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The objective of this work is to reduce the cost of performing
model-based sensitivity analysis for ultrasonic nondestruc-
tive testing systems by replacing the accurate physics-based
model with machine learning (ML) algorithms and quickly
compute Sobol’ indices. The ML algorithms considered
in this work are neural networks (NN), convolutional NN
(CNN), and deep Gaussian processes (DGP). The perfor-
mance of these algorithms is measured by the root mean
squared error on a fixed number of testing points and by the
number of high-fidelity samples required to reach a target
accuracy. The algorithms are compared on three ultrasonic
testing benchmark cases with three uncertainty parameters,
namely, spherically-void defect under a focused and a
planar transducer and spherical-inclusion defect under a
focused transducer. The results show that NN required 35,
100, and 35 samples for the three cases, respectively. CNN
required 35, 100, and 56, respectively, while DGP required
84, 84, and 56, respectively.
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1 Introduction
Nondestructive testing (NDT) [1, 2] is the process of
evaluating, testing or inspecting assemblies or components

* Address all correspondence to this author.

for discontinuities or damages without affecting the service-
ability of the part. NDT can be performed either during
manufacturing or while the component is in service. This
is essential to ensure product integrity and reliability as well
as lower production cost and maintaining a uniform level of
product quality. NDT has been successfully used in various
applications such as aircraft damage estimation [3, 4], weld
defect inspection [5, 6], and flaw characterization [7, 8].

NDT measurements have traditionally relied on exper-
imental methods. These methods, however, can be both
time-consuming as well as costly to perform. In order to
reduce this time and cost, various physics-based NDT mod-
els [9-11] have been developed and used to reduce the need
for empirical data. These include numerical methods such
as finite element methods [12, 13] and boundary element
methods [14, 15], as well as approximation methods such
as Gaussian beam superposition methods [16, 17] and ray
tracing methods [18, 19]. The aforementioned physics-based
models can be cheaper, both financially and computationally,
when compared to experimental methods, and can also have
high accuracy. This can prove essential to reducing the need
for empirical data, by replacing experimental methods with
physics-based models.

Sensitivity analysis [20, 21] is an approach to quantify
the effect of each individual input parameter or combinations
of input parameters on the system response. It can be clas-
sified as either a local [22,23] or a global sensitivity analy-
sis [24,25]. In local sensitivity analysis, small perturbations
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in the input parameter space are used to quantify their effects
on the system response. For global sensitivity analysis, the
variance of the system response due to the input parameter
variability is quantified.

In this study, global variance-based sensitivity analysis
with Sobol’ indices [26,27] is used to quantify the effects of
input parameter variability of the output of physics-based ul-
trasonic testing (UT) simulations. The main elements of the
model-based sensitivity analysis are (1) identifying the im-
portant input variability parameters and their corresponding
probability distributions, (2) propagating these input param-
eters through the physics-based model, called uncertainty
propagation, and (3) performing sensitivity analysis using
Sobol’ indices.

The key challenges of model-based sensitivity analysis
include (1) each physics-based model can be computation-
ally expensive to solve, (2) a large number of variability pa-
rameters can exist for the NDT systems, and (3) multiple and
repetitive physics-based model evaluations are required for
sensitivity analysis. This results in problems that are chal-
lenging to solve in a reasonable amount of time.

To alleviate this computational cost, various metamod-
eling methods [28,29] have been developed. Metamodeling
methods replace the time-consuming and accurate physics-
based models with a computationally efficient metamodel
(also called surrogate model). Metamodeling methods can be
broadly classified as either data-fit methods [28,30] or multi-
fidelity methods [31,32]. Data-fit methods are constructed by
fitting a response surface through evaluated model responses
at sampled high-fidelity data points. Examples of data-fit
methods include polynomial chaos expansions (PCE) [33],
Kriging [34], and support vector machines [35]. In multifi-
delity methods, on the other hand, low-fidelity data is used
to enhance the prediction capabilities of a data-fit model con-
structed from a limited number of high-fidelity data points.
Examples of such methods include Cokriging [36] and man-
ifold mapping [37].

