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ABSTRACT
Complementarity problems, a class of mathematical optimization

problems with orthogonality constraints, are widely used in many

robotics tasks, such as locomotion and manipulation, due to their

ability to model non-smooth phenomena (e.g., contact dynamics).

In this paper, we propose a method to analyze the stability of com-

plementarity systems with neural network controllers. First, we

introduce a method to represent neural networks with rectified

linear unit (ReLU) activations as the solution to a linear comple-

mentarity problem. Then, we show that systemswith ReLU network

controllers have an equivalent linear complementarity system (LCS)

description. Using the LCS representation, we turn the stability ver-

ification problem into a linear matrix inequality (LMI) feasibility

problem.We demonstrate the approach on several examples, includ-

ing multi-contact problems and friction models with non-unique

solutions.
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1 INTRODUCTION
Due to recent advancements in deep learning, there has been an

increasing interest in using neural networks (NNs) to stabilize dy-

namical systems. For instance, neural networks have been used to
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approximate model predictive control policies through supervised

learning [27, 29, 37, 50], or reinforcement learning [11]. Although

neural network controllers can achieve satisfactory performance

under mild assumptions about themodel of the dynamical system or

the environment it operates in, they lack guarantees. This drawback

limits the application of neural networks in safety-critical systems.

Therefore, it is critical to develop tools that can provide useful

certificates of stability, and robustness for NN-driven systems.

Many important robotics systems are non-smooth and researchers

have shown the effectiveness of NN policies on such systems with-

out providing formal guarantees [23, 48, 51]. The goal of this paper

is to introduce a method for stability analysis of non-smooth sys-

tems in feedback loops with NN controllers. Our framework is

inspired by complementarity systems [26], differential equations

coupled with the solution of a linear complementarity problem.

Complementarity problems are a class of mathematical optimiza-

tion problems with orthogonality constraints [13]. Linear comple-

mentarity problems, in particular, are widely used in computational

non-smooth mechanics with unilateral contacts and friction [8],

and more generally, in applications involving quadratic program-

ming [36]. In simple terms, a linear complementarity problem can

be stated as the following potentially non-convex quadratic opti-

mization problem,

minimize 𝜆⊤ (𝐹𝜆 + 𝑞) subject to 𝐹𝜆 + 𝑞 ≥ 0, 𝜆 ≥ 0.

With the objective function being non-negative, the solutions to the

optimization problem satisfy the complementarity condition (𝐹𝜆 +
𝑞)⊤𝜆 = 0. In the context of contact dynamics, for example, one can

interpret 𝜆 as a contact force between a robot and a surface, and 𝐹𝜆+
𝑞 is a gap function relating the contact force and the distance from

the robot to the contact surface. Because of their ability to model

set-valued and non-smooth functions, complementarity problems

are widely used within the robotics community for stability analysis

[2, 9, 22, 28, 40], simulating contact dynamics [24, 45], and trajectory

optimization [39].

1.1 Related Work
The connection between nonlinearities in neural networks and

mathematical optimization has been exploited recently in various

contexts. In [19, 20, 41] the authors use quadratic constraints to

describe ReLU activation functions followed by a semidefinite relax-

ation to perform robustness analysis of ReLU networks. In [21], the

authors exploit the fact that all commonly used activation functions

https://doi.org/10.1145/3447928.3456651
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in deep learning are gradients of convex potentials, hence they sat-

isfy incremental quadratic constraints that can be used to bound

the global Lipschitz constant of feed-forward neural networks. The

works [17, 18, 47] perform reachability analysis for closed-loop

systems with neural network controllers and [43] considers safety

verification for such systems. The work in [1] integrates quadratic

programs as end-to-end trainable deep networks to encode con-

straints and more complex dependencies between the hidden states.

Yin et al. [49] considers uncertain linear time-invariant systems

with neural network controllers. By over approximating the input-

output map of the neural network and uncertainties by quadratic

and integral quadratic constraints, respectively, the authors develop

an SDP whose solution yields quadratic Lyapunov functions. In [10]

the authors develop a learning-based iterative sample guided strat-

egy based on the analytic center cutting plane method to search for

Lyapunov functions for piece-wise affine systems in feedback with

ReLU networks where the generation of samples relies on solving

mixed-integer quadratic programs. In [30], the authors use a mixed-

integer programming formulation to perform output range analysis

of ReLU neural networks and provide guarantees for constraint

satisfaction and asymptotic stability of the closed-loop system.

1.2 Contributions
Inspired by the connection between ReLU functions and linear

complementarity problems, we develop a method to analyze linear

complementarity systems in feedback with ReLU network con-

trollers. Our starting point is to show that we can represent ReLU

neural networks as linear complementarity problems (Lemma 2).

Next, we demonstrate that linear complementarity systems with

neural network controllers have an equivalent LCS representation.

