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Abstract—The demand of sharing video streaming extremely
increases due to the proliferation of Internet of Things (IoT)
devices in recent years, and the explosive development of Ar-
tificial Intelligent (AI) detection techniques have made visual
privacy protection more urgent and difficult than ever before.
Although a number of approaches have been proposed, their
essential drawbacks limit the effect of visual privacy protection
in real applications. In this paper, we propose a cycle Vector
Quantized Variational Autoencoder (cycle-VQ-VAE) framework
to encode and decode the video with its extracted audio, which
takes advantage of multiple heterogeneous data sources in the
video itself to protect individuals’ privacy. In our cycle-VQ-VAE
framework, a fusion mechanism is designed to integrate the video
and its extracted audio. Particularly, the extracted audio works
as the random noise with a non-patterned distribution, which
outperforms the noise that follows a patterned distribution for
hiding visual information in the video. Under this framework,
we design two models, including frame-to-frame (F2F) model
and video-to-video (V2V) model, to obtain privacy-preserving
video streaming. In F2F, the video is processed as a sequence of
frames; while, in V2V, the relations between frames are utilized
to deal with the video, greatly improving the performance of
privacy protection, video compression, and video reconstruction.
Moreover, the video streaming is compressed in our encoding
process, which can resist side-channel inference attacks during
video transmission and reduce video transmission time. Through
the real-data experiments, we validate the superiority of our
models (F2F and V2V) over the existing methods in visual privacy
protection, visual quality preservation, and video transmission
efficiency. Our codes and more data are now available in
https://github.com/ahahnut/cycle-VQ-VAE.

Index Terms—Audio-Visual, Privacy, Video Streaming, VQ-
VAE

I. INTRODUCTION

RECENTLY, sharing video streaming has been becoming
increasingly popular with the wide applications of Inter-

net of Things (IoT) devices [1]–[4], the number of which is
predicted to reach about 45 billion by 2022 [5]. In transmission
process, however, the video streaming may be maliciously
intercepted by attackers who intend to infer individuals’ pri-
vate information from the videos using detection/prediction
approaches [6]–[13]. Meanwhile, recent breakthroughs in deep
learning accelerate the development of machine learning-based
detection techniques, such as face detection [14]–[18] and
semantic segmentation [19]–[23], which greatly increases the
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risk of privacy leakage in the video streaming. For example,
from the video, attackers are able to use these advanced ma-
chine learning models to accomplish speech recognition [24],
[25], action recognition [26], [27], and other activity detection.
According to the latest Cost of a Data Breach Report proposed
by IBM and the Ponemon Institute, privacy leakage causes
property loss of millions dollars every year for individuals or
companies concerned [28]. In addition, privacy protection has
been regulated by law – on May 25th, 2018, the European
Union’s new General Data Protection Regulation (GDPR)
came into force, requiring that people should have more
control over their personal data. To this end, privacy protection
is deemed to be an indispensable component for video sharing.

So far, a lot of research has been conducted to protect visual
privacy in various ways. Some works aim to hide (partial)
visual information for privacy protection [29]–[34], some
approaches achieve anonymity through disturbing the original
visual information [35]–[39], some methods protect privacy
by changing the visual style of original information [1], [40],
and some studies apply encryption methods to protect privacy
in video [41]–[45]. However, the existing works still have
their limitations, which also challenges the design of effective
protection for visual privacy: (i) random noise is added to
disturb the visual information in noise-based models, but the
added noise usually follows some patterned distributions (e.g.,
normal distribution), which can be utilized as prior knowledge
in attackers’ detection models to infer private information; (ii)
some noise-based models are just trained to fool a certain
kind of discriminative model, which cannot be used to defend
general detection models in real applications; (iii) all the
existing models, even the encryption-based ones, do not fully
consider leakage of side-channel information (e.g., traffic size)
during video transmission, leading to vulnerability to side-
channel inference attack; and (iv) these previous privacy-
preserving models only focus on visual privacy in separated
video frames but overlook the temporal information (i.e. the
relations between frames) in video streaming, resulting in the
low effect of privacy protection.

To overcome the above challenges, in this paper, we propose
to encode and decode video streaming with its extracted
audio to achieve visual privacy protection while maintaining
the expected visual quality and enhancing video transmission
efficiency. The extracted audio is a kind of random noise
without any patterned distribution, which can better disturb the
visual information as well as reduce the accuracy of malicious
detection, compared with the noise that follows patterned
distributions. For any video, its extracted audio cannot be
generated or manipulated easily by attackers without any prior
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knowledge, which ensures that the encoded video can only
be decoded by the receivers who obtain the extracted audio.
In other words, we aim to fuse multiple heterogeneous data
sources (i.e., the video and its extracted audio in this paper)
to hide private visual information to defend detection attack
and side-channel inference attack simultaneously during video
transmission, which has not been addressed in literature.

