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In this work, the polynomial chaos-based Cokriging (PC-Cokriging) is applied to a bench-
mark aerodynamic design optimization problem. The aim is to perform fast design optimiza-
tion using this multifidelity metamodel. Multifidelity metamodels use information at multiple
levels of fidelity to make accurate and fast predictions. Higher amount of lower fidelity data
can provide important information on the trends to a limited amount of high-fidelity (HF)
data. The PC-Cokriging metamodel is a multivariate version of the polynomial chaos-based
Kriging (PC-Kriging) metamodel and its construction is similar to Cokriging. It combines
the advantages of the interpolation-based Kriging metamodel and the regression-based poly-
nomial chaos expansions (PCE). In the work the PC-Cokriging model is compared to other
metamodels namely PCE, Kriging, PC-Kriging and Cokriging. These metamodel are first
compared in terms of global accuracy, measured by root mean squared error (RMSE) and
normalized RMSE (NRMSE) for different sample sets, each with an increasing number of HF
samples. These metamodels are then used to find the optimum. Once the optimum design is
found computational fluid dynamics (CFD) simulations are rerun and the results are compared
to each other. In this study a drag reduction of 73.1 counts was achieved. The multifidelity
metamodels required 19 HF samples along with 1,055 low-fidelity to converge to the optimum
drag value of 129 counts, while the single fidelity models required 155 HF samples to do the
same.

Nomenclature

A = airfoil cross-sectional area, [-]
Abaseline = baseline airfoil cross-sectional area, [-]
a = speed of sound in air, [m/s]
c = chord length, [-]
Cd = drag coefficient, d

q∞c
, [-]

Cf = skin friction coefficient, τwq∞ , [-]
Cl = lift coefficient, l

q∞c
, [-]

Cm = pitching moment coefficient, m
q∞c2 , [-]

Cp = pressure coefficient, p−p∞
q∞

, [-]
∆Cd = drag count, 1E-4
∆Cl = lift count, 1E-2
d = drag force, [N]
l = lift force, [N]
l = lower bounds of the design variables
m = pitching moment, [N/m]
M∞ = freestream Mach number, V∞

a , [-]
p = static pressure on airfoil surface, [N/m2]
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p∞ = freestream static pressure, [N/m2]

q∞ = freestream dynamic pressure, 0.5ρ∞V2
∞, [N/m2]

Re = Reynolds number, ρ∞V∞cµ∞
, [-]

u = upper bounds of the design variables
V∞ = freestream air velocity, [m/s]
x = vector of design variables
xc = vector of x/c location design variables
x̄(0) = baseline design variable vector
X = sampling plan vector
y = observations of the sampling plan
ytesting = observations at testing point
ŷtesting = metamodel responses at testing points
y+ = non-dimensionalized first layer cell thickness, [-]
α = angle of attack, [degrees]
µ∞ = freestream viscosity of air, [Ns/m2]

ρ∞ = freestream air density, [kg/m3]

τw = wall shear stress, [N/m2]

I. Introduction

Aerodynamic design optimization (ADO) is an important part of designing complex physical systems such as
aeroplanes, cars, trains and wind turbines. The use of computer simulations in the design process is increasingly

becoming the norm. This involves solving costly, but accurate HF partial differential equations (PDEs). HF simulations
are important as it is essential to capture the complex nonlinearities within the system in order to represent its performance
accurately. Low-fidelity (LF) PDEs may not be able to capture these nonlinearities accurately, leading to poor design
choices.

Traditional methods in ADO have relied heavily on expensive HF simulations in order to calculate the cost function
and constraint values [1–5] accurately. The most popular of these methods has been the use of a gradient based search
algorithm, where the gradients are calculated using adjoints [4–8]. Another way of solving ADO problems is using
metamodeling (also know as surrogate modeling) [9–16]. It consists of two types: data-fit methods [17, 18] and
multifidelity methods [19]. Data-fit methods involve fitting a response surface through the evaluated cost function value
at sampled points in the design space. This method typically requires large number of sample points, but is versatile
and can handle highly nonlinear data. Methods include Kriging [20–23], polynomial chaos expansions (PCE) [24],
and support vector regression [25]. Multifidelity metamodeling [19] alleviates the computational burden by using
information from multiple fidelities. A large number of LF data can be used to provide useful information on the trends
to a small number of HF data. LF models are typically approximations of the HF models. They can be simplified
governing equations [26], projection-based methods [27], and data-fit methods [20].

