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ABSTRACT

This paper demonstrates the use of the polynomial chaos-
based Cokriging (PC-Cokriging) on various simulation-based
problems, namely an analytical borehole function, an ultrasonic
testing (UT) case and a robust design optimization of an air-
foil case. This metamodel is compared to Kriging, polynomial
chaos expansion (PCE), polynomial chaos-based Kriging (PC-
Kriging) and Cokriging. The PC-Cokriging model is a multi-
variate variant of PC-Kriging and its construction is similar to
Cokriging. For the borehole function, the PC-Cokriging requires
only three high-fidelity samples to accurately capture the global
accuracy of the function. For the UT case, it requires 20 points.
Sensitivity analysis is performed for the UT case showing that the
F-number has negligible effect on the output response. For the
robust design case, a 75 and 31 drag count reduction is reported
on the mean and standard deviation of the drag coefficient, re-
spectively, when compared to the baseline shape.

INTRODUCTION

The use of physics-based simulation models is important in
engineering, design and analysis. Examples of engineering areas
where simulations play an important role include nondestructive
testing (NDT) and aerodynamic design optimization.

NDT refers to the process of evaluating, inspecting and test-
ing a part without physically damaging it [1]. NDT measure-
ments depends on input variability parameter such as probe an-
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gle and location. Some of these parameters have a higher ef-
fect on the output response. To determine how much of each
input parameter has on the response, sensitivity analysis can be
performed [2, 3]. In this work, global sensitivity analysis using
Sobol’ indices [4,5] is used. Traditional NDT methods have used
finite element methods [6] and boundary element methods [7].
Unfortunately, for sensitivity analysis, in order to propagate vari-
ability parameters to output responses, a large number of model

evaluations is needed, which can be impractical.

Aerodynamic shape optimization problems have typically
focused on deterministic cases, where the use of gradient-based
search method with adjoints are widely used [8—12]. Robust de-
sign optimization cases have also been performed, but have used
metamodeling methods to handle the uncertainties [13, 14]. Per-
forming robust design optimization is typically more expensive
than its deterministic counterpart, owning to an increased num-
ber of model evaluations to allow for the propagation of input
uncertainties to the model responses. This makes using physics-

based simulation models challenging.

To reduce this computational cost, metamodeling methods
can be used [15]. A computationally cheap metamodel replaces
a costly physics-based model. Data-fit methods [16] and multifi-
delity methods [17] are two classes of metamodeling. A response
surface is fitted though model evaluations at high-fidelity sample
points in data-fit methods. In multifidelity methods, low-fidelity
model evaluations can be used to enhance the prediction at a lim-

ited number of high-fidelity model evaluations.

In this work, the PC-Cokriging model developed by Du and
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Leifsson [18] is used to perform sensitivity analysis on an UT
benchmark case as well as a robust design optimization of an
airfoil under uncertainly in Mach number. The PC-Cokriging
model is also applied to an eight variable analytical borehole
function [19]. PC-Cokriging is a multivariate version of the PC-
Kriging model [18]. The global polynomial trend function in the
Kriging metamodel is replaced with PCE to construct the PC-
Kriging [20] metamodel. PCE captures the global trend well
while the Kriging model the local deviations. PC-Cokriging is
compared to other state-of-the-art metamodels, namely, Krig-
ing [21], PCE [22], PC-Kriging [20] and Cokriging [23] to com-
pare its performance as it combines the advantages of these meta-
models.

This paper is organized in the following way. The next sec-
tion describes the methods used to construct the PC-Cokriging
metamodel and describes both the sensitivity analysis using
Sobol’ indices as well as optimization using this metamodel. In
the following section, the PC-Cokriging model is applied to the
three simulation-based problems. This paper then ends with con-
clusions and future work.

METHODS

In this section, the methods used to construct the PC-
Cokriging metamodel is described. This section begins by out-
lining the multifidelity metamodeling algorithm, followed by the
sampling plan, the construction of the metamodel, and its vali-
dation. The use of the metamodel for both sensitivity analysis as
well as optimization is explained at the end of this section.

