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Abstract—Library developers can provide classes and methods
with underdetermined specifications that allow flexibility in
future implementations. Library users may write code that relies
on a specific implementation rather than on the specification, e.g.,
assuming mistakenly that the order of elements cannot change
in the future. Prior work proposed the NonDex approach that
detects such wrong assumptions.

We present a novel approach, called DexFix, to repair wrong
assumptions on underdetermined specifications in an automated
way. We run the NonDex tool on 200 open-source Java projects
and detect 275 tests that fail due to wrong assumptions. The
majority of failures are from iterating over HashMap/HashSet
collections and the getDeclaredFields method. We provide
several new repair strategies that can fix these violations in both
the test code and the main code. DexFix proposes fixes for 119
tests from the detected 275 tests. We have already reported fixes
for 102 tests as GitHub pull requests: 74 have been merged, with
only 5 rejected, and the remaining pending.

I. INTRODUCTION

Underdetermined specifications [51] admit multiple im-

plementations. These different implementations can return

different output for the same input, even if each imple-

mentation itself is deterministic. For example, consider the

method getDeclaredFields from the Java standard library

class java.lang.Class. The Javadoc specification [23] for this

method states that it “Returns an array of Field objects re-

flecting all fields declared by the class or interface represented

by this Class object” and also “The elements in the returned

array are not sorted and are not in any particular order.”

Library developers sometimes provide methods with such

underdetermined specifications to allow flexibility for future

implementations. The latest implementations (as of this writ-

ing) from both Oracle JDK and OpenJDK provide the fields in

the order in which they are declared in the class source code,

but this ordering could change in the future.

If library users write code that relies on a specific (deter-

ministic) implementation rather than on the (underdetermined)

specification of a method from the library, the code can

break when the library developers provide a new imple-

mentation of the same specification. For example, the Java

standard library (from Sun and then Oracle) has changed the

implementation over time of several widely used methods

such as Object#hashCode, HashMap and HashSet iterators,

and Class#getMethods, which on several occasions broke

substantial amounts of code [1], [2].

Shi et al. [59] developed NonDex, a technique to find the

tests that fail due to making wrong, deterministic assumptions

on underdetermined specifications. Lam et al. [48] recently

used NonDex in a larger study of flaky tests, which can

fail seemingly nondeterministically [53]. They reported that

190/684 of the flaky tests in their dataset are due to such wrong

assumptions. They call these flaky tests implementation-

dependent (ID) tests; we use the same name in this paper.

Gyori et al. [41] provided a NonDex plugin for the Maven

build system [28] to automate running tests with NonDex and

also provided some partial support for manual debugging by

locating one, or a few, random choice(s), which they call root

causes, that can make each test fail. They wrote “In the future,

we plan to explore [...] automated fixing” [41, p. 4]. However,

no automated fixing technique has been developed before.

We present a novel technique, called DexFix, that can auto-

matically propose fixes for ID code. Inspired by the growing

body of work on program repair [40], [44], [49], [52], [57],

[61]–[63] (including a survey paper [55]) and test repair [37],

[38], [50], [54], [60], [64], we provide a set of novel, domain-

specific, and simple (but effective!) repair strategies that can

fix implementation dependency in both the test code and the

main code1. To the best of our knowledge, no existing program

or test repair tools can handle these cases.

We first perform a formative study. We run the NonDex

tool on 200 open-source Java projects and detect 275 ID

tests where NonDex provides a specific root cause. Our

inspection of these root causes finds that the vast majority

are from the HashMap/HashSet class iterations (152) and the

getDeclaredFields method (93). We also identify a number

of tests that fail due to test assertions comparing JSON

strings: the serialization of Java objects into JSON strings can

produce JSON strings with different order of fields; the JSON

specification [22] does not specify the order of fields.

We derive new, automated repair strategies that can fix

the failing tests by changing the code to work properly with

underdetermined specifications. Intuitively, our strategies aim

to make each output deterministic or each test assertion

order-agnostic. For example, consider some code that calls

getDeclaredFields and then a test exercising this code fails

1Following Maven, we use the term “main code” for what may be called
“production code” or “code under test”.



because an assertion expects a particular order of elements in

the array returned by getDeclaredFields. One repair strategy

is to sort the fields in the array, e.g., by field name. The

order then does not depend on the particular implementation

of getDeclaredFields. However, the new order may differ

from the old order (for a specific implementation), so some

assertions may fail after sorting. We can then apply a test-

repair technique to automatically repair these assertions that

now fail when run on a more deterministic implementation.

Another repair can be to change the assertions so that they are

order-agnostic, e.g., treat fields as a set rather than an array.

We automate our strategies by building upon NonDex and

ReAssert. The latter is a tool that can automatically repair

failing test assertions [38]. We derive our strategies from

the most common cases that we encounter in the process of

inspecting tests detected by NonDex. The effort of adding a

new DexFix strategy is usually about a day if the support

already exists for the right technology; e.g., we did not have

initial support for the AssertJ [19] style of assertions, so it

took additional work to add that support.

This paper makes several contributions:

Dataset: We provide a novel dataset of 275 ID tests. This

dataset is the largest for ID tests, showing the prevalence of

this problem among open-source projects.

Debugging Support: We extend the existing NonDex tool to

provide more info for debugging ID tests.

Repair Strategies: We derive novel strategies that can help to

automatically repair the code exercised by ID tests. Our new

strategies are complemented by the old ReAssert strategies for

repairing tests [38]. We automate these strategies by building

on top of NonDex and ReAssert.

Evaluation: We apply the DexFix technique on 275 tests,

and we find that DexFix can propose fixes for 119 tests.

After DexFix proposes code changes, we check that the fix

indeed passes with NonDex. Inspired by the fixes proposed by

DexFix, we have opened GitHub pull requests for 102 tests,

and 74 have been already merged, with only 5 rejected, and

the remaining still pending.

Our dataset and links to pull requests submitted from

anonymous GitHub accounts are publicly available as a part

of a larger dataset of flaky tests [21].

II. BACKGROUND

A. Detecting ID Tests

Following Lam et al. [48], we call a flaky test that fails

due to wrong assumptions on underdetermined specifications

an implementation-dependent (ID) test. Such ID tests can be

detected proactively by exploring different possible imple-

mentations of underdetermined specifications, finding one that

makes the test fail. One specific technique and tool that detects

ID tests due to wrong assumptions on specifications in the Java

standard library is NonDex [29], [41], [59]. Another tool that

can detect not only ID tests but also more kinds of flaky tests

in C++ code is the Mozilla Chaos Mode [30]. In this paper,

we use NonDex to detect ID tests in Java code.

NonDex detects ID tests by randomizing the output of

several methods with underdetermined specifications [59].

NonDex is implemented as a Maven plugin [29], [41] that

can be integrated into any Maven-based project that runs using

Java 8. NonDex also provides a debugging feature (invoked

through the command mvn nondex:debug) [41]. Given a de-

tected test that fails for some random seed, NonDex attempts to

find if one random choice location can make the test fail, e.g.,

a dynamic invocation of getDeclaredFields. NonDex uses

binary search across all the random choices executed during

the round where the test fails, localizing to the one point where

a single random choice can make the test fail. NonDex then

reports the stack trace of this single point.

