
©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Understanding Reproducibility and Characteristics

of Flaky Tests Through Test Reruns in Java Projects

Wing Lam

University of Illinois

Urbana, IL USA

winglam2@illinois.edu

Stefan Winter

TU Darmstadt

Darmstadt, Germany

sw@stefan-winter.net

Angello Astorga

University of Illinois

Urbana, IL USA

aastorg2@illinois.edu

Victoria Stodden

University of Illinois

Urbana, IL USA

vcs@stodden.net

Darko Marinov

University of Illinois

Urbana, IL USA

marinov@illinois.edu

Abstract—Flaky tests are tests that can non-deterministically
pass and fail. They pose a major impediment to regression testing,
because they provide an inconclusive assessment on whether
recent code changes contain faults or not. Prior studies of flaky
tests have proposed tools to detect flaky tests and identified
various sources of flakiness in tests, e.g., order-dependent (OD)
tests that deterministically fail for some order of tests in a test
suite but deterministically pass for some other orders. Several of
these studies have focused on OD tests.

We focus on an important and under-explored source of
flakiness in tests: non-order-dependent tests that can non-
deterministically pass and fail even for the same order of tests.
Instead of using specialized tools that aim to detect flaky tests, we
run tests using the tool configured by the developers. Specifically,
we perform our empirical evaluation on Java projects that rely
on the Maven Surefire plugin to run tests. We re-execute each
test suite 4000 times, potentially in different test-class orders,
and we label tests as flaky if our runs have both pass and fail
outcomes across these reruns. We obtain a dataset of 107 flaky
tests and study various characteristics of these tests. We find that
many tests previously called “non-order-dependent” actually do
depend on the order and can fail with very different failure rates
for different orders.

Index Terms—flaky tests, regression testing, reproducibility

I. INTRODUCTION

Flaky tests are tests that can non-deterministically pass

and fail in different test runs, even for the same code under

test and the same test environment that the developers can

easily control [1], [2]. Such tests are a major impediment

to regression testing, because they provide an inconclusive

assessment on whether recent code changes contain faults

or not [3] as reported by many companies, including Ap-

ple [4], Facebook [2], Google [5], [6], [7], [8], Huawei [9],

Microsoft [10], [11], [12], and Mozilla [13]. When developers

run regression tests after code changes, they expect tests that

flip the outcome, i.e., fail after the changes but passed before

the changes, to indicate faults in the changes. Unfortunately,

flaky tests can fail for reasons that are unrelated to the changes.

A common way to handle flaky tests is to rerun tests after

failures to see if they would pass. For example, Google reports

rerunning failed tests ten times [6]. However, little is known

about failures of flaky tests, making it difficult for developers

to determine an appropriate number of reruns.

Prior work [1], [14], [15] has identified various reasons for

the non-deterministic outcomes of flaky tests. These reasons

can be broadly split into two groups. One group was called

order-dependent (OD) tests [16], [17], [18], [19], [20], [21],

[22], which deterministically fail for some order of tests

in a test suite, but deterministically pass for some other

orders. The other group of reasons include timing behavior

for tests that depend on real time, concurrency for tests that

involve multiple threads, asynchronous wait for tests that

involve message passing, random seeds for tests that involve

random choices [23], unspecified order of GUI events for GUI

tests [14], I/O operations for tests that involve network or

disk operations, and more. These tests were called non-order-

dependent (NOD) [20], but we will argue that the name is

imprecise as such tests can still depend on the order.

Although some previous studies [1], [15], [24] show that

NOD tests are more frequent than OD tests, several studies of

flaky tests have focused on OD tests, proposing several tools

specialized to detect [16], [17], [18], [19], [20], automatically

fix [21], or tolerate [22] OD tests. Some example tools [16],

[20] dynamically run the entire test suite, while intentionally

randomizing the order of tests to increase the chance of

detecting OD tests. Other tools [17], [18], [19] identify which

individual tests or pairs of tests may be OD.

We believe that two key challenges have limited the amount

of in-depth work on NOD tests. The first challenge is the

machine cost for rerunning tests. Many NOD tests may fail

rather infrequently (e.g., once in 4000 test runs, as we observe

from our experiments) or only under specific circumstances, so

it takes substantial time and reruns to observe even one failure,

let alone a few failures to study when and how they occur. The

second challenge is the human cost for debugging NOD tests.

In contrast to OD tests that fail deterministically and could

be somewhat easier to reproduce and debug, NOD tests fail

non-deterministically, potentially infrequently, and can take a

lot of time to debug, especially for researchers unfamiliar with

some open-source code that has flaky tests. For example, in our

study, inspecting each new flaky test took one of the authors

about a day on average to precisely understand the root cause

of non-determinism.

Our study is organized around four main research questions

(RQs) that aim to improve our understanding of how to

rerun, detect, debug, and prioritize flaky tests. By answering

these questions, we aim to provide actionable guidelines and

practical suggestions for developers and researchers.



To perform our study, we (re)run tests using the default

test runner configured by the developers, following what

developers typically do in their development practice. In other

words, we do not use any research tools [16], [17], [18], [19],

[20], [25] or emerging approaches [26], [27] that aim to detect

flaky tests. While our procedure does miss some flaky tests, it

(1) gives a more realistic assessment of the impact that flaky

tests have on regression testing; (2) exposes flaky tests that can

be particularly difficult to debug, because they fail rarely even

under the exact same build configuration; and (3) avoids false

alarms that can be produced by some of the research tools

(e.g., iFixFlakies [21] reports on some false alarms reported

by iDFlakies [20]).