Metamodeling methods have been utilized for various
NDT applications. Bilicz et al. [38,39] used Kriging [34]
for both forward and inverse problems using eddy current
NDT. Support vector regression [35] was used by Miorelli et
al. [40] to perform both sensitivity analysis and probability of
detection for eddy current NDT systems. Du et al. [41] per-
formed sensitivity analysis and probability of detection for
UT NDT systems using PCE [42] and Kriging [34]. Du and
Leifsson [43] developed the polynomial chaos-based Cok-
riging multifidelity method [43] and used it for model-based
probability of detection in UT NDT systems.

This paper introduces and applies three different ma-
chine learning algorithms for sensitivity analysis of UT NDT
systems. In particular, neural networks (NN) [44,45], con-
volutional neural networks (CNN) [46,47], and deep Gaus-
sian processes (DGP) [48, 49] are introduced to the global
variance-based sensitivity analysis of UT NDT systems.
Note that for these applications, the machine learning algo-
rithms used can be classified as data-fit metamodeling meth-
ods. The UT NDT cases considered in this study are three
benchmark cases developed by the World Federation of Non-

destructive Evaluation Centers (WFNDEC)!. The bench-
mark cases are (1) spherically-void defect under a focused
transducer, (2) spherically-void defect under a planar trans-
ducer, and (3) spherical-inclusion defect under a focused
transducer. The sensitivity analysis results from the machine
learning algorithms are compared to those obtained from di-
rectly evaluating the high-fidelity physics-based model. In
this work, the analytical UT model by Thompson and Gray
[50,51] is used as the high-fidelity physics-based model.

The remainder of this paper is organized as follows. The
following section describes the methods used in this paper to
train the machine learning algorithms and perform sensitivity
analysis. The next section presents the result of the applica-
tion of these algorithms to the benchmark cases. The paper
ends with the conclusion of this study and provides sugges-
tions for future work.

2 Methods

The methods used in this work are described in this sec-
tion. The workflow of the model-based sensitivity analysis is
described first, followed by the sampling plan, a detailed de-
scription of the machine learning algorithms, their validation
and finally, the sensitivity analysis with Sobol’ indices.

2.1 Workflow

A flowchart of the model-based sensitivity analysis is
shown in Fig. 1. The process begins by sampling the input
parameter space. Two separate sets of sampling plans are
created, one for training and another for testing. The high-
fidelity physics-based model simulations are then evaluated
using those sampling plans to gather the output responses.
The training data is then used to train the machine learning
algorithms and the accuracy of these algorithms are tested
using the testing data. If this accuracy, measured in terms
of the root mean squared error (RMSE), does not meet the
threshold of 1% standard deviation of the testing points (G;),
a new training set with a higher number of sample points is
created and the previous steps are repeated. Once the ma-
chine learning-based models are accurate enough, sensitivity
analysis with Sobol’ indices [26] is performed.

2.2 Sampling plan

The process of selecting discrete samples in the input
variability space is known as sampling. It is an iteration-
based process in which the input variability parameters are
randomly drawn from probability distributions assigned to
the parameters. In this work, Latin Hypercube sampling
(LHS) [52] is used to generate the training plan, while Monte
Carlo sampling (MCS) [53] is used to generate the testing
plan. MCS is also used to generate the sampling plan for the
Sobol’ indices [26] calculation.

MCS [53] starts by generating random numbers within
the [0,1] interval with replacement. These random numbers

Uhttps://www.wfndec.org/benchmark-problems/
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Fig. 1. A flowchart of the machine learning-based sensitivity analy-
sis

are used as probabilities of the associated cumulative den-
sity functions of the variability parameters. The correspond-
ing values can then be obtained using quantile functions.
LHS [52, 54] on the other hand aims at sampling the vari-
ability parameters more effectively than MCS. This is done
by stratifying the probability distributions into equal inter-
vals in the [0,1] range. Random samples are then selected
from each interval. This prevents the clustering of the gener-
ated numbers. The remaining steps are the same as MCS.