To realize our proposed design, we develop a cycle-VQ-
VAE framework to accomplish the fusion of heterogeneous
data sources by employing the idea of codebook. Our frame-
work consists of two VQ-VAE components with one work-
ing as the encoder and the other working as the decoder.
Considering a pair of sender and receiver in video sharing
applications, this kind of cycle framework can guarantee that
the encoded video frame can be properly encoded at the sender
and decoded at the receiver with high visual quality. To fuse
different data sources, we map both the video and its extracted
audio into an appropriate low-dimension space such that the
codes of audio can disturb the codebook of video and the video
information can be compressed effectively in the encoder. This
encoding process that has not been presented in previous works
makes sure that our framework can also be used to defend
side-channel inference attack because it changes the traffic
pattern of video streaming. Correspondingly, in the decoder,
the same audio can be used to decode the encoded video
by removing the extra codes of the audio from the disturbed
codebook. Under this cycle-VQ-VAE framework, we develop
two different models, including Frame-to-Frame (F2F) and
Video-to-Video (V2V) models. In F2F model, we divide the
video into a series of frames and reconstruct the images in a
frame by frame manner. In V2V model, we treat the video
as time-series data to perform image reconstruction taking
into account the temporal information in video. Finally, we
use the AVE dataset [46], two AI detection models, and one
side-channel inference attack model to evaluate the superiority
of our proposed F2F and V2V models over the state-of-
the-art schemes in terms of visual privacy protection, visual
quality preservation, and video transmission efficiency. In the
following, the contributions of this paper are summarized.

• To the best of our knowledge, this is the first work to
study the fusion of multiple heterogeneous data sources
in video streaming for privacy protection.

• The extracted audio used in the cycle-VQ-VAE frame-
work does not follow any patterned distribution and thus
outperforms the works using the noise that follows some
patterned distributions (e.g., normal distribution).

• A novel cycle-VQ-VAE framework is developed to pro-
cess video streaming, where the video and its extracted
audio can be fused properly for protecting visual privacy,
preserving visual quality, and compressing video infor-
mation simultaneously.

• The integration of video compression and encoding is
proposed to defend side-channel inference attack and
reduce video transmission overhead.

• F2F and V2V models are designed under the cycle-VQ-
VAE framework to achieve the goal of privacy protection;
especially, V2V model exploits the temporal information

for performance enhancement in privacy protection, video
compression, and video reconstruction.

• The real-data experiment results confirm the effectiveness
and the advantages of our proposed models compared
with the state-of-the-art.

The rest of this paper is organized as follows. Related
works are briefly summarized in Section II. After introducing
preliminaries in Section III, we detail our proposed models
in Section IV. In Section V, comprehensive experiments are
conducted and analyzed. Finally, Section VI concludes this
paper and discusses our future work.

II. RELATED WORKS

The state-of-the-art about visual privacy protection is sum-
marized in this section.

A. Noise-based Privacy-Preserving Models

In the existing works, the methods of protecting visual
privacy via adding noise can be classified into three main
categories: (i) applying noise to disturb the feature attributes
in order to decrease the accuracy of recognition results [29]–
[31]; (ii) using steganography algorithms to generate the stego
images to protect privacy [35]–[37]; and (iii) changing the
image styles to hide original visual information for privacy
preservation [1], [40].

Raval et. al [47] designed a perturbation mechanism that
can obtain the trade-off between privacy and utility to protect
visual secrets based on denoising autoencoder through the
adversarial training. Brkić et. al [29] proposed to hide some
biometric attributes with noise to reduce the accuracy of
face recognition. They also proposed a Conditional Generative
Adversarial Network (CGAN) to generate a human image of
full body while offering a solid level of identity protection
in [48]. Uittenbogaard et. al [30] designed a framework based
on Generative Adversarial Network (GAN) to achieve the
goal of detecting, removing, and inpainting moving objects
in multi-view imagery while removing private regions that
users care about. Meng et. al [35] proposed a steganography
algorithm based on image-to-image translation using cycle-
GAN to obtain the stego images for the purse of concealment
and security in the transmission process. Tang et. al [36]
developed an automatic stegangraphic distortion framework
using GAN (named ASDL-GAN), which can be applied to
images for the enhancement of privacy preservation. Kim and
Yang [37] proposed a privacy-preserving adversarial protector
network (termed PPAPNet), where a noise amplifier was used
to optimize noise for effective image anonymization. Wu et.
al [1] designed a method to keep video transmission secure
by using a two-dimensional noise matrix as the 4-th channel
of image combining with a 3-channel RGB image, in which
a video frame was transformed from one style to another
based on the architecture of cycle-GAN. Chen et. al [40] also
proposed to transfer the realistic images into cartoon images
based on GAN to protect privacy to a certain extent.
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B. Encryption-based Privacy-Preserving Models
Besides, encryption-based methods are proposed to hide the

private visual information in video.
Paruchuri et. al [41] encrypted foreground video bit-stream

to hide the private information in surveillance systems. Liu
et. al [42] obscured the human face region in real time by
encrypting the spatial chaotic map of face. Zhang et. al [44]
generated a key through a cryptographic MAC function by
using the information of the head contour in the video frame,
and the key is used in a stream cipher to lock the head
information detected pedestrians for privacy preservation. Chu
et. al [45] proposed a fast homomorphic encryption method
to encrypt the video frames for secure video transmission.