Then, we leverage the theory of stability analysis for complemen-

tarity systems and derive the discrete time version of the results in

[9]. We describe the sufficient conditions for stability in the form

of Linear Matrix Inequalities (LMI’s). Denoting by 𝑁 the number

of neurons in the network plus the number of complementarity

variables in the LCS, the size of the LMI’s scales linearly with 𝑁 .

Furthermore, the maximum possible number of decision variables

in our LMI scales quadratically with 𝑁 . To the best of our knowl-

edge, this is the first work on analyzing the stability of LCS systems

with neural network controllers.

2 BACKGROUND
2.1 Notation
We denote the set of non-negative integers by N0, the set of d-

dimensional vectors with real components as R𝑑 and the set of

𝑛 ×𝑚 dimensional matrices by R𝑛×𝑚 . For two vectors 𝑎 ∈ R𝑚
and 𝑏 ∈ R𝑚 , we use the notation 0 ≤ 𝑎 ⊥ 𝑏 ≥ 0 to denote that

𝑎 ≥ 0, 𝑏 ≥ 0, 𝑎𝑇𝑏 = 0. For a positive integer 𝑙 , 𝑙 denotes the set

{1, 2, . . . , 𝑙}. Given a matrix 𝑀 ∈ R𝑘×𝑙 and two subsets 𝐼 ⊆ 𝑘 and

𝐽 ⊆ 𝑙 , we define 𝑀𝐼 𝐽 = (𝑚𝑖 𝑗 )𝑖∈𝐼 , 𝑗 ∈𝐽 . For the case where 𝐽 = 𝑙 , we
use the shorthand notation𝑀𝐼•.

2.2 Linear Complementarity Problem
The theory of linear complementarity problems (LCP) will be used

throughout this work [13].

Definition 1. Given a vector 𝑞 ∈ R𝑚 , and a matrix 𝐹 ∈ R𝑚×𝑚 ,
the 𝐿𝐶𝑃 (𝑞, 𝐹 ) describes the following mathematical program:

find 𝜆 ∈ R𝑚

subject to 𝑦 = 𝐹𝜆 + 𝑞,
0 ≤ 𝜆 ⊥ 𝑦 ≥ 0.

The solution set of the 𝐿𝐶𝑃 (𝑞, 𝐹 ) is denoted by

SOL(𝑞, 𝐹 ) = {𝜆 : 𝑦 = 𝐹𝜆 + 𝑞, 0 ≤ 𝜆 ⊥ 𝑦 ≥ 0}.

The LCP(𝑞, 𝐹 ) may have multiple solutions or none at all. The

cardinality of the solution set SOL(𝑞, 𝐹 ) depends on the matrix 𝐹

and the vector 𝑞.

Definition 2. A matrix 𝐹 ∈ R𝑚×𝑚 is a P-matrix, if the de-
terminant of all of its principal sub-matrices are positive; that is,
det(𝐹𝛼𝛼 ) > 0 for all 𝛼 ⊆ {1, . . . ,𝑚}.

The solution set SOL(𝑞, 𝐹 ) is a singleton for all 𝑞 if 𝐹 is a P-

matrix [13]. If we denote the unique element of SOL(𝑞, 𝐹 ) as 𝜆(𝑞),
then 𝜆(𝑞) is a piece-wise linear function of 𝑞. We can describe this

function explicitly as in [9]. Consider 𝑦 = 𝐹𝜆(𝑞) + 𝑞, and define the

index sets

𝛼 (𝑞) = {𝑖 : 𝜆𝑖 (𝑞) > 0 = 𝑦𝑖 },

𝛽 (𝑞) = {𝑖 : 𝜆𝑖 (𝑞) = 0 ≤ 𝑦𝑖 },
Then, 𝜆(𝑞) is equivalent to

𝜆𝛼 (𝑞) = −(𝐹𝛼𝛼 )−1𝐼𝛼•𝑞, 𝜆𝛽 (𝑞) = 0, (1)

where 𝛼 = 𝛼 (𝑞) and 𝛽 = 𝛽 (𝑞). Furthermore, 𝜆(𝑞) as in (1) is Lips-

chitz continuous since it is a continuous piece-wise linear function

of 𝑞 [42].

2.3 Linear Complementarity Systems
We are now ready to introduce linear complementarity systems

(LCS). In this work, we consider an LCS as a difference equation

coupled with a variable that is the solution of an LCP.

Definition 3. A linear complementarity system describes the
trajectories (𝑥𝑘 )𝑘∈N0

and (𝜆𝑘 )𝑘∈N0
for an input sequence (𝑢𝑘 )𝑘∈N0

starting from 𝑥0 such that

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐷𝜆𝑘 + 𝑧,
𝑦𝑘 = 𝐸𝑥𝑘 + 𝐹𝜆𝑘 + 𝐻𝑢𝑘 + 𝑐,
0 ≤ 𝜆𝑘 ⊥ 𝑦𝑘 ≥ 0.