B. Automatic Repair of Test Assertions

Test assertions can fail after developers make changes to the

main code. Assuming the main code is correct, test assertion

repair aims to update an assertion to pass when run on that

main code, e.g., changing the assertion’s expected value with

the new actual value produced by running the test on the

new main code, or even changing the failing assertion to

a different kind that more properly captures the proper test

behavior. Challenges in test assertion repair involve handling

the numerous kinds of test assertions that developers use.

ReAssert [36]–[38] is a technique and tool for repairing test

assertions in JUnit. Given a (failing) test, ReAssert instruments

the code, executes the test, and records the failure message,

including the expected and actual values for comparisons.

ReAssert then applies several repair strategies to repair the

assertion so that the test no longer fails. For example, the strat-

egy ReplaceLiteralInAssertion works on assertions where

the expected value is a literal (e.g., an integer or a string), and

replaces that literal with the actual value it observes during

the test execution [38].

III. EXAMPLES

We next discuss several example ID tests that NonDex

detects and for which DexFix proposes a fix. The examples

show a variety of root causes and repair strategies used to

change the code. We introduce these examples in order of

perceived “simplicity”.

A. Simple Fix in Main Code

Apache Hadoop [3] is a widely used open-source

project. NonDex detected several ID tests in Hadoop, which

shows that even well-tested projects can have problems

with underdetermined specifications. One such ID test was

TestMetricsSystemImpl#testInitFirstVerifyCallBacks.

This test passes when run normally but fails with NonDex,

reporting an error message that appears challenging to debug:

java.lang.AssertionError:
Element 0 for metrics expected:<MetricCounterLong
{info=MetricsInfoImpl {name=C1, description=C1 desc},

value=1}>
but was:<MetricGaugeLong
{info=MetricsInfoImpl {name=G1, description=G1 desc},

value=2}>



Fortunately, NonDex can provide debugging info for each

failing test, and the prior NonDex debugging output [41]

provides useful info for this case, specifically the “root cause”:

java.lang.Class.getDeclaredFields(Class.java:1916)
org.apache.hadoop.util.ReflectionUtils.

getDeclaredFieldsIncludingInherited(ReflectionUtils.java:353)
[...]

DexFix has a general, automatic strategy that sorts arrays of

fields returned by getDeclaredFields, which makes the order

of the elements in the array deterministic. Based on the Non-

Dex output reporting the “root cause” in the ReflectionUtils

class, DexFix proposes the following fix:

import java.util.ArrayList;
+ import java.util.Arrays;
+ import java.util.Comparator;

import java.util.List;
...

while (clazz != null) {
- for (Field field : clazz.getDeclaredFields()) {
+ Field[] sortedFields = clazz.getDeclaredFields();
+ Arrays.sort(sortedFields, new Comparator<Field>() {
+ public int compare(Field a, Field b) {
+ return a.getName().compareTo(b.getName());
+ }
+ });
+ for (Field field : sortedFields) {

fields.add(field);
...

Rather than introducing its own sorting, DexFix uses the

Java standard library classes Arrays and Comparator. Because

Arrays#sort sorts the input array in place (and does not

return the sorted array), DexFix introduces a fresh variable

sortedFields, sorts the array (comparing fields by name),

and uses sortedFields in the for loop. After DexFix makes

a change, we (compile and) rerun the test with NonDex; in

this case, the test passed after the above fix. We submitted

this fix as a GitHub pull request, and the developer promptly

accepted our fix with the message “+1, committing. we all

hate flaky tests. thanks for this” [4].

B. Multiple Changes with the Same Strategy

In this example, DexFix proposes a fix with multiple

changes in both main and test code, but all changes follow the

same strategy. In the Quarkus project [5], NonDex detected

several ID tests, including CompilerFlagsTest#defaulting.

When the test failed with NonDex, it produced an error

message that included the following:

org.opentest4j.AssertionFailedError: expected: <CompilerFlags
@{−b, −a}> but was: <CompilerFlags@{−a, −b}>

While the prior debugging output from NonDex [41] pro-

vides some partial info for this failing test, unfortunately it

does not provide enough info:

java.util.HashMap$HashIterator$HashIteratorShuffler.<init>(
Unknown Source)

java.util.HashMap$HashIterator.<init>(HashMap.java:1435)
[...]

We can see that the failure stems from an iteration over a

HashMap, but the NonDex output did not provide (1) the code

location that allocated this object and (2) whether it indeed

allocated a HashMap or HashSet (that internally uses HashMap).

We extended NonDex to include the allocation location (Sec-

tion IV-C), reporting that the object was a HashSet allocated

on line 30 of the class CompilerFlags.

DexFix has another general automated strategy for re-

placing allocations of HashMap/HashSet, with LinkedHashMap/

LinkedHashSet. The LinkedHash* classes have a precisely

defined iteration order [27]: “Hash table and linked list imple-

mentation of the Map interface, with predictable iteration or-

der.” and also “This implementation spares its clients from the

unspecified, generally chaotic ordering provided by HashMap.”

Based on the debugging output from our NonDex extension,

DexFix proposed the following change:

- this.defaultFlags = defaultFlags == null ? new HashSet<>() :
new HashSet<>(defaultFlags);

+ this.defaultFlags = defaultFlags == null ? new

LinkedHashSet<>() : new LinkedHashSet<>(defaultFlags);

Each LinkedHash* class is a subclass of its respective Hash*

class, so the changed code can compile after importing the

class, with no other changes.

After applying this change and rerunning the test with

NonDex, unlike in the first example where the test passed

after the first change, this test again failed after the change.

The new failure was again due to iteration over a HashMap,

and our extension reported that the object was allocated on

line 41 of the same class CompilerFlags. DexFix proposed a

similar fix (changing HashSet to LinkedHashSet on that line),

but rerunning NonDex yet again resulted in a different failure

due to iteration over another HashMap, this time allocated on

line 88 of the class CompilerFlagsTest. Once again, DexFix

proposed a similar change on that line.

After DexFix changed all these three lines (along with

adding import statements), the test finally passed with Non-

Dex. We submitted this fix, and the developer accepted it:

“Merged, thanks!” [6].

C. Multiple Changes with Different Strategies

This example illustrates a case where DexFix proposes a

fix that changes test code but uses different strategies. In

the Alibaba Fastjson project [7], NonDex detected several

ID tests, including WriteDuplicateType#test_dupType2. As

in the previous example, the problem was with a HashMap

iteration, specifically line 38 of WriteDuplicateType, and

DexFix proposed the following change:

- HashMap<String, Object> obj = new HashMap<>();
+ HashMap<String, Object> obj = new LinkedHashMap<>();

After this change, the test fails even without NonDex, indi-

cating that the cause is not an underdetermined specification

any more. In particular, this test fails on line 44 of the class

WriteDuplicateType, which compares two strings.

At this point we run ReAssert [38] to repair the failing

assertion. For these cases of assertEquals with a string literal,



ReAssert replaces the expected string with the actual string

that the test produces. Specifically, ReAssert generates the

following change for the assertion:

- Assert.assertEquals(”[pre]\”@type\”:[...],\”id\”:1001[post]”,
text1);

+ Assert.assertEquals(”[pre]\”id\”:1001,\”@type\”:[...][post]”,
text1);

These two changes now make the test pass both with and

without NonDex. The developers merged our submitted fix [8].