C. Limitations of Existing Works
In the existing noise-based models, the used noise follows

the normal distribution, which, however, can be utilized as
prior knowledge by attackers to mitigate the impact of noise
in their detection models and enhance the accuracy of infor-
mation prediction. Even for the encryption-based models, all
of the current works fail to fully consider privacy leakage in
the video transmission process and thus may be vulnerable
to the side-channel inference attack where attackers are able
to infer private information by analyzing the users’ traffic
data [10]. What’s worse, recent advanced machine learning
models can achieve action recognition and activity detection
in video by exploiting the temporal information (i.e. the
relations between frames) [11], [26], [27], which has not been
taken into account for privacy preservation yet. Due to the
aforementioned limitations, these existing works may not be
adequate to effectively accomplish the task of protecting visual
privacy in video.

In this paper, to improve the performance of visual privacy
protection, we propose F2F and V2V models based on cycle-
VQ-VAE to encode and decode the video by employing the
video’s extracted audio and temporal information. The tech-
nical advantages and innovations of our models lie in several
aspects. (i) The audio of a video is extracted as the noise
whose distribution is random and unknown. Thus, applying
such extracted audio can disturb the visual information more
effectively, compared with using the noise following patterned
distribution (e.g., normal distribution). (ii) Different from the
noise that follows patterned distribution, the extracted audio
is unique and meaningful for its corresponding video, so
that it guarantees that the noise cannot be generated or
manipulated easily and can be used to decode the encoded
video only by the receivers who have the audio. (iii) The
process of video compression is incorporated into our cycle-
VQ-VAE framework, improving the resistance to side-channel
inference attack during transmission and reducing the video
transmission time. (iv) The relations between frames are
utilized in V2V by integrating cycle-VQ-VAE with the RNN
layers, making privacy protection, video compression, and
video reconstruction more efficient.

III. PRELIMINARIES

Vector Quantized Variational AutoEncoder (VQ-VAE) is
a state-of-the-art image generation model with convolutional

layers’ architecture, in which all features of video frames are
mapped into the codebook [49]. With the help of codebook,
high-dimension data can be mapped into a low-dimension
space and also can be reconstructed from the mapped low-
dimension space.

VQ-VAE model consists of one encoder E and one decoder
D, in which E and D share a common codebook c. The
encoder is used to embed the original observations x into
feature maps that should be close to the codebook vector c,
and the decoder is used to recover the original observations
‖x−D(c)‖22 using the codebook vector c. During this process,
performance loss includes: (i) the codebook loss, which is the
distance between the selected codebook c and the outputs
of encoder and is computed by ‖sg[E(x)] − c‖22 with the
codebook variables, and (ii) the communication loss, which is
the distance between the outputs of encoder and the selected
codebook c and is calculated via ‖sg[c] − E(x)‖22 with the
encoder weights, where E(x) is the output of the encoder, sg is
the stop-gradient to learn the code mappings for the codebook
generation, and β is a hyperparameter to control the reluctance
to change the codebook c to the encoder output. The objective
function of VQ-VAE is expressed in Eq. (1).

L = ‖x−D(c)‖22+‖sg[E(x)]−c‖22+β‖sg[c]−E(x)‖22. (1)

All abbreviations used in this paper are listed in Table I.

TABLE I
ABBREVIATIONS

Abbreviation Full Name

AE Autoencoder

VQ-VAE Vector Quantized Variational Autoencoder

cycle-VQ-VAE cycle Vector Quantized Variational Autoencoder

F2F Frame-to-Frame

V2V Video-to-Video

MAC Message Authentication Code

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

sg stop-gradient

IV. METHODOLOGY

In this section, we propose a cycle Vector Quantized
Variational AutoEncoder (cycle-VQ-VAE) framework, based
on which we design two novel models to generate privacy-
preserving video.

A. Cycle-VQ-VAE Framework

The architecture of our cycle-VQ-VAE framework is shown
in Fig. 1. This framework consists of one encoder and one de-
coder, where the encoder is designed to generate the encoded
video frames for privacy protection, the decoder is designed to
recover the encoded video frames, and the process of mapping
video is based on VQ-VAE.