(2)

where 𝑥𝑘 ∈ R𝑛𝑥 , 𝜆𝑘 ∈ R𝑛𝜆 , 𝑢𝑘 ∈ R𝑛𝑢 , 𝐴 ∈ R𝑛𝑥×𝑛𝑥 , 𝐵 ∈ R𝑛𝑥×𝑛𝑢 ,
𝐷 ∈ R𝑛𝑥×𝑛𝜆 , 𝑧 ∈ R𝑛𝑥 , 𝐸 ∈ R𝑛𝜆×𝑛𝑥 , 𝐹 ∈ R𝑛𝑥×𝑛𝜆 , 𝐻 ∈ R𝑛𝜆×𝑛𝑢 and
𝑐 ∈ R𝑛𝜆 .

For a given 𝑘 , 𝑥𝑘 and 𝑢𝑘 , the corresponding complementarity

variable 𝜆𝑘 can be found by solving LCP(𝐸𝑥𝑘 +𝐻𝑢𝑘 +𝑐, 𝐹 ) (see Def-
inition 1). Similarly, 𝑥𝑘+1 can be computed using the first equation

in (2) when 𝑥𝑘 , 𝑢𝑘 and 𝜆𝑘 are known. In general, the trajectories

(𝑥𝑘 ) and (𝜆𝑘 ) are not unique since SOL(𝐸𝑥𝑘 +𝐻𝑢𝑘 +𝑐, 𝐹 ) can have

multiple elements; hence, (2) is a difference inclusion [16].

In this work, we will focus on autonomous linear complemen-

tarity systems (A-LCS) because we consider the input as a function

of the state and the complementarity variable, i.e., 𝑢𝑘 = 𝑢𝑘 (𝑥𝑘 , 𝜆𝑘 ).
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An A-LCS represents the evolution of trajectories (𝑥𝑘 )𝑘∈N0
and

(𝜆𝑘 )𝑘∈N0
according to following dynamics,

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐷𝜆𝑘 + 𝑧,
𝑦𝑘 = 𝐸𝑥𝑘 + 𝐹𝜆𝑘 + 𝑐,
0 ≤ 𝜆𝑘 ⊥ 𝑦𝑘 ≥ 0,

(3)

and unlike (2) there is no input. Moving forward, we will consider

A-LCS models that can have non-unique trajectories.

We note that, however, the existence of a special case of (3) is

continuous piecewise affine systems [25]. If 𝐹 is a P-matrix, then

𝜆(𝑥𝑘 ) is unique for all 𝑥𝑘 and (3) is equivalent to

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐷𝜆(𝑥𝑘 ) + 𝑧,

where 𝜆(𝑥𝑘 ) is the unique element of SOL(𝐸𝑥𝑘 + 𝑐, 𝐹 ) and can be

explicitly described as in (1). In this setting, (2) is a piece-wise

affine dynamical system and has a unique solution for any initial

condition 𝑥0.

2.4 Stability of A-LCS
We introduce the notions of stability for A-LCS that are similar

to [44]. An equilibrium point 𝑥𝑒 for (3) is defined as a point that

satisfies 𝑥𝑒 = 𝐴𝑥𝑒+𝐷𝜆𝑒+𝑧 where 𝜆𝑒 = SOL(𝐸𝑥𝑒+𝑐, 𝐹 ) is a singleton.
Without loss of generality, we assume 𝑥𝑒 = 0 is an equilibrium of

the system, i.e., 𝐷 · SOL(𝑐, 𝐹 ) = {−𝑧}.

Definition 4. The equilibrium 𝑥𝑒 = 0 of A-LCS is
(1) stable if for any given 𝜖 > 0, there exists a 𝛿 > 0 such that

| |𝑥0 | | ≤ 𝛿 =⇒ ||𝑥𝑘 | | ≤ 𝜖 ∀𝑘 ≥ 0,

for any trajectory {𝑥𝑘 } starting from 𝑥0,
(2) asymptotically stable if it is stable and there is a 𝛿 > 0 such

that
| |𝑥0 | | ≤ 𝛿 =⇒ lim

𝑘→∞
| |𝑥𝑘 | | = 0,

for any trajectory {𝑥𝑘 } starting from 𝑥0.
(3) geometrically stable if there exists 𝛿 > 0, 𝛼 > 1 and 0 < 𝜌 < 1

such that

| |𝑥0 | | ≤ 𝛿 =⇒ ||𝑥𝑘 | | ≤ 𝛼𝜌𝑘 | |𝑥0 | | ∀𝑘 ≥ 0,

for any trajectory {𝑥𝑘 } starting from 𝑥0.