D. A Novel Strategy for Comparing Collections

When a test has an assertion that compares some actual

collection value against an expected collection whose iteration

order is known to be underdetermined, we can change the

assertion to a more suitable one that is order-agnostic. In

the project Graylog2 Server [9], NonDex detected an ID test

V20161215163900_MoveIndexSetDefaultConfigTest#upgrade.

According to the NonDex debugging output, this test has a root

cause in a third-party library, where the HashSet is initialized.

The assertion that fails in this test is containsExactly,

an assertion from the AssertJ library [19] that checks if a

collection contains given elements, in the given order.

DexFix in this case changes the assertion to another AssertJ

assertion, containsExactlyInAnyOrder, that allows any order

of elements and is thus order-agnostic:

- assertThat(...).containsExactly(”...0001”, ”...0003”);
+ assertThat(...).containsExactlyInAnyOrder(”...0001”, ”...0003”);

We submitted this fix, and the developers merged it: “Yeah,

that makes sense. Thank you very much” [10].

E. A Novel Strategy for JSON Strings

Our final example is a case where DexFix proposes a fix just

for comparing JSON strings. In the project Nutz [11], Non-

Dex detected several ID tests, including JsonTest#test_enum.

According to the NonDex debugging output, this test also has

a root cause in getDeclaredFields, but in a location that is in

a third-party library, not in the Nutz project itself. However,

the failed assertion (on line 1031 of JsonTest) just compares

a JSON string to an expected value.

As such, DexFix has a general, automatic repair strategy

to change such comparisons to use another assertion method,

JSONAssert#assertEquals, from a specific library:

import static org.junit.Assert.assertEquals;
+ import static org.junit.Assert.fail;
+ import org.json.JSONException;
+ import org.skyscreamer.jsonassert.JSONAssert;

...
String expected = ”{\n” + ” \”name\”:\”t\”,\n” + ” \”index
\”:1\n” + ”}”;

- assertEquals(expected, Json.toJson(TT.T)); // former line 1031
+ try {
+ JSONAssert.assertEquals(expected, Json.toJson(TT.T), false);
+ } catch (JSONException jse) {
+ fail(”Not comparing JSON strings.”);
+ }

The parameter false instructs the assertion to ignore the

ordering of fields in the JSON object, making this assertion

order-agnostic. The change also requires wrapping the call

in a try-catch block to fail when the assertion does not

compare JSON strings. Another required change is to modify

pom.xml to add the org.skyscreamer.jsonassert-1.5.0.jar

dependency. Because this same JsonTest class had four sim-

ilar failures (all detected automatically using NonDex), we

(manually) extracted all try-catch blocks in a helper method,

called assertJsonEqualsNonStrict, and replaced calls to

assertEquals with calls to assertJsonEqualsNonStrict.

These changes make all the tests pass both without and with

NonDex. The developers merged our submitted fix: “thank you

very much ˆ ˆ” [12].

IV. TECHNIQUE

The input to our technique DexFix conceptually consists of

(1) the project source code including the main and test code,

and (2) an ID test to be repaired. The output of our technique

is a fix, consisting of one or more code changes, that makes the

test pass when run with NonDex. Inspired by ReAssert [38],

DexFix proceeds by applying various repair strategies on the

code and checking if the test passes with NonDex.

A. Overview

Figure 1 presents the pseudo-code of the DexFix top-level

repair function that changes a project’s codebase. (We did

not use this exact pseudo-code in our early experiments but

over time developed this current pseudo-code based on our

experience.) Specifically, repair takes as input the ID test to

repair. It first runs NonDex to get the initial test result (which

should be FAIL), the failing assertion a reported by JUnit,

the root cause c reported by NonDex (e.g., that the failure is

caused by use of HashSet, as obtained from the NonDex debug

feature), and the code location l reported by our extension

of NonDex. DexFix also keeps track of the locations already

attempted for fixing (lines 5 and 11 in Figure 1).

DexFix first tries to apply the ChangeContainsExactly strat-

egy (Section IV-B), which only changes test code assertions

to make them order-agnostic. While the strategy does not

introduce any new dependencies to the project, it only applies

when the project already uses a specific assertion from the

AssertJ library of so-called “fluent assertions” [19], commonly

used to supplement standard assertions provided by JUnit. We

first attempt this strategy that fixes only test code because

developers are more likely to consider fixes to test code than

fixes to the main code. Furthermore, nondeterminism used in

the main code is not necessarily incorrect, so we believe it is

preferable to reduce flakiness in tests by making the test code

agnostic to the nondeterminism.

If the ChangeContainsExactly strategy does not apply, i.e.,

the test does not use the relevant assertion, DexFix then

calls repair_location to attempt to repair the code location

itself. If the location is in a library dependency and not in

the source code of the project being analyzed, then DexFix

cannot change the source code at that location (but could still



change the test code later). If DexFix can change the source

code, it checks whether the root cause is HashMap/HashSet

or getDeclaredFields for which it can apply an appropriate

strategy (Section IV-B). If DexFix changes the code, it also

checks whether the test fails: while the change makes the

order deterministic, the resulting deterministic order may not

match the assumed order encoded in the current test assertions.

DexFix then needs to update the failing test assertion by

applying the traditional ReAssert strategies [38], e.g., as shown

in Section III-C. If ReAssert cannot repair the assertion, then

DexFix stops and reports unrepaired (line 33 in Figure 1).

If repair_location does not repair the test, DexFix tries

to apply its JSONAssertion strategy (Section IV-B). Al-

though this strategy (like the ChangeContainsExactly strategy)

changes only test code, we use this strategy last because it

can add new third-party dependencies to the project, and de-

velopers tend to be cautious about adding more dependencies.

After all these changes, we need to run the test again with

NonDex (for a configurable number of rounds). If the test

fails with NonDex, DexFix uses the potentially new failing

assertion a, root cause c, and debug location l to continue

the repair process again, e.g., as illustrated in Section III-B. If

the new debug location has been attempted before (line 9 in

Figure 1), then DexFix stops, reporting unrepaired, to avoid

an infinite loop. (In our experiments, we never encountered a

previous location showing up again.) By keeping track of all

attempted repair locations and not allowing repeats, the overall

loop eventually stops.

If the test passes with NonDex, DexFix considers the test

repaired and exits the loop. We then manually inspect the fix

to prepare a pull request. While Figure 1 shows how DexFix

proposes one fix, we can easily adapt it to propose multiple

possible fixes, so the user can choose the best fix.

B. Repair Strategies

We develop four strategies for DexFix.

1) ChangeContainsExactly Strategy: This strategy changes

an AssertJ assertion that uses containsExactly, which can

check if a Map or a Set collection contains exactly the expected

elements in the given order. For example, the assertion can

be assertThat(actual).containsExactly(expected). The

strategy changes containsExactly to containsOnly if check-

ing a Map or to containsExactlyInAnyOrder if checking a Set.

These other assertions from AssertJ check if the collection

contains the expected elements in any order. This strategy

changes only test code, as illustrated in Section III-D.

2) HashToLinkedHash Strategy: This strategy replaces new

HashMap, resp. new HashSet, with new LinkedHashMap, resp.

new LinkedHashSet. The strategy applies when the root cause

is iteration over some HashMap/HashSet object. While NonDex

provided the stack trace at the iteration point, it did not provide

the stack trace of the allocation until we extend NonDex. This

strategy may need to add an appropriate import statement for

some class. This strategy may change both main and test code,

depending on the location of the allocation.