In the encoder of our cycle-VQ-VAE framework, the video
frames and its extracted audio that are of high-dimension data
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Fig. 1. The architecture of our cycle-VQ-VAE model

are mapped into a low-dimension space. The low-dimension
representations of the audio are treated as the extra codes
and added into the original codebook of video frames. Then,
the disturbed codebook is used to generate the encoded video
for privacy-preserving transmission. In the decoder, the low-
dimension representations of the audio are removed from the
disturbed codebook, and the original video frames can be
reconstructed from the clean codebook.

It is worth mentioning that mapping high-dimension data
into a low-dimension space is not a trivial issue. If the
information in the codebook of video frames is much more
than that in the codebook of audio in the low-dimension space,
the codes of audio are not enough to disturb the codebook of
video frames; if the information in the codebook of video
frames is much less than that in the codebook of audio in the
low-dimension space, it will be hard to extract the extra codes
from the disturbed codebook of video frames to reconstruct
the original video frames. That is, it is necessary to explore
an appropriate low-dimension space, in which the codebook of
video frames can be effectively disturbed using the codebook
of its extracted audio. In this paper, we do comprehensive
experiments by adjusting the dimension of codebook in the
training process until we find a proper low-dimension space
such that the encoded video frame reconstructed by the dis-
turbed codebook is hardly detected by AI detection models,
and the decoded video frame reconstructed by the clean
codebook is similar to the original video frame.

Under our proposed cycle-VQ-VAE framework, a frame-
to-frame (F2F) model and a video-to-video (V2V) model are
developed. Especially, by utilizing the relations between video
frames, V2V obtains an enhanced performance of privacy

protection, video compression, and video reconstruction. The
details of F2F and V2V models are demonstrated in Sec-
tion IV-B and Section IV-C, respectively.

B. Frame-to-Frame (F2F) Model
1) Encoder: The encoder in F2F model includes one en-

coder module, one decoder module, and one codebook cva as
shown in Fig. 2. We encode the video frames with its extracted
audio a to generate the encoded video va for protecting
visual privacy. In other words, we use the low-dimension
representations of audio as the extra codes ca to disturb the
codebook of the video frames cv .

Fig. 2. The process of encoding (adding ca into codebook cva)

In the encoder module, we map both the video frames v
and the audio a into the low-dimension space represented by
codebook cva, which is performed by using the stop-gradient
sg [49]. Let E(vva|(v, a)) be the expectancy of obtaining the
encoded video with the video frames and the audio as inputs.
According to the VQ-VAE mechanism, we can compute the
codebook loss in Eq. (2) and the commitment loss in Eq. (3).

LE1 = ‖sg[E(va|(v, a))]− cva‖22. (2)
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LE2 = ‖sg[cva]− E(va|(v, a))‖22, (3)

where || · ||22 denotes the squared L2-norm.
In the decoder module, we generate the encoded video

frames va from the disturbed codebook cva, in which the
reconstruction loss is computed by Eq. (4).

LD1 = ‖va −D(cva)‖22. (4)

To sum up, the loss function of the encoder in F2F model
can be expressed in Eq. (5).

LTotal1 = LE1 + βeLE2 + LD1, (5)

where βe is a hyperparameter to control the reluctance to
change the codebook cva to the encoded video va.

2) Decoder: At the side of receivers, the encoded video
and the audio are high-dimension data. In order to obtain
the original video, we first map the received data into the
low-dimension space so as to clean the disturbed codebook
of encoded video in the low-dimension space. Then, we
reconstruct the decoded video in the high-dimension space.

Accordingly, the decoder in F2F model also has three com-
ponents, including one encoder module, one decoder module,
and one codebook cv as shown in Fig. 3. In the decoder, we
use the same audio a to decode the encoded video frames va
with an aim that the decoded video frames should be similar
to the original video frames v. To this end, we remove the
extra codes ca from the disturbed codebook cva to obtain the
clean codebook cv of video frames.

Fig. 3. The process of decoding (removing ca from codebook cva)

In the encoder module, we map both the encoded video
frames va and the audio a into low-dimension space and
learn the mappings through the stop-gradient sg operation. Let
(cva|a) denote the disturbed codebook cva, in which the codes of
audio a are removed and E(v|(va, a)) denote the expectancy
of obtaining decoded video frames with the encoded video
frames and the audio being the inputs. The codebook loss and
the commitment loss in this VQ-VAE are calculated by Eq. (6)
and Eq. (7), respectively.

LE3 = ‖sg[E(v|(va, a))]− (cva|a)‖22. (6)

LE4 = ‖sg[cva|a]− E(v|(va, a))‖22. (7)

In the decoder module, we produce the decoded video
frames from the clean codebook such that the decoded video
frames are similar to the original video frames v. We remove

the codes of audio ca from the disturbed codebook cva. The
reconstruction loss is shown below.