Notice that if 𝐹 is a P-matrix, these are equivalent to the notions

of stability for difference equations where the right side is Lipschitz

continuous [31] since there is a unique trajectory {𝑥𝑘 } starting

from any initial condition 𝑥0.

3 LINEAR COMPLEMENTARITY SYSTEMS
WITH NEURAL NETWORK CONTROLLERS

In this section, we demonstrate that neural networks with rectified

linear units (ReLU) have an equivalent LCP representation. Then,

we show that an LCS combined with a neural network controller

has an alternative complementarity system description.

Definition 5. A ReLU neural network 𝜙 : R𝑛𝑥 ↦→ R𝑛𝜙 with 𝐿
hidden layers is the composite function

𝜙 (𝑥) = (ℎ𝐿 ◦ 𝜆ReLU ◦ ℎ𝐿−1 ◦ . . . ◦ 𝜆ReLU ◦ ℎ0) (𝑥), (4)

where 𝜆ReLU (𝑥) = max{0, 𝑥} is the ReLU activation layer, and
ℎ𝑖 (𝑥) = 𝜃𝑖𝑥 + 𝑐𝑖 are the affine layers with 𝜃𝑖 ∈ R𝑛𝑖+1×𝑛𝑖 , 𝑐𝑖 ∈ R𝑛𝑖+1 .

Figure 1: Two-layered neural network with ReLU activation
functions (Example 1).

Here, 𝑛𝑖 , 1 ≤ 𝑖 ≤ 𝐿 denotes the number of hidden neurons in the 𝑖-th
layer, 𝑛0 = 𝑛𝑥 , and 𝑛𝐿+1 = 𝑛𝜙 . We denote by 𝑛𝑡 =

∑𝐿
𝑖=1 𝑛𝑖 the total

number of neurons.

3.1 Representing ReLU Neural Networks as
Linear Complementarity Problems

ReLU neural networks are piece-wise affine functions. Similarly,

the linear complementarity problem describes a piece-wise affine

function as shown in (1) as long as 𝐹 is a P-matrix. In this sec-

tion, we will explore the connection between two piece-wise affine

representations.

It has been shown that ReLU neural networks can be represented

with quadratic constraints [41], [20]. Now, our goal is to show the

connection between these results and linear complementarity prob-

lems. We will describe a method to represent a multi-layered ReLU

neural network as a linear complementarity problem exploring the

cascade connections of complementarity problems [7].

First we consider a single ReLU unit 𝜆ReLU (𝑥) = max(0, 𝑥) and
its equivalent LCP representation.

Lemma 1. [26] Consider the following LCP for a given 𝑥 ∈ R𝑑 :

find 𝜆LCP ∈ R𝑑

subject to 𝑦 = −𝑥 + 𝜆LCP,

0 ≤ 𝜆LCP ⊥ 𝑦 ≥ 0,

Then 𝜆LCP is unique and is given by 𝜆LCP = max{0, 𝑥}.

Proof. If 𝑥𝑖 < 0, then 𝜆LCP
𝑖

= 0 and if 𝑥𝑖 ≥ 0, then 𝜆LCP
𝑖

=

𝑥𝑖 . □

Next, we consider a two layered neural network and transform

it into an LCP using Lemma 1.

Example 1. Consider a two layered network shown in Figure

1 where 𝜙
2-layer

(𝑥) = 𝜆ReLU ◦ ℎ1 ◦ 𝜆ReLU ◦ ℎ0 (𝑥) with ℎ0 (𝑥) = 𝑥
and ℎ1 (𝑥) = 𝜃2𝑥 + 𝑐2. An alternative representation is 𝜙

2-layer
(𝑥)

=
[
𝜆3 (𝑥)⊤ 𝜆4 (𝑥)⊤

]⊤
where

𝜆1 (𝑥) = max{0, 𝑥1}, (5)

𝜆2 (𝑥) = max{0, 𝑥2}, (6)

𝜆3 (𝑥) = max{0, 𝜃1,12 𝜆1 (𝑥) + 𝜃1,22 𝜆2 (𝑥) + 𝑐12}, (7)

𝜆4 (𝑥) = max{0, 𝜃2,22 𝜆2 (𝑥) + 𝑐22}. (8)
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Here 𝜆𝑖 represents the output of the 𝑖th ReLU activation function,

𝜃
𝑗,𝑘
𝑖

and 𝑐
𝑗
𝑖
represent the coefficients of the affine function. Observe

that the two-layered NN is equivalent to

[
𝜆3
𝜆4

]
where 𝜆 is the unique

solution of the following LCP:

find 𝜆 ∈ R4

subject to 𝑦1 = −𝑥1 + 𝜆1,
𝑦2 = −𝑥2 + 𝜆2,

𝑦3 = −𝜃1,12 𝜆1 − 𝜃1,22 𝜆2 − 𝑐12 + 𝜆3,

𝑦4 = −𝜃2,22 𝜆2 − 𝑐22 + 𝜆4,
0 ≤ 𝜆1 ⊥ 𝑦1 ≥ 0,

0 ≤ 𝜆2 ⊥ 𝑦2 ≥ 0,

0 ≤ 𝜆3 ⊥ 𝑦3 ≥ 0,

0 ≤ 𝜆4 ⊥ 𝑦4 ≥ 0.

