Understanding Reproducibility and Characteristics
of Flaky Tests Through Test Reruns in Java Projects

Stefan Winter
TU Darmstadt
Darmstadt, Germany
sw @stefan-winter.net

Wing Lam
University of Illinois
Urbana, IL USA
winglam?2 @illinois.edu

Abstract—Flaky tests are tests that can non-deterministically
pass and fail. They pose a major impediment to regression testing,
because they provide an inconclusive assessment on whether
recent code changes contain faults or not. Prior studies of flaky
tests have proposed tools to detect flaky tests and identified
various sources of flakiness in tests, e.g., order-dependent (OD)
tests that deterministically fail for some order of tests in a test
suite but deterministically pass for some other orders. Several of
these studies have focused on OD tests.

We focus on an important and under-explored source of
flakiness in tests: non-order-dependent tests that can non-
deterministically pass and fail even for the same order of tests.
Instead of using specialized tools that aim to detect flaky tests, we
run tests using the tool configured by the developers. Specifically,
we perform our empirical evaluation on Java projects that rely
on the Maven Surefire plugin to run tests. We re-execute each
test suite 4000 times, potentially in different test-class orders,
and we label tests as flaky if our runs have both pass and fail
outcomes across these reruns. We obtain a dataset of 107 flaky
tests and study various characteristics of these tests. We find that
many tests previously called ‘“non-order-dependent” actually do
depend on the order and can fail with very different failure rates
for different orders.

Index Terms—Aflaky tests, regression testing, reproducibility

I. INTRODUCTION

Flaky tests are tests that can non-deterministically pass
and fail in different test runs, even for the same code under
test and the same test environment that the developers can
easily control [1], [2]. Such tests are a major impediment
to regression testing, because they provide an inconclusive
assessment on whether recent code changes contain faults
or not [3] as reported by many companies, including Ap-
ple [4], Facebook [2], Google [5], [6], [7], [8], Huawei [9],
Microsoft [10], [11], [12], and Mozilla [13]. When developers
run regression tests after code changes, they expect tests that
flip the outcome, i.e., fail after the changes but passed before
the changes, to indicate faults in the changes. Unfortunately,
flaky tests can fail for reasons that are unrelated to the changes.
A common way to handle flaky tests is to rerun tests after
failures to see if they would pass. For example, Google reports
rerunning failed tests ten times [6]. However, little is known
about failures of flaky tests, making it difficult for developers
to determine an appropriate number of reruns.

Prior work [1], [14], [15] has identified various reasons for
the non-deterministic outcomes of flaky tests. These reasons

Angello Astorga
University of Illinois
Urbana, IL USA
aastorg2 @illinois.edu

Darko Marinov
University of Illinois
Urbana, IL USA
marinov @illinois.edu

Victoria Stodden
University of llinois
Urbana, IL USA
vcs @stodden.net

can be broadly split into two groups. One group was called
order-dependent (OD) tests [16], [17], [18], [19], [20], [21],
[22], which deterministically fail for some order of tests
in a test suite, but deterministically pass for some other
orders. The other group of reasons include timing behavior
for tests that depend on real time, concurrency for tests that
involve multiple threads, asynchronous wait for tests that
involve message passing, random seeds for tests that involve
random choices [23], unspecified order of GUI events for GUI
tests [14], I/O operations for tests that involve network or
disk operations, and more. These tests were called non-order-
dependent (NOD) [20], but we will argue that the name is
imprecise as such tests can still depend on the order.

Although some previous studies [1], [15], [24] show that
NOD tests are more frequent than OD tests, several studies of
flaky tests have focused on OD tests, proposing several tools
specialized to detect [16], [17], [18], [19], [20], automatically
fix [21], or tolerate [22] OD tests. Some example tools [16],
[20] dynamically run the entire test suite, while intentionally
randomizing the order of tests to increase the chance of
detecting OD tests. Other tools [17], [18], [19] identify which
individual tests or pairs of tests may be OD.

We believe that two key challenges have limited the amount
of in-depth work on NOD tests. The first challenge is the
machine cost for rerunning tests. Many NOD tests may fail
rather infrequently (e.g., once in 4000 test runs, as we observe
from our experiments) or only under specific circumstances, so
it takes substantial time and reruns to observe even one failure,
let alone a few failures to study when and how they occur. The
second challenge is the human cost for debugging NOD tests.
In contrast to OD tests that fail deterministically and could
be somewhat easier to reproduce and debug, NOD tests fail
non-deterministically, potentially infrequently, and can take a
lot of time to debug, especially for researchers unfamiliar with
some open-source code that has flaky tests. For example, in our
study, inspecting each new flaky test took one of the authors
about a day on average to precisely understand the root cause
of non-determinism.

Our study is organized around four main research questions
(RQs) that aim to improve our understanding of how to
rerun, detect, debug, and prioritize flaky tests. By answering
these questions, we aim to provide actionable guidelines and
practical suggestions for developers and researchers.

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

To perform our study, we (re)run tests using the default
test runner configured by the developers, following what
developers typically do in their development practice. In other
words, we do not use any research tools [16], [17], [18], [19],
[20], [25] or emerging approaches [26], [27] that aim to detect
flaky tests. While our procedure does miss some flaky tests, it
(1) gives a more realistic assessment of the impact that flaky
tests have on regression testing; (2) exposes flaky tests that can
be particularly difficult to debug, because they fail rarely even
under the exact same build configuration; and (3) avoids false
alarms that can be produced by some of the research tools
(e.g., iFixFlakies [21] reports on some false alarms reported
by iDFlakies [20]).

We perform our empirical evaluation on open-source Java
projects that use the Maven build system [28] and have JUnit
tests. We let Maven Surefire plugin [29] run these JUnit
tests (by executing mvn test), as configured by the project
developers. Maven structures Java projects into modules, and
each module has its own test suite. Our experiments find flaky
tests in 26 modules from the iDFlakies dataset [30]. While
the iDFlakies evaluation [20] aimed to run each test suite 100
times, we run each test suite exactly 4000 times, potentially
in different test-class orders (TCOs) as permitted by Surefire.
We choose 4000 runs to balance the chance to detect flaky
tests and the machine time of our experiments. Any test that
have both pass and fail outcomes are marked flaky. We obtain a
dataset of 107 flaky tests, where a “test” is defined by JUnit—
a specific test method in a test class. Moreover, we run each
of those 107 flaky tests 4000 times in isolation, running just
the one test method without the rest of its test class or the test
suite. Our dataset is publicly available on our website [31] and
we use this dataset to address our four RQs.

One important finding of our study affects the nomenclature
of flaky tests. Namely, many flaky tests that were labeled
“non-order-dependent” actually do depend on the order, e.g.,
across different TCOs, they have very different failure rates—
the ratio of the number of failed runs over the number of
total runs for a particular test order. We therefore introduce
two subcategories of NOD tests—non-deterministic, order-
dependent (NDOD) and non-deterministic, order-independent
(NDOI). To the best of our knowledge, we are the first to study
the relationship of test orders on NOD tests.

The RQs we study also suggest the following guidelines:
RQ1 & RQ3: To check if test failures are due to flaky tests,
one can use < 5 reruns (50% less than Google’s default ten
reruns [6]) and still check correctly > 82% of the time.
RQ2 & RQ3: To detect flaky tests, one should run tests in
a test suite instead of in isolation, and run tests in different
orders with fewer times each, rather than fewer orders with
more times each.

RQ3: To debug flaky tests, one should first run the tests in
isolation, because tests tend to run faster and fail more often,
before running the tests in a test suite.