We perform our empirical evaluation on open-source Java

projects that use the Maven build system [28] and have JUnit

tests. We let Maven Surefire plugin [29] run these JUnit

tests (by executing mvn test), as configured by the project

developers. Maven structures Java projects into modules, and

each module has its own test suite. Our experiments find flaky

tests in 26 modules from the iDFlakies dataset [30]. While

the iDFlakies evaluation [20] aimed to run each test suite 100

times, we run each test suite exactly 4000 times, potentially

in different test-class orders (TCOs) as permitted by Surefire.

We choose 4000 runs to balance the chance to detect flaky

tests and the machine time of our experiments. Any test that

have both pass and fail outcomes are marked flaky. We obtain a

dataset of 107 flaky tests, where a “test” is defined by JUnit—

a specific test method in a test class. Moreover, we run each

of those 107 flaky tests 4000 times in isolation, running just

the one test method without the rest of its test class or the test

suite. Our dataset is publicly available on our website [31] and

we use this dataset to address our four RQs.

One important finding of our study affects the nomenclature

of flaky tests. Namely, many flaky tests that were labeled

“non-order-dependent” actually do depend on the order, e.g.,

across different TCOs, they have very different failure rates—

the ratio of the number of failed runs over the number of

total runs for a particular test order. We therefore introduce

two subcategories of NOD tests—non-deterministic, order-

dependent (NDOD) and non-deterministic, order-independent

(NDOI). To the best of our knowledge, we are the first to study

the relationship of test orders on NOD tests.

The RQs we study also suggest the following guidelines:

RQ1 & RQ3: To check if test failures are due to flaky tests,

one can use ≤ 5 reruns (50% less than Google’s default ten

reruns [6]) and still check correctly ≥ 82% of the time.

RQ2 & RQ3: To detect flaky tests, one should run tests in

a test suite instead of in isolation, and run tests in different

orders with fewer times each, rather than fewer orders with

more times each.

RQ3: To debug flaky tests, one should first run the tests in

isolation, because tests tend to run faster and fail more often,

before running the tests in a test suite.

RQ4: To prioritize the debugging of flaky tests, one can

consider debugging tests that often fail together before the

ones that do not fail together.

TABLE I
CATEGORIZATION OF TESTS. F ARE FAILURE RATES PER ORDER FOR A

TEST. DIF IS TRUE IFF ANY RATE SIGNIFICANTLY DIFFERS FROM

OTHERS. NOD AND OD ARE FROM IDFLAKIES’ CATEGORIZATION [20].

Non-deterministic (NOD) Deterministic

(∃f ∈ F. 0% < f < 100%)∧ (∃f, f ′ ∈ F. f = 0% ∧ f ′ = 100%)∧
DIF (F) (NDOD) (∀f ′′ ∈ F. f ′′ = 0% ∨ f ′′ = 100%) (OD)

(∃f ∈ F. 0% < f < 100%)∧ (∀f ∈ F. f = 0%)∨
¬DIF (F) (NDOI) (∀f ∈ F. f = 100%) (not flaky)

II. CATEGORIES OF FLAKY TESTS & A REAL EXAMPLE

Our categorization of flaky tests builds on DTDetector [16]

and iDFlakies [20], which automatically categorized all flaky

tests into two categories based on the empirical results from

running the tests in various test orders. We redefine the existing

categories with tests’ failure rates across test orders, refine an

existing category by introducing two new subcategories, and

show an example test from a new subcategory.

A. Categories

DTDetector and iDFlakies partition flaky tests into two

categories. One category are order-dependent (OD) tests that

can deterministically pass or fail based on the order in which

the tests are run. We clarify that such tests are deterministic in

that their failure rates are either 0% or 100% for each order,

and they have at least two orders whose failure rates differ. For

completeness of categorization, we also define tests that are

not flaky—they either always pass (all orders have 0% failure

rate) or always fail (all orders have 100% failure rate).

The other category are non-order-dependent (NOD) tests

that are flaky but not OD. We clarify that such tests have at

least one order where the test fails non-deterministically (fail-

ure rate is neither 0% nor 100%). We further break down these

NOD tests to non-deterministic, order-dependent (NDOD)

tests and non-deterministic, order-independent (NDOI) tests.

Specifically, NDOD tests are NOD tests where at least one

order’s failure rate significantly differs from other orders’

failure rates, e.g., a test that has a 99% failure rate in one order

but 0% in another. A statistical test can be used to determine

if any one order’s rate significantly differs from the others.

Conversely, NDOI tests are NOD tests where all failure rates

do not significantly differ. Table I shows precise definitions.

Some previous studies of flaky tests [1], [14], [15], [24]

categorized these tests into fine-grained categories, but the

authors manually examined the source code of the tests or

conducted surveys of developers after the tests were fixed and

the causes of flakiness were removed. Moreover, a study [24]

showed that manually identified fixes for flaky tests (and,

hence, their corresponding categorizations) can be quite error-

prone. We aim to automatically categorize flaky tests, even if

in coarse-grained categories.

We further argue in this paper that it is important to differ-

entiate between NDOD and NDOI tests, ideally automatically.