Here, {𝜆𝑖 }2𝑖=1 can be represented as 𝜆𝑖 = max{0, 𝑥𝑖 } and {𝜆𝑖 }4𝑖=3
are as in (7), (8) after direct application of Lemma 1. Then, we

conclude that

[
𝜆3
𝜆4

]
= 𝜙

2-layer
.

Now, we show that all neural networks of the form (4) have an

equivalent LCP representation.

Lemma 2. For any 𝑥 , the ReLU neural network in (4) can be ex-
pressed as 𝜙 (𝑥) = 𝐷𝜆(𝑥) +𝑧, where 𝜆(𝑥) is the unique solution of the
following linear complementarity problem:

find 𝜆

subject to 𝑦 = 𝐸𝑥 + 𝐹𝜆 + 𝑐,
0 ≤ 𝜆 ⊥ 𝑦 ≥ 0,

where 𝑐 =


−𝑐0
−𝑐1
.
.
.

−𝑐𝐿−1


, 𝐸 =


−𝜃0
0
.
.
.

0


, the lower triangular matrix

𝐹 =



𝐼

−𝜃1 𝐼

0 −𝜃2 𝐼

0 0 −𝜃3 𝐼

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 . . . . . . . . . −𝜃𝐿−1 𝐼


,

and 𝑧 = 𝑐𝐿 , 𝐷 =
[
0 0 . . . 0 𝜃𝐿

]
where 𝐹 is a P-matrix.

Proof. First, we write 𝜆⊤ =
[
𝜆⊤0 𝜆⊤1 · · · 𝜆⊤

𝐿−1
]
∈ R1×𝑛𝑡

where each sub vector 𝜆𝑖 has the same dimension as 𝑐𝑖 . Next, we

show that 𝜆0 (𝑥) = 𝜆ReLU ◦ ℎ0 (𝑥). Observe that 𝜆0 is independent

of 𝜆1, . . . , 𝜆𝐿−1 since 𝐹 is lower-triangular. Hence 𝜆0 is the unique

element of the following LCP:

find 𝜆0

subject to 𝑦0 = −𝜃0𝑥 − 𝑐0 + 𝜆0,
0 ≤ 𝜆0 ⊥ 𝑦0 ≥ 0.

Following Lemma 1, 𝜆0 (𝑥) = max{0, ℎ0 (𝑥)} = 𝜆ReLU ◦ ℎ0 (𝑥).
Similarly, notice that for 𝑖 > 0, 𝜆𝑖 only depends on 𝜆𝑖−1 (𝑥) and is

the unique element of:

find 𝜆𝑖

subject to 𝑦𝑖 = −𝜃𝑖𝜆𝑖−1 (𝑥) − 𝑐𝑖 + 𝜆𝑖 ,
0 ≤ 𝜆𝑖 ⊥ 𝑦 ≥ 0,

and is equivalent to 𝜆𝑖 (𝑥) = 𝜆ReLU ◦ ℎ𝑖 ◦ 𝜆𝑖−1 (𝑥) as a direct appli-
cation of Lemma 1. Using this equivalency recursively,

𝐷𝜆(𝑥) + 𝑧 = ℎ𝐿 ◦ 𝜆ReLU ◦ ℎ𝐿−1 ◦ . . . ◦ 𝜆ReLU ◦ ℎ0 (𝑥).
Notice that 𝐹𝛼𝛼 is lower triangular with ones on the diagonal for

any 𝛼 such that card(𝛼) ≥ 2 hence 𝐹 is a P-matrix. □

Each neuron in the NN is represented with a complementarity

variable, therefore the dimension of the complementarity vector

(𝜆) is equal to the number of neurons in the network. As seen

in Lemma 2, transforming a ReLU neural network into an LCP

only requires concatenating vectors and matrices. Furthermore,

this transormation allows us to consider the ReLU neural network

controller as an LCP based controller [46].

3.2 Linear Complementarity Systems with
Neural Network Controllers

We will use the LCP representation of the neural network (4) and

describe an LCS with a NN controller as an A-LCS. Consider a linear

complementarity system with a ReLU neural network controller

𝑢𝑘 = 𝜙 (𝑥𝑘 ):
𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝜙 (𝑥𝑘 ) + 𝐷𝜆𝑘 + 𝑧,

𝑦𝑘 = 𝐸𝑥𝑘 + 𝐹𝜆𝑘 + 𝐻𝜙 (𝑥𝑘 ) + 𝑐,

0 ≤ 𝜆𝑘 ⊥ 𝑦𝑘 ≥ 0,

(9)

where 𝑥𝑘 ∈ R𝑛𝑥 is the state, 𝜆𝑘 ∈ R𝑛𝜆 is the complementarity

variable, 𝜙 (𝑥) ∈ R𝑛𝜙 is a ReLU neural network as in (4) with 𝑛𝑡
neurons. Notice that (9) is not in the A-LCS form. Using Lemma 2,

we can transform (9) into an A-LCS in a higher dimensional space.