RQ4: To prioritize the debugging of flaky tests, one can
consider debugging tests that often fail together before the
ones that do not fail together.

TABLE I
CATEGORIZATION OF TESTS. F ARE FAILURE RATES PER ORDER FOR A
TEST. DIF' IS TRUE IFF ANY RATE SIGNIFICANTLY DIFFERS FROM
OTHERS. NOD AND OD ARE FROM IDFLAKIES’ CATEGORIZATION [20].

Non-deterministic (NOD) [Deterministic

3fFeF.0% < f <100%)A[(3f, fT€F. F =0% A f = 100%)A
DIF(F) (NDOD) (Vf" €F. f"=0%V f" = 100%) (OD)
GfeF.0% < f <100%)A[(Vf €F. f=0%)V

—DIF(F) (NDOI) (Vf €F. f =100%) (not flaky)

II. CATEGORIES OF FLAKY TESTS & A REAL EXAMPLE

Our categorization of flaky tests builds on DTDetector [16]
and iDFlakies [20], which automatically categorized all flaky
tests into two categories based on the empirical results from
running the tests in various test orders. We redefine the existing
categories with tests’ failure rates across test orders, refine an
existing category by introducing two new subcategories, and
show an example test from a new subcategory.

A. Categories

DTDetector and iDFlakies partition flaky tests into two
categories. One category are order-dependent (OD) tests that
can deterministically pass or fail based on the order in which
the tests are run. We clarify that such tests are deterministic in
that their failure rates are either 0% or 100% for each order,
and they have at least two orders whose failure rates differ. For
completeness of categorization, we also define tests that are
not flaky—they either always pass (all orders have 0% failure
rate) or always fail (all orders have 100% failure rate).

The other category are non-order-dependent (NOD) tests
that are flaky but not OD. We clarify that such tests have at
least one order where the test fails non-deterministically (fail-
ure rate is neither 0% nor 100%). We further break down these
NOD tests to non-deterministic, order-dependent (NDOD)
tests and non-deterministic, order-independent (NDOI) tests.
Specifically, NDOD tests are NOD tests where at least one
order’s failure rate significantly differs from other orders’
failure rates, e.g., a test that has a 99% failure rate in one order
but 0% in another. A statistical test can be used to determine
if any one order’s rate significantly differs from the others.
Conversely, NDOI tests are NOD tests where all failure rates
do not significantly differ. Table I shows precise definitions.

Some previous studies of flaky tests [1], [14], [15], [24]
categorized these tests into fine-grained categories, but the
authors manually examined the source code of the tests or
conducted surveys of developers after the tests were fixed and
the causes of flakiness were removed. Moreover, a study [24]
showed that manually identified fixes for flaky tests (and,
hence, their corresponding categorizations) can be quite error-
prone. We aim to automatically categorize flaky tests, even if
in coarse-grained categories.

We further argue in this paper that it is important to differ-
entiate between NDOD and NDOI tests, ideally automatically.
In fact, we find that the majority of NOD tests are actually
NDOD, not NDOI. Developers and tool builders should take
test orders into account. For example, a flaky-test management
system [24], [32], [33] can save and prioritize test order(s) that

1 @Test (timeout = 1500)

2 public void shouldRetryWithDynamicDelayDate () {

3 ... // test setup

4 atLeast (Duration.ofSeconds (1), () -> unit.get ("/baz").
dispatch(...).join());

5)

Fig. 1. Example NDOD test that fails substantially less often when run as
part of a test suite than when run in isolation.

developers should use for debugging based on the category of
the test determined with the failure rates of the observed test
orders. For NDOD and OD tests, developers could debug with
the test orders whose failure rates differ the most, while for
NDOI tests, any order could suffice.

B. Example NDOD Test

One example NDOD test from our study is shown in
Figure 1. The test shouldRetryWithDynamicDelayDate
is from a project [34] that implements client-side response
routing. This test is flaky because some runs take longer than
the timeout limit of 1500ms. We find that the test is NDOD
because Line 4 launches a server, and in runs where the test
passes, other tests running before this test trigger the Java just-
in-time (JIT) compiler, thereby reducing the latency to start
the server. On the other hand, in runs where the test fails, the
JIT compiler is not triggered, thereby increasing the latency
to start the server and resulting in the test exceeding 1500ms.
We confirmed our understanding by logging the time it takes
to run the test and then running the test multiple times. With
our changes, we see that after ~5 runs, the runtime of this
test would decrease from ~1500ms to ~1000ms.

We refer to the number of times a flaky test fails consec-
utively as the test’s burst length. In our 4000 TSRs, we find
that this test’s maximal burst length is 7 in one order (TCO),
with the average maximal burst length being 3.1 across all
TCOs. We also find that this test has a failure rate of 39.1%
when run by itself in isolation, while its failure rate is 10.9%
when it is run in its test suite, with the failure rate ranging
from 0% to 20.1% depending on the TCO. This test’s failure
rate varies a lot because some other tests running before it can
exercise code that triggers the JIT compiler, in which case the
test often passes because it then takes closer to 1000ms.

III. RESEARCH QUESTIONS

To increase the understanding of the reproducibility and

characteristics of flaky tests, we consider four main questions.
RQ1: What is the failure rate and the maximal burst length
of flaky tests across all test-suite runs?
Why it matters: A common way to separate test failures into
regression failures and flaky failures is through test reruns.
For example, Google [6] and Microsoft [24] report how they
rerun tests after a failure to check whether the test’s result
would change to pass (indicating a flaky failure instead of a
regression failure). The number of reruns is typically chosen
ad-hoc, e.g., a round number of ten. This RQ aims to provide
empirical evidence for how many reruns can suffice to separate
regression failures and flaky failures.

RQ2: How do failure rates and maximal burst lengths differ
across TCOs, and how many tests are NDOD and NDOI?
Why it matters: Developers have a limited budget of test
runs to detect NOD tests. Is it better for those runs to be used
through (1) many unique test orders with fewer runs each, or
(2) fewer orders with many runs each? If NDOD tests are more
prevalent than NDOI tests, then (1) can be better, otherwise (2)
can be better. This RQ aims to provide empirical evidence on
the prevalence of these two subcategories, so that developers
can better detect NOD tests.

RQ3: How likely can NOD-test failures from running the test
suite be reproduced by running the NOD test in isolation?
Why it matters: When developers encounter a test failure by
running a test suite, a common next step is to try reproducing
a test failure by running the test in isolation. For a regression
failure, the test continues to deterministically fail in isolation.
For OD flaky tests, the test also deterministically passes or
fails in isolation [21], and it deterministically fails when run
in the same order that produced the test failure. However, for
NOD tests, it is unclear how likely test runs in isolation can
reproduce the test failure from running the entire test suite,
e.g., the test may fail more or less often when run in isolation
than in the test suite. This RQ aims to show empirical evidence
to clarify this issue.

RQ4: How do failure rates of individual flaky tests relate to
failure rates of test-suite runs?

Why it matters: Whether developers can merge their recent
changes to a project typically depends on whether the entire
test suite passes or fails with their recent changes. RQ1 and
RQ?2 study the failure rate of each individual flaky test, while
RQ4 aims to show how often a test-suite run has at least one
failing flaky test. RQ4 is important because it provides empiri-
cal evidence on how often (1) developers encounter a test-suite
run failure due to flaky tests and (2) failures of different flaky
tests are symptoms of the same underlying problem, which
developers can use to prioritize their debugging efforts.