1 # Input/Output: project source code that gets changed
2 # Input: failing test t
3 # Output: status REPAIRED/UNREPAIRED
4 def repair(t):
5 rl = [] # repaired locations
6 # failing assertion a, root cause c, debug location l
7 result, a, c, l = run NonDex(t, NUM ROUNDS)
8 while result == FAIL:
9 if l in rl: # stop if the location has been tried

10 return UNREPAIRED
11 rl.add(l)
12 applies = apply strategy(ChangeContainsExactly, t, a)
13 if not applies:
14 status = repair location(t, a, c, l)
15 if status == UNREPAIRED:
16 applies = apply strategy(JSONAssertion, t, a)
17 if not applies:
18 return UNREPAIRED
19 # run NonDex again to see if there is more to handle
20 result, a, c, l = run NonDex(t, NUM ROUNDS)
21 return REPAIRED
22 def repair location(t, a, c, l):
23 if l in library:
24 return UNREPAIRED
25 if c is Hash*:
26 apply strategy(HashToLinkedHash, l)
27 elif c is getDeclaredFields:
28 apply strategy(SortFields, l)
29 else:
30 return UNREPAIRED
31 if compile and run(t) == FAIL:
32 apply strategy(ReAssertStrategies, t, a)
33 if compile and run(t) == FAIL:
34 return UNREPAIRED
35 return REPAIRED

Fig. 1. Pseudo-code of DexFix repair process

3) SortFields Strategy: This strategy adds sorting of field

arrays returned by the method getDeclaredFields. The strat-

egy applies when the root cause is the underdetermined order

of the elements in such an array. NonDex already provided the

stack trace at the point where the method is invoked. If the

method invocation is the only expression in a statement, e.g.,

fields = clazz.getDeclaredFields(), then adding sorting

is easier. A more challenging case is handling method in-

vocations that appear in more complex expressions, e.g., as

illustrated in Section III-A. Our solution is to use a fresh

variable to store the array, sort it, and finally replace the

original invocation with this variable. This strategy may need

to add two appropriate import statements for comparing and

sorting. This strategy may change both main and test code,

depending on the location of the invocation.

4) JSONAssertion Strategy: This strategy repairs failing

assertions that compare JSON strings.

If the assertion is JUnit’s Assert.assertEquals, the strat-

egy replaces the call with JSONAssert.assertEquals from

the Skyscreamer JSONassert library [25] (specifically version

1.5.0), as illustrated in Section III-E; we call this substrategy

JSONAssertionJ. Replacing the method call is conceptually



easy, but there are some additional details. First, it needs

to handle the potential JSONException. Second, it needs to

provide a value for an additional boolean argument for the new

assertion’s strict parameter. Setting strict to true ignores

the order of field-value pairs in the JSON string representation

but does not ignore the order of elements in a JSON array.

The JSON string representation for a HashSet is a JSON

array, making it necessary to set strict to false to ignore

the order of elements. However, setting strict to false is

not ideal, because it also allows JSON strings that contain

more elements than expected, as long as they contain all the

expected elements. As such, JSONAssertionJ first sets strict

to true, and if the test still fails, then it sets the value to false.

If the failing assertion is from the AssertJ library, this

strategy instead changes the AssertJ assertThat invocation to

assertThatJson from the JsonUnit library [26] (specifically

version 2.17.0); we call this substrategy JSONAssertionA.

Unlike JSONAssertionJ that replaces the failing assertion

method, JSONAssertionA changes the assertThat invocation

that creates an Assert object from AssertJ. For example,

consider assertThat(actual).isEqualTo(expected); while

it is the call to isEqualTo that fails, JSONAssertionA does

not replace that call but instead changes the entire expression

to assertThatJson(actual).isEqualTo(expected).

JSONAssertion is similar to ChangeContainsExactly in the

sense that both affect only test assertions, but JSONAsser-

tion requires adding a new third-party dependency (either

JSONassert or JsonUnit) to the project, if not already included.

Adding a dependency is sometimes undesirable to developers.

C. Implementation

For evaluation, we implement DexFix through several mod-

ifications to the existing NonDex [41] and ReAssert [36] tools,

along with automated and manual steps to connect everything

together as per the overall DexFix process shown in Figure 1.

NonDex. Our key modification to NonDex is the collection

of additional debugging info. Specifically, for every allocation

of a HashMap/HashSet object, our extension records the stack

trace. When NonDex reports the stack trace at the iteration

point where it performs its random choice, our extension also

reports the stack trace at the allocation point of the object being

iterated. Our extension then finds the code location from this

stack trace by looking for the first stack frame whose source

code is in the project being analyzed (and not in a library,

either the standard or third-party).

ReAssert. Our key modifications to ReAssert are to implement

the ChangeContainsExactly and JSONAssertion strategies. For

the JSONAssertionJ substrategy, we reuse the prior ReAssert

code for its existing strategy that fixes assertEquals calls

(Section III-C). The prior code already instruments tests to

capture the expected and actual values for a string comparison,

and the (test) code location that invokes the comparison. Our

extension checks whether the strings are likely JSON strings,

by the presence of the ‘{’ characters, and whether the expected

and actual strings when sorted (purely character ordering, not

considering any of the JSON format) end up equal. Unlike

the existing ReAssert strategy that just replaces the expected

string literal in assertEquals, our extension has to perform

somewhat elaborate changes to replace the invoked method,

add a new parameter, and add a try-catch block to handle

the case when the actual value is not a JSON object.

For both ChangeContainsExactly and JSONAssertionA,

we also need to extend ReAssert to handle the so-called

“fluent-assertion style” from AssertJ, which uses assertThat.

Daniel et al. [36] supported related assertions in ReAssert

but for the old, JUnit-style of assertThat, not for AssertJ.

We modify ReAssert to specially capture failures stemming

from AssertJ assertions. An example AssertJ assertion is

of the form assertThat(actual).method(expected), where

the assertThat method wraps the actual value into an

Assert object, which is the receiver for the method (e.g.,

containsExactly or isEqualTo); the method checks the value

in Assert against expected. ReAssert captures the failure

that comes from the method call. If the captured failure

is from containsExactly, ChangeContainsExactly applies,

and it replaces that containsExactly with containsOnly

or containsExactlyInAnyOrder. For JSONAssertionA, while

the isEqualTo call fails, the strategy changes the receiver

expression, namely change assertThat to assertThatJson.

The prior ReAssert code [36] parses Java files using an old

version of the Spoon library [58], which does not support most

modern Java 8 features. We update the Spoon dependency and

appropriately modify the ReAssert code. However, the Spoon

version that we use still does not support all Java 8 features

(e.g., lambda expressions). Spoon does have newer versions,

but they break backwards compatibility, and using them would

require a substantial rewrite of the existing ReAssert code.

DexFix. Our key new additions, besides NonDex and ReAssert

modifications, are to implement the HashToLinkedHash and

SortFields repair strategies. We use the javaparser library [24]

to parse the input Java files (main and test code), change

the code, and output it. The javaparser library supports all

latest features of Java 8 (we analyze Java 8 projects when

running NonDex). Our implementation directly follows the

descriptions in Section IV-B and the examples in Section III.