To see this, observe that (9) is equivalent to

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵(𝐷𝜆𝑘 + 𝑧) + 𝐷𝜆𝑘 + 𝑧,

𝑦𝑘 = 𝐸𝑥𝑘 + 𝐹𝜆𝑘 + 𝐻 (𝐷𝜆𝑘 + 𝑧) + 𝑐,
𝑦𝑘 = 𝐸𝑥𝑘 + 𝐹𝜆𝑘 + 𝑐,

0 ≤ 𝜆𝑘 ⊥ 𝑦𝑘 ≥ 0,

0 ≤ 𝜆𝑘 ⊥ 𝑦𝑘 ≥ 0,

after direct application of Lemma 2 where 𝜆 ∈ R𝑛𝑡 . We can write it

succinctly as

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐷𝜆𝑘 + 𝑧,
𝑦𝑘 = 𝐸𝑥𝑘 + 𝐹𝜆𝑘 + 𝑐,
0 ≤ 𝜆𝑘 ⊥ 𝑦𝑘 ≥ 0,

(10)

where 𝜆𝑘 =

[
𝜆𝑘
𝜆𝑘

]
, 𝑦𝑘 =

[
𝑦𝑘
𝑦𝑘

]
, 𝐷 =

[
𝐷 𝐵𝐷

]
, 𝐸 =

[
𝐸

𝐸

]
, 𝐹 =[

𝐹 𝐻𝐷

0 𝐹

]
, 𝑐 =

[
𝑐 + 𝐻𝑧
𝑐

]
, and 𝑧 = 𝐵𝑧 + 𝑧. Here, the size of 𝑥𝑘 ∈ R𝑛𝑥

does not change, but notice that now 𝜆𝑘 ∈ R𝑛𝜆
where 𝑛𝜆 = 𝑛𝑡 +𝑛𝜆 .
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Using controllers of the form (4), we exclusively consider the linear

complementarity system model (10) for notational compactness.

Similarly, one can consider the scenario where both the system

dynamics and the controller are represented by ReLU neural net-

works as in 𝑥𝑘+1 = 𝜙1 (𝑥𝑘 ) + 𝐵𝜙2 (𝑥𝑘 ), where 𝜙1 represents the

autonomous part of the dynamics (obtained by, for example, sys-

tem identification) and 𝜙2 is the controller. Using Lemma 2, this

system has an equivalent A-LCS representation similar to (10), but

the details are omitted for brevity.

After obtaining an A-LCS representation of the closed-loop sys-

tem, one can directly use the existing tools for stability analysis

of complementarity systems, such as Lyapunov functions [9] and

semidefinite programming [2]. We elaborate on this in the next

section.

4 STABILITY ANALYSIS OF THE
CLOSED-LOOP SYSTEM

In this section, we provide sufficient conditions for stability in the

sense of Lyapunov for an A-LCS. Then, we show that the stability

verification problem is equivalent to finding a feasible solution to

a set of linear matrix inequalities (LMI’s). To begin, consider the

following Lyapunov function candidate that was introduced in [9]:

𝑉 (𝑥𝑘 , 𝜆𝑘 ) =

𝑥𝑘
𝜆𝑘
1


⊤ 

𝑃 𝑄 ℎ1
𝑄⊤ 𝑅 ℎ2

ℎ𝑇1 ℎ𝑇2 ℎ3

︸              ︷︷              ︸
:=𝑀


𝑥𝑘
𝜆𝑘
1

 , (11)

where 𝑃 ∈ S𝑛𝑥 , 𝑄 ∈ R𝑛𝑥×𝑛𝜆
, 𝑅 ∈ S𝑛𝜆

, ℎ1 ∈ R𝑛𝑥 , ℎ2 ∈ R𝑛𝜆
, and

ℎ3 ∈ R are to be chosen. Note that if 𝐹 in (10) is a P-matrix, then

𝜆𝑘 is a piecewise affine function of 𝑥𝑘 , implying that the Lyapunov

function (11) is quadratic in the pair (𝑥𝑘 , 𝜆𝑘 ) but it is piecewise
quadratic (PWQ) in the state 𝑥𝑘 . If 𝐹 is not a P-matrix, then 𝑉 can

be set valued since there can be multiple 𝜆𝑘 ’s corresponding to

each 𝑥𝑘 . In either case,𝑉 reduces to a common quadratic Lyapunov

function in the special case 𝑄 = 𝑅 = 0. Therefore, (11) is more

expressive than a common quadratic Lyapunov function.