In fact, we find that the majority of NOD tests are actually

NDOD, not NDOI. Developers and tool builders should take

test orders into account. For example, a flaky-test management

system [24], [32], [33] can save and prioritize test order(s) that



1 @Test(timeout = 1500)

2 public void shouldRetryWithDynamicDelayDate() {

3 ... // test setup

4 atLeast(Duration.ofSeconds(1),() -> unit.get("/baz").

dispatch(...).join());

5 }

Fig. 1. Example NDOD test that fails substantially less often when run as
part of a test suite than when run in isolation.

developers should use for debugging based on the category of

the test determined with the failure rates of the observed test

orders. For NDOD and OD tests, developers could debug with

the test orders whose failure rates differ the most, while for

NDOI tests, any order could suffice.

B. Example NDOD Test

One example NDOD test from our study is shown in

Figure 1. The test shouldRetryWithDynamicDelayDate

is from a project [34] that implements client-side response

routing. This test is flaky because some runs take longer than

the timeout limit of 1500ms. We find that the test is NDOD

because Line 4 launches a server, and in runs where the test

passes, other tests running before this test trigger the Java just-

in-time (JIT) compiler, thereby reducing the latency to start

the server. On the other hand, in runs where the test fails, the

JIT compiler is not triggered, thereby increasing the latency

to start the server and resulting in the test exceeding 1500ms.

We confirmed our understanding by logging the time it takes

to run the test and then running the test multiple times. With

our changes, we see that after ∼5 runs, the runtime of this

test would decrease from ∼1500ms to ∼1000ms.

We refer to the number of times a flaky test fails consec-

utively as the test’s burst length. In our 4000 TSRs, we find

that this test’s maximal burst length is 7 in one order (TCO),

with the average maximal burst length being 3.1 across all

TCOs. We also find that this test has a failure rate of 39.1%

when run by itself in isolation, while its failure rate is 10.9%

when it is run in its test suite, with the failure rate ranging

from 0% to 20.1% depending on the TCO. This test’s failure

rate varies a lot because some other tests running before it can

exercise code that triggers the JIT compiler, in which case the

test often passes because it then takes closer to 1000ms.

III. RESEARCH QUESTIONS

To increase the understanding of the reproducibility and

characteristics of flaky tests, we consider four main questions.

RQ1: What is the failure rate and the maximal burst length

of flaky tests across all test-suite runs?

Why it matters: A common way to separate test failures into

regression failures and flaky failures is through test reruns.

For example, Google [6] and Microsoft [24] report how they

rerun tests after a failure to check whether the test’s result

would change to pass (indicating a flaky failure instead of a

regression failure). The number of reruns is typically chosen

ad-hoc, e.g., a round number of ten. This RQ aims to provide

empirical evidence for how many reruns can suffice to separate

regression failures and flaky failures.

RQ2: How do failure rates and maximal burst lengths differ

across TCOs, and how many tests are NDOD and NDOI?

Why it matters: Developers have a limited budget of test

runs to detect NOD tests. Is it better for those runs to be used

through (1) many unique test orders with fewer runs each, or

(2) fewer orders with many runs each? If NDOD tests are more

prevalent than NDOI tests, then (1) can be better, otherwise (2)

can be better. This RQ aims to provide empirical evidence on

the prevalence of these two subcategories, so that developers

can better detect NOD tests.

RQ3: How likely can NOD-test failures from running the test

suite be reproduced by running the NOD test in isolation?

Why it matters: When developers encounter a test failure by

running a test suite, a common next step is to try reproducing

a test failure by running the test in isolation. For a regression

failure, the test continues to deterministically fail in isolation.

For OD flaky tests, the test also deterministically passes or

fails in isolation [21], and it deterministically fails when run

in the same order that produced the test failure. However, for

NOD tests, it is unclear how likely test runs in isolation can

reproduce the test failure from running the entire test suite,

e.g., the test may fail more or less often when run in isolation

than in the test suite. This RQ aims to show empirical evidence

to clarify this issue.

RQ4: How do failure rates of individual flaky tests relate to

failure rates of test-suite runs?

Why it matters: Whether developers can merge their recent

changes to a project typically depends on whether the entire

test suite passes or fails with their recent changes. RQ1 and

RQ2 study the failure rate of each individual flaky test, while

RQ4 aims to show how often a test-suite run has at least one

failing flaky test. RQ4 is important because it provides empiri-

cal evidence on how often (1) developers encounter a test-suite

run failure due to flaky tests and (2) failures of different flaky

tests are symptoms of the same underlying problem, which

developers can use to prioritize their debugging efforts.

IV. EXPERIMENTAL METHODOLOGY

A. Modules Used in Our Study

To investigate our research questions, we use open-source

code from the iDFlakies dataset [30]. We obtained this dataset

in our previous work with the iDFlakies tool, which detects

flaky tests by perturbing the execution order of test methods

(not just test classes) across repeated test-suite runs and

marking tests that both pass and fail in various runs as flaky.

Due to the perturbing of test order, many tests that iDFlakies

detected are OD tests, i.e., they pass or fail deterministically

depending on which other tests have (not) run before them in

the test suite.

The iDFlakies dataset [30] consists of Java projects that use

the Maven build system [28]. Maven organizes projects around

modules, so we present our analysis in terms of modules. We

do not use all modules (111) from the iDFlakies dataset for

our study, because we focus on NOD tests, and iDFlakies

detected NOD tests in only 62 modules (and only OD tests

in the other 49 modules). We focus on NOD tests because





run between 1 and 40 batches. For modules with 3 or fewer

test classes, we cannot obtain 21 TCOs because the maximum

number is 6 (3!). Even for modules with 4 or more test classes,

we can still obtain fewer than 21 different TCOs because

Surefire can return the same TCO across different VMs (which

happened for two modules: M9 and M12). Table II shows the

exact number of TCOs1 that we obtained per module.