IV. EXPERIMENTAL METHODOLOGY
A. Modules Used in Our Study

To investigate our research questions, we use open-source
code from the iDFlakies dataset [30]. We obtained this dataset
in our previous work with the iDFlakies tool, which detects
flaky tests by perturbing the execution order of test methods
(not just test classes) across repeated test-suite runs and
marking tests that both pass and fail in various runs as flaky.
Due to the perturbing of test order, many tests that iDFlakies
detected are OD tests, i.e., they pass or fail deterministically
depending on which other tests have (not) run before them in
the test suite.

The iDFlakies dataset [30] consists of Java projects that use
the Maven build system [28]. Maven organizes projects around
modules, so we present our analysis in terms of modules. We
do not use all modules (111) from the iDFlakies dataset for
our study, because we focus on NOD tests, and iDFlakies
detected NOD tests in only 62 modules (and only OD tests
in the other 49 modules). We focus on NOD tests because

TABLE II
STATISTICS FOR THE MODULES WHERE WE DETECTED SOME FLAKY TEST BY FIRST RUNNING ENTIRE TEST SUITES (TSO) AND THEN

RUNNING THE FLAKY TESTS DETECTED BY TSO IN ISOLATION (ISO); ’=’ INDICATES VALUE SAME AS IN THE CELL TO THE LEFT.
test # # flaky tests TSO failure rate [%] ISO rate [%]

MID | Project slug - Module methods | classes TCOs TSO | ISO TSR min | max sum min max
Ml alibaba/fastjson 4464 2079 21 6 0 7.7 0.1 5.0 15.2 n/a *n/a
M2 apache/incubator-dubbo - m1 14 7 21 3 1 0.9 0.1 0.5 0.9 0.3 =
M3 -m2 66 15 21 9 0 10.6 0.1 | 10.0 20.7 n/a n/a
M4 c2mon/c2mon - m1 125 18 21 1 0 <0.1 = = = n/a n/a
M5 -m2 10 2 2 2 2 1.6 0.4 1.2 1.6 1.0 1.1
M6 codingchili/excelastic 12 4 12 1 0 114 = = = n/a n/a
M7 davidmoten/rxjava2-extras 390 48 21 3 2 0.2 0.1 0.1 0.2 <0.1 <0.1
M8 elasticjob/elastic-job-lite 502 89 21 1 0 2.5 = = = n/a n/a
M9 espertechinc/esper 2 2 1 1 1 3.0 = = = 3.7 =
MI10 feroult/yawp 1 1 1 1 1 1.6 = = = 24 =
M1l flaxsearch/luwak 202 37 21 2 2 1.0 0.3 0.8 1.0 58.6 68.2
M12 | fluent/fluent-logger-java 18 5 17 6 0 1.8 0.1 1.8 5.2 n/a n/a
M13 | javadelight/delight-nashorn-sandbox 79 35 21 3 2 14 | <0.1 0.7 14 4.2 57.1
MI14 | kagkarlsson/db-scheduler 51 18 21 8 1 0.3 0.1 0.3 1.1 0.9 =
M15 looly/hutool 7 2 2 1 1 0.1 = = = 1.5 =
MI16 | nationalsecurityagency/timely 144 32 21 4 4 2.8 1.3 2.8 9.5 1.3 3.0
M17 | oracle/oci-java-sdk 62 8 21 1 1 <0.1 = = = <0.1 =
M18 | orbit/orbit 20 8 21 1 1 0.1 = = = 0.2 =
M19 | OryxProject/oryx 92 19 21 1 1 0.8 = = = 1.0 =
M20 | spinn3r/noxy 3 1 1 3 0 50.0 | 49.0 | 50.0 | 100.0 n/a n/a
M21 square/retrofit - ml 80 15 21 5 0 14 | <0.1 0.5 1.4 n/a n/a
M22 - m2 297 10 21 1 1 0.1 = = = 0.2 =
M23 | TooTallNate/Java-WebSocket 145 22 21 32 24 30.1 | <0.1 5.1 46.0 <0.1 16.6
M24 | wrodj/wrodj 308 64 21 9 3 1.3 0.1 0.7 2.0 0.3 0.4
M25 wso2/carbon-apimgt 2 1 1 1 1 0.1 = = = 0.1 =
M26 | zalando/riptide 33 12 21 1 1 10.9 = = = 39.1 =
Total / Average 7129 2554 415 107 50 5.4 3.2 4.2 9.1 6.4 10.9

many past studies of flaky tests focused on OD tests [16], step1:

[19], [20], [21]. We find that only 48 of the 62 modules could ~ #****=*

be compiled “out-of-the-box” (i.e., Maven could not download 1 e #TCOs <= 21

some dependencies for these 14 modules), and for 44 of the 48 :t;;g;es_m

modules we could run the test suite 4000 times (i.e., the test)
. . . . Stepid: | olo ooo [TSR: 1 J_._[TSR:WO J e ana

suite deadlocks) and easily control the order in which Maven #TSRs=4000

Surefire [29] runs test classes (i.e., the module uses Maven
Surefire version 2.7 or higher).

B. Configurations in Our Study

To obtain the flaky tests for our study, we run tests in two
different configurations:

o Test Suite (TSO): run the entire test suite using the default
mvn test. The order of the tests may differ. We call one
run of the test suite in any order a test-suite run (TSR).

e Isolation (ISO): run each individual test in its own JVM
using mvn test -Dtest=TestClass#testMethod.

We run TSO and ISO 4000 times each to balance the chance
to detect flaky tests and the machine time used for our
experiments. In total, our experiments used 2148 hours (~90
days) of CPU time. To the best of our knowledge, this is the
largest number of runs in any published study of flaky tests.
We ran our experiments on Microsoft Azure [35] using the
Standard_D11_v2 virtual machines with 2 CPUs, 14 GB of
RAM, and 100 GB of hard-disk space each.

C. RQI and RQ2: Failure Rate and Burst Length

To answer RQ1 and RQ2, we obtain and compare failure
rates (defined in Section I) and maximal burst lengths (intro-
duced in Section II-B) of flaky tests across all TCOs (RQI)

Fig. 2. Overview of running test suites to obtain flaky tests in our study.

and across different TCOs (RQ2). Of the 44 modules from
Section IV-A, we find at least one flaky test in 26 modules
when they are run in TSO. Table II shows the statistics of
these 26 modules. Figure 2 shows an overview for how we
run the test suites to collect our dataset.

1) Test-Class Orders (TCOs): For each module, we run
Maven Surefire (i.e., mvn test) with (1) no changes to the
build configuration pom.xml files (except M26’s pom.xml to
make its tests run sequentially)—these runs commonly yield
different TCOs needed to answer RQ2; and (2) a change to
run all test classes in a sorted order (reverse alphabetical of
their class names)—to ensure we get many runs of at least
one order. We run each of (1) and (2) for 20 batches, where
each batch runs exactly 100 test-suite runs (7SRs) in a fresh
virtual machine (VM). Overall, we have exactly 40 batches
and consequently, 4000 TSRs per module.

For (1), Surefire determines a TCO based on file system
specific properties, and because we run each batch in its own
VM, the TCOs across batches likely differ, resulting in up
to 20 TCOs from (1) and 1 TCO from (2). Consequently,
the number of TCOs ranges from 1 to 21, each of which is

run between 1 and 40 batches. For modules with 3 or fewer
test classes, we cannot obtain 21 TCOs because the maximum
number is 6 (3!). Even for modules with 4 or more test classes,
we can still obtain fewer than 21 different TCOs because
Surefire can return the same TCO across different VMs (which
happened for two modules: M9 and M12). Table II shows the
exact number of TCOs' that we obtained per module.