2.3 Neural networks

NN [46] methods can be classified as a subclass of data-
fit metamodeling methods. Any complex function can be ap-
proximated through an hierarchy of features. NN [45] have
multiple steps in the hierarchy, which starts with an input
and ends with an output. Each step is known as a layer. The
layers in-between the inputs and the outputs are called hid-
den layers [44]. Figure 2 shows an example of a schematic
of a NN architecture with two hidden layers. The input and
output layer size depend on the dimensionality of the input
and output for a given problem. For the three UT benchmark
cases, the input has three features, while the output has a size
of one. Each hidden layer in a NN consists of neurons, which
are a fundamental unit of computation in a NN [46]. Neu-
rons calculate a weighted sum of the outputs from a previous
hidden or input layer and outputs a nonlinear transformation
of it. This nonlinear transformation is termed activation. In
Fig. 2, each hidden layer has eight neurons. By changing the
number of hidden layers as well as the number of neurons
in each hidden layer, the NN can approximate functions of
arbitrary complexity [46].

The activation function in each neuron of a given hidden
layer, L, is given by [46]

(L=1) _
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where a is the activation function, ®
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Fig. 2. A schematic of a neural network

the L hidden layer, and 5>~ is the bias unit in the L — 1
hidden layer. The weight and biases together are termed the
parameters of the NN and are tuned using a gradient-based
optimizer [46]. Here, the maximum value of i is N (L’l), that

is the number of neurons in the L — 1 hidden layer. zE.L) is the

(L= 55

output of the j neuron in the L hidden layer, and z
the output of the i neuron in the L — 1 hidden layer.

A loss function, £, is defined to capture the mismatch
between the training data observations, given by y, and the
predicted value of the NN, given by y [46]. The loss function
chosen in this study is the mean squared error between y and
v and is averaged over all the training data. The loss function

1s written as
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where N, is the size of the output layer and N, is the number
of training data sets, and m is the index of the neuron in the
output layer. In practice, averaging of the loss function is
generally performed over a subset of the training data sets,
known as mini-batch [46].

Training the NN involves solving an optimization prob-
lem where the objective function is the loss function and is
minimized to improve the prediction capabilities of the NN.
The gradient of this objective function is calculated with re-
spect to the parameters of the NN and is done efficiently us-
ing the backpropagation algorithm [55]. The optimizer used
is Adaptive Moments (ADAM) algorithm [56] and has the
following steps:

1. Update the biased first moment estimate:
Vi <= B1 Vi1 + (1= B1)Gy, 3)

where Gy is the gradient of the loss function with respect
to the parameters at a given iteration k, Vi is the expo-
nential moving averages of the gradients (also called bi-
ased first moment estimate), and B; is the exponential
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decay rate for V;. The recommended value for PB; is
0.9 [56] and is used in this study.
2. Update the biased second moment estimate:

Sk + BaSk_1 + (1 —B2)Gg, )

where S; is the exponential moving averages of the
squared gradients (also called biased second moment
estimate), and 3, is the exponential decay rate for Sy.
0.999 is the recommended value for 3, [56] and is used
this study.
3. Correct the bias in the first moment:
o k
Vi g ®)

where the bias introduced by setting Vg to zero is cor-
rected by V.
4. Correct the bias in the second moment:

Sk

Sk(ﬁl— T
2

6)

where the bias introduced by setting So to zero is cor-
rected by Sg.
5. Update the parameters:

-~

Vi
VSen

where oy, is the learning rate, 6; are the NN parameter
values, and 1 is a small value that is specified in order to
prevent the denominator from being zero.

Or+1 < O+ 0

N

The hyperparameters of a NN include the number of hid-
den layers, number of neurons in each hidden layer, the mini-
batch size, the maximum number of epochs, the learning rate
and the activation function. Rigorous rules for selecting the
hyperparameter settings for an NN do not exist. In this work,
various hyperparameter settings were selected by iterating
over them. The hyperparameters chosen were the ones that
resulted in the lowest RMSE as described in Section 2.6. The
NN architecture used in this work includes one hidden layer
with 50 neurons. The mini-batch size selected is 10. Maxi-
mum number of epochs is set to 10,000. One epoch refers to
one iteration over an entire training data set [44]. The learn-
ing rate selected is 0.01. The activation function chosen for
this study is the hyperbolic tangent function [46]. To con-
struct the NN, the Keras [57] wrapper with Tensorflow [58]
is used in this study.