LD2 = ‖v −D(cva|a)‖22. (8)

The loss function of the decoder in F2F model can be
calculated by Eq. (9).

LTotal2 = LE3 + βdLE4 + LD2, (9)

where βd is a hyperparameter to control the reluctance to
change the clean codebook cv to the original video v.

In summary, the loss function of our proposed F2F model
is as follows,

LTotal = LTotal1 + LTotal2. (10)

We aim to minimize Eq. (10) in the training process, where
LTotal1 is minimized to obtain the encoded video frames using
its extracted audio and LTotal2 is minimized to decode the
encoded video frames using the same audio such that the
decoded video is similar to the original video.

C. Video-to-Video (V2V) Model
In F2F model, we divide the video into a series of frames

and reconstruct the images in a frame by frame manner without
considering the relations between frames. Motivated by the
idea of video reconstruction in [50]–[53], we propose V2V
model with the help of RNN layers, in which the temporal
information (i.e. the relations between frames) in video is used
for performance improvement in protection visual privacy,
compressing video, and reconstructing video.

The architectures of encoder and decoder in V2V model
are presented in Fig. 4(a) and Fig. 4(b), respectively. The
difference between our F2F and V2V models is that we deploy
a recurrent layer after each Convolutional Neural Network
(CNN) block. A hidden state h in each recurrent layer (denoted
by function f ) is an output from the previous time step, i.e.,
for i-th CNN block, the output is oi = hi = f(v, hi−1), where
hi is the hidden state in the i-th CNN block, and hi−1 is the
hidden state in the (i− 1)-th CNN block.

V. EXPERIMENTS

In order to validate the effectiveness of our F2F and
V2V models, extensive experiments are conducted to quali-
tatively and quantitatively evaluate the results of video encod-
ing/decoding, the performance of privacy protection, and the
efficiency of video transmission.

A. Experiment Settings
1) Dataset: In our experiments, we extract the video frames

and the audio from 200 videos in the AVE dataset [46] to form
the video dataset and audio dataset.

2) AI Detection Models for Video Frames: To illustrate
that in our F2F and V2V models, the encoded video frames
can resist AI detection and the decoded video frames can
maintain visual quality, we adopt two AI detection models
that have been widely used in real applications with mature
technology. One is a face detection model that can detect the
human face with a rectangle [14], and the other is the semantic
segmentation model that can segment the human body with a
pink color [19].
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(a) The encoder architecture of V2V

(b) The decoder architecture of V2V

Fig. 4. V2V model

3) Side-Channel Inference Attack Model for Video Stream-
ing: In real applications, a video can be typically encoded via
a standard encoding method H264 [54] and then encrypted
by TLS/SSL using 128-bit AES [55] for secure transmission.
Nevertherless, the traffic pattern can be still utilized as side-
channel information to infer individuals’ activities in video
streaming as the data traffic size can indicate the existence/type
of an activity, resulting in privacy leakage. In our experiments,
the attack approach of [10] is adopted, in which the traffic
streaming is firstly divided into separate parts and then sta-
tistical coefficients (including mean, variance, skewness and
kurtosis) of each separated traffic data are used as features to
do activity recognition by using k-NN classification algorithm.

4) Two Baselines: We compare our proposed F2F and V2V
models with two baselines. (1) AE based model: it is based on
autoencoder (AE) architecture and adds the noise generated
from the normal distribution into images [47] for privacy
protection. (2) Style Translator based model: it changes the
style of video frames to hide visual information based on
cycle-GAN architecture [1].

All the experiment results are analyzed in Subsections V-B,
V-C, V-D, and V-E. In this paper, video frames are presented
to illustrate the effectiveness of our F2F and V2V models.
More results of video and video frames can be found in https:
//github.com/ahahnut/cycle-VQ-VAE, and you can also create
your own datasets for training using our open-source codes.

B. Qualitative Evaluation
There are original video frames, encoded video frames, and

decoded video frames in the whole process of our cycle-VQ-
VAE framework.

1) Video Frames of F2F and V2V: In Fig. 5, we show
video frames in different phases in F2F and V2V models for
performance comparison.

For the encoded/decoded video frames generated by F2F
and V2V models, the results of face detection are presented
in Fig. 5(a) and Fig. 5(b), and the results of semantic segmen-
tation are presented in Fig. 5(d) and Fig. 5(e). Compared with
the original video frames, we can draw a conclusion that in
F2F and V2V models, the encoded video frames lose sufficient
visual information to resist detection while the decoded video
frames can recover the lost visual information effectively for
the detection task.

From Fig. 5(c) and Fig. 5(f), one can see that by utilizing
the relations between frames for video processing, V2V model
outperforms F2F model in terms of video compression and
video reconstruction. In Fig. 5(c), the encoded video frame of
V2V is harder to be recognized, and the decoded frame of V2V
is clearer for face detection. In Fig. 5(f), the encoded video
frame of V2V loses more visual information causing worse
semantic segmentation performance, and the decoded video
frame of V2V has a higher visual quality for better semantic
segmentation.