Numerous works on metamodeling-based ADO can be found in literature for both deterministic and robust design.
Jonsson et al. [9] used space mapping to optimize the shape of trawl-doors. Cokriging was used by Koziel et al. [10]
and Amrit et al. [11] to expedite multi-objective ADO. Reinforcement learning and transfer learn was used by Yan et al.
[15] to perform ASO on missile surfaces. A reduction in CFD calls by 62.5% was reported by them. Bouhlel et al.
[16] used Kriging and Kriging with partial least squares (KPLS) to perform efficient global optimization on analytical
functions and a benchmark automotive problem. These studies have been performed for deterministic optimum design.
Shah et al. [12] performed multifidelity robust design optimization of a NACA 2412 airfoil under mixed uncertainty.
Two uncertainty variables, the Mach number and the geometric parameter of the thickness distribution of the airfoil
were used in their study. Deep belief network along with a particle swarm optimizer was used by Tao and Sun [14] to
perform robust design optimization on a RAE2822 airfoil as well as a DLR-F6 wing body model for uncertainty in Ma.

In this work, the polynomial chaos-based Cokriging (PC-Cokriging) developed by Du and Leifsson [28] is used to
perform fast ADO of airfoils. PC-Cokriging is a multivariate extension of PC-Kriging [29–31]. It is constructed similar
to the Cokriging [20] metamodel, with PC-Kriging used in place of Kriging [20]. Benchmark case II developed by the
AIAA Aerodynamic Optimization Design Discussion Group (ADODG) is selected for this study. Numerous work on
this benchmark case has already been done [4, 32–38].

The paper is organised in the following sequence. The next section describes the method used to construct the
PC-Cokiriging metamodel. In the following section, the PC-Cokriging metamodel is applied to the benchmark case II
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for fast design optimization. In this section, it has been benchmarked against other metamodeling methods such as PCE
[39], Kriging [20], PC-Kriging [30] and Cokriging [20]. The last section presents the conclusions and suggestions for
future work.

II. Methods
This section describes the methods used to construct the PC-Cokriging multifidelity metamodel. The following
subsections describe the metamodel algorithm, the sampling plan, metamodeling, validation and ASO for the benchmark
case.

A. Multifidelity metamodel algorithm
A flowchart of the PC-Cokriging based multifidelity metamodel algorithm is shown in Fig. 1. The process starts by
sampling the design space at a fixed number of design points. The LF model is evaluated at all these samples, while the
HF model is only evaluated at a subset of them. The multifidelity metamodel is then constructed by combining the HF
and LF observations. Finally, the metamodel is validated with a separate set of testing data. If the metamodel does not
meet the testing criteria, it is resampled with a larger number of HF data and the same procedure is redone. Once, the
metamodel is sufficiently accurate, the optimum design is found.

B. Sampling plan
The first step involved in constructing the metamodel is sampling. In order to capture the trend of the true cost function,
the design space needs to be sampled at certain fixed combinations of the design variables (DVs). The metamodel is
then constructed using this sampled data. In this work, the Latin Hypercube sampling (LHS) [40] is used for generating
both the training and testing points. The LF model is evaluated at all the training points, while the HF model is evaluated
only at a limited subset of the training points. This is because of the high computational cost of HF model. The HF
model is also evaluated at all the testing points in order to test the prediction accuracy of the metamodel.

C. Metamodeling
In this work, the PC-Cokriging metamodel proposed by Du and Leifsson [28] is used. This metamodel is a multivariate
version of the PC-Kriging [29, 30] model, which is constructed in a similar method as Cokriging [41–43]. A PC-Kriging
model combines the PCE [39] and Kriging [21, 23, 44] methods. The regression-based PCE captures the global trend

Figure 1 Flowchart of the PC-Cokriging based ADO.
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of the model well, while the interpolation-based Kriging captures the local deviations. This makes the PC-Kriging
metamodel more effective as it combines the strengths of both the models. To construct a Cokriging model, a Kriging
approximation of the LF model multiplied by a scaling factor and another Kriging approximation of the difference of
HF and LF model outputs is combined. For PC-Cokriging, the Kriging approximation is replaced by the PC-Kriging
approximation. The generaized PC-Cokriging formula is given by

MPC−CoK (x) = ρMPCK
LF (x) + MPCK

Diff (x), (1)

where MPCK
LF is the PC-Kriging approximation of the LF data, and MPCK

Diff is the PC-Kriging approximation of the
difference of the output of the HF and LF data. PC-Kriging is used to construct the MPCK