In the following theorem, we construct sufficient conditions for

the stability of (10), using the Lyapunov function (11). This is the

discrete time version of the results in [9].

Theorem 2. Consider the A-LCS in (10) with the equilibrium
𝑥𝑒 = 0, the Lyapunov function (11) and a domain X ⊆ R𝑛 . If there
exist𝑀 ∈ S𝑛𝑥+𝑛𝜆+1, 𝛼1 > 0, and 𝛼2 > 𝛼3 ≥ 0 such that

𝛼1 | |𝑥𝑘 | |22 ≤ 𝑉 (𝑥𝑘 , 𝜆𝑘 ) ≤ 𝛼2 | |𝑥𝑘 | |22, ∀(𝑥𝑘 , 𝜆𝑘 ) ∈ Γ1,

𝑉 (𝑥𝑘+1, 𝜆𝑘+1) −𝑉 (𝑥𝑘 , 𝜆𝑘 ) ≤ −𝛼3 | |𝑥𝑘 | |22, ∀(𝑥𝑘 , 𝜆𝑘 , 𝜆𝑘+1) ∈ Γ2,

where 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐷𝜆𝑘 + 𝑧 and
Γ1 = {(𝑥𝑘 , 𝜆𝑘 ) : 0 ≤ 𝜆𝑘 ⊥ 𝐸𝑥𝑘 + 𝐹𝜆𝑘 + 𝑐 ≥ 0, 𝑥𝑘 ∈ X},
Γ2 = {(𝑥𝑘 , 𝜆𝑘 , 𝜆𝑘+1) : 0 ≤ 𝜆𝑘 ⊥ 𝐸𝑥𝑘 + 𝐹𝜆𝑘 + 𝑐 ≥ 0,

0 ≤ 𝜆𝑘+1 ⊥ 𝐸𝑥𝑘+1 + 𝐹𝜆𝑘+1 + 𝑐 ≥ 0, 𝑥𝑘 ∈ X}.
Then the equilibrium is Lyapunov stable if 𝛼3 = 0 and geometrically
stable if 𝛼2 > 𝛼3 > 0.

Proof. Observe that for all (𝑥𝑘 , 𝜆𝑘 ):
𝛼1 | |𝑥𝑘 | |22 ≤ 𝑉 (𝑥𝑘 , 𝜆𝑘 ) ≤ 𝑉 (𝑥0, 𝜆0) ≤ 𝛼2 | |𝑥0 | |22,

and Lyapunov stability follows. For geometric stability, notice

that Lyapunov decrease condition is equivalent to 𝑉 (𝑥𝑘+1, 𝜆𝑘+1) −
𝛾𝑉 (𝑥𝑘 , 𝜆𝑘 ) ≤ 0, for some 𝛾 ∈ (0, 1). Then

𝛼1 | |𝑥𝑘 | |22 ≤ 𝑉 (𝑥𝑘 , 𝜆𝑘 ) ≤ 𝛾𝑘𝑉 (𝑥0, 𝜆0) ≤ 𝛼2𝛾𝑘 | |𝑥0 | |22 .

The result follows. □

Note that we do not require𝑀 in (11) to be positive definite to

satisfy the requirements of Theorem 2. In light of this theorem, we

must solve the following feasibility problem to verify that if the

equilibrium of the closed-loop system (10) is stable on X:

find 𝑃,𝑄, 𝑅, ℎ1, ℎ2, ℎ3, 𝛼1, 𝛼2, 𝛼3 (12)

s.t. 𝛼1 | |𝑥𝑘 | |22 ≤ 𝑉 (𝑥𝑘 , 𝜆𝑘 ) ≤ 𝛼2 | |𝑥𝑘 | |22, for (𝑥𝑘 , 𝜆𝑘 ) ∈ Γ1,

Δ𝑉 ≤ −𝛼3 | |𝑥𝑘 | |22, for (𝑥𝑘 , 𝜆𝑘 , 𝜆𝑘+1) ∈ Γ2,

whereΔ𝑉 = 𝑉 (𝑥𝑘+1, 𝜆𝑘+1)−𝑉 (𝑥𝑘 , 𝜆𝑘 ). In the following proposition,
we turn (12) with X = R𝑛 into an LMI feasibility problem using the

S-procedure [6].