2) Encoded Video Frames: In Fig. 6(a), the encoded video
frames in F2F and V2V cannot be detected by the face detector
with a rectangle, but those of the AE based model and the
Style Translator based model can be detected by the face
detector. From Fig. 6(c), one can see that in our F2F and
V2V models, human cannot be segmented by the semantic
segmentation model from the encoded video frames, but in
the AE based model and the Style Translator based model,
human body can be segmented correctly. The main reason
why our two models perform better is that the noise (i.e.,
the extracted audio) of F2F and V2V does not follow any
patterned distribution, greatly disturbs the visual information,
and reduces the detection accuracy. Besides, V2V outperforms
F2F in the video compression process due to consideration of
the relations between frames even if they are both trained by
our proposed cycle-VQ-VAE framework.

Moreover, since the noise can be filtered from real data
by analyzing energy distribution [56], the energy distribution
of encoded video frames is drawn in Fig. 8 for performance
comparison. From Fig. 8(a), we observe that the energy
distribution of original frames looks like a valley. Similarly,
in Fig. 8(c) and Fig. 8(d), the energy distribution of the
encoded frames of the two baselines only has one valley,
which indicates that it is possible to recover the original
frames from the encoded ones by removing the patterned noise
in real applications. Differently, in Fig. 8(b) and Fig. 8(e),
the energy distribution of encoded video frames of F2F and
V2V contain several valleys, which means that our extracted
audio can disturb the video information in a proper low-
dimensional space where the audio energy can effectively
influence the energy distribution of video frames. As a result,
it becomes harder to recover the original frames from our
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Fig. 5. The Results of Face Detection and Semantic Segmentation in F2F and V2V

encoded video frames just by removing the noise, which
is consistent with the results of Fig. 5. Particularly, when
comparing Fig. 8(b) with Fig. 8(e), we can find out that the
energy distribution of encoded video frame in V2V is more
irregular than that of encoded video frame in F2F because V2V
achieves a better video compression performance by taking the
relations between frames into consideration, leading to a larger
difficulty in removing the noise for recovery.

3) Decoded Video Frames: As shown in Fig. 6(b), the
decoded video frames of the four models can be observed.
However, only the decoded video frames of our F2F and V2V
models can be detected by the face detection model with
a rectangle. Similarly, in Fig. 6(d), only the decoded video
frames of F2F and V2V models can be segmented with a pink
color through the semantic segmentation model. It is worth
mentioning that the decoded video frames should have satisfied
visual quality for observation/detection in real applications.
From Fig. 6(b) and Fig. 6(d), we can see that our models
can make the decoded video frames maintain the expected
visual quality but the two baselines fail to make it, indicating
that our models outperform the two baselines. In addition,
in Fig. 6, compared with the decoded video frames in F2F,
the decoded video frames in V2V can be better reconstructed
when considering the relations between frames with respect to
the video reconstruction task.

In Fig. 7, one more same video frame is chosen to compare
our models with two baselines qualitatively for better illus-
trating the superiority of our models, especially V2V model.
From Fig. 7(a), we observe that the encoded video frames in
AE based and Style Translator based models can be detected
by the face detection model, but the encoded video frames
in F2F and V2V models cannot be detected, which means

that our models outperform the two baselines. Especially, the
encoded video frames in F2F model, AE based model, and
Style Translator based model can be more or less segmented
by the semantic segmentation model, but the encoded video
frame in V2V model can not be segmented, indicating that
V2V has the best performance of video compression and
privacy protection. The results of Fig. 7(b) show that the
decoded video frames in the four models can be detected by
the face detection model and the semantic segmentation model,
which means that F2F and V2V models can be used in video
reconstruction. However, the decoded video frame in V2V has
the highest visual quality, illustrating the advantage of V2V
model in video reconstruction.

C. Quantitative Evaluation

We evaluate the quantitative performance of F2F and V2V
models in terms of the average accuracies of face detection
and semantic segmentation, and present the results in Table II
and Table III.