Multifidelity Metamodel Algorithm

The metamodel-based analysis flowchart is shown in Fig. 1.
The input design/variability space first needs to be sampled, rep-
resented by X in Fig. 1, to generate the training data used to con-
struct the metamodel. Two separate sets of data (x. and x,) are
used to construct the low and high-fidelity metamodels by eval-
uating the responses (y,. and y,) from the low and high-fidelity
physics-based models, respectively. These metamodels are then
combined to construct the multifidelity metamodel. In Fig. 1,
y represents the combined observations of y. and y,, whereas
¥, is the metamodel prediction. To validate the global accuracy
of the metamodel, a separate set of high-fidelity data, known as
testing data, is used. The accuracy is measured using the root
mean squared error (RMSE). This procedure needs to be redone
multiple times to satisfy the testing criteria. Note that each time
the amount of training data used is increased during resampling.
On meeting the required global accuracy, this metamodel can be
used for either sensitivity analysis or to find the optimum.

| Sampling plan I-i
[ High fidelity model | —x,.y. lx
Observations |
( Low fidelity model(s) |—x..ye l v

Resample

| Construct metamodel |

¥e ()
| Validation

RMSE >threshold
RMSE <threshold

Metamodel-based
analysis

FIGURE 1. FLOWCHART OF THE
METAMODEL-BASED ANALYSIS.

PC-COKRIGING

Sampling Plan

The first step involved in constructing the metamodel is sam-
pling. Sampling is the process of selecting discrete samples in
the variable space [15]. In this study , the training data is gen-
erated using the Latin Hypercube sampling (LHS) [15] method.
The number of high-fidelity samples generated is typically lower
than those of the low-fidelity samples. This is due to the high
computational cost required to evaluate the high-fidelity physics-
based model. To generate the testing data, either the LHS method
or the Monte Carlo sampling (MCS) [24] method is used.

Metamodeling

This study uses the PC-Cokriging model developed by Du
and Leifsson [18]. The PC-Cokriging model is generated by
combing metamodels, starting with the Kriging model [15],
given by

MER(X) = g (X)y+ 0?Z(X), (1

where X € R™ is the vector of m-dimensional input variability
parameters. The first term is the global trend term and the second
term is the local deviation term. g’ (X) is a set of regression
basis terms and ¥ is a constant. 62 is the constant variance of the
Gaussian process Z(X) with zero mean and unit variance. The
Matern-5/2 [25] function is used as the correlation term in Z(X),
in this study.

The PC-Kriging model [20] uses PCE [22] as the global
trend term and is given by

MPK(X) = aT ®(X) 4 6°Z(X). 2)

Here, ® is a set of orthogonal polynomial basis function and
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a is a constant. PC-Kriging combines the advantage of the PCE
model, which captures the global behaviour of the computational
model well and the Kriging model, which captures the local vari-
ations well.

Cokriging [23] is a fusion based model which combines in-
formation from multiple levels of fidelity to enhance prediction
accuracy, especially in the presence of limited amount of high-
fidelity data. In this work, information from two levels of fidelity
is used. First, a Kriging model (MK (X)) is created using only
low-fidelity data, followed by a second Kriging model (M5X.(X))
on the difference of the high and low-fidelity data. The generic
form of a Cokriging model is given by [23]

MK (X) = pM{E(X) + MEf(X), 3)

where p is a constant scaling factor.

The PC-Cokriging model [18] is a multivariate version of
the PC-Kriging model and is constructed similar to the Cokriging
model and is given by

MPEK(X) = pM{ER (X) + MEG (X). )

Here, MFCK (X) and MECK (X) are the PC-Kriging model on the
low-fidelity and the difference between the low and high-fidelity
data, respectively.