We design our experiment to use multiple batches with 100

TSRs per batch rather than (1) just one batch to run all 4000

TSRs, or (2) 4000 batches, each with just one TSR. Compared

to (1), our design helps with cases where a test may deadlock

in a batch (i.e., we would only need to rerun one small batch).

Compared to (2), our design helps by controlling machine cost

and providing control over the number of TSRs for each TCO

(which we use to calculate failure rates for RQ2).

To automatically determine whether a NOD flaky test is

likely NDOD or NDOI for RQ2, we use (1) the ratio of TCOs

that have at least one failing TSR, and (2) a statistical test of

whether failure rate differences across TCOs are significant

or not. As multiple batches can execute the same TCO, the

number of TSRs can differ across TCOs. To exclude effects

of these differing numbers, we test whether the proportions of

test failures among test runs differ significantly across TCOs,

specifically using the χ2 test (implemented by the prop.test

function in R). We use the resulting p-values of the test and

a level of 0.05 to determine significance.

2) Flaky Tests: In total, we detected 107 flaky tests in 26

modules. Compared to iDFlakies, which detected 124 flaky

tests in these 26 modules, 64 tests are in common with our 107

tests, 60 tests are detected only by iDFlakies, and 43 tests are

detected only by our runs. In 18 modules where we did not de-

tect any flaky test, iDFlakies detected 40 NOD tests. We detect

some more flaky tests than iDFlakies, because the iDFlakies

study ran most test suites 100 times, while we run them 4000

times. We detect some fewer flaky tests than iDFlakies because

of three reasons: (1) iDFlakies uses a custom Maven plugin

that does not respect some configuration options from Surefire,

e.g., exclude and runOrder; (2) iDFlakies does produce

false alarms, e.g., it may even run test methods annotated with

@Ignore [36], which should be skipped; and (3) iDFlakies

can randomize not just the test-class order but also the test-

method order. These features of iDFlakies have been designed

to maximize the number of potentially flaky tests it can detect,

while our study aims to more closely understand actual flaky

tests in developers’ typical test-suite runs.

D. RQ3: Reproducing TSO Failures in ISO

RQ3 evaluates how likely one can reproduce flaky-test

failures observed from TSO runs by running the tests in ISO.

We obtain the data for this RQ by running each test detected as

flaky in TSO runs for 4000 times in ISO. Specifically, we run

1The test-method order may differ even when the TCO is the same.
Specifically, for modules using JUnit versions 4.11 or higher, the test-method
order would be the same for any test class regardless of the TCO. From the
modules in Table II, only M12 and M13 use a version of JUnit that is lower
than 4.11 and exhibit different test-method orders for at least one test class.

each of 107 tests detected from TSO runs in 40 batches with

each batch running the test 100 times. We then analyze the

number of flaky-test failures one can reproduce in ISO, and

how the failure rates and burst lengths of these tests differ

between TSO and ISO runs.

E. RQ4: Effect of Flaky Tests on TSRs

RQ4 considers how often a TSR has at least one failing flaky

test. We obtain the data for this RQ from TSO runs. Table II

shows the minimum, maximum, and sum of the failure rates

for the flaky tests in each test suite. From these failure rates

we can derive the bounds for the TSR failure rate, i.e., the

ratio of TSRs with at least one flaky-test failure. The minimum

TSR failure rate is the maximum failure rate across all flaky

tests in the test suite—if all flaky tests are dependent, the

TSR failure rate equals the maximum of the failure rates. The

maximum TSR failure rate is the sum of the failure rates for

all flaky tests in the test suite (up to 100%)—if all flaky tests

are independent, the TSR failure rate equals the sum of the

failure rates. We investigate the TSR failure rates observed

in our experiments and compare how often these failure rates

equal the minimum or maximum potential TSR failure rates.

V. RESULTS

We next present the results for our four research questions.

A. RQ1: Overall Failure Rate and Burst Length

Table II shows for each module, the number of detected

flaky tests (columns TSO and ISO) and the flaky tests’

minimum, maximum, and sum failure rate—the ratio of runs

in which the flaky tests fail. The failure rate indicates (1) how

much of a problem the flaky test is for developers, (2) how

likely it is that a developer observed it as a flaky test, and

(3) how difficult it is to reproduce the flaky-test failure for

debugging. For (1), the failure rate would ideally be close

to 0, so that the test rarely affects developers. For (2), the

failure rate would ideally be close to 50%, giving the same

probability to observe both passing and failing runs, which is

what dynamic flaky-test detection tools use to classify a test as

flaky. For (3), the failure rate would ideally be close to 100%,

so that the failures are reproducible for debugging.

For the 107 flaky tests that we detect in TSO, the (arith-

metic) mean failure rate is 2.7%, with the minimum of 0.025%

and the maximum of 50%. The mean is heavily affected by

7 tests (listed in Table III) with failure rates of ≥10%; in

contrast, over 85% of the flaky tests have a failure rate lower

than the mean, resulting in the overall median below 0.5%.

These failure rates indicate that the majority of the flaky tests

detected with mvn test rarely affect developers; indeed, if

the failure rates were rather high, the developers would have

probably rewritten or removed the tests. These failure rates

also indicate that the flaky tests are difficult to detect and

even more difficult to debug without specialized tools.

If test failures are temporally correlated and tend to occur

in consecutive reruns with large burst lengths, they appear

more deterministic to developers and may mislead them in







run the tests in ISO. Dually, to detect flaky tests, running tests

in TSO tends to be better because the smaller burst length is

more likely to lead to a passing and failing run in fewer TSRs.