TABLE II
ACCURACY OF FACE DETECTION

Ours(F2F) Ours(V2V) AE Style Translator
Original 96.67% 96.67% 96.67% 96.67%
Encoded 6.00% 0.00% 26.67% 36.67%
Decoded 80.00% 96.67% 46.67% 63.33%

1) Video Frames of F2F and V2V: Compared with the
average accuracy of face detection on the original video frames
(i.e., 96.67% in Table II), this accuracy is only 6.00% for the
encoded video and can reach 80.00% for the decoded video
in F2F model, and this accuracy decreases to 0.00% for the
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Fig. 8. Energy Distribution of Encoded Video Frame

TABLE III
ACCURACY OF SEMANTIC SEGMENTATION

Ours(F2F) Ours(V2V) AE Style Translator
Original 93.30% 93.30% 93.30% 93.30%
Encoded 6.70% 0.00% 20.00% 36.67%
Decoded 73.33% 93.30% 43.30% 60.00%

encoded video and can be recovered back to 96.67% for the
decoded video in V2V model. As shown in Table III, the
average accuracy of semantic segmentation on original video
frames is 93.30%; by using F2F model, the accuracy decreases
to 6.70% on the encoded video frames and achieves 73.33%
on the encoded video frames; and by using V2V model, this
accuracy is only 0.00% on the encoded video and can reach
93.30% on the decoded video. These results illustrate that our
F2F and V2V models can reduce the risk of privacy leakage
in the encoded video frames while successfully recovering
the lost visual information in the decoded video frames for
real applications. In other words, our models are effective for
privacy preservation in video streaming.

2) Encoded Video Frames: With respect to face detection
on the encoded video frames, the average accuracies in our
F2F model, our V2V model, the AE based model, and the
Style Translator based model are 6.00%, 0.00%, 26.67%, and
36.67%, respectively (see Table II). In addition, for semantic
segmentation on the encoded video frames, the average accura-
cies in our F2F model, our V2V model, the AE based model,

and the Style Translator based model reach 6.70%, 0.00%,
20.00%, and 36.67%, respectively (see Table III). From the
above comparison, one can see that our F2F and V2V models
can lower detection accuracy on the encoded video frames in
face detection and semantic segmentation and thus perform
better than the two baselines in protecting visual privacy. This
is because for the video, our models utilize the extracted
audio that is a type of random and non-patterned distributed
noise to blur the visual information while the two baselines
use patterned distributed noise. What’s more, V2V can obtain
a lower detection accuracy than F2F in face detection and
semantic segmentation on the encoded video frames since
more visual information is lost in the V2V’s encoding process
when taking the relations between frames into account.

3) Decoded Video Frames: The decoded video frames are
expected to recover the lost visual information as much as
possible for further utilization. From Table II and Table III,
one can see that a higher average accuracy of face detec-
tion/semantic segmentation on the decoded video frames is
achieved by our F2F and V2V models, which means our
models outperform the two baselines in terms of the visual
quality of decoded video frames. In addition, by comparing
F2F and V2V, the decoded video frames in V2V can better
be applied in face detection and semantic segmentation tasks,
which means that considering the relations between frames in
V2V is helpful for reconstructing a high-quality video.
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D. Security Analysis

In our F2F and V2V models, we can encode the video
frames with its extracted audio and decode the encoded video
frames with the same audio. The encoded video frames can (i)
defend against the detection attacks using face detection and
semantic segmentation during the transmission process, (ii)
defend against side-channel inference attack, and (iii) only
be decoded with the same audio received by the authorized
receivers, which is deeply analyzed as follows.

1) Defense against Detection Attacks: We use two main-
stream detection models to validate that our encoded video
frames can prevent the visual information from being accu-
rately detected. As shown in Table II and Table III, compared
with the two baselines, our F2F and V2V models obtain a
lower average accuracy in both face detection and semantic
segmentation for the encoded video frames. The main reason
lies in the method noise generation: in our encoded video
frames, the noise (i.e., the extracted audio) is extracted from
the video so that it owns non-patterned distribution and suffi-
cient randomness to help improve the performance of protect-
ing visual information; while in the two baselines, the noise
is generated from patterned distribution (i.e. normal distribu-
tion), which can be used as prior knowledge for information
detection. Moreover, compared with F2F, V2V can obtain a
lower accuracy and even decrease the detection accuracy to
0.00% in both face detection and semantic segmentation for
the encoded video frames. This is because considering the
relations between frames is effective to encode the visual
information of video frames.

2) Defense against Side-Channel Inference Attack: The
prior work [10] reveals that the traffic pattern of video stream-
ing can be used as side-channel information to infer human’s
activities during the transmission even if the video streaming
is encrypted by TLS/SSL. Fig. 9 shows that the traffic pattern
of original video streaming and that of the encrypted original
video streaming have a pretty high similarity.

To investigate the performance of video encoding methods
in resisting the side-channel inference attack, the encoded
video streaming is generated using the encoded video frames.
The traffic size of the original video streaming, the encoded
video streaming of F2F, the encoded video streaming of V2V,
and the encoded video steaming of two baselines are presented
in Fig. 10(a). Then, we use the side-channel inference method
in [10] to calculate the accuracy of activity inference in
video streaming and report the results in Table IV, where the
average accuracy of activity inference is 95.8% in the original
video streaming. The average accuracy of activity inference is
95.60% in AE encoded video streaming and 94.50% in Style
Translator encoded video streaming, indicating that these two
encoding methods cannot prevent side-channel information
leakage. Notably, the average accuracy of activity inference
is reduced to 42.86% in the encoded video streaming of F2F
and even reduced to 0.00% in the encoded video streaming
of V2V. The reason is that the encoding process of our F2F
and V2V model can effectively smooth the traffic pattern.
In particular, the relations between frames are exploited for
video compression in V2V, further increasing the difficulty of

traffic analysis during transmission. Thus, we can conclude
that our F2F and V2V models can effectively resist side-
channel inference attack.