Validation
In this work, the global accuracy of the metamodel is mea-
sured using the RMSE, which is given by

RMSE = \/Z testmg yteltlng) /nh (5)

and the normalized RMSE (NRMSE), given by
NRMSE = RMSE/(maX(ylesting) - min(Ylesting))’ (6)

where n, is the total number of testing data. yAgtmg and y,(;)sting
are the metamodel estimation and high-fidelity observation of
the i™ testing point, respectively. The maximum and minimum
high-fidelity values from the testing data are max(y,e;,,) and
min (y,em-ng), respectively. In this work, 1%0ieging (standard de-
viation of testing points) is considered as an acceptable global

accuracy.

Metamodel-Based Sensitivity Analysis
For the NDE case, the constructed metamodel is used to per-
form sensitivity analysis, using Sobol’ indices [4]. Sensitivity

analysis is used to determine how much each variability parame-
ter affects the model response.
Consider a black box model given by,

M(X) = f(X), @)

where X is a m random variable input vector. Decomposing this
equation gives [5]

fo+2f, +Zﬁ (Xi, X;)

i<j ®)

where fj is a constant, and f; is a function of X;. These terms are
orthogonal and can then be decomposed in terms of conditional
expected values given by [5]

Jo=EM(X)), ©)

fi(Xi) = E(M(X)|X:) — fos (10)

fij(Xi, X;) = E(M|X;,X;) — fo— fi(Xi) — f;(X}), (1)

and so on. The variance of (8) is then [5]

m m
Var ZV+Z‘/}7j+~-~+V1,27..‘,m7 (12)
=1 i<y
where
Vi = Vary,(Ex_,(M(X)|X))), 13)

Vij :Varxi‘j(EXq‘,j(M(X”XhXj)) -Vi=V;, (14)

and so on, where the set of all variables except X; is denoted by
X
The first-order Sobol’ indices are given by [4]

Vi
Si=——cr 15
" Var(M(X))’ (15)
and the total-effect Sobol” indices are given by [4]
A\ M(X
o 1 Vars (Ex(MX) X)) 06

i Var(M(X))
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TABLE 1. VARIABILITY PARAMETERS AND THEIR DISTRI-
BUTION FOR THE BOREHOLE FUNCTION [19].

TABLE 2.  BOREHOLE FUNCTION METAMODELING COST.

Variability Parameters Distribution

radius of borehole, r,,(m)
radius of influence , r(m)
transmissivity of upper aquifer, T, (m?/yr)
potentiometric head of upper aquifer, H,(m)  U(990, 1110)
U(63.1, 116)
U(700, 820)

U(1120, 1680)

transmissivity of lower aquifer, 7;(m? /yr)
potentiometric head of lower aquifer, H;(m)
length of borehole, L(m)
hydraulic conductivity of borehole, Ky, (m/yr)

N(0.1,0.01618122%)
LogN(7.71, 1.0056%)
U (63070, 115600)

U (9855, 12045)

Metamodel HF sample cost
Kriging 300
PCE 100
PC-Kriging 100
Cokriging 200*
PC-Cokriging 3*

*Plus 170 LF training points

10 2 ‘ - -10% Utesting

Metamodel-Based Optimization

To find the optimum from the generated metamodel, the se-
quential least squares programming (SLSQP) gradient-based op-
timizer available in SciPy [26] is used. 40 started points are se-
lected from which the SLSQP algorithm begins its search. These
starting points are generated using LHS. This is done to find the
best local minimum.

NUMERICAL EXAMPLES

In this study, the PC-Cokriging model is applied to three dif-
ferent simulation-driven engineering design problems. The first
is an eight variable analytical function, the borehole function.
The second, an ultrasonic testing benchmark case and the third
is robust optimization of an airfoil under uncertainty in Mach
number. The PC-Cokriging model is compared to other state-
of-the-art metamodels, namely, Kriging, PCE, PC-Kriging and
Cokriging.