To support the overall DexFix process presented in Figure 1,

we had to manually apply some of the steps in our experi-

ments. While we automated the key repair_location function

that fixes a location, we had to manually apply the steps in the

top-level repair function that loops calling repair_location

as long as NonDex detects the ID test. We also manu-

ally invoke the ChangeContainsExactly and JSONAssertion

strategies (which themselves automatically change assertions),

because these two strategies rely on ReAssert, which needs a

failing test; integrating ReAssert’s instrumentation for captur-

ing failing test assertions and NonDex’s instrumentation to run

a test to trigger a failure is not straightforward.

V. EXPERIMENTAL SETUP

We first describe how we select projects for our evaluation

and how we use NonDex to detect ID tests within these

projects. We then describe how we use DexFix to propose



fixes for these detected tests and how we send pull requests

based on these proposed fixes.

A. Selecting Projects and Detecting Tests with NonDex

For our evaluation, we select open-source Java projects

that use the Maven build system [28] because NonDex was

originally developed to support running tests for Maven-based

projects [29], [41]. We queried GitHub to find the top 1,000

Java projects by the number of stars, then randomly chose 200

projects of the 242 that have a top-level pom.xml file used to

configure Maven.

For each project, we use the latest commit as of September

2019 and create a separate Docker image that has the cloned

project (including the main and test code), installed using mvn

install -DskipTests, and our modified version of NonDex.

We build all Java code using Java 8.

For each Docker image, we start a Docker container where

we run NonDex on all tests using mvn nondex:nondex. We con-

figure NonDex to run 10 rounds (with varying random seeds),

using the “ONE” mode [59], where NonDex randomizes the

order for each method with an underdetermined specification

only once for the first call and then reuses that randomized

order for subsequent calls (with the same receiver). We choose

the “ONE” mode because tests that fail in this mode most

likely indicate real problems due to wrong assumptions that

developers are motivated to fix. This mode puts a lower

bound on the number of ID tests that NonDex detects; in the

“FULL” mode, NonDex could detect even more test failures

by randomizing all calls for methods with underdetermined

specifications. We collect all the tests that pass when run

without NonDex but fail with NonDex randomization.

For each detected ID test, we run mvn nondex:debug to

obtain debugging info. The prior NonDex debugging reports

a single method-call location where NonDex random choice

leads the test to fail [41]. When the call iterates over a

HashMap/HashSet, our NonDex extension also reports the

location where that object is allocated (Section IV-C). NonDex

debugs by rerunning the test while randomizing only a subset

of method calls with underdetermined specifications. During

this process NonDex can find that some tests pass or fail even

when rerun for the same random seed, so we remove such flaky

tests. Also, the prior NonDex debugging occasionally crashes

altogether and produces no output, so we remove such tests as

well. Because these tests have no info about any method-call

location, our extension cannot report where the receiver object

for that method is allocated. These crashes are infrequent and

hard to reproduce, so we have not debugged them in NonDex.

B. Fixing Tests using DexFix and Opening Pull Requests

For each ID test, we start a new Docker container based

on the Docker image for the test’s project. We copy into

this container the corresponding NonDex debug file and then

run DexFix for the test. This procedure ensures that DexFix

proposes a fix for each test when run on the same code version

where NonDex detected the test. An alternative to fix multiple

tests in the same container would have run a later test on a

different code version that contains the fix for a prior test.

When DexFix needs to rerun NonDex, we configure it to run

10 rounds to check if the test, after the applied change, can still

fail. If the test fails in any of these rounds, DexFix has to use

the info collected from the NonDex run to propose additional

changes to the code (Section IV-A). This process loops until

either DexFix generates a fix or reports that it cannot fully

repair the test after potentially making some changes.

We inspect all proposed fixes, potentially modifying them to

prepare GitHub pull requests to the developers of each project.

The fixes for different tests can contain the same or similar

code changes, because we use DexFix to fix each test individ-

ually on the same code version where NonDex detected the

test. If fixes for multiple tests share some changes to the main

code or the test code (even if they still have separate changes

to their test assertions), these fixes can be safely combined,

because they address the same root cause. Moreover, all the

changes to test assertions need to be combined together along

with the changes to the main code; otherwise, the tests will

fail when run without NonDex. Some pull requests we send

fix multiple tests at once and combine fixes for these related

tests, with all the fixes sharing the same changes to the main

and test code, modulo changes to the test assertions. Most pull

requests simply fix only one test.

As we prepare a pull request, we manually make stylistic

changes so that our code patch matches the coding style that

the project uses. For each new project for which we have not

yet sent pull requests, we send one pull request to that project

for review. While the pull request remains pending, we do not

send more to not “spam” developers with pull requests that

they may not have time to review. We send additional pull

requests only after developers accept the initial one. Also, if

a pull request is rejected, we do not submit other similar pull

requests to that same project. We describe more of our cases

when we do not send pull requests in Section VI-C.

VI. RESULTS

Our evaluation addresses the following research questions:

RQ1: What is the breakdown of the root causes and debug

locations for ID tests detected by NonDex?

RQ2: How many tests can DexFix fix, and which repair

strategies propose the fixes?

RQ3: How effective is DexFix at proposing fixes that devel-

opers actually accept?

Our dataset and pull requests are publicly available [21].

Note that we sent some pull requests before finalizing the

pseudo-code presented in Figure 1. Our results accumulate our

experience from sending pull requests while refining DexFix

to create fixes that developers are more likely to accept.

A. RQ1: Detected Tests

After we run NonDex on 200 projects, it detects 275 ID

tests in 37 projects. Table I lists these 37 projects. The “PID”

column shows the short id we use for later reference. The

“Commit” column is the Git commit SHA on which we



run NonDex. The remaining columns show the breakdown

of the root causes and debug locations for test failures. The

“Hash∗” column is the number of tests due to iteration over a

HashMap/HashSet collection. The “gDF” column is the number

of tests due to getDeclaredFields. The “Rest” column shows

the remaining tests, of which 15 are due to getMethods, and

the others due to six various causes. These columns show

the one cause from the debugging file that mvn nondex:debug

outputs on the first run, but a test may have multiple root

causes (Section III-B). The columns under “Source?” show

whether the debug location reported by our NonDex extension

is in the project’s source code or in a library. The final column

shows the total number of ID tests detected per project.

While NonDex implements random exploration for over 40

methods with underdetermined specifications, only a few of

them cause most test failures. The majority of the detected

tests fail due to some HashMap/HashSet (152 out of 275 tests).

The second most common root cause is getDeclaredFields

(93 out of 275 tests). Together, these two causes lead to 89%

of all detected tests. Prior reports from running NonDex also

found these two causes to be the most common [41], [59], but

interestingly, the ranking between these two is reversed in our

findings compared to prior work. The difference in ranking is

due to the differences in projects and versions, but the fact that

these two causes remain the most common among detected

tests increases confidence that our repair strategies for DexFix

can apply broadly for fixing tests detected by NonDex.

Compared to prior work, the number of tests that Non-

Dex detects in our experiment—275 tests in 37 out of 200

projects—is greater than the previously reported proportion,

e.g., Shi et al. [59] detected 60 tests in 21 out of 195 projects.

While we run on some much larger Maven projects, it could

be also that the problem of ID tests continues to increase.

In terms of debug locations, the majority (207/275) are in

the main and test code rather than in a library. This ratio also

increases confidence that our repair strategies for DexFix could

be effective, because they mostly work on main and test code.