We design our experiment to use multiple batches with 100
TSRs per batch rather than (1) just one batch to run all 4000
TSRs, or (2) 4000 batches, each with just one TSR. Compared
to (1), our design helps with cases where a test may deadlock
in a batch (i.e., we would only need to rerun one small batch).
Compared to (2), our design helps by controlling machine cost
and providing control over the number of TSRs for each TCO
(which we use to calculate failure rates for RQ2).

To automatically determine whether a NOD flaky test is
likely NDOD or NDOI for RQ2, we use (1) the ratio of TCOs
that have at least one failing TSR, and (2) a statistical test of
whether failure rate differences across TCOs are significant
or not. As multiple batches can execute the same TCO, the
number of TSRs can differ across TCOs. To exclude effects
of these differing numbers, we test whether the proportions of
test failures among test runs differ significantly across TCOs,
specifically using the x? test (implemented by the prop.test
function in R). We use the resulting p-values of the test and
a level of 0.05 to determine significance.

2) Flaky Tests: In total, we detected 107 flaky tests in 26
modules. Compared to iDFlakies, which detected 124 flaky
tests in these 26 modules, 64 tests are in common with our 107
tests, 60 tests are detected only by iDFlakies, and 43 tests are
detected only by our runs. In 18 modules where we did not de-
tect any flaky test, iDFlakies detected 40 NOD tests. We detect
some more flaky tests than iDFlakies, because the iDFlakies
study ran most test suites 100 times, while we run them 4000
times. We detect some fewer flaky tests than iDFlakies because
of three reasons: (1) iDFlakies uses a custom Maven plugin
that does not respect some configuration options from Surefire,
e.g., exclude and runOrder; (2) iDFlakies does produce
false alarms, e.g., it may even run test methods annotated with
@Ignore [36], which should be skipped; and (3) iDFlakies
can randomize not just the test-class order but also the test-
method order. These features of iDFlakies have been designed
to maximize the number of potentially flaky tests it can detect,
while our study aims to more closely understand actual flaky
tests in developers’ typical test-suite runs.

D. RQ3: Reproducing TSO Failures in I1SO

RQ3 evaluates how likely one can reproduce flaky-test
failures observed from TSO runs by running the tests in ISO.
We obtain the data for this RQ by running each test detected as
flaky in TSO runs for 4000 times in ISO. Specifically, we run

'The test-method order may differ even when the TCO is the same.
Specifically, for modules using JUnit versions 4.11 or higher, the test-method
order would be the same for any test class regardless of the TCO. From the
modules in Table II, only M12 and M13 use a version of JUnit that is lower
than 4.11 and exhibit different test-method orders for at least one test class.

each of 107 tests detected from TSO runs in 40 batches with
each batch running the test 100 times. We then analyze the
number of flaky-test failures one can reproduce in ISO, and
how the failure rates and burst lengths of these tests differ
between TSO and ISO runs.

E. RQA4: Effect of Flaky Tests on TSRs

RQ4 considers how often a TSR has at least one failing flaky
test. We obtain the data for this RQ from TSO runs. Table II
shows the minimum, maximum, and sum of the failure rates
for the flaky tests in each test suite. From these failure rates
we can derive the bounds for the TSR failure rate, i.e., the
ratio of TSRs with at least one flaky-test failure. The minimum
TSR failure rate is the maximum failure rate across all flaky
tests in the test suite—if all flaky tests are dependent, the
TSR failure rate equals the maximum of the failure rates. The
maximum TSR failure rate is the sum of the failure rates for
all flaky tests in the test suite (up to 100%)—if all flaky tests
are independent, the TSR failure rate equals the sum of the
failure rates. We investigate the TSR failure rates observed
in our experiments and compare how often these failure rates
equal the minimum or maximum potential TSR failure rates.

V. RESULTS

We next present the results for our four research questions.

A. RQI: Overall Failure Rate and Burst Length

Table II shows for each module, the number of detected
flaky tests (columns TSO and ISO) and the flaky tests’
minimum, maximum, and sum failure rate—the ratio of runs
in which the flaky tests fail. The failure rate indicates (1) how
much of a problem the flaky test is for developers, (2) how
likely it is that a developer observed it as a flaky test, and
(3) how difficult it is to reproduce the flaky-test failure for
debugging. For (1), the failure rate would ideally be close
to 0, so that the test rarely affects developers. For (2), the
failure rate would ideally be close to 50%, giving the same
probability to observe both passing and failing runs, which is
what dynamic flaky-test detection tools use to classify a test as
flaky. For (3), the failure rate would ideally be close to 100%,
so that the failures are reproducible for debugging.

For the 107 flaky tests that we detect in TSO, the (arith-
metic) mean failure rate is 2.7%, with the minimum of 0.025%
and the maximum of 50%. The mean is heavily affected by
7 tests (listed in Table III) with failure rates of >10%; in
contrast, over 85% of the flaky tests have a failure rate lower
than the mean, resulting in the overall median below 0.5%.
These failure rates indicate that the majority of the flaky tests
detected with mvn test rarely affect developers; indeed, if
the failure rates were rather high, the developers would have
probably rewritten or removed the tests. These failure rates
also indicate that the flaky tests are difficult to detect and
even more difficult to debug without specialized tools.

If test failures are temporally correlated and tend to occur
in consecutive reruns with large burst lengths, they appear
more deterministic to developers and may mislead them in

100% r

75%

50%-

25%-

Cumulative Fraction Across Tests

0% =
0510 20 40 60 80 100
Maximal Test Failure Burst Length

Fig. 3. Distribution of maximal burst lengths across 107 tests for TSO.

their conclusions regarding the root cause of the failure. Large
burst lengths also hamper flaky test detection, because they
require more reruns before a pass result can be observed and
the test is marked as flaky. However, consecutive failures of
flaky tests can be beneficial for debugging, because failures
can be consecutively observed after the first failure.

Figure 3 shows the cumulative distribution function (CDF)
of maximal burst lengths we observed across all test reruns.
The number cannot exceed 100, because each batch executed
100 TSRs. We discuss the maximal burst length, rather than
the average, to obtain a worst case estimate of the negative
impact of flaky tests. The CDF reaches a first plateau at 90.6%
for a burst length of 7, which means that over 90% of flaky
tests in our study failed at most 7 times. Even a burst length
of 5 already has 87.8% of tests. The later increases are for two
tests with a maximal burst length of 49, one of 50, and seven
OD tests of 100. (Of these seven tests, four are in M1 and fail
in all ISO runs, so strictly considering only their ISO failure
rate of 100%, they would be marked as always failing and not
flaky in ISO, even if they are flaky in TSO—we mark this
with “** in the table.) Thus, the commonly used number of
ten reruns by Google [6] to detect flaky tests does not appear
well justified: after one failure, 87.8% of tests can be found
to pass in 5 reruns, with minor increases at 6 and 7 reruns.
The remaining tests require many more than ten reruns.
Guideline: When rerunning tests after failures to check if they
are flaky, our results suggest < 5 reruns.

B. RQ2: Effect of Order on Failure Rate and Burst Length

We next consider how the previous results vary across test-
class orders (TCOs) for each test. To analyze this variability,
we exclude 9 tests with too few TCOs (6 tests with one TCO
and 3 tests with two TCOs), giving us a total of 98 tests.

We first consider failing TCOs, which have at least one
failing run. For each test we count the number of failing TCOs
and divide it by the total number of TCOs. If the ratio of failing
TCOs is low, then the distribution of failures across TCOs is
not uniform. Figure 4 shows a boxplot for the ratio of failing
TCOs with a minimum of 4.8% (1 out of 21), maximum of

Ho] |

1
0% 20% 40% 60% 80% 100%
Fig. 4. Ratios of failing TCOs for 98 tests with more than 2 TCOs.