Borehole Function
The borehole function [19] is an eight variable problem used
to model flow of water through a borehole and is given by

2nT,(H, — H))
in(r/re) (1+ gt + )

fur(x) = (17)

Each of the variability parameter and its distribution is given in
Tab. 1. The low fidelity model developed by Xiong et al. [27] is
used and is given by

--1%

©PCE
-©-Kriging
-©-PC-Kriging
-©-Cokriging
-©-PC-Cokriging

o, .
testing

RMSE (m > /yr)

“~o % ©

10! ‘ ‘ ‘
1 10 100 300
Number of high-fidelity samples

FIGURE 2. BOREHOLE FUNCTION METAMODEL VALIDA-
TION.

STu(Hu _Hl)

tn(r/n) (15 + B +

Jir(x) =

. 38)
)

Results Table 2 shows the number of high fidelity sam-
ples required by each metamodel to reach the global accuracy
of 1%0iesting. This accuracy is measure using 1,000 MCS gen-
erated testing points. Note that the multifidelity models use an
additional of 170 low-fidelity sample points. PC-Cokriging far
outperforms the other models requiring only 3 high-fidelity data
points. PCE and PC-Kriging follow the exact same trend (Fig. 2)
and require 100 high-fidelity points to meet the 1% threshold,
while Cokriging and Kriging require 200 and 300, respectively.
This case assumes that sampling the low-fidelity model is com-
putationally efficient and its cost is negligible.
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FIGURE 3. SETUP FOR THE ULTRASONIC TESTING CASE.

TABLE 3. VARIABILITY PARAMETERS AND THEIR DISTRI-
BUTION FOR THE ULTRASONIC TESTING CASE.

Variability Parameters Case 1

6 (deg) N(0,0.5%)
x (mm) Uu@o,1)
F U(13, 15)

Ultrasonic Testing Case

In this study the spherically-void-defect under planar trans-
ducer ultrasonic testing benchmark case developed by the World
Federal Nondestructive Evaluation Center [28] is used. The five
metamodel are compared in terms of cost required to reach the
global accuracy of 1%0ieging. Sensitivity analysis using these
metamodels are also performed.

Problem Setup The setup for the UT benchmark case
is shown in Fig. 3. The three variability parameters, namely,
the probe angle (0), the x location of the probe (x,) and the
F-number (F) along with their corresponding distributions are
shown in Tab. 3. For this study, the analytical model [29] is used
as the high-fidelity model, while the Kirchhoff approximation is
used as the low-fidelity one. The center frequency of the trans-
ducers are set to 5 MHz, while the density, the longitudinal and
the shear wave speeds of the fused quartz block with spherical
pore are 2,000 kg/m?>, 5,969.4 m/s and 3,774.1 m/s, respec-
tively.

TABLE 4. ULTRASONIC TESTING CASE METAMODELING

COST.

Metamodel HF sample cost
Kriging 1000
PCE 120
PC-Kriging 56
Cokriging 48"
PC-Cokriging 20*

*Plus 1000 LF training points

10°
--10% o .
testing
-1% o .
testing
— ©PCE
> ©Krigin
= ging
~ 10 -1 -©-PC-Kriging
(LE -©-Cokriging
= ©PC-Cokriging
~
)
-2 ‘
10
10! 102 10°

Number of sample points

FIGURE 4. ULTRASONIC TESTING CASE METAMODEL VALI-
DATION (RMSE).

Results Figure 4 shows the variation of the RMSE for all
the metamodels with increasing number of high-fidelity training
points, for the defect of size 0.5 mm. PC-Cokriging outperform
all the other metamodels and requires 20 high-fidelity samples to
reach the 1% threshold. The computational cost of all the mod-
els are shown in Tab. 4. 1,000 additional low-fidelity samples
are used to construct the multifidelity models. For this case we
assume the cost of observing the low-fidelity sample is negligi-
ble.

To verify the accuracy of the metamodels for different defect
sizes, the NRMSE is calculated. Figure 5 shows the variation of
the NRMSE with increasing defect sizes. The NRMSE is nearly
constant with respect to defect size and within 1% Giesting. Similar
to the previous case, 1,000 MCS generated testing points per
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FIGURE 5. ULTRASONIC TESTING CASE METAMODEL VALI-
DATION (NRMSE).
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FIGURE 6. 157 ORDER SOBOL INDICES FOR THE ULTRA-
SONIC TESTING CASE.

defect size were used to measure the accuracy of the metamodel.