Two strategies (ChangeContainsExactly and JSONAssertion)

can work even if the location is in library code, but they apply

only in some cases (for certain assertions or for JSON strings).

B. RQ2: Fixed Tests

Table II shows statistics about the fixes that DexFix pro-

poses, overall for 119 out of 275 tests. The table shows

the breakdown of fixed tests per root cause and the strategy

DexFix uses: “CC” for ChangeContainsExactly; “L1”, “LM”, and

“LA” are for HashToLinkedHash, corresponding to only one

allocation site, multiple allocation sites, and one allocation site

but also updating test assertion(s); “JA” for JSONAssertion;

“SF” for SortFields at only one site (we never observe the

need to change more than one site); and “SA” for SortFields

with some updates of test assertion(s). Note that ChangeCon-

tainsExactly and JSONAssertion apply to both top root causes.

For the Hash∗ cause, nearly half the fixes that DexFix

proposes use HashToLinkedHash only once (41 out of 83

tests), without changing any test assertion. The tests can still

TABLE I
PROJECTS USED IN THE STUDY AND BREAKDOWN OF ROOT CAUSES AND

THEIR LOCATIONS FOR 275 ID TESTS DETECTED BY NONDEX

Root Causes Source?
PID Project Slug on GitHub Commit Hash∗ gDF Rest Y N Σ

P1 apache/flink 23c9b5a 31 1 9 39 2 41
P2 alibaba/fastjson d4a6271 27 - - 21 6 27
P3 apache/hive 90fa906 15 10 - 11 14 25
P4 Graylog2/graylog2-server 87d63f6 12 11 - 11 12 23
P5 apache/commons-lang 7c32e52 - 21 - 21 - 21
P6 flowable/flowable-engine 399ab58 3 - 14 17 - 17
P7 apache/incubator-shard... [13] 038232e 15 - - 15 - 15
P8 dropwizard/dropwizard 616ed86 6 3 - 7 2 9
P9 square/retrofit 8c93b59 - 9 - - 9 9
P10 rest-assured/rest-assured d3602d9 3 5 - 3 5 8
P11 alibaba/jetcache d280196 6 - - 6 - 6
P12 apache/hadoop 14cd969 2 4 - 4 2 6
P13 graphhopper/graphhopper 91f1a89 6 - - 6 - 6
P14 abel533/Mapper 1764748 - 5 - 5 - 5
P15 apache/pulsar 505e08a - 5 - - 5 5
P16 nutzam/nutz 97745dd - 5 - 5 - 5
P17 stanfordnlp/CoreNLP 08f6dca 5 - - 5 - 5
P18 apache/avro bfbd2d1 - 2 2 4 - 4
P19 ctripcorp/apollo 24062ad 1 - 3 3 1 4
P20 liquibase/liquibase 31a2256 4 - - 4 - 4
P21 apache/kylin 31ab936 3 - - 3 - 3
P22 kiegroup/optaplanner dff7457 - 3 - 2 1 3
P23 vipshop/vjtools 60c743d - 3 - - 3 3
P24 Alluxio/alluxio e6d7680 - 2 - - 2 2
P25 eclipse/jetty.project 9cede68 2 - - - 2 2
P26 elasticjob/elastic-job-lite b022898 - - 2 2 - 2
P27 intuit/karate 2ca51ac 2 - - 2 - 2
P28 quarkusio/quarkus 84128ce 2 - - 2 - 2
P29 querydsl/querydsl 2bf234c 2 - - 2 - 2
P30 seata/seata d334f85 1 1 - 1 1 2
P31 OpenFeign/feign 744fd72 1 - - 1 - 1
P32 classgraph/classgraph d3b5aeb - 1 - 1 - 1
P33 hs-web/hsweb-framework 9eb96c4 - 1 - 1 - 1
P34 mybatis/mybatis-3 0ca4860 1 - - 1 - 1
P35 pedrovgs/Algorithms ed6f8a4 1 - - 1 - 1
P36 spring-cloud/spring-... [14] 922590e 1 - - 1 - 1
P37 zhangxd1989/spring-... [15] e3966d7 - 1 - - 1 1

Σ - - 152 93 30 207 68 275

assert on the same expected values as before, but now the

values are deterministic and cannot be affected by evolution

of the implementation of the library methods in the future.

JSONAssertion helps in a number of cases, with a total of 31

tests fixed for both causes, highlighting that tests often make

incorrect assumptions on JSON serialization. Most of the tests

fixed this way are caused by getDeclaredFields (19); in fact,

JSONAssertion fixes the highest number of tests for this cause.

DexFix cannot fix most of these tests with SortFields, because

the call to getDeclaredFields is in library code.

ChangeContainsExactly, the first strategy that just changes

the test code without introducing new dependencies to the

project, applies to few places, fixing only 7 tests, all in

one project, P4. We note that one test in P8 that we fix

using HashToLinkedHash also could have been fixed us-

ing ChangeContainsExactly (marked with “†” under column

L1). We initially developed HashToLinkedHash first before

ChangeContainsExactly, and the developers accepted our fix

using HashToLinkedHash. As such, we count the test under

HashToLinkedHash. Regardless, the number of tests Change-

ContainsExactly fixes is relatively small, suggesting that de-

velopers tend not to directly assert upon these collections.

Table II also shows whether DexFix changes assertions for



TABLE II
STATISTICS FOR TESTS REPAIRED, STRATEGIES USED PER ROOT CAUSE, ASSERTION CHANGES, REPAIR LOCATIONS, AND PULL REQUESTS

Hash∗ (total 83) gDF (total 36) Assert.Changes Repair Locations Pull Requests Σ

PID CC L1 LM LA JA CC SF SA JA Yes No Test Main Both A P R U

P1 - 11 6 - - - - - - - 17 6 10 1 5 8 - 4 17
P2 - 8 - 9 6 - - - - 15 8 17 2 4 7 ∗

7 - 9 23
P3 - 1 - - - - 1 - 1 1 2 2 1 - 1 2 - - 3
P4 5 2 - - - 2 - - 7 14 2 14 2 - 15 1 - - 16
P5 - - - - - - 1 5 - 5 1 - 1 5 6 - - - 6
P6 - 1 - - - - - - - - 1 - 1 - 1 - - - 1
P7 - 1 4 - - - - - - - 5 1 4 - 5 - - - 5

P8 - †
3 - - 2 - - - 1 3 3 3 3 - 3 - §

3 - 6
P10 - - - - 3 - - - 2 5 - 5 - - 5 - - - 5
P11 - 2 - - - - - - - - 2 - 2 - 2 - - - 2
P12 - - - - - - 2 - - - 2 - 2 - 2 - - - 2
P13 - 2 - 3 1 - - - - 4 2 1 2 3 - - 2 4 6
P14 - - - - - - 4 1 - 1 4 - 4 1 - 5 - - 5
P16 - - - - - - - - 5 5 - 5 - - 5 - - - 5
P18 - - - - - - - 1 - 1 - - - 1 1 - - - 1
P20 - 1 - - - - - - - - 1 - 1 - 1 - - - 1
P21 - 3 - - - - - - - - 3 2 1 - 3 - - - 3
P23 - - - - - - - - 3 3 - 3 - - 3 - - - 3
P28 - - 2 - - - - - - - 2 - - 2 2 - - - 2
P29 - 2 - - - - - - - - 2 - 2 - 2 - - - 2
P30 - 1 - - - - - - - - 1 1 - - 1 - - - 1
P31 - - - 1 - - - - - 1 - - - 1 1 - - - 1
P34 - 1 - - - - - - - - 1 1 - - 1 - - - 1
P35 - 1 - - - - - - - - 1 - 1 - 1 - - - 1
P36 - 1 - - - - - - - - 1 - 1 - 1 - - - 1

Σ 5 41 12 13 12 2 8 7 19 58 61 61 40 18 74 23 5 17 119

proposed fixes: “Yes” means it does; “No” means it does not.