Moreover, experiments are conducted to compare our F2F
and V2V models with two baseline models after using
TLS/SSL (AES 128 bit) encryption method for video transmis-
sion, traffic size are shown in Fig. 10(b), and results of activity
inference are presented in Table IV. In Fig. 10(b), the traffic
pattern of video streaming seems almost unchanged after video
encryption. In Table IV, the average accuracy of activity
inference is 94.80% in AE encrypted encoded video streaming,
93.70% in Style Translator encrypted encoded video stream-
ing, 41.98% in F2F encrypted encoded video streaming, and
still 0.00% in V2V encrypted encoded video streaming. These
results indicate that the encoding methods of AE and Style
Translator cannot prevent the side-channel attack even if the
encryption method is used during video transmission. On the
contrary, our encoding models outperform these two baselines
and can prevent the side-channel attack effectively.

Fig. 9. Traffic Size of Original Video Streaming before and after Encryption

TABLE IV
RESULTS OF ACTIVITY INFERENCE

Accuracy Accuracy
Original 95.80% Original-Crypto 94.90%

Ours (F2F) 42.86% Ours (F2F)-Crypto 41.98%
Ours (V2V) 0.00% Ours (V2V)-Crypto 0.00%

AE 95.60% AE-Crypto 94.80%
Style Translator 94.50% Style Translator-Crypto 93.70%

3) Defense against Un-authorization: In our F2F and V2V
models, we train the same audio to encode the video frames
and decode the encoded video frames. Different from the noise
that follows certain distributions (e.g., normal distribution),
the audio extracted from its corresponding video is unique
and cannot be easily generated or manipulated. Therefore,
the video streaming can only be recovered by the authorized
receivers who have the extracted audio.

E. Transmission Efficiency Analysis

Notice that the efficiency of video transmission has not yet
been incorporated into visual privacy protection by the existing
works, but the consideration of transmission efficiency is a
necessary component for IoT devices and applications. One
major advantage of our cycle-VQ-VAE framework over the
state-of-the-art is that it can achieve effective visual privacy
protection and efficient video transmission simultaneously.
The main reason is that the encoder component in our cycle-
VQ-VAE framework leverages the extracted audio to encode
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Fig. 10. Traffic Size of Encoded Video Frames

the corresponding video, in which the video actually is com-
pressed to a reduced size, and the transmission time can be
reduced as well. On the contrary, the previous visual privacy-
preserving models (such as AE based and Style Translator
based model) exploit the noise to hide the original visual
content, where the additional noise increases the video size,
and the transmission time is increased. Furthermore, we do
real-data experiments and use the transmission time as a
performance metric to illustrate the transmission efficiency of
our models during video streaming transmission in real appli-
cations. In Table V, we list the transmission time of uploading
10-second video streaming to an edge server at different
network bandwidths. Compared with the original video, the
transmission time is averagely decreased by 16.2% in our F2F
model due to the video compression in the encoding process.
Even better, the transmission time is averagely reduced by
53.4% in our V2V model as a better video performance can
be achieved by considering the relations between frames. But
the transmission time is averagely increased by 43.8% in AE
based model and 9.1% in Style Translator based model, in
which noise is added to disturb the original visual information
without compression.

VI. CONCLUSION

In this paper, we propose an audio-visual autoencoder
framework, named cycle-VQ-VAE. To the best of our knowl-
edge, this is the first work to use multi-source information to
generate privacy-preserving video streaming; especially, the
audio is extracted from its corresponding video and used as
the random noise to disturb the visual information. Since
the extracted audio is unique and meaningful, it cannot be
generated or manipulated easily and thus can be used by
the authorized receivers to decode the encoded video. In
addition, we develop F2F and V2V models under cycle-VQ-
VAE framework. The entire encoded video streaming of our
models has a more smooth traffic pattern, which can prevent
the side-channel inference attacks using traffic size analysis.
Besides, with video compression in our encoding process,

the time of video transmission can be greatly decreased. Via
extensive experiments, we demonstrate that our F2F model can
preserve the expected visual quality, reduce the risk of visual
privacy leakage, and improve the efficiency of video trans-
mission; especially, V2V model outperforms F2F model in all
evaluation metrics owing to the consideration of the relations
between frames for video compression and reconstruction.
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