Figures 6 and 7 shows the 1% and total order Sobol’ in-
dices for the different metamodels. The results from the meta-
models are compared the those obtaining from directly sampling
the physics-based model. In all the models except PCE, 75,000
MCS were used to perform sensitivity analysis. In PCE, the co-
efficients are used to calculate these indices. The values of these

1 -
.MCSTrue
08 | = IPCE
DMCSKngmg
0.6 - .MCSPCKriging
§ . .NICS Cokriging
HCr) 04 DMCSPCCOkriging
0.2 1
0 ‘ “Hllﬂ
F X

FIGURE 7. TOTAL ORDER SOBOL’ INDICES FOR THE ULTRA-
SONIC TESTING CASE.

indices match well for all the metamodels. Metamodel-based
sensitivity analysis is highly efficient for this case as instead of
evaluating the model response 75,000 times to get the Sobol’s
indices, the metamodels output these responses at little to no
cost. The F-number has negligible effect on the model response.
This method can be used as a precursor to experimental measure-
ments, where the number experiments can be reduced by keeping
the value of the F-number constant.

Robust Design Optimization

The final case is a robust design optimization of a RAE 2822
airfoil under uncertainty in the Mach number. This case is a mod-
ified version of benchmark case II developed by the AIAA Aero-
dynamic Optimization Design Discussion Group (ADODG). The
five metamodels are constructed and used to find the minimum.
The results from this robust optimization case are compared to
the deterministic ADODG case II performed by Nagawkar et
al. [30]. Note that the type of parameterization (B-spline) as well
as the computational fluid dynamics (CFD) setup and validation
is the same those by Nagawkar et al. [30]. The CFD simula-
tions are performed using Stanford University Unstructured [31]
and the mesh is generated using pyHyp' [9]. For this study,
however, the bounds of the design variables are increased from
(1£15%)x0 to (1 £25%)xg. Xo is the baseline design variable
values.

! Developed at the MDOlab, University of Michigan
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Problem Formulation In this case, the objective is to
minimize the drag coefficient (C;) of a RAE 2822 airfoil in vis-
cous flow with the freestream Mach number (M..) varying uni-
formly in the range 0.725 to 0.743, subject to a fixed lift coeffi-
cient (C;) of 0.824 as well as pitching moment coefficient (Cy,)
and cross-sectional area constraints (A).

The optimization problem is formulated as

min (11(Cy) + @ 6(Cy)) (19)

1<x<u

subject to the equality constraint

C;=0.824 (20)
and inequality constraints
w(Cp) > —0.092 21
and
A > Apaseline- (22)

x is the design variable vector, while 1 and u are the lower and
upper bounds, respectively, of each design variable. u and ¢
refer to the mean and standard deviation. @ is the weighting
factor and is set to one for this case. A is the cross-sectional area
of the airfoil non-dimensionalised with the square of the chord
length (c). Apgserine 18 the baseline area of the airfoil with a value
of 0.07787¢2.

Results For this case, two different metamodels were
constructed for the objective function and the pitching moment
constraint function. The variation of the RMSE with number
of training points used to construct the metamodels is shown in
Figs. 8 and 9, respectively. The multifidelity metamodel used an
additional 1,604 low fidelity training points for this case. 115
high-fidelity testing points were used to measure the RMSE. The
multifidelity metamodel show significant higher accuracy for the
drag coefficient metamodels in presence of low amount of high-
fidelity data as shown in Fig. 8. This is not the case for the pitch-
ing moment coefficient metamodel (Fig. 9). For both the cases,
increasing the number of high-fidelity training points, decreases
the difference in accuracy between the multifidelity and data-fit
metamodels.