Almost half of the fixes (58 out of 119) involve assertions,

showing the importance of using ReAssert. Table II also shows

where the repair locations are: only in the test code, only in

the main code, or in both. We see a variety, demonstrating the

importance of considering both main and test code.

For repair cost, DexFix strategies take relatively little time

to change the code, because the strategies apply only targeted

changes and run each test at most 5–6 times (unlike automated

program repair that may explore thousands of changes and

run many tests hundreds or thousands of times [55]). Running

DexFix on all 275 tests takes under 7 hours, an average of

∼90sec per test, ranging from 32sec to 388sec.

C. RQ3: Pull Requests

We have sent pull requests for 102 out of 119 tests for which

DexFix proposes a fix. Table II also shows the pull request

status for the tests: Accepted (“A”), Pending (“P”), Rejected

(“R”), or Unsubmitted (“U”).

Overall, developers have accepted pull requests that we

submitted for a majority of the fixed tests (74 tests). This

high ratio of accepted pull requests shows the effectiveness

of the fixes that DexFix proposes, and developers welcome

the changes, e.g., recall the messages in Section III. We have

23 tests whose pull requests are still open on GitHub, pending

review or final judgment from developers. Overall, of the tests

in the accepted pull requests across the two root causes, 47 of

83 are for Hash∗, and 27 of 36 are for gDF.

We next discuss 22 tests whose pull requests were rejected

or for which we did not send pull requests.

Rejected. We have 5 tests whose pull requests have been

Rejected, across two projects, P8 and P13. For the 3 tests

in P8, the developer did not accept our pull request because

the fix involves JSONAssertion and adds a new dependency

on the JsonUnit library to the project. However, the developer

acknowledged the potential problem with the tests and fixed

all these tests in another way through a combination of project-

specific annotations for specifying order and using some sorted

maps. The developer closed this pull request with the message

“I’ve changed the tests accordingly. Thanks for the hint!” [16].

We mark “§” on the cell for P8 under “R” in Table II to

indicate that the developer found our report useful.

In the other project, P13, the developer rejected the pull

request for one test for a similar reason, because it adds a

new dependency (on the JSONassert library). The developer

commented “We never had a problem with this test and so

I would not want to change it. Especially when we need a

big dependency for something small.” Based on the feedback

from these two projects, we see that while JSONAssertion

effectively changes just the test code when comparing JSON

strings, the cost of including a new library dependency is too

high for some developers. For the final rejected pull request in

P13, the fix was from HashToLinkedHash, but the developers

did not provide any feedback before rejecting, so we do not

know their reason for rejection.

Unsubmitted. We did not submit fixes for 17 tests, spread

across three projects. For P1, we have not sent pull requests



for 4 tests yet because they are quite similar to some initial

ones we sent that are still pending review, so we do not want

to bother developers with additional similar fixes until we get

proper feedback from the initial ones.

For P2, we have 9 tests with unsubmitted pull requests. For

4 of these tests, the fixes are similar to an initial pull request

we sent. That initial pull request received positive feedback

from developers but has yet to be officially merged into the

codebase; we plan to send the followup pull requests for these

other 4 tests after the merge. For the remaining 5 tests, we

ourselves “rejected” the fixes after our manual inspection.

We believe the developers truly want to use a HashMap (no

deterministic ordering) at the location where DexFix proposes

to use a LinkedHashMap. In our inspection, we find the code

has a flag to determine if a LinkedHashMap should be used.

This flag does not help to fix the 5 unsubmitted tests. However,

we manually change the test code in P2 to set the flag, which

fixes 7 other tests, marked “∗” under “P” in Table II.

Finally, for P13, of the 4 tests with unsubmitted pull

requests, 2 tests that DexFix automatically fixes on an older

code version (on which we started our experiments) are no

longer ID tests in the latest code version. The remaining 2

tests have fixes very similar to previously rejected ones we

sent, so we do not send these additional ones.

VII. DISCUSSION

A. Limitations

DexFix currently cannot propose a fix for 156 of 275 tests

detected by NonDex. We inspected most of these tests, at

least one unfixed test from each project with some unfixed

test(s). Some of the cases are limitations of our general

repair strategies, and some are so rare that they do not merit

developing general strategies. We next show a breakdown of

the reasons why DexFix could not fix the tests.

Tool Engineering (42+27+6). ReAssert crashes altogether

when run on 42 tests. Also, ReAssert cannot run on 27 tests

that use JUnit 5 or TestNG [31], as ReAssert currently supports

only JUnit 4 and JUnit 3. Our attempt to upgrade ReAssert

to support JUnit 5 revealed that it would require a major

re-implementation effort. Finally, our toolset cannot handle

source languages beyond Java; 6 tests are written in Scala (but

NonDex can still detect their failures as its instrumentation

works at the level of bytecode).

Unsupported Root Cause (30). The current DexFix strate-

gies focus on addressing the two top root causes—iterating

over HashMap/HashSet and the order of fields returned by

getDeclaredFields—as reported by prior work [59] and

confirmed in our experiments (Section VI-A). 30 tests fail

for 7 other root causes. The largest number of tests, 15, is

for getMethods, but they come from only two projects. We

inspect 14 such tests in P6, and they all fail because a class

has two methods named equals (one declared in the class itself

and another inherited). We could easily build a new strategy

to sort these methods by name, but it would not be widely

applicable. In fact, the project has a comment “By convention,

the implementing class should have one method with the same

name” [17]. The remaining test for getMethods is interesting

in that its root cause is not just one random choice but two

random choices. The fix would again be overly specialized

to this one case. In the future, we believe it worthwhile to

develop more strategies only for more general cases.

Library Location (29). Only two DexFix strategies—

ChangeContainsExactly and JSONAssertion—can apply if the

root cause is in a library, i.e., the source code is not accessible

for DexFix to change. 29 tests have such root causes, and the

two strategies do not apply because the tests are not using

containsExactly or comparing JSON strings.

Others (22). Finally, DexFix cannot handle 22 tests due to

one-off instances, such as creating HashMap through reflection

or using Java language features in repair locations not handled

by our prototype implementation of DexFix strategies.

B. Making All Code Deterministic

It is interesting to consider whether the four new strate-

gies that DexFix provides (Section IV-B) should be applied

in all cases, i.e., should all sets/maps be compared using

containsExactly, should all Hash* objects be LinkedHash*,

should all arrays from getDeclaredFields be sorted, and

should all JSON strings be compared with something like

JSONAssert? In the limit, should the Java standard library have

any underdetermined specification? Developers of the Java

standard library could have specified that HashMap behaves

like LinkedHashMap, even when deterministic iteration is not

required. For example, in Python, all dictionaries since version

3.7 are specified [32] to behave similar to LinkedHashMap.