2.4 Convolutional neural networks
CNN [46] are a special type of NN that are used to pro-
cess data with a grid-like topology [46], such as images. In

images, each grid location contains pixel values, and when
combined together results in the final image. For this study,
the variability parameters are used in the place of the pix-
els. Since CNN employs the mathematical operation called
convolution, it is named as such [46]. Any NN with at least
one convolutional layer is termed CNN. For image recogni-
tion tasks, the number of parameters in a NN can grow re-
ally fast, as it depends on the number of input features. For
images, the size of the image defines the number of input
features. In CNN, the number of parameters is independent
of the number of input features and is dependant on the size
and number of filters of a convolutional kernel [46]. This
reduces the number of parameters to be tuned and prevents
overfitting in the presence of limited data.

Figure 3 shows a schematic of a CNN architecture which
contains one convolutional layer, followed by one max-
pooling layer, two fully connected layers and an output layer.
The output of a convolutional layer or max-pooling layer is
termed feature maps. Feature maps are similar to images and
also have a grid-like topology with pixel values. The number
of channels, also known as depth of a feature map, depends
on the hyperparameter called number of filters. In Fig. 3,
this value is four. To convert a feature map to a fully connect
layer, the flatten operation is performed. Flatten converts the
three dimensional feature map into a one dimensional fully
connected layer. Similar to a NN, the number of these layers
can vary.

The input image in Fig. 3 has one channel (grey image)
and has 32 pixels (grids) in the horizontal and vertical direc-
tions each. Note that colored images have three channels,
namely, red, blue and green, respectively. The kernel or fil-
ter, which contains parameters to be tuned, has five grids in
the horizontal and vertical directions each, thatis a 5 x 5 ker-
nel. In a convolutional operation, an element-wise product
between the kernel parameter value and image pixel value
is performed. This process continues by moving the kernel
over the image, from left to right, top to bottom. The hyper-
parameter stride, is used to define how many pixels in both
the horizontal and vertical directions to move after perform-
ing one convolutional operation.

The output of a convolutional operation is given by

Nc c ~—
AT W RIE ) M)

(Lz:) _ Ncw
Gj =4a Y.

where a is the activation function, N, and N, refer to the
number of grids in the convolutional kernel in the horizontal
and vertical directions, respectively, f,, , is the weight of the
kernel at the m"" row and n'"* column of the grid in the kernel,
clLe) is the output of the convolution in the L. convolutional
layer, and ¢(Le=1) is the input into the L. convolutional layer.
This value could be from either a max-pooling layer or a
convolutional layer. The output of a max-pooling layer is
given by

p(Lp) prnd aX (
hi 1<m<Np,,1<n<N, j

(Lp=1)
Pi+¢n—17 j+n—l) ) (€))
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Fig. 3. A schematic of a convolutional neural network

where N, ;, and N,, , refer to the number of grids in the max-
pooling kernel in the horizontal and vertical directions, re-
spectively, pLr) is the output of the L, max-pooling layer,
and p»—1) is the input into the L, max-pooling layer. The
max-pooling kernel selects the maximum pixel value and
unlike the convolutional kernel has no parameters. Max-
pooling is performed to reduce the number of parameter in a
CNN [46].

Training the CNN is similar to training the NN. The loss
function described in (2) is used as the objective function
for training the CNN. The gradients are calculated using the
backpropagation algorithm [55] and the ADAM [56] opti-
mizer is used to minimize the loss function.

The hyperparameters used in the CNN are the number of
convolutional and max-pooling layers, the convolutional and
max-pooling kernel size. The number of filters of each con-
volutional kernel and the stride of each kernel is considered
as well. Other hyperparameters include the number of fully
connected layers, the number of neurons in each layer, the
mini-batch size, the maximum number of epochs, the learn-
ing rate and the activation function. The CNN used in this
work includes one convolutional layer, one fully connected
layer and no max-pooling layer. Only one convolutional ker-
nel of size 1 x 1 is selected and has a stride of value one.
The mini-batch selected has a size of 10, while the maximum
number of epochs is set to 10,000. The number of neurons
in the fully connected layer is 100 and the learning rate of
the ADAM [56] optimizer is 0.01. Hyperbolic tangent func-
tion [46] is selected as the activation function for this study.
The process of selecting these hyperparameters is similar to
those used for the NN. To construct the CNN, the Keras [57]
wrapper with Tensorflow [58] is used in this study.