LF and MPCK
Diff terms. A detailed

description of the construction of these terms can be found in Du and Leifsson [28]. The following steps are used to
construct the PC-Cokriging metamodel:

1) A least angle regression (LARS) [45] is used to select the most correlated orthogonal bases for PCE on the LF
training data;

2) The bases selected from Step 1 are plugged into a universal Kriging metamodel to construct the PC-Kriging
model on the LF data;

3) At the HF training points, another PC-Kriging metamodel is constructed for the difference model, MDiff(xHF);
4) The unknown parameters are solved for and the predictor is constructed in the same way as the Cokriging

metamodel [42].
The hyperparameters present in the Gaussian exponential spatial correlation function [46] and the Matern-5/2

covariance function [47] of the kriging based metamodels needs to be tuned. This is done during the training phase
by finding the maximum likelihood estimate on the training data. This hyperparameter is found using the differential
evolution algorithm in SciPy [48]. The other hyperparamter, the order of the PCE, which is used in the PCE based
metamodels are found iteratively. The metamodels are generated and tested by varying the order from one to six. The
order with the lowest testing error is chosen.

D. Validation
To validate the metamodels, the root mean squared error (RMSE) given by

RMSE =
√∑nt

i=1
(ŷ
(i)
testing − y

(i)
testing)

2/nt, (2)

and the normalized RMSE (NRMSE) given by

NRMSE = RMSE/(max(ytesting) −min(ytesting)), (3)

is used in this work. Here ŷ(i)testing and y
(i)
testing are the metamodel estimation and HF observation of the ith testing point,

respectively. max(ytesting) and min (ytesting) refers to the maximum and minimum HF values observed amongst all
testing points respectively. Note that in this study the training and testing data are generated from two different LHS. nt
is the total number of testing data sets. An RMSE less than or equal to 10%σtesting (standard deviation of testing points)
is taken as the acceptable global accuracy criterion in this work.

E. Metamodel based optimization
Once the metamodel reaches the required global accuracy, it is then used to find the optima. For this study a multi-start
gradient based search algorithm is used to find the minima. The optimizer used is the sequential least squares
programming (SLSQP) optimizer available in SciPy [48]. The choice of using different initial starting points is to avoid
the optimizer from getting stuck in a local minima. For this study, 40 initial starting point are used. These starting
points are generated using LHS. The lowest obtained minima is reported in this study.

III. Benchmark Case II
For this research work, benchmark case II developed by the AIAA Aerodynamic Optimization Design Discussion
Group (ADODG) is selected. This section begins with the problem formulation followed by the design variables used
to parameterize the airfoil. The CFD setup and validation is then discussed as well as the metamodel generation and
validation. Finally, the optimization results are presented.
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A. Problem formulation
The objective of this case is to minimize the drag coefficient (Cd) of a RAE 2822 airfoil in viscous flow of freestream
Mach number (M∞) equal to 0.734 subject to a fixed lift coefficient (Cl) of 0.824 as well as pitching moment coefficient
(Cm) and area constraints.

The optimization problem is stated as
min
l≤x≤u

Cd (4)

subject to the equality constraint
Cl = 0.824 (5)

and inequality constraints
Cm ≥ −0.092 (6)

and
A ≥ Abaseline . (7)

x is the DV vector, while l and u are the lower and upper bounds, respectively, of each DV. A is the cross-sectional area
of the airfoil non-dimensionalised with the square of the chord length (c). Abaseline is the baseline area of the airfoil
with a value of 0.07787c2.

B. Design variables
B-spline [49, 50] with eight control points was used to parameterize the RAE 2822 airfoil. The control points
were only allowed to move in the vertical direction. Half of these control points were used to change the shape of
the upper surface of the airfoil, while the other half the lower surface. The x/c-locations of these control points
are xc = [xc,u; xc,l]T = [0.0 0.15 0.45 0.80; 0.0 0.35 0.60 0.90]T . The initial design variable vector is
x̄(0) = [x̄(0)u ; x̄(0)

l
]T = [0.0175 0.0498 0.0688 0.0406; −0.0291 − 0.0679 − 0.0384 0.0054]T . The lower

bound of x is set to l = [0.0149 0.0423 0.0585 0.0345; −0.0334 − 0.0781 − 0.0441 − 0.0046]T , and the
upper bound is set to u = [0.0201 0.0572 0.0791 0.0467; −0.0247 − 0.0577 − 0.0326 0.0062]T .