D. RQ4: Effect of Flaky Tests on TSRs

Whether developers can merge their recent changes to a

project typically depends on whether the entire test suite passes

or not with their recent changes. Even one flaky-test failure

from a test-suite run (TSR) would prevent the developers from

merging their recent code changes. Whether a TSR would fail

due to flaky tests depends on the number of flaky tests in the

test suite, the failure rate of each flaky test, and how related

the flaky tests are with one another. For example, a test suite

with 4000 runs that has two flaky tests that each fail 20 times,

will have a minimum of 20 TSRs that fail (with exactly two

failures per failed TSR) and a maximum of 40 TSRs that fail

(with exactly one failure per failed TSR).

We study the TSR failure rates and how they relate to indi-

vidual test failure rates to understand how often (1) developers

would encounter TSR failures and (2) failures of different flaky

tests are related to one another. Table II shows the actual TSR

failure rate we obtained across all 4000 TSRs. Overall, we

find that developers encounter TSR failures between <0.1%

(only one TSR failed for M4 and M17) to 50% (2000 TSRs

failed from M20). On average, developers would encounter a

TSR failure in 5.4% of TSRs.

From Table II we can also see that 12 modules have only

one flaky test detected, so their minimum, maximum, and sum

failure rate is the same as the TSR failure rate. For the other

14 modules, we find that the TSR failure rate is the same as

the maximum failure rate for 21% (3 / 14) of modules (M12,

M16, M20). Thus, the flaky tests in these modules are related

to one another (i.e., when one fails, more also fail). When we

manually investigated M20’s three flaky tests, we do indeed

find that two tests always failed together, and the third test

fails with them, but the third test fails in one more run and is

responsible for M20’s maximum failure rate. Specific details

of these tests are in Section VI-B1. We further find that the

TSR failure rate is the same as the sum failure rate for 43%

(6 / 14) of modules. Thus, the flaky tests in these six modules

are likely independent of one another (i.e., they always fail

separately). For the remaining 36% (5 / 14) of modules, the

TSR failure rate is in between the potential minimum and

maximum TSR failure rates, suggesting that their flaky tests

are a mix of related and independent flaky tests.

Guideline: At least 21% and up to 57% of test suites with

multiple flaky tests have flaky tests related to one another, so

flaky-test management systems [24], [32] could present the

related flaky-test failures to help developers prioritize which

tests to fix, e.g., first fix flaky tests that are related.

VI. MANUALLY INSPECTED FLAKY TESTS

To better understand flaky tests, we manually inspected the

root causes of flakiness for a number of tests. We selected

a variety of tests from different modules, including NOD

and OD tests, tests with high TSO or ISO failure rates, and

tests with high and low χ2 p-values for failure rates across

TCOs. Inspecting the first flaky test of a new test class takes

about a day on average. In sum, we inspected 28 tests and

found 7 OD, 14 NDOD, 4 NDOI, and 3 more NOD that are

difficult to confirm as NDOD or NDOI. We found that low p-

values properly mark NDOD tests, but high p-values may not

be NDOI tests, especially for tests that have a small overall

number of test failures across all TCOs.

A. OD Tests

While this paper aims to study NOD tests, our experiments

did encounter 7 tests categorized as OD, i.e., the failure rate for

each TCO was either 0% or 100%. Our inspection confirmed

that all these tests are indeed OD. 5 tests were already

fixed [37], [38], [39] as part of our iFixFlakies work [21]; note

that the iDFlakies dataset used in our experiments has older

commits, not the latest master. Note also that the iDFlakies

study [20] detected many more OD tests in the modules used

in our experiments, because the iDFlakies tool perturbs the

order of all test methods in a test suite, whereas our use of

mvn test only perturbs the order of some test classes. The

remaining 2 tests had not been fixed, so as a contribution of

this work we provided a pull request [40] that the developers

already accepted.

B. NDOD Tests

1) High TSO Failure Rate: Table III lists three tests that

have a much higher failure rate for TSO than for ISO. All

three tests are from the module M20 and class ZKTest. Our

inspection shows that all three tests fail for the same reason.

These tests check certain network operations, which require

obtaining a port number. All three tests share the same port

numbers, and when they use a port, they mark that by creating

a file in the /tmp directory, which is never deleted. The test

code allows these tests to use 152 different ports. As a result,

after all three tests are run 50 times each, they mark 150 ports,

and so at the 51st run two tests will pass and then one will

fail, while from the 52nd run all three will start failing. In fact,

these failures are deterministic. Strictly speaking, the tests are

still NDOD because they both pass and fail for the exact same

test order in TSO. In contrast, none of the tests fails in ISO.

The reason is that we run each test 100 times on one virtual

machine (VM) and then allocate a fresh VM for the next 100

runs. (Depending on the CI system, developers may also not

encounter these failures, e.g., Travis [41] uses a fresh VM for

every TSR.) Thus, each test marks only 100 ports in its 100

runs and does not reach the 152; had we run the test in ISO

for 153 or more times on the same VM, we would have also

encountered failures. These examples illustrate that running

multiple tests can, in some circumstances, have a higher failure

rate than running only each test in isolation.