Proposition 1. The following LMI’s solve (12) with X = R𝑛 :

𝑇1 − 𝑆𝑇1𝑊1𝑆1 −
1

2
(𝑆3,1 + 𝑆⊤3,1) ⪰ 0, (13a)

𝑇2 + 𝑆⊤1𝑊2𝑆1 +
1

2
(𝑆3,2 + 𝑆⊤3,2) ⪯ 0, (13b)

𝑇3 + 𝑆𝑇2𝑊3𝑆2 + 𝑆𝑇5𝑊4𝑆5 +
1

2
[(𝑆4 + 𝑆⊤4 ) + (𝑆6 + 𝑆⊤6 )] ⪰ 0, (13c)

where𝐺1 = 𝐷𝑇 𝑃𝑧+𝐷𝑇ℎ1−ℎ2,𝐺2 = 𝑧𝑇 𝑃𝐷 +ℎ𝑇1𝐷−ℎ2,𝐺3 = 𝑧𝑇𝑄 +

ℎ𝑇2 , 𝑆1 =


𝐸 𝐹 𝑐

0 𝐼 0
0 0 1

 , 𝑆2 =


𝐸 𝐹 0 𝑐

0 𝐼 0 0
0 0 0 1

 , 𝑆3,𝑖 =

0 0 0
𝐽𝑖𝐸 𝐽𝑖𝐹 𝐽𝑖𝑐

0 0 0

 ,
𝑆4 =


0 0 0 0
𝐽3𝐸 𝐽3𝐹 0 𝐽3𝑐

0 0 0 0

 , 𝑆5 =


𝐸𝐴 𝐸𝐷 𝐹𝑐 𝐸𝑐𝑧 + 𝑐
0 0 𝐼 0
0 0 0 1

 ,
𝑆6 =


0 0 0 0

𝐽4𝐸𝐴 𝐽4𝐸𝐷 𝐽4𝐹 𝐽4𝐸𝑧 + 𝑐
0 0 0 0

 ,𝑇1 =


𝑃 − 𝛼1𝐼 𝑄 ℎ1
𝑄⊤ 𝑅 ℎ2

ℎ𝑇1 ℎ𝑇2 ℎ3

 ,
𝑇2 =


𝑃 − 𝛼2𝐼 𝑄 ℎ1
𝑄⊤ 𝑅 ℎ2

ℎ𝑇1 ℎ𝑇2 ℎ3

 ,
𝑇3 = −


𝐴𝑇 𝑃𝐴 − 𝑃 + 𝛼3𝐼 𝐴𝑇 𝑃𝐷 −𝑄 𝐴𝑇𝑄 𝐴𝑇 𝑃𝑧 − ℎ1
𝐷𝑇 𝑃𝐴 −𝑄𝑇 𝐷𝑇 𝑃𝐷 − 𝑅 𝐷𝑇𝑄 𝐺1

𝑄𝑇𝐴 𝑄𝑇𝐷 𝑅 𝑄𝑇 𝑧 + ℎ2
𝑧𝑇 𝑃𝐴 − ℎ𝑇1 𝐺2 𝐺3 𝑧𝑇 𝑃𝑧 − ℎ𝑇1𝑧

 .
Here,𝑊𝑖 are decision variables with non-negative entries, and 𝐽𝑖 =
diag(𝜏𝑖 ) where 𝜏𝑖 ∈ R𝑚 are free decision variables.

Proof. First define 𝑒⊤
𝑘
=
[
𝑥⊤
𝑘

𝜆⊤
𝑘

1
]
. By left and right mul-

tiplying both sides of (13a) by 𝑒⊤
𝑘
and 𝑒𝑘 , respectively, we obtain

𝑉 (𝑥𝑘 , 𝜆𝑘 ) − 𝛼1∥𝑥𝑘 ∥22 ≥

𝑦𝑘
𝜆𝑘
1


⊤

𝑊1


𝑦𝑘
𝜆𝑘
1

+2𝜆⊤𝑘 diag(𝜏1)𝑦𝑘

The right hand side is non-negative due to the complementarity

constraint 0 ≤ 𝜆𝑘 ⊥ 𝑦𝑘 ≥ 0. Similarly, by left and right multiplying
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both sides of (13b) by 𝑒⊤
𝑘
and 𝑒𝑘 , respectively, we obtain

𝛼2∥𝑥𝑘 ∥22 −𝑉 (𝑥𝑘 , 𝜆𝑘 ) ≥

𝑦𝑘
𝜆𝑘
1


⊤

𝑊2


𝑦𝑘
𝜆𝑘
1

+2𝜆⊤𝑘 diag(𝜏2)𝑦𝑘

Again, the right hand side is non-negative due to the complemen-

tarity constraint 0 ≤ 𝜆𝑘 ⊥ 𝑦𝑘 ≥ 0.
Now, we define 𝑝⊤

𝑘
=

[
𝑥⊤
𝑘

𝜆⊤
𝑘

𝜆⊤
𝑘+1 1

]
. Notice that if we

left and right multiply both sides of (13c) by 𝑝⊤
𝑘
and 𝑝𝑘 , we obtain

−Δ𝑉 − 𝛼3 | |