One final thing to note is that, while images are not used,
each variability parameter is assigned to each grid and the
convolutional operation is performed on it. The input grid
therefore has a size of 3 x 1. While this grid size is lower
compared to most image sizes, CNN can be easily expanded
to work on NDT cases with higher number of variability pa-
rameters.

2.5 Deep Gaussian processes

DGP [48] are multi-layer generalizations of Gaussian
processes (GP), where the inputs to one GP is from the out-
puts of another. The architecture is similar to a NN (Fig. 2),
however, the activation functions in the neurons are replaced
by GP mappings. DGP are shown to overcome the limita-

tions of single-layer GP, while retaining its advantages [49].
DGP are shown to work well on limited amount of data [48],
which is useful for NDT sensitivity analysis.
Consider a GP mapping given by

zi = fi(X) +&; (10)
where X € R™ is the vector of m-dimensional input vari-
ability parameters, f is a zero mean GP mapping: f ~
GP(0,k(X,X)), € is the identically and independently dis-
tributed Gaussian noise (N(0,62)), and z; is the output of
the i neuron in the hidden layer. The covariance function,

k, uses a Gaussian correlation [59] function (also known as
automatic relevance determination correlation function [48])

and is given by
X — X\
g

where G and /; are hyperparameters that need to be tuned,
and / is the number of inputs to the neuron in the hidden
layer. Another covariance function, the Matern-5/2 [60] cor-
relation function, given by

)}

k=1

k(X,X') = 6%exp l— , (11)

K(X,X') =
L X=X\ 54 (%X’
2 iova 3 () 5 ()
A L]
1 _y/\2
exp |:-\/7 (Xk Xk) ]7
k=1 hk

is used in this work.

Damianou and Lawrence [48] developed a Bayesian
training framework? to train all the parameters of the DGP.
This framework is used to construct the DGP in the present
work. The details of this framework are beyond the scope of
this paper and can be found in [48].

The hyperparameters used in the DGP include the num-
ber of hidden layers, the number of GP mappings in each
hidden layer, the correlation used as the GP mapping, and
the total number of training iterations. Similar to NN and
CNN, these hyperparameters where chosen that resulted in
the lowest RMSE. For this study, the DGP used had one hid-
den layer, with a Matern-5/2 correlation [60] function for the
hidden and output layer. The total number of iterations used
was set to 1,500.

2.6 Validation
The global accuracy of the machine learning algorithms
used in this work is measured using the RMSE, given by

RMSE = /Y% (5 — 302, (13)

Zhttps://github.com/SheffieldML/PyDeepGP
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and the normalized RMSE (NRMSE), given by

NRMSE = RMSE/(max(y,) — min(y,)), (14)

where N, is the total number of testing data, and ﬁfi)

y,(’> are the machine learning estimation and high-fidelity ob-
servation of the i" testing point, respectively. The maxi-
mum and minimum values of the high-fidelity physics-based
model observations of the testing points are max(y,) and min
(y,), respectively. An RMSE less than or equal to 1%0; is
considered an acceptable global accuracy criterion in this
work.

and

2.7 Model-based sensitivity analysis

Sensitivity analysis with Sobol’ indices [27] is used to
quantify the effect of each input variability parameter, as well
as a combination of input parameters, on the output model
response. A black-box model

15)

where X is the m variable random input vector, can be de-
composed as [26]