Figure 10 shows the variation of the drag coefficient with
Mach number. The robust design case is compared to the de-
terministic case as well as the baseline shape. Significant re-
duction in both the mean and standard deviation of drag with

10 2 --10% Utesting

<PCE
©Kriging
©PC-Kriging
©Cokriging
©PC-Cokriging

RMSE

(0}

10

10 50 100 200 400
Number of high-fidelity samples

FIGURE 8. DRAG COEFFICIENT METAMODEL VALIDATION
FOR THE OPTIMIZATION CASE.

10-2 ‘ —-10% o

©PCE
©Kriging
©PC-Kriging
-©-Cokriging
©-PC-Cokriging

testing

RMSE

107 ‘ ‘ ‘
10 50 100 200 400

Number of high-fidelity samples

FIGURE 9. PITCHING MOMENT METAMODEL VALIDATION
FOR THE OPTIMIZATION CASE.

respect to Mach number is noticed (Tab. 5). However, for the
robust case, the standard deviation of the drag is around ten drag
counts lower when compared to the deterministic optimization
case. This shows that robust design optimization results in an
airfoil that is less sensitive to the Mach number. The differences
in airfoil shapes between the optimized and baseline shapes is
shown in Fig. 11. Both the optimized shapes have a lower cur-
vature on the suction side of the airfoil from the leading edge
to around mid-chord. This shape reduces the acceleration of the
flow over the suction side, resulting in a lower local Mach num-
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FIGURE 10. VARIATION OF DRAG COEFFICIENT WITH RE-
SPECT TO MACH NUMBER: BASELINE V/S OPTIMIZED.

TABLE 5. ROBUST DESIGN OPTIMIZATION RESULTS.

0.1 ——Baseline
—Deterministic

—Robust

0.05 |

z/c
o

-0.05 |

-0.1 :
0 0.5 1

x/c

FIGURE 11. SHAPE COMPARISON: BASELINE V/S OPTI-
MIZED.

1.5
Case u(Ca) o(Ca) Au(Cs) Ac(Cq)  p(Cn) -1
Baseline 205.3 334 - - -0.099
Deterministic 133.0 12.1 72 21 -0.092 0.5
Robust 130.6 1.9 75 31 -0.090 QQ' Ot
C, is in drag counts. i
0.5 —Baseline
One countis 1E —4 —Deterministic
1 —Robust
1.5

ber, which in turn reduces the shock strength, thereby reducing
the drag. Small differences in the shape has significant effect on
the drag as well as pressure coefficient on the airfoil as seen in
Fig. 12. The optimized shapes for both the cases have not elim-
inated the shock completely, but has reduced its strength signifi-
cantly.

CONCLUSION

The PC-Cokriging metamodel is applied to three differ-
ent simulation-based engineering problems. This metamodel is
compared to other state-of-the-art metamodels, namely, Kriging
PCE, PC-Kriging and Cokriging. The PC-Cokriging metamodel
is a multivariate version of PC-Kriging and its construction is
similar to Cokriging. The PC-Kriging model uses PCE as the
global trend function in Kriging. PC-Kriging combines the ad-
vantages of Kriging and PCE.

0 0.2 0.4 0.6 0.8 1
x/c

FIGURE 12. PRESSURE COEFFICIENT AT 0.734 MACH NUM-
BER: BASELINE V/S OPTIMIZED.

For the Borehole function, the PC-Cokriging metamodel re-
quired only three high-fidelity points to reach the target accuracy
Of 1%0GCtesting. Its nearest competitors, PCE and PC-Kriging re-
quire 100 each. In the ultrasonic testing benchmark case, PC-
Cokriging required 20 high-fidelity samples, while Cokriging
required 48. For the final case, the trend of the PC-Cokriging
model is similar to Cokriging. To reach the target accuracy of
1%0Otesting more high-fidelity samples will be required to con-
struct the metamodels. This will be done in future studies of this
case.
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Sensitivity analysis was performed for the ultrasonic test-
ing case. All the metamodels show similar values for both the
1*" and total order Sobol’ indices. The F-number has virtually
no effect on the model response for this case. This information
can be used as a precursor for setting up experiments for ultra-
sonic testing. For this case, the F'-number can be neglected while
performing experiments. More variability parameters will be in-
cluded in future cases.