3% o
o
5 o
=] o
o
3 2%
£
P o
e
s o
~ 1%- o o o 0o ©©
— O o o (0]
S
‘©
w oo ®
Soo
o o oo o
1% 2% 3%

Failure Rate in Test Suite

Fig. 5. Failure rates in TSO and ISO for 80 tests that TSO detected, with
both rates < 3%; details of the other tests are in Table III.

90.5% (19 out of 21), median of 19%, and interquartile range
of 10% to 48%. From the skew in the distribution, TCOs do
affect test failures often. The failures appear in a small ratio of
the TCOs for a vast majority of tests. In fact, for 75% of tests,
more than half of their TCOs have no failures, which would
be unexpected if the failures were independent and uniformly
distributed across TCOs. Our manual inspection (Section VI)
finds some tests that are definitely OD, NDOD, and NDOI,
and the ratio of failing TCOs for these categories is 4.8%—
19%, 4.8%-58.3%, and 66.7%, respectively. A higher ratio
indicates that a test may be NDOI.

We also conduct a x? test of independence to identify
significant differences in failure rates across different TCOs.
Out of 98 tests, 70 have a p-value lower than 0.05. For these
tests, the null hypothesis that the failure rates per TCO are the
same is rejected. Their failure rates significantly differ across
TCOs, and they are likely NDOD. For the remaining 28 tests,
the null hypothesis cannot be rejected: while there is no clear
evidence that the tests are NDOD, it does not necessarily imply
that the tests are NDOI, as we show in Section VI-B3.

We finally consider differences of the maximal burst length
across TCOs for each test. We observe that 23 out of 107
tests fail in only one order. We consequently exclude these
from our analysis of differences across failing TCOs. Of the
remaining 84 tests, 52 have an identical maximal burst length
across all TCOs, which is 1 (i.e., no consecutive failures) for
48 tests and 100 (i.e., all repetitions fail) for 4 tests. As we
discuss in Section VI-A, the latter tests are confirmed to be
OD tests by our manual inspection. Of the remaining 32 tests,
the maximal burst length alternates between 1 and 2 for 21
tests and varies by small numbers (1-3, 1-4, 1-7, 2-6, 3-5,
3-6) for the remaining 11 tests.

Guideline: We find that a lot of tests may be NDOD; to detect
them, it is better to run tests in more TCOs with fewer times
each than in fewer TCOs with more times each.

TABLE III
27 TESTS WITH > 3% TSO OR ISO FAILURE RATE.

Failure rate [%]
MID | Test name TSO ISO
Ml Issuel298.test_for_issue_1 5.0 *100.0
Ml Issue1298.test_for_issue 5.0 *#100.0
Ml DefaultExtJSONParser_parseArray.test_7 2.5 *100.0
Ml DefaultExtJSONParser_parseArray.test_8 2.5 *100.0
M3 PortTelnetHandlerTest.testListAllPort 10.0 0.0
M3 PortTelnetHandlerTest.testListDetail 10.0 0.0
M6 TestWriter.shouldWriteToElasticPort 11.4 0.0
M9 TestLRMovingSimMain.testSim 3.0 3.7
M1l TestParallelMatcher.testParallelSlowLog 0.3 58.6
Mil11 TestPartitionMatcher.testParallelSlowLog 0.8 68.2
M13 TestGetFunction.test 0.7 4.2
M13 TestMemoryLimit.test_no_abuse 0.6 57.1
M20 | ZKTest.testBulkClusterJoining 49.0 0.0
M20 | ZKTest.testDiscoveryListener 49.0 0.0
M20 | ZKTest.testMembershipJoinAndLeave 50.0 0.0
M23 Issue256Test.runReconnectBlocking...9 3.2 0.5
M23 Issue256Test.runReconnectScenarioQ 5.1 16.5
M23 Issue256Test.runReconnectScenariol 1.6 16.5
M23 Issue256Test.runReconnectScenario2 1.2 15.9
M23 Issue256Test.runReconnectScenario3 1.6 16.1
M23 Issue256Test.runReconnectScenario4 1.6 15.8
M23 Issue256Test.runReconnectScenario5 1.6 16.6
M23 Issue256Test.runReconnectScenario6 1.9 15.3
M23 Issue256Test.runReconnectScenario7 1.9 14.9
M23 Issue256Test.runReconnectScenario8 2.7 16.3
M23 Issue256Test.runReconnectScenario9 2.3 15.7
M26 RetryAfterDelay... Test.shouldRetry...Date 10.9 39.1

C. RQ3: Reproducing TSO Failures in ISO

After encountering a test failure from running a test suite
(TSO), developers are likely to debug the test by running it in
isolation (ISO), because ISO runs faster. However, it is unclear
how many flaky tests can be reproduced in ISO. Moreover,
even when both TSO and ISO detect a test, the failure rates
in TSO and ISO can greatly differ, as shown in Figure 5 and
Table III. The figure shows a scatterplot for the 80 tests where
both failure rates are below 3%, and the table lists the actual
failure rates for the other tests.

From Table II we see that ISO detected only 50 of the 107
tests that TSO detected, despite both having the same number
of runs (4000). That is, ISO did not detect 57 tests by itself,
but note that four tests from M1 (shown in Table III) do have
failing runs in ISO—in fact, these are OD tests that failed for
all ISO runs (marked with “*’ in the table)—but because they
have no passing runs, we do not consider them detected in
ISO. The difference in the number of detected tests already
shows that reproducing passing and failing runs in TSO and
ISO can greatly differ. Failure rates can also differ: of the 50
tests that ISO detected, 19 tests have their failure rates lower
for ISO, 3 have it equal, and 28 have it higher. For the tests
where the ISO failure rate is lower, the maximum and median
difference is 2.6pp and 0.6pp, respectively. For the tests where
it is higher, the maximum and median difference is 67.4pp and
7.4pp, respectively. We analyze in detail some of the tests with
large differences in Section VI

Because the observed failure rates are based on a sample
of runs, we also perform statistical tests to check whether the
differences are statistically significant. We conduct a paired

100%-+

75%+

50%-

25% Test Run Configuration
— TSO

I1SO

Cumulative Fraction Across Tests

0%

0510 20 40 60 80 100
Maximal Test Failure Burst Length
Fig. 6. Distribution of maximal burst lengths across 50 tests for TSO & ISO.

Wilcoxon signed-rank test and a Kolmogorov-Smirnov (KS)
test on the failure rate distributions obtained in our experi-
ments. We chose the Wilcoxon signed-rank test because (1)
it is based on a pair-wise comparison of the failure rate for
individual tests, rather than an overall statistic on the failure
rate distribution; and (2) it intuitively captures how often
either TSO or ISO yields a higher failure rate, weighted by
the rank of the difference magnitude. By mapping the actual
magnitude of the difference to a rank, the test statistic is
robust to outliers in the differences of failure rates. On our
dataset, the test results in a p-value of 0.041. Therefore, the
difference between the observed failure rates for TSO and ISO
test executions is significant at the 0.05 level. However, the
Wilcoxon test’s mapping to ranks loses information on the
magnitude of difference, which is captured by the CDFs on
which the KS test is based. For our dataset, the KS test results
in a p-value of 2.9 x 10712, which strongly rejects the null
hypothesis that the samples come from the same distribution.