Considering that the Java standard library has not made

the underdetermined specifications deterministic like Python

did, we believe that underdetermined specifications remain

valuable. We approach fixing of ID tests with the goal to first

prioritize changing the test code. Our assumption is that the

developers are fine with an underdetermined specification and

do not require determinism in their main code. The problem is

that the tests are overly specific to the current implementation

and would fail if the implementation changes. Thus, our

strategies first help fix the test code before changing the main

code. We do have strategies that change main code, but DexFix

attempts them only if it cannot repair only test code without

adding dependencies. Ultimately, we send fixes to developers

so they can decide how to best address the problem.

C. Overhead

While DexFix aims to make tests no longer implementation-

dependent, the changes could introduce other side-effects to

the main and test code, such as extra execution overhead.

Compared to Hash*, LinkedHash* objects provide a small

overhead in both space (LinkedHash* objects need to main-

tain a list in addition to a hashtable maintained by Hash*)

and runtime (to manipulate the list) for most operations.

However, that overhead is negligible for all applications but

microbenchmarks, and some operations on LinkedHash* can

be even faster [20], [27], including resizing, containsValue,

and ironically, iteration, which becomes not only predictable



but also faster in certain situations. Some Java developers

still raise concerns about the overhead, e.g., one of our pull

requests had a discussion about it [18], but later the developer

still accepted the fix.

Sorting getDeclaredFields provides an even smaller over-

head as a library usually sorts only once and caches for later

calls. In contrast to Java, Python’s interface for reflection in-

cludes the inspect module’s getmembers function that returns

a list of members and since Python 3.7, is precisely specified:

“Return all the members of an object in a list of (name,

value) pairs sorted by name.”

Finally, changing containsExactly or using JSONAssert

affects only the test code, not the main code, so the overhead

is less important but still almost negligible.

VIII. THREATS TO VALIDITY

Our overall results may not generalize to all projects. Our

evaluation uses a diverse set of popular projects from GitHub,

and due to our use of existing tooling, our evaluation uses Java

projects that build with Maven. However, the 200 projects we

use are among the most popular Java projects on GitHub, so

we believe they are fairly representative of all Java projects.

Our fix strategies may be overfitted [40] towards the ID tests

we use in our evaluation. We developed our strategies based

on the most common root causes for ID tests we found; these

common root causes match findings in prior work [59]. We

believe the common root causes should still be relevant for ID

tests in projects beyond those in our dataset, so our strategies

could still be effective in repairing those ID tests.

Our implementation of DexFix strategies may have bugs that

affect our results. To reduce this threat, we build on top of ex-

isting tools, NonDex [41], ReAssert [36], and javaparser [24],

which have been used in past research. Furthermore, multiple

authors reviewed some of our new code and discussed the

proposed fixes. The ID tests that NonDex detected are true

positives, and we can reproduce the failures from all 275 ID

tests. The number of tests detected in our evaluation is a lower

bound on the true number of ID tests in these projects. Finally,

the key threat is the quality of the fixes DexFix proposed. We

confirm that these fixes are useful by sending pull requests to

developers, so they make the final judgment call.

IX. RELATED WORK

Mora et al. [56] proposed the concept of client-specific

equivalence, when two library versions are equivalent with

respect to a specific client, to study how changes in upstream

library code affect downstream clients. Shi et al. [59] studied

when tests fail due to wrong assumptions on underdetermined

specifications, developing NonDex to detect such tests. Our

work focuses on automated fixing for such tests by modifying

both the main and test code as needed.

The ID tests NonDex detects can be considered a type

of flaky tests, which nondeterministically pass or fail on the

main code [45], [46], [53]. Luo et al. [53] reported unordered

collections as one reason for flaky tests. Lam et al. [48] used

NonDex in a longitudinal study of flaky tests, finding 190/684

of the flaky tests in their study to be the ID tests that NonDex

detects. Other prior work focused on detecting different types

of flaky tests [34], [35], [39], [42], [43], [47], [65].

Automatic program repair (APR) aims to automatically

generate patches to fix bugs in main code [40], [44], [49],

[52], [55], [57], [61]–[63]. APR techniques often generate

patches by searching and mutating existing code, e.g., applying

pattern-based transformations learned from prior fixed bugs,

or through symbolic execution. These techniques rely on test

failures to indicate that the bug still exists, and the aim is

to make all tests pass. DexFix is most similar to pattern-

based repair [44], [61], which uses transformations inspired by

existing bugs. However, these techniques rely on test outcomes

to guide them and do not aim to fix the test code. Also, their

general transformations do not apply to fixing the ID tests.

In contrast, there is prior work on fixing test code [37],

[38], [50], [54], [64], repairing tests that become outdated

when main code evolves. For flaky tests, Shi et al. proposed

iFixFlakies [60] to fix specifically order-dependent flaky tests.

Our technique DexFix aims to fix ID flaky tests. Our approach

of fixing ID tests is not restricted to changes to the test code

but sometimes also involves making changes to the main code.

We utilize ReAssert [38] to automatically repair assertions that

have to be updated after changes are made to the main code.

X. CONCLUSIONS AND FUTURE WORK

We present the DexFix approach for automatically fixing ID

tests that fail due to wrong assumptions on underdetermined

specifications. DexFix extends the work on program and test

repair with novel, domain-specific and simple, yet effective,

automated repair strategies that can propose fixes for ID code.

Unlike most prior work that focuses on fixing exclusively

either the main code or test code, DexFix can fix either or

both as necessary. The empirical results are encouraging: of

275 ID tests, DexFix proposed fixes for 119 tests; we have

opened pull requests for 102 tests, and 74 have already been

merged, with only 5 rejected, and the rest pending.

In the future, as more root causes for ID tests are found, we

envision the set of domain-specific strategies for these causes

growing into a general solution that handles a large fraction of

ID tests. We believe domain-specific program repair is highly

effective at fixing ID tests. We hope DexFix inspires more

research into domain-specific repair not just for ID tests but

also for other types of flaky tests and bugs in main code.

XI. DATA AVAILABILITY

Our input data and links to pull requests are archived and

available [33]. Per email from the Open Science Chair, we do

not include the Git histories of projects used in this paper.
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[46] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta. A study on the
lifecycle of flaky tests. In ICSE, 2020.

[47] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie. iDFlakies: A framework
for detecting and partially classifying flaky tests. In ICST, 2019.

[48] W. Lam, S. Winter, W. Anjiang, T. Xie, D. Marinov, and J. Bell. A
large-scale longitudinal study of flaky tests. PACMPL, 4(OOPSLA),
2020.

[49] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each. In ICSE, 2012.

[50] X. Li, M. d’Amorim, and A. Orso. Intent-preserving test repair. In
ICST, 2019.

[51] B. Liskov and J. Guttag. Program Development in Java: Abstraction,

Specification, and Object-Oriented Design. Addison-Wesley Profes-
sional, 2000.

[52] F. Long, P. Amidon, and M. Rinard. Automatic inference of code
transforms for patch generation. In ESEC/FSE, 2017.

[53] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An empirical analysis of
flaky tests. In FSE, 2014.

[54] M. Mirzaaghaei, F. Pastore, and M. Pezzè. Supporting test suite
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