Robust design optimization was performed on a RAE 2822
airfoil under uncertainty in freestream Mach number. When
compared to a deterministic optimization case, the robust case
not only reduced the mean drag coefficient, but also made the
drag coefficient virtually invariant with changing Mach number.
The pressure coefficient was significantly affected for a relatively
small change in airfoil shape, showing the importance of per-
forming robust shape optimization. Future studies will include
uncertainties in lift, pitching moment as well as thickness of the
airfoil.

ACKNOWLEDGMENT

The authors of this paper are supported by NSF award num-
ber 1846862.

REFERENCES

[1] Crawley, P., 2001. “Non-destructive testing - current capa-
bilities and future directions”. Journal of Material: Design
and Applications, 215(4), pp. 213-223.

[2] Lilburne, L., and Tarantola, S., 2009. “Sensitivity analysis
of spatial models”. International Journal of Geographical
Information Science, 23, pp. 151-168.

[3] Castillos, E., Conejo, A., Minguez, R., and Castillos, C.,
2007. “A closed formula for local sensitivity analysis in
mathematical programming”. Engineering Optimization,
38, pp. 93-112.

[4] Sobol’, 1., and Kucherekoand, S., 1993. “Sensitivity esti-
mates for nonlinear mathematical models”. Mathematical
Modelling and Computational Experiments, 1, pp. 407—
414.

[5] Sobol’, 1., 2001. “Global sensitivity indices for nonlin-
ear mathematical models and their monte carlo estimates”.
Mathematics and Computers in Simulation, 55, pp. 271-
280.

[6] Zeng, Z., Udpa, L., and Udpa, S. S., 2009. “Finite-element
model for simulation of ferrite-core eddy-current probe”.
IEEE Transaction on Magnetics, 46, pp. 905-909.

[7]1 Zhang, C., and Gross, D., 2002. “A 2D hyper singular time-
domain traction BEM for transient elastodynamic crack
analysis”. Wave Motion, 35, pp. 17-40.

[8] Leung, T. M., and Zingg, D. W., 2012. “Aerodynamic shape

optimization of wings using a parallel newton-krylov ap-
proach”. AIAA Journal, 50(3), pp. 540-550.

[9] He, X., Li, J., Mader, C. A., Yildirim, A., and Martins, J.
R. R. A, 2019. “Robust aerodynamic shape optimization
- from a circle to an airfoil”. Aerospace Science and Tech-
nology, 87, pp. 48-61.

[10] Secco, N.R., and Martins, J. R. R. A., 2019. “RANS-based
aerodynamic shape optimization of a strut-braced wing
with oversetmeshes”. Journal of Aircraft, 56, pp.217-227.

[11] Yu, Y., Lyu, Z., Xu, Z., and Martins, J. R. R. A., 2018. “On
the influence of optimization algorithm and initial design on
wing aerodynamic shape optimization”. Aerospace Science
and Technology, 75, pp. 183-199.

[12] Lyu, Z., Kenway, G. K., and Martins, J. R. R. A., 2015.
“Aerodynamic shape optimization investigations of the
common research model wing benchmark”. AIAA Journal,
53, pp. 968-985.

[13] Shah, H., Hosder, S., Koziel, S., Tesfahunegn, Y. A., and
Leifsson, L., 2015. “Multi-fidelity robust aerodynamic de-
sign optimization under mixed uncertainty”. Aerospace
Science and Technology, 45, pp. 17-29.

[14] Bouhlel, M. A., Regis, N. B. R. G., and A. Otsmane,
a. J. M., 2018. “Efficient global optimization for high-
dimensionalconstrained problems by using the kriging
models combined with the partial least squares method”.
Engineering Optimization, 0, pp. 1-16.