M(X) =fo+ Y fi(X)+ Y fi(Xi. X;)
i=1

i<y
+... —|—f1_’2,_,_,m(X1,X2, ...,Xm),

(16)

where fj is a constant, and f; is a function of X; and so on.
One condition of this functional decomposition is that all the
terms need to be orthogonal, which can then be decomposed
in terms of the conditional expected values

fo=EM(X)), (17)
filXi) = EM(X)|X:) — fo, (18)

and
fii(Xi, X)) = EM|X:,X;) — fo 19

— filX)) = fi(X)),

and so on. Here, f; refers to the effect of varying individ-
ual input parameter X; alone. This is termed the main effect
of X;. fi;is the effect of varying X; and X; simultaneously
and is called the second-order interaction. Higher-order in-
teractions have analogous definitions. The variance of (16)
is then

m m
Var(M(X)) = ZVi-i-ZVi,j-i-‘..-i-Vl.z,...,m, (20)
=1 i<y

where

Vi = Vary,(Ex_,(M(X)|X;)), 2n

Vij= Varxi‘j (EXN,',_/ (M(X) |Xi7Xj)) =Vi—Vj, (22)

and so on. The X .; notation denotes the set of all variables
except X;. V; refers to the variance of the output due to X;
alone, while V; ; is the variance of the output due to second-
order interactions.

The main effect indices, given by the first-order Sobol’
indices [26], are

Vi

&:mmme

(23)

where S; measures the contribution of each individual X; on
the output variance. The total-order indices, given by the
total-effect Sobol’ indices [26], are

Sy = X (Varg, (M(X)[X~i))
! Var(M(X)) (24)
| Varx Ex(MX)X.))
N Var(M (X)) ’

where S7; is the measure of the output variance due to X;
alone as well as due to the interaction of X; with other input
parameters.

3 Numerical examples

In this section, the three machine learning algorithms
are applied to three UT benchmark cases developed by the
WENDEC. The accuracy of the sensitivity analysis results
are compared to those obtained from directly sampling the
high-fidelity physics-based models.

3.1 Description of the benchmark cases

The three UT benchmark cases considered are the
spherically-void defect under a focused transducer (Case 1),
spherically-void defect under a planar transducer (Case 2),
and the spherical-inclusion defect under a focused transducer
(Case 3). The setup for these cases are shown in Fig. 4. Each
of these cases have three variability parameters as inputs.
Cases 1 and 3 have the probe angle (), the x-coordinates
(x) and the frequency related F-number (F) as variability
parameters. For Case 2, the F-number is replaced with the
y-coordinates (y). Table 1 lists the variability parameters
along with their input distributions. The output response is
the voltage waveform at the receiver.

The Thompson-Grey analytical model [50] is used as
the high-fidelity physics-based model in this study. The cen-
ter frequency of the transducer is 5 MHz. The density of the
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Table 1. The variability parameters used in the numerical examples
Parameters Case 1 Case 2 Case 3
0 (deg)  N(0,0.5%) N(0,0.5%) N(0,0.5%)
x (mm) Uu@o,1 Uuo,1) Uu@o,1
y (mm) N/A U@, 1) N/A
F U(13,15) N/A U8, 10)
2 .
— Analytical
1 - -Experimental
=0
&
=)
>
21
-3 s ‘ ‘
74.5 75 75.5 76 76.5
t (us)

Fig. 5. Spherically-void defect under a planar transducer output re-
sponse model validation [41]

fused quartz block is 2,000 kg/m3. The longitudinal wave
speed is 5,969.4 m/s, while the shear wave speed is 3,774.1
m/s. A detailed description of the UT testing model can be
found in Schmerr and Song [51], while the validation of this
model with experimental data can be found in Du et al. [41].
Figure 5 shows the validation of the time-domain waveform
obtained from the high-fidelity physics-based model and is
compared to experimental data for Case 2. The physics-
based model matches the experimental results well.

3.2 Results

In Section 2, as discussed, the machine learning algo-
rithms are required to have a global accuracy, measured in
terms of RMSE, of less than 1%G0;, before performing sen-
sitivity analysis. For the three UT cases, the convergence of
the RMSE with increasing number of high-fidelity training
points is performed at a single defect radius size (a) of 0.5
mm and is shown in Figs. 6 to 8. For each machine learning
algorithm and for each high-fidelity sample size, ten differ-
ent LHS are generated to account for the variation in the in-
put variability space. The RMSE plots in Figs. 6 to 8 show
both the mean as well as the standard deviation in the RMSE
arising due to the different input samples generated. In all
these cases, the number of testing points is fixed and con-
tains 1,000 high-fidelity MCS. Figures 6 to 8 also show the
10%0; and 1%Ga; values.