C. CFD setup and validation
To simulate the flow around the airfoil, an implicit density based solver in Stanford University Unstructured (SU2) [51]
is used to solve the Reynolds averaged Navier Stokes (RANS) equations with the Spalart-Allmaras [52] turbulence
model. Far field pressure and temperature are set to 39,313.85 Pa and 288.15 K, respectively. The Reynolds number
(Re) used is 6.5 ·106. A no-slip wall boundary condition is set to the surface of the airfoil. The convective fluxes are
calculated using the second order Jameson-Schmidt-Turkel (JST) scheme [53].

An o-grid mesh (Fig. 2) with the outer boundary set to 55c from the airfoil is generated using pyHyp [4, 5, 54]. The
y+ was set to less than 1 in order to capture boundary layer physics as accurately as possible. Four different mesh sizes
with increasing number of cells are generated (Table 1).

The CFD setup and the mesh is validated with case 9 from Cook et al. [55]. The convergence criteria is set to a
minimum of either the total iterations specified in Table 1 or till the absolute difference in Cd between the last 150
iteration falls below 10−6. For benchmark case II, the total number of iterations is changed to those specified in Table 2.
For both these cases, the fixed Cl mode in SU2 is used. The Mach number and Cl is set to 0.73 and 0.803 as well as
0.734 and 0.824 for the validation case and benchmark case II, respectively. The remaining CFD setup and the meshes
is the same as the validation case.

Table 1 shows the CFD results when compared to experimental data for the validation case. The meshes over-predict
the Cd . Mesh 3 is around 2 drag counts higher than the experimental case, while mesh 4 is less than 1 drag count higher.

Table 2 summarizes the mesh independence study for benchmark case II. Mesh 4 takes about 10 times as long to
simulate than mesh 3. Based on the validation cases above, it is safe to assume that mesh 3 would work as an accurate
HF model. For the LF model, mesh 1 was used. However, the 4th order artificial dissipation coefficient in the JST
scheme was changed from 0.02 to 0. The maximum number of iteration was reduced to 8,000. This setup helped
improve convergence of the CFD simulations for the various shapes generated during the sampling of the design space.
The simulation time decreased to 2.3 minutes and a drag value of 219.3 counts was obtained. Figure 3 (a) shows the
Mach number contours simulated using mesh 3. The shock wave can be clearly seen where the contour changes color
from red to green. Figure 3 (b) shows the pressure coefficient (Cp) over the airfoil. A steep rise in Cp is noticeable
around the shock.
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(a) (b)

Figure 2 O-grid for benchmark case II: (a) domain, (b) near airfoil.

Table 1 Grid convergence study for the validation case

Mesh Number of cells Cd , counts x/c Max Iter Simulation time, min
1 8,544 211.2 0.49 12,000 3.4∗

2 33,696 177.1 0.52 12,000 9.4 ∗∗

3 133,536 170.1 0.52 20,000 47.4∗∗

4 525,096 168.8 0.52 20,000 171.3∗∗

Exp - 168.0 0.52 -
∗Computed on a high-performance cluster with 32 processors. Flow solution only.
∗∗Computed on a high-performance cluster with 64 processors. Flow solution only.

Table 2 Grid convergence study of the baseline shape for benchmark case II

Mesh α, degrees Cl , counts Cd , counts Cm Max Iter Simulation time, min
1 3.33 82.4 260.3 -0.0856 12,000 3.4∗

2 2.82 82.4 210.4 -0.0972 12,000 9.8∗∗

3 2.77 82.4 202.1 -0.0985 20,000 47.4∗∗

4 2.77 82.4 200.7 -0.0984 60,000 510.3∗∗
∗Computed on a high-performance cluster with 32 processors. Flow solution only.
∗∗Computed on a high-performance cluster with 64 processors. Flow solution only.

D. Metamodel generation and validation
To generate the metamodels, the design space was sampled using LHS. Five sets of samples with an increasing number
of samples in each set were created. The number of samples in each set are 19, 34, 79, 155 and 305 respectively. The
HF and LF model was evaluated at all these DVs in order to obtain the corresponding HF and LF response, namely Cd

and Cm. An additional sample set contain 463 sample points were generated and only the LF model was evaluated at
these DVs. The final LF sample set was created by combining all these sample points resulting in a total of 1,055 LF
sample points. To make sure that no two sample points from different sets were overlapping, a cluster radius of 10−3

was set and the norm of the difference between the DVs were calculated. Any point that fell below this cluster radius
value was removed.