[15] Forrester, A. 1. J., Sobester, A., and Keane, A. J., 2008.
Engineering design via surrogate modelling: A practical
guide. John Wiley and Sons, Ltd, United Kingdom.

[16] Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T,
Vaidyanathan, R., and Tucker, P. K., 2005. “Surrogate-
based analysis and optimization.”. Progress in Aerospace
Sciences, 21(1), pp. 1-28.

[17] Peherstorfer, B., Wilcox, K., and Gunzburger, M., 2018.
“Survey of multifidelity methodsin uncertainty propaga-
tion, inference, and optimization”. Society for Industrial
and Applied Mathematics, 60(3), pp. 550-591.

[18] Du, X., and Leifsson, L., 2020. “Multifidelity modeling
by polynomial chaos-based cokriging to enable efficient
model-based reliability analysis of ndt systems”. Journal
of Nondestructive Evaluation, 1.

[19] Harper, W. V., and Gupta, K. S., 1983. Sensitiv-
ity/uncertainty analysis of a borehole scenario comparing
Latin Hypercube Sampling and deterministic sensitivity ap-
proaches. Technical report, Office of Nuclear Waste Isola-
tion, Columbus, OH.

[20] Schobi, R., Sudret, B., and Wairt, J., 2015. “Polynomial-
chaos-based kriging”. InternationallJournal of Uncertainty
Quantification, 5, pp. 193-206.

[21] Krige, D. G., 1951. “Statistical approach to some basic
mine valuation problems on the witwatersrand”. Journal of
the Chemical, Metallurgical and Mining Engineering Soci-

Copyright (© 2020 by ASME



(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

ety of South Africa, 52(6), pp. 119-139.

Blatman, G., 2009. “Adaptive sparse polynomial chaos ex-
pansion for uncertainty propagation and sensitivity analy-
sis”. PhD Thesis, Blaise Pascal University, France.
Kennedy, M. C., and O’Hagan, A., 2000. “Predicting the
output from a complex computer code when fast approxi-
mations are available”. Biometrika Trust, 87(1), pp. 1-13.
Shapiro, A., 2003. “Monte carlo sampling methods”.
Handbooks in Operations Research and Management Sci-
ence, 10, pp. 353-425.

Gneiting, T., Kleiber, W., and Schlather, M., 2010. “Matérn
cross-covariance functions for multivariate random fields”.
Journal of the American Statistical Association, 105,
pp. 1167-1177.

Virtanen, P., Gommers, R., Oliphant, T. E., Haber-
land, M., Reddy, T., Cournapeau, D., and Burovski,
E., 2019. SciPy 1.0-Fundamental Algorithms for
Scientific Computing in Python. See also URL

http://arxiv.org/abs/1907.10121, August.

Xiong, S., Qian, P. Z., and Wu, J. C., 2013. “Sequental de-
sign and analysis of high-accuracy and low-accuracy com-
puter codes”. Technometrics, 55(1), pp. 37-46.

Gurrala, P, Chen, K., Song, J., and Roberts, R., 2017. “Full
wave modeling of ultrasonic NDE benchmark problems us-
ing Nystrom method”. Review of Progress in Quantitative
Nondestructive Evaluation, 36(1), pp. 1-8.

Schmerr, L., and Lester, W., 2016. Fundamentals of Ul-
trasonic Nondestructive Evaluation: A modeling approach.
Springer International Publishing, Switzerland.

Nagawkar, J., Leifsson, L., and Du, X., 2020. “Applica-
tions of polynomial chaos-based cokriging to aerodynamic
design optimization benchmark problems”. AIAA Scitech
2020 Forum, 6-10 January, Orlando Florida.

Economon, T. D., Palacios, F., Copeland, S. R., Lukaczyk,
T. W., and Alonso, J. J., 2015. “SU2: An open-source suite
for multiphysics simulation and design”. AIAA Journal,
54(3), pp. 828-846.

10

Copyright (© 2020 by ASME