We also compare the maximal burst length for TSO and ISO
runs. Figure 6 shows the CDFs of the maximal burst length
per test for all tests detected by both TSO and ISO. From
the plot, we observe that TSO reaches 82% for a maximal
burst length of 2 test failures. However, for ISO the maximal
burst length tends to be longer, e.g., ISO would reach 82%
for a maximal burst length of 5 test failures instead. Due to
the larger maximal burst length for ISO test executions, if one
aims to find whether a test can pass, it could be beneficial to
rerun failing tests in their test suites rather than in isolation,
especially when the number of tests in the test suite is low.
While rerunning in isolation has the advantage of reducing
test runtime to an individual test, it entails the overhead for
a potentially longer burst length before a passing run can be
observed. In contrast, if one aims to get a failure, e.g., for
debugging, it appears more beneficial to run the tests in ISO.

Guideline: We find that 53% of flaky tests detected in TSO
runs are not detected in ISO runs. We also find that the
maximal burst length tends to be longer for ISO than for TSO,
which suggests that developers debugging flaky tests should

run the tests in ISO. Dually, to detect flaky tests, running tests
in TSO tends to be better because the smaller burst length is
more likely to lead to a passing and failing run in fewer TSRs.

D. RQ4: Effect of Flaky Tests on TSRs

Whether developers can merge their recent changes to a
project typically depends on whether the entire test suite passes
or not with their recent changes. Even one flaky-test failure
from a test-suite run (TSR) would prevent the developers from
merging their recent code changes. Whether a TSR would fail
due to flaky tests depends on the number of flaky tests in the
test suite, the failure rate of each flaky test, and how related
the flaky tests are with one another. For example, a test suite
with 4000 runs that has two flaky tests that each fail 20 times,
will have a minimum of 20 TSRs that fail (with exactly two
failures per failed TSR) and a maximum of 40 TSRs that fail
(with exactly one failure per failed TSR).

We study the TSR failure rates and how they relate to indi-
vidual test failure rates to understand how often (1) developers
would encounter TSR failures and (2) failures of different flaky
tests are related to one another. Table II shows the actual TSR
failure rate we obtained across all 4000 TSRs. Overall, we
find that developers encounter TSR failures between <0.1%
(only one TSR failed for M4 and M17) to 50% (2000 TSRs
failed from M20). On average, developers would encounter a
TSR failure in 5.4% of TSRs.

From Table II we can also see that 12 modules have only

one flaky test detected, so their minimum, maximum, and sum
failure rate is the same as the TSR failure rate. For the other
14 modules, we find that the TSR failure rate is the same as
the maximum failure rate for 21% (3 / 14) of modules (M12,
M16, M20). Thus, the flaky tests in these modules are related
to one another (i.e., when one fails, more also fail). When we
manually investigated M20’s three flaky tests, we do indeed
find that two tests always failed together, and the third test
fails with them, but the third test fails in one more run and is
responsible for M20’s maximum failure rate. Specific details
of these tests are in Section VI-B1. We further find that the
TSR failure rate is the same as the sum failure rate for 43%
(6 / 14) of modules. Thus, the flaky tests in these six modules
are likely independent of one another (i.e., they always fail
separately). For the remaining 36% (5 / 14) of modules, the
TSR failure rate is in between the potential minimum and
maximum TSR failure rates, suggesting that their flaky tests
are a mix of related and independent flaky tests.
Guideline: At least 21% and up to 57% of test suites with
multiple flaky tests have flaky tests related to one another, so
flaky-test management systems [24], [32] could present the
related flaky-test failures to help developers prioritize which
tests to fix, e.g., first fix flaky tests that are related.

VI. MANUALLY INSPECTED FLAKY TESTS

To better understand flaky tests, we manually inspected the
root causes of flakiness for a number of tests. We selected
a variety of tests from different modules, including NOD
and OD tests, tests with high TSO or ISO failure rates, and

tests with high and low Y2 p-values for failure rates across
TCOs. Inspecting the first flaky test of a new test class takes
about a day on average. In sum, we inspected 28 tests and
found 7 OD, 14 NDOD, 4 NDOI, and 3 more NOD that are
difficult to confirm as NDOD or NDOI. We found that low p-
values properly mark NDOD tests, but high p-values may not
be NDOI tests, especially for tests that have a small overall
number of test failures across all TCOs.

A. OD Tests

While this paper aims to study NOD tests, our experiments
did encounter 7 tests categorized as OD, i.e., the failure rate for
each TCO was either 0% or 100%. Our inspection confirmed
that all these tests are indeed OD. 5 tests were already
fixed [37], [38], [39] as part of our iFixFlakies work [21]; note
that the iDFlakies dataset used in our experiments has older
commits, not the latest master. Note also that the iDFlakies
study [20] detected many more OD tests in the modules used
in our experiments, because the iDFlakies tool perturbs the
order of all test methods in a test suite, whereas our use of
mvn test only perturbs the order of some test classes. The
remaining 2 tests had not been fixed, so as a contribution of
this work we provided a pull request [40] that the developers
already accepted.

B. NDOD Tests

1) High TSO Failure Rate: Table III lists three tests that
have a much higher failure rate for TSO than for ISO. All
three tests are from the module M20 and class zKTest. Our
inspection shows that all three tests fail for the same reason.
These tests check certain network operations, which require
obtaining a port number. All three tests share the same port
numbers, and when they use a port, they mark that by creating
a file in the /tmp directory, which is never deleted. The test
code allows these tests to use 152 different ports. As a result,
after all three tests are run 50 times each, they mark 150 ports,
and so at the 51st run two tests will pass and then one will
fail, while from the 52nd run all three will start failing. In fact,
these failures are deterministic. Strictly speaking, the tests are
still NDOD because they both pass and fail for the exact same
test order in TSO. In contrast, none of the tests fails in ISO.
The reason is that we run each test 100 times on one virtual
machine (VM) and then allocate a fresh VM for the next 100
runs. (Depending on the CI system, developers may also not
encounter these failures, e.g., Travis [41] uses a fresh VM for
every TSR.) Thus, each test marks only 100 ports in its 100
runs and does not reach the 152; had we run the test in ISO
for 153 or more times on the same VM, we would have also
encountered failures. These examples illustrate that running
multiple tests can, in some circumstances, have a higher failure
rate than running only each test in isolation.

2) High ISO Failure Rate: Table III also lists three tests
that have a much higher failure rate for ISO than for
TSO. Two of the tests are from the module M11, classes
TestPartitionMatcher and TestParallelMatcher. It
turns out that both are subclasses of an abstract class that

defines the method testParallelSlowLog. Both tests fail
in some isolation runs, and the exception message indicates
that some transaction was too slow. These tests run three
transactions each, and fail when one of them takes too much
time. The transactions take much longer in ISO runs than
in TSO runs for the following reason. Each transaction is
executed in a thread. In TSO runs, a previous test creates
threads and caches them, so a later test can run quicker by
reusing the created cache. In fact, testParallelSlowLog
uses an API call that checks the cache prior to creating threads.
However, in ISO runs, this test always creates a thread and
then runs the transaction. As a result, the test fails much more
often in the ISO runs.

Another test is from the module MI13, class
TestMemoryLimit. This test fails when some resource
bound is exceeded. Specifically, the project provides a
sandbox for executing JavaScript in Java, and this test checks
that some execution of a JavaScript program does not exceed
a certain amount of memory. The memory check does not
consider the entire heap but only the amount of memory
allocated by the thread that the test executes. When the test
runs in isolation, it allocates all the memory and fails often,
but not always, as the memory check is done every 50ms.
Therefore, the test may pass the memory check at one point
and then finish in less than 50ms, despite going over the
memory limit after the check. When the test runs in the test
suite, another test runs before it and allocates many shared
objects. Thus, the second test can use these shared objects
from the heap and allocates less, so it fails much less often.