Two separate metamodels, one for the objective function and the other for the constraint function, was constructed
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Figure 3 CFD results for RAE2822 airfoil: (a) Mach number contours (Mesh 3), (b) Cp profile (LF: mesh 1,
HF: mesh 3).

and validated with 145 HF testing points. The global accuracy was measured using RMSE and NRMSE. Figures 4 and
5 show the RMSE and NRMSE on the drag and pitching moment coefficient metamodels, respectively. From Fig. 4, it
can be seen that the multifidelity metamodels are significantly more accurate than the single fidelity metamodels for a
small number of HF data. This difference in accuracy diminishes in the presence of higher number of HF data and even
results in poorer global accuracy. In Fig. 5, the difference in accuracy between single and multifidelity metamodels is
not as large as those noticed in the Cd metamodel for a low number of HF data points. This difference also decreases
with incresing number of HF data points. However, even at high number of HF data points the multifidelity metamodels
are more accurate. The global accuracy of 10%σtesting is reached with a fewer number of HF points on the pitching
moment coefficient function than the drag coefficient function for all the metamodels. Also, the trends and values of the
PC-Corkriging and Cokriging metamodels are similar.
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Figure 4 Drag coefficient metamodel validation: (a) RMSE, (b) NRMSE.
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Figure 5 Pitching moment coefficient metamodel validation: (a) RMSE, (b) NRMSE.

E. Optimization results
The SLSQP gradient based optimizer with 40 initial starting points is used to find the minimum design. Previous study
done by He et al. [4] show that benchmark case II is unimodal and has a global mimimum. The metamodel constructed
could have local minimums and this could prevent the optimizer from finding the true global minimum, hence 40
different starting points were used. The lowest objective function value found by SLSQP was then evaluated using CFD
and the results are plotted in Fig. 6. Note that zero number of HF samples corresponds to the baseline design for all the
plots in Fig. 6. The resulting optimized shapes are plotted in Fig. 7.

Figure 6 (a) shows the convergence of the argument x∗ varying with the number of HF samples. x∗ refers to the
optimal value of the DVs for each data set. The suffix ‘n’ refers to the the HF sample set. n equals to one corresponds to
the HF sample set with 19 samples. Increasing n to two corresponds to 34 HF samples sets and so on. n equals to zero
corresponds to the baseline case. These results are not uniformly decreasing even though the trend of the global accuracy
is (cf. Figs. 4 and 5) . This is because at the optima found, the local accuracy may vary between the metamodels. This
inaccuracy affects the location of the optima predicted by the metamodels.

Figure 6 (b) shows the convergence of the objective function. Both Cokriging and PC-Cokriging multifidelity
metamodels converge quickly to the optimum drag values. The single fidelity metamodels require at least 155 HF
samples to converge. The optimum drag value predicted by the metamodels is around 129 drag counts and the differences
between these values can be attributed to the local accuracy of the metamodels at the global mimimum. A difference of
approximately 2 drag counts is noted between the metamodels. The trends and values of the objective function of the
Cokriging and PC-Cokriging metamodels are similar.

The convergence of the constraint function is shown in Fig. 6 (c). Again, the multifidelity metamodels converge
to the constraint value of -0.092 faster than the single fidelity models. For all but one case (PC-Kriging with 79 HF
samples) this constraint is not violated. Note that the constraint function is not violated at the optima found from the
metamodel. It is violate when the CFD simulation is run on the optima found. This again is attributed to local inaccuracy
of the metamodel at the optima. Again, the Cokriging and PC-Cokriging metamodels have similar trends and values.

Figures 7 shows the baseline as well as all the optimized shapes obtained from the metamodels. What is immediately
noticeable is that increasing the number of HF samples results in optimized shapes being more similar between the
metamodels. Increasing the number of HF samples increases both the global and local accuracy at the optima. Between
the leading edge and the mid chord on the suction side of the airfoil, the optimized airfoil has a lower curvature. This
reduced the acceleration of air around on the suction side resulting a significantly lower shock strength (cf. Figs. 8 and
9).

Table 3 shows the results from the grid convergence study perform on the optimized shape predicted from the
PC-Cokriging model generated from 155 HF sample points. Note that the mesh and CFD setup is the same as those
performed on the baseline case (Table 2). There is a 1.4 drag count difference between mesh 3 and 4 on the baseline
case. For the optimized shapes, this difference increased to 1.9 drag counts. This confirms that mesh 3 serves as an
appropriate HF mesh.
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Figure 6 Convergence history of optimal designs for the data sets: (a) argument x, (b) objective function, (c)
constraint function.