2) High ISO Failure Rate: Table III also lists three tests

that have a much higher failure rate for ISO than for

TSO. Two of the tests are from the module M11, classes

TestPartitionMatcher and TestParallelMatcher. It

turns out that both are subclasses of an abstract class that



defines the method testParallelSlowLog. Both tests fail

in some isolation runs, and the exception message indicates

that some transaction was too slow. These tests run three

transactions each, and fail when one of them takes too much

time. The transactions take much longer in ISO runs than

in TSO runs for the following reason. Each transaction is

executed in a thread. In TSO runs, a previous test creates

threads and caches them, so a later test can run quicker by

reusing the created cache. In fact, testParallelSlowLog

uses an API call that checks the cache prior to creating threads.

However, in ISO runs, this test always creates a thread and

then runs the transaction. As a result, the test fails much more

often in the ISO runs.

Another test is from the module M13, class

TestMemoryLimit. This test fails when some resource

bound is exceeded. Specifically, the project provides a

sandbox for executing JavaScript in Java, and this test checks

that some execution of a JavaScript program does not exceed

a certain amount of memory. The memory check does not

consider the entire heap but only the amount of memory

allocated by the thread that the test executes. When the test

runs in isolation, it allocates all the memory and fails often,

but not always, as the memory check is done every 50ms.

Therefore, the test may pass the memory check at one point

and then finish in less than 50ms, despite going over the

memory limit after the check. When the test runs in the test

suite, another test runs before it and allocates many shared

objects. Thus, the second test can use these shared objects

from the heap and allocates less, so it fails much less often.

These examples illustrate how running tests in isolation can

fail more often than running in the test suite because the

test depends on some resource (shared memory, runtime) that

can benefit from the tests that run before this test. However,

running a test after others in a test suite could also negatively

impact the test. In general, we cannot tell a priori whether

running a test after others would be beneficial or hurtful. For

example, consider just the runtime. A test may run faster after

others because others can prepare shared state such as (1)

load classes needed for test execution so the test in question

need not reload those classes; (2) execute shared code and

trigger JIT compilation so that the execution of the test in

question executes optimized code; or (3) bring files from disk

into memory so it becomes faster to access for the test in

question. On the other hand, a test may run slower after others

because others can put some pressure on the shared resources,

e.g., (1) allocate memory so that garbage collection takes more

time; (2) spawn threads that are not shut down so that the test

in question has to compete with the other threads; (3) create

I/O requests (e.g., write to disk or send network packets) so

that the requests from the test in question take more time, etc.

3) High χ2 p-Value: We finally discuss two example tests

that have high p-values but our inspection still finds the failures

to depend on the test order. One test is from the module M15,

class CronTest. The test creates a pattern matcher for time

which itself calls DateUtil.date().second() to initialize

the matcher. The test also explicitly creates another time object

calling DateUtil.current(false) to be matched with the

matcher. Both calls get milliseconds and translate them into

seconds, minutes, hours, and dates. The test fails if the two

calls have a different value for seconds. The two calls are

executed nearby, so the chance is small that the first call

is executed right at the end of one second interval and the

second call right at the start of the next second interval. The

probability for the test to fail depends on how much time it

takes between the two method calls. In our experiments, this

time is ∼15ms for ISO runs, i.e., the test fails if the first call

gets milliseconds that modulo 1000 give values 985–999, so

the test fails in ∼15/1000=1.5% of runs. In contrast, the code

runs faster in TSO (due to the already discussed effects of class

loading and JIT compilation), so the test fails less frequently,

only ∼1/1000=0.1% of runs. Moreover, the failure rates differ

across the two test orders: in one order this class runs second,

and the test never fails; in the other order the class runs first,

so the test can fail but still less frequently than in ISO because

other test methods run before this test.

Another test is from the module M13, class TestIssue34.

It is similar to the previously discussed M13 test and fails if

a memory limit is exceeded. The test takes more memory in

ISO than in TSO, as expected. Our additional experiments,

after 4000 TSRs, show the test takes 840–900K in ISO runs,

and 510–630K in TSO runs (when run late in a TCO). The

limit is 1000K, so one may expect the test to more likely fail

in ISO than in TSO. However, in 4000 runs, the test exceeded

the memory limit in one TSO run but never in ISO. Because

of the small number of failures, the p-value is high, yet the

test manifestly depends on the order and is an NDOD.

4) Others: One test is already explained in Section II.

Due to space limits, we omit descriptions of 5 tests:

TestWriter from M6 is flaky because of timeout,

whereas CompletableThrowingSafeSubscriberTest,

CompletableThrowingTest, and SingleThrowingTest

from M21 and Issue621Test from M23 are flaky because

of concurrency.

C. NDOI Tests

Tests that have similar failure rates across TCOs in TSO

(and also similar in ISO) are likely NDOI. We inspect sev-

eral tests with high p-value. All four tests from the mod-

ule M16, class TimeSeriesGroupingIteratorTest, are

NDOI. These tests have (1) for each test, similar failure rates

in the TSO and ISO runs; and (2) across all tests, similar

TSO failure rates and similar ISO failure rates. In fact, many

of these tests often fail together in the test suite (thus the

TSR failure rate for their module is the same as the maximum

TSO failure rate for individual tests). Furthermore, in our

experiments, we find that each test fails in bursts, whether

in TSO or ISO, i.e., a test fails 3–4 times in a row (if it fails

in 100 runs at all).