In Figs. 6 to 8, the RMSE decreases with increasing
number of high-fidelity sample points. For Case 1, both
NN and CNN perform similarly and require around 35 high-
fidelity sample points to reach the target global accuracy.
DGP for this case requires around 84 high-fidelity samples
to reach this same threshold. For Case 2, DGP requires 84
high-fidelity samples and outperforms both NN and CNN,
which require 100 high-fidelity samples each. Finally, in
Case 3, NN outperforms both CNN and DGP. NN requires 35
high-fidelity samples, while the other two machine learning
algorithms require 56 samples each. Using the same number
of high-fidelity samples as those required to reach the global
accuracy, the machine learning algorithms were trained for
different defect sizes ranging from 0.1 mm to 0.5 mm and
this error is now measured using NRMSE.

Figures 9 to 11 show the NRMSE as a variation in
the defect size for the three UT cases. For all these cases,
NRMSE is nearly constant and within the 1%0; global ac-
curacy, indicating that these machine learning algorithms are
robust under varying defect sizes. Note that similar to the
RMSE convergence plots, the NRMSE plots are generated
using ten different samples at each defect size and for each
machine learning algorithm. Figures 9 to 11 show both the
mean and the standard deviation in the NRMSE.

To perform the sensitivity analysis with Sobol’ indices,
ten different sets containing 75,000 MCS each were gener-
ated for each of the machine learning algorithms and for each
UT case. This analysis was only performed at a defect size
of a = 0.5 mm. The trained machine learning algorithms
were used to provide the model response for all the generated
MCS. These model responses were then used to calculate the
Sobol’ indices. The same number of MCS were also gener-
ated to directly evaluate the physics-based models in order to
perform sensitivity analysis. Figures 12 to 14 shows the 1*'-
order Sobol’ indices for the three UT cases, while Figs. 15
to 17 show the total-order Sobol’ indices for these UT cases.
The black lines in these plots show the standard deviations
due to the ten different sample sets chosen. For Case 1, the
F-number has negligible effect on the model response as seen
in Figs. 12 and 15, respectively. The same is true for Case
3, shown in Figs. 14 and 17, respectively. In Case 2, the y-
coordinates has small effect on the model response as seen in
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Fig. 8. RMSE for Case 3 ata=0.5mm

Figs. 13 and 16, respectively. For all the different cases, the
Sobol’ indices values from the machine learning algorithms
match well with those from the physics-based models.

4 Conclusion

Three different machine learning algorithms, namely,
neural networks, convolutional neural networks, and deep
Gaussian processes, were used to perform model-based sen-

10 T
4NN
+CNN
+DGP

2 ]
m 10
w2 q
2 ¢
Z

1072}

10 “ ‘ ‘ ‘

0.1 0.2 0.3 0.4 0.5
a (mm)

Fig. 9. NRMSE for Case 1
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Fig. 10. NRMSE for Case 2
2
1 T
0 NN
+CNN
{ +DGP.
[8a]
2 sl
~ 10
Z
-4 ‘ ‘ ‘
10
0.1 0.2 0.3 0.4 0.5
a (mm)
Fig. 11. NRMSE for Case 3

sitivity analysis for ultrasonic testing systems using three
benchmark cases developed by the WFNDEC. First, the
global accuracy of these algorithms were measured and the
number of high-fidelity samples required to reach the de-
sired global accuracy were noted. These globally accurate
algorithms were then used to generate model responses in or-
der to perform sensitivity analysis using Sobol’ indices. The
sensitivity analysis results also matched well with those ob-
tained by directly using the physics-based model.
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This study shows that NN, CNN, and DGP machine cases with a larger number of variability parameters.
learning algorithms can be used to provide fast and accu-
rate sensitivity results values. Performing sensitivity analy-
sis can assist in deciding which variability parameters needto ~ Acknowledgements
be considered while performing physical experiments, which The authors are supported in part by NSF award number
can reduce both cost and time of the experiments. Future 1846862, and the Towa State University Center for Nonde-
work will include cases with non-spherical defects as well as  structive Evaluation Industry-University Research Program.
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