Table 3 Grid convergence study of the optimized shape for benchmark case II

Mesh α, degrees Cl , counts Cd , counts Cm

1 3.30 82.4 183.7 -0.0779
2 2.82 82.4 138.7 -0.0905
3 2.76 82.4 129.6 -0.0920
4 2.76 82.4 127.6 -0.0920

Figure 8 shows the Mach number contour on the baseline and optimized shapes. The decrease in strength of the
shock wave can be seen. Figure 9 shows the difference in pressure coefficient and skin friction coefficient profile
between the baseline shape and the optimized shaped. The strength of the shock has significantly reduced. However, the
shock has not completely been eliminated. In Fig. 9 (a), the rise in pressure coefficient around mid chord is lower for the
optimized shape than the baseline shape. This corresponds to a smaller drop in skin friction coefficient at the same
location for the optimized shape compared to the baseline shape. The drop is velocity past the shock wave is lower for
the optimized shape due to the weaker shock wave, corresponding to higher skin friction coefficient downstream of the
shock.

Table 4 show results obtained for benchmark case II from literature. In most of the cases, the shock wave has been
completely eliminated, which is not the case for this study. However, comparing to other cases where B-spline control
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Figure 7 Airfoil shapes: (a) baseline, optimized: (b) 19 samples, (c) 34 samples, (d) 79 samples, (e) 155 samples,
(f) 305 samples.

points were used to parameterize the airfoil, it can be seen that the number of DVs used are nearly double. This implies
that eight B-spline control points cannot be used to capture a shock free optimum shape for benchmark case II.
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(a) (b)

Figure 8 Mach number contours: (a) baseline, (b) optimized.
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Figure 9 Baseline vs optimized results: (a) pressure coefficient profile, (b) skin friction coefficient profile.

Table 4 Benchmark case II optimization results compared to those in literature.

Study Parameterization method NDV Baseline Optimized Change Shock free
Lee et al. [36] B-spline 17 234.4 131.8 -102.6 Yes
Current work B-spline 8 200.7 127.6 -73.1 No
Anderson et al. [33] Direct manipulation approach 14 196.0 124.0 -72.0 No
He et al. [4] Free form deformation 40 194.4 108.9 -85.5 Yes
Zhang et al. [35] Class-shape function transformation (CST) 18 194.1 103.6 -90.5 Yes
Bisson and Nadarajah [34] B-spline 16 177.8 102.3 -75.5 Yes

IV. Conclusion
In this study, the PC-Cokriging model, which a multivariate version of the PC-Kriging model, is applied to the ADODG
benchmark case II to find the minimum drag subject to area and pitching moment constraint. The PC-Kriging model
combines the PCE and the Kriging models. The regression-based PCE captures the global trend function, while the
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interpolation-based Kriging model captures the local deviations. The PC-Cokriging model’s construction is similar to
that of the Cokriging model.

The metamodels are first constructed with five different sets of samples, each with an increasing number of HF
samples. The global accuracy of these metamodels are compared in terms of the RMSE and NRMSE for both the
objective and constraint function. For a low number of HF samples, the multifidelity models are more accurate than the
single fidelity metamodels. This difference in accuracy decreases with increasing number of HF data. This highlights
the benefit of using multifidelity metamodels in the absence of large amounts of HF data. Differences in global accuracy
between Cokriging and PC-Cokriging is insignificant in this deterministic case.

Once the global accuracy was measured, the gradient based SLSQPwas used to find the minima from the metamodels.
At this optima the CFD simulations were rerun to find the objective and constraint values. The multifidelity metamodels
converge faster for both the objective and constraint function when compared to the single fidelity metamodels. A
significant reduction in shock strength is achieved through the optimization process. However, the optima is not shock
free. The use of eight B-spline control points were noted as the reason for this. In the future, this study would need to be
redone with a higher number of DVs.

This study highlights the benefit of using multidelity metamodels in the absence of high number of HF data. While
global accuracy improves with increasing number of HF samples, the local accuracy at optima may or may not. The use
of expected improvement might prove to be a better approach to finding the optima while improving both global and
local accuracy. This might even need a low number HF samples to find the minimum. This however needs to be studied.

The current study has been perform for a deterministic case. In the future, this would need to be expanded to
study "robust design" to include parametric uncertainties. This study could entail reducing the drag for varying flow
and geometry parameters such as Mach number, lift coefficient and thickness distribution. Here, it is expected that
PC-Cokriging will outperform Cokriging.
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