These examples illustrate how running tests in isolation can
fail more often than running in the test suite because the
test depends on some resource (shared memory, runtime) that
can benefit from the tests that run before this test. However,
running a test after others in a test suite could also negatively
impact the test. In general, we cannot tell a priori whether
running a test after others would be beneficial or hurtful. For
example, consider just the runtime. A test may run faster after
others because others can prepare shared state such as (1)
load classes needed for test execution so the test in question
need not reload those classes; (2) execute shared code and
trigger JIT compilation so that the execution of the test in
question executes optimized code; or (3) bring files from disk
into memory so it becomes faster to access for the test in
question. On the other hand, a test may run slower after others
because others can put some pressure on the shared resources,
e.g., (1) allocate memory so that garbage collection takes more
time; (2) spawn threads that are not shut down so that the test
in question has to compete with the other threads; (3) create
I/O requests (e.g., write to disk or send network packets) so
that the requests from the test in question take more time, etc.

3) High x? p-Value: We finally discuss two example tests
that have high p-values but our inspection still finds the failures
to depend on the test order. One test is from the module M15,
class CronTest. The test creates a pattern matcher for time
which itself calls DateUtil.date () .second () to initialize
the matcher. The test also explicitly creates another time object

calling DateUtil.current (false) to be matched with the
matcher. Both calls get milliseconds and translate them into
seconds, minutes, hours, and dates. The test fails if the two
calls have a different value for seconds. The two calls are
executed nearby, so the chance is small that the first call
is executed right at the end of one second interval and the
second call right at the start of the next second interval. The
probability for the test to fail depends on how much time it
takes between the two method calls. In our experiments, this
time is ~15ms for ISO runs, i.e., the test fails if the first call
gets milliseconds that modulo 1000 give values 985-999, so
the test fails in ~15/1000=1.5% of runs. In contrast, the code
runs faster in TSO (due to the already discussed effects of class
loading and JIT compilation), so the test fails less frequently,
only ~1/1000=0.1% of runs. Moreover, the failure rates differ
across the two test orders: in one order this class runs second,
and the test never fails; in the other order the class runs first,
so the test can fail but still less frequently than in ISO because
other test methods run before this test.

Another test is from the module M13, class Test Issue34.
It is similar to the previously discussed M13 test and fails if
a memory limit is exceeded. The test takes more memory in
ISO than in TSO, as expected. Our additional experiments,
after 4000 TSRs, show the test takes 840-900K in ISO runs,
and 510-630K in TSO runs (when run late in a TCO). The
limit is 1000K, so one may expect the test to more likely fail
in ISO than in TSO. However, in 4000 runs, the test exceeded
the memory limit in one TSO run but never in ISO. Because
of the small number of failures, the p-value is high, yet the
test manifestly depends on the order and is an NDOD.

4) Others: One test is already explained in Section II.
Due to space limits, we omit descriptions of 5 tests:
from M6 is flaky because of timeout,
CompletableThrowingSafeSubscriberTest,

TestWriter
whereas
CompletableThrowingTest, and SingleThrowingTest
from M21 and Issue621Test from M23 are flaky because
of concurrency.

C. NDOI Tests

Tests that have similar failure rates across TCOs in TSO
(and also similar in ISO) are likely NDOI. We inspect sev-
eral tests with high p-value. All four tests from the mod-
ule M16, class TimeSeriesGroupingIteratorTest, are
NDOIL. These tests have (1) for each test, similar failure rates
in the TSO and ISO runs; and (2) across all tests, similar
TSO failure rates and similar ISO failure rates. In fact, many
of these tests often fail together in the test suite (thus the
TSR failure rate for their module is the same as the maximum
TSO failure rate for individual tests). Furthermore, in our
experiments, we find that each test fails in bursts, whether
in TSO or ISO, i.e., a test fails 3—4 times in a row (if it fails
in 100 runs at all).

The error message does not hint at the root cause but
says that some averages of numeric values differ in two data
structures. Our inspection shows that all of the tests populate
these data structures with random numbers, and the random

seed is based on the current time. The time is taken in
milliseconds and translated into seconds, minutes, hours, and
the date. A careful analysis of testTimeSeriesDropOff
and testMultipleTimeSeriesMovingAverage shows that
they fail when the time seed translates into the range of
approximately 58min:20sec to 59min:55sec (for any hour
or date); if a test is run earlier or later, it passes. (The
reason is that each test initializes the two data structures
based on the time using offsets of 5sec and 100sec.)
Most precisely, in each hour there are 95000 millisec-
ond values for which each test fails, so assuming that
each test can be run uniformly for any millisecond, each
test is expected to fail in 95000/(60*60*1000)=2.64% of
runs. In our experiments, the tests indeed have simi-
lar failure rates: 2.95% in ISO and 2.72% in TSO for
testTimeSeriesDropOff, and 2.80% in ISO and 2.72%
in TSO for testMultipleTimeSeriesMovingAverage.
The other two tests, testManySparseTimeSeries and
testAdditionalTimeSeries, behave similarly.

Abstracting from the details, these tests show some example
NDOI tests that do not depend on the test order but depend
only on the time when they are run. Such tests that absolutely
do not depend on the order appear to be rather rare.

D. NOD Tests Difficult to Classify

We inspected three NOD tests that are difficult to classify
as NDOD or NDOI. We selected these tests based on high
p-values (e.g., one test has p-value of 1), but some have a low
number of failures (e.g., one test fails twice in 2000 TSRs of
one TCO but does not fail in 100 TSRs for any of the other 20
TCOs). The root cause for all three tests is concurrency [42].

Two tests are from the module MS5, class
RepublisherImplTest. Both tests have a concurrent
order violation. Effectively, each test has two threads with
a shared map object that has one element before one thread
calls toBePublished.remove (event), while another
checks assertEquals (0, toBePublished.size()). If
the execution switches from one thread to the other at a
particular point, the test fails with expected:<0> but
was:<1>. We can get each test to reproducibly fail if we add
some delay at that point. Developers likely encountered these
problems before as both tests have commented sleep (2000).
In fact, the message for one commit that commented out that
sleep is ”Speed up tests ...”; while the tests may run faster,
they became (more) flaky. Unfortunately, reasoning about the
probability that a test run with two threads makes a context
switch at exactly some point is rather challenging, so we
cannot precisely determine if these tests are NDOD or NDOI.

Another test is from module M14, class WwaiterTest. This
test creates one thread that executes lock.wait (millis).
The main thread has Thread.sleep (20) and then effectively
calls lock.notify (). However, if notify is called before
wait, the signal is missed, and wait would block forever if
it were not for the timeout of mi11is=1000. We can make
the test to fail deterministically by adding a delay in the
right place in the code under test. We can also delete the

existing sleep (20) in the test to make it fail determinstically.
Unfortunately, reasoning precisely and analytically whether
the probability that notify is missed due to TCO is again
rather challenging because it requires determining the exe-
cution times of various events controlled by the JVM. As
discussed in Section V-B, an empirical approach would be to
just run the tests many more times to observe more failures and
use a statistical analysis to check failure rates across TCOs.

VII. THREATS TO VALIDITY

A threat to validity is that our study uses only 26 modules
from 23 Maven-based, Java projects. These modules may not
be representative, causing our results to not generalize well.
We attempt to mitigate this threat by using modules from
iDFlakies [30], selecting them as described in Section IV-A.

