting that |I|> ¢ we have

INE(I,t) — cplI|t" 4] < T2 4 cp| e~ < 21|42 4 cp|I)en 42
= (24 cp) ||t < 1|t

where for the second inequality we used the estimates |I|< 2|I| and 2v < X — A, and for the
1

last inequality we used that ¢ > tp > (2 + cp)v. This completes the proof. L]
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