The error message does not hint at the root cause but

says that some averages of numeric values differ in two data

structures. Our inspection shows that all of the tests populate

these data structures with random numbers, and the random



seed is based on the current time. The time is taken in

milliseconds and translated into seconds, minutes, hours, and

the date. A careful analysis of testTimeSeriesDropOff

and testMultipleTimeSeriesMovingAverage shows that

they fail when the time seed translates into the range of

approximately 58min:20sec to 59min:55sec (for any hour

or date); if a test is run earlier or later, it passes. (The

reason is that each test initializes the two data structures

based on the time using offsets of 5sec and 100sec.)

Most precisely, in each hour there are 95000 millisec-

ond values for which each test fails, so assuming that

each test can be run uniformly for any millisecond, each

test is expected to fail in 95000/(60*60*1000)=2.64% of

runs. In our experiments, the tests indeed have simi-

lar failure rates: 2.95% in ISO and 2.72% in TSO for

testTimeSeriesDropOff, and 2.80% in ISO and 2.72%

in TSO for testMultipleTimeSeriesMovingAverage.

The other two tests, testManySparseTimeSeries and

testAdditionalTimeSeries, behave similarly.

Abstracting from the details, these tests show some example

NDOI tests that do not depend on the test order but depend

only on the time when they are run. Such tests that absolutely

do not depend on the order appear to be rather rare.

D. NOD Tests Difficult to Classify

We inspected three NOD tests that are difficult to classify

as NDOD or NDOI. We selected these tests based on high

p-values (e.g., one test has p-value of 1), but some have a low

number of failures (e.g., one test fails twice in 2000 TSRs of

one TCO but does not fail in 100 TSRs for any of the other 20

TCOs). The root cause for all three tests is concurrency [42].

Two tests are from the module M5, class

RepublisherImplTest. Both tests have a concurrent

order violation. Effectively, each test has two threads with

a shared map object that has one element before one thread

calls toBePublished.remove(event), while another

checks assertEquals(0, toBePublished.size()). If

the execution switches from one thread to the other at a

particular point, the test fails with expected:<0> but

was:<1>. We can get each test to reproducibly fail if we add

some delay at that point. Developers likely encountered these

problems before as both tests have commented sleep(2000).

In fact, the message for one commit that commented out that

sleep is ”Speed up tests ...”; while the tests may run faster,

they became (more) flaky. Unfortunately, reasoning about the

probability that a test run with two threads makes a context

switch at exactly some point is rather challenging, so we

cannot precisely determine if these tests are NDOD or NDOI.

Another test is from module M14, class WaiterTest. This

test creates one thread that executes lock.wait(millis).

The main thread has Thread.sleep(20) and then effectively

calls lock.notify(). However, if notify is called before

wait, the signal is missed, and wait would block forever if

it were not for the timeout of millis=1000. We can make

the test to fail deterministically by adding a delay in the

right place in the code under test. We can also delete the

existing sleep(20) in the test to make it fail determinstically.

Unfortunately, reasoning precisely and analytically whether

the probability that notify is missed due to TCO is again

rather challenging because it requires determining the exe-

cution times of various events controlled by the JVM. As

discussed in Section V-B, an empirical approach would be to

just run the tests many more times to observe more failures and

use a statistical analysis to check failure rates across TCOs.

VII. THREATS TO VALIDITY

A threat to validity is that our study uses only 26 modules

from 23 Maven-based, Java projects. These modules may not

be representative, causing our results to not generalize well.

We attempt to mitigate this threat by using modules from

iDFlakies [30], selecting them as described in Section IV-A.

As our study is on flaky tests, particularly NOD tests, it is

likely that some specific numbers (e.g., number of NOD tests

or failure rates) would change if the tests were run more times

or on different machines. We attempt to mitigate this threat by

running every test suite 4000 times in 40 batches, and every

TCO at least 100 times. For every flaky test found by TSO,

we again run it 4000 times in isolation. To the best of our

knowledge, this is the largest number of runs in any published

flaky test study. We also manually inspect 28 tests to check

the root cause and categorization in Section VI.

The findings from our RQs in Section V may be influenced

by the types of statistical tests that we used to interpret the

data. We attempt to mitigate this threat by considering two

statistical tests for RQ3 (Section V-C). We also make all data

and scripts that were used to generate the plots and figures in

our paper publicly available on our website [31] so that others

may interpret the data however they see fit.

VIII. CONCLUSION

Flaky tests are caused by various sources of non-

determinism, and the research community can benefit from

multiple studies to understand flaky tests and develop new

solutions for them. Several studies of flaky test have keyed

on one group of flaky tests, order-dependent tests. We show

that the other group, called “non-order-dependent” tests, also

has many tests that actually do depend on the test order,

sometimes in complex ways. These tests have significantly

different failure rates in different test orders and in isolated

runs. To capture the complexity of these tests, we propose

the term non-deterministic, order-dependent (NDOD) tests. We

manually inspect a number of flaky tests to show concrete,

real-world examples. We hope that our study motivates more

researchers to tackle this practically important problem.

ACKNOWLEDGMENTS

We thank Anjiang Wei for helping us debug some flaky

tests, Jon Bell for extensive discussions about flaky tests, and

Tianyin Xu for sharing Microsoft Azure credits. This work

was partially supported by NSF grant nos. CCF-1763788 and

OAC-1839010, GEM fellowship, and Supplemental Summer

Block Grant (SSBG). We acknowledge support for research

on flaky tests from Facebook and Google.



REFERENCES

[1] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in FSE, 2014.

[2] M. Harman and P. O’Hearn, “From start-ups to scale-ups: Opportunities
and open problems for static and dynamic program analysis,” in SCAM,
2018.

[3] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“DeFlaker: Automatically detecting flaky tests,” in ICSE, 2018.