As our study is on flaky tests, particularly NOD tests, it is
likely that some specific numbers (e.g., number of NOD tests
or failure rates) would change if the tests were run more times
or on different machines. We attempt to mitigate this threat by
running every test suite 4000 times in 40 batches, and every
TCO at least 100 times. For every flaky test found by TSO,
we again run it 4000 times in isolation. To the best of our
knowledge, this is the largest number of runs in any published
flaky test study. We also manually inspect 28 tests to check
the root cause and categorization in Section VI

The findings from our RQs in Section V may be influenced
by the types of statistical tests that we used to interpret the
data. We attempt to mitigate this threat by considering two
statistical tests for RQ3 (Section V-C). We also make all data
and scripts that were used to generate the plots and figures in
our paper publicly available on our website [31] so that others
may interpret the data however they see fit.

VIII. CONCLUSION

Flaky tests are caused by various sources of non-
determinism, and the research community can benefit from
multiple studies to understand flaky tests and develop new
solutions for them. Several studies of flaky test have keyed
on one group of flaky tests, order-dependent tests. We show
that the other group, called “non-order-dependent” tests, also
has many tests that actually do depend on the test order,
sometimes in complex ways. These tests have significantly
different failure rates in different test orders and in isolated
runs. To capture the complexity of these tests, we propose
the term non-deterministic, order-dependent (NDOD) tests. We
manually inspect a number of flaky tests to show concrete,
real-world examples. We hope that our study motivates more
researchers to tackle this practically important problem.

ACKNOWLEDGMENTS

We thank Anjiang Wei for helping us debug some flaky
tests, Jon Bell for extensive discussions about flaky tests, and
Tianyin Xu for sharing Microsoft Azure credits. This work
was partially supported by NSF grant nos. CCF-1763788 and
OAC-1839010, GEM fellowship, and Supplemental Summer
Block Grant (SSBG). We acknowledge support for research
on flaky tests from Facebook and Google.

[1]
[2]

[3]
[4]

[6]
[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

(17]
[18]
[19]

[20]

REFERENCES

Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in FSE, 2014.

M. Harman and P. O’Hearn, “From start-ups to scale-ups: Opportunities
and open problems for static and dynamic program analysis,” in SCAM,
2018.

J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“DeFlaker: Automatically detecting flaky tests,” in /CSE, 2018.

E. Kowalczyk, K. Nair, Z. Gao, L. Silberstein, T. Long, and A. Memon,
“Modeling and ranking flaky tests at Apple,” in ICSE SEIP, 2020.
Google, “Avoiding flakey tests,” 2008. [Online]. Available: http:
/lgoogletesting.blogspot.com/2008/04/tott-avoiding- flakey-tests.html

J. Micco, “The state of continuous integration testing at Google,” in
ICST, 2017. [Online]. Available: https://bit.ly/200hAip

C. Ziftci and J. Reardon, “Who broke the build?: Automatically identify-
ing changes that induce test failures in continuous integration at Google
scale,” in ICSE, 2017.

A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco, “Taming Google-scale continuous testing,” in /CSE SEIP,
2017.

H. Jiang, X. Li, Z. Yang, and J. Xuan, “What causes my test alarm?
Automatic cause analysis for test alarms in system and integration
testing,” in ICSE, 2017.

K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy, “The art of testing
less without sacrificing quality,” in /CSE, 2015.

W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
“Root causing flaky tests in a large-scale industrial setting,” in ISSTA,
2019.

K. Herzig and N. Nagappan, “Empirically detecting false test alarms
using association rules,” in /CSE, 2015.

“Test Verification,” 2019. [Online]. Available: https://developer.mozilla.
org/en-US/docs/Mozilla/QA/Test_Verification

Z. Gao, Y. Liang, M. B. Cohen, A. M. Memon, and Z. Wang, “Making
system user interactive tests repeatable: When and what should we
control?” in ICSE, 2015.

M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding
flaky tests: The developer’s perspective,” in ESEC/FSE, 2019.

S. Zhang, D. Jalali, J. Wuttke, K. Muglu, W. Lam, M. D. Ernst, and
D. Notkin, “Empirically revisiting the test independence assumption,”
in ISSTA, 2014.

C. Huo and J. Clause, “Improving oracle quality by detecting brittle
assertions and unused inputs in tests,” in FSE, 2014.

A. Gyori, A. Shi, F. Hariri, and D. Marinov, “Reliable testing: Detecting
state-polluting tests to prevent test dependency,” in ISSTA, 2015.

A. Gambi, J. Bell, and A. Zeller, “Practical test dependency detection,”
in ICST, 2018.

W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iDFlakies: A
framework for detecting and partially classifying flaky tests,” in ICST,
2019.

[21]

[22]

(23]

[24]

[25]

[26]
[27]

(28]
[29]

[30]
(31]
[32]
[33]

[34]
[35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “iFixFlakies: A
framework for automatically fixing order-dependent flaky tests,” in
ESEC/FSE, 2019.

W. Lam, A. Shi, R. Oei, S. Zhang, M. D. Ernst, and T. Xie, “Dependent-
test-aware regression testing techniques,” in ISSTA, 2020.

S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic,
“Detecting flaky tests in probabilistic and machine learning applica-
tions,” in ISSTA, 2020.

W. Lam, K. Muslu, H. Sajnani, and S. Thummalapenta, “A study on the
lifecycle of flaky tests,” in ICSE, 2020.

A. Shi, A. Gyori, O. Legunsen, and D. Marinov, “Detecting assumptions
on deterministic implementations of non-deterministic specifications,” in
ICST, 2016.

V. Terragni, P. Salza, and F. Ferrucci, “A container-based infrastructure
for fuzzy-driven root causing of flaky tests,” in ICSE NIER, 2020.

G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim, C. Treude, and
A. Bertolino, “What is the vocabulary of flaky tests?” in MSR, 2020.
“Maven,” 2020. [Online]. Available: https://maven.apache.org

“Maven Surefire plugin,” 2020. [Online]. Available: https://maven.
apache.org/surefire/maven-surefire- plugin

“iDFlakies: Flaky test dataset,” 2020. [Online]. Available: https:
//sites.google.com/view/flakytestdataset

“Flaky test statistics,” 2020. [Online]. Available: https:/sites.google.

com/view/flakyteststatistics
“Manage flaky tests,” 2019. [Online]. Available: https://docs.microsoft.

com/en-us/azure/devops/pipelines/test/flaky- test-management

“Flaky tests,” 2020. [Online]. Available: https://docs.gitlab.com/ee/
development/testing_guide/flaky_tests.html

“Riptide,” 2020. [Online]. Available: https://github.com/zalando/riptide
“Microsoft Azure,” 2020. [Online]. Available: https://azure.microsoft.
com

“JUnit Ignore annotation,” 2020. [Online]. Available: http://junit.
sourceforge.net/javadoc/org/junit/Ignore.html

“Pull request #2148: Fixing flaky tests in DateTest4_indian and
DateTest5_iso8601,” 2020. [Online]. Available: https://github.com/
alibaba/fastjson/pull/2148

“Pull request #2906: Fixing flaky tests in PortTelnetHandlerTest,”
2020. [Online]. Available: https://github.com/apache/incubator-dubbo/
pull/2906

“Pull request #592: Fixing flaky test ShutdownListener-
ManagerTest.assertIsShutdownAlready,” 2020. [Online]. Available:
https://github.com/elasticjob/elastic-job- lite/pull/592
“Pull request #3291: Fixing flaky tests in
Parser_parseArray,” 2020. [Online]. Available:
alibaba/fastjson/pull/3291

“Travis CI - Test and deploy with confidence,” 2020. [Online].
Available: https://travis-ci.org/

S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics,”
in ASPLOS, 2008.

DefaultExtJSON-
https://github.com/