[4] E. Kowalczyk, K. Nair, Z. Gao, L. Silberstein, T. Long, and A. Memon,
“Modeling and ranking flaky tests at Apple,” in ICSE SEIP, 2020.

[5] Google, “Avoiding flakey tests,” 2008. [Online]. Available: http:
//googletesting.blogspot.com/2008/04/tott-avoiding-flakey-tests.html

[6] J. Micco, “The state of continuous integration testing at Google,” in
ICST, 2017. [Online]. Available: https://bit.ly/2OohAip

[7] C. Ziftci and J. Reardon, “Who broke the build?: Automatically identify-
ing changes that induce test failures in continuous integration at Google
scale,” in ICSE, 2017.

[8] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco, “Taming Google-scale continuous testing,” in ICSE SEIP,
2017.

[9] H. Jiang, X. Li, Z. Yang, and J. Xuan, “What causes my test alarm?
Automatic cause analysis for test alarms in system and integration
testing,” in ICSE, 2017.

[10] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy, “The art of testing
less without sacrificing quality,” in ICSE, 2015.

[11] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
“Root causing flaky tests in a large-scale industrial setting,” in ISSTA,
2019.

[12] K. Herzig and N. Nagappan, “Empirically detecting false test alarms
using association rules,” in ICSE, 2015.

[13] “Test Verification,” 2019. [Online]. Available: https://developer.mozilla.
org/en-US/docs/Mozilla/QA/Test Verification

[14] Z. Gao, Y. Liang, M. B. Cohen, A. M. Memon, and Z. Wang, “Making
system user interactive tests repeatable: When and what should we
control?” in ICSE, 2015.

[15] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding
flaky tests: The developer’s perspective,” in ESEC/FSE, 2019.

[16] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D. Ernst, and
D. Notkin, “Empirically revisiting the test independence assumption,”
in ISSTA, 2014.

[17] C. Huo and J. Clause, “Improving oracle quality by detecting brittle
assertions and unused inputs in tests,” in FSE, 2014.

[18] A. Gyori, A. Shi, F. Hariri, and D. Marinov, “Reliable testing: Detecting
state-polluting tests to prevent test dependency,” in ISSTA, 2015.

[19] A. Gambi, J. Bell, and A. Zeller, “Practical test dependency detection,”
in ICST, 2018.

[20] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iDFlakies: A
framework for detecting and partially classifying flaky tests,” in ICST,
2019.

[21] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “iFixFlakies: A
framework for automatically fixing order-dependent flaky tests,” in
ESEC/FSE, 2019.

[22] W. Lam, A. Shi, R. Oei, S. Zhang, M. D. Ernst, and T. Xie, “Dependent-
test-aware regression testing techniques,” in ISSTA, 2020.

[23] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic,
“Detecting flaky tests in probabilistic and machine learning applica-
tions,” in ISSTA, 2020.

[24] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta, “A study on the
lifecycle of flaky tests,” in ICSE, 2020.

[25] A. Shi, A. Gyori, O. Legunsen, and D. Marinov, “Detecting assumptions
on deterministic implementations of non-deterministic specifications,” in
ICST, 2016.

[26] V. Terragni, P. Salza, and F. Ferrucci, “A container-based infrastructure
for fuzzy-driven root causing of flaky tests,” in ICSE NIER, 2020.

[27] G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim, C. Treude, and
A. Bertolino, “What is the vocabulary of flaky tests?” in MSR, 2020.

[28] “Maven,” 2020. [Online]. Available: https://maven.apache.org
[29] “Maven Surefire plugin,” 2020. [Online]. Available: https://maven.

apache.org/surefire/maven-surefire-plugin
[30] “iDFlakies: Flaky test dataset,” 2020. [Online]. Available: https:

//sites.google.com/view/flakytestdataset
[31] “Flaky test statistics,” 2020. [Online]. Available: https://sites.google.

com/view/flakyteststatistics
[32] “Manage flaky tests,” 2019. [Online]. Available: https://docs.microsoft.

com/en-us/azure/devops/pipelines/test/flaky-test-management
[33] “Flaky tests,” 2020. [Online]. Available: https://docs.gitlab.com/ee/

development/testing guide/flaky tests.html
[34] “Riptide,” 2020. [Online]. Available: https://github.com/zalando/riptide
[35] “Microsoft Azure,” 2020. [Online]. Available: https://azure.microsoft.

com
[36] “JUnit Ignore annotation,” 2020. [Online]. Available: http://junit.

sourceforge.net/javadoc/org/junit/Ignore.html
[37] “Pull request #2148: Fixing flaky tests in DateTest4 indian and

DateTest5 iso8601,” 2020. [Online]. Available: https://github.com/
alibaba/fastjson/pull/2148

[38] “Pull request #2906: Fixing flaky tests in PortTelnetHandlerTest,”
2020. [Online]. Available: https://github.com/apache/incubator-dubbo/
pull/2906

[39] “Pull request #592: Fixing flaky test ShutdownListener-
ManagerTest.assertIsShutdownAlready,” 2020. [Online]. Available:
https://github.com/elasticjob/elastic-job-lite/pull/592

[40] “Pull request #3291: Fixing flaky tests in DefaultExtJSON-
Parser parseArray,” 2020. [Online]. Available: https://github.com/
alibaba/fastjson/pull/3291

[41] “Travis CI - Test and deploy with confidence,” 2020. [Online].
Available: https://travis-ci.org/

[42] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics,”
in ASPLOS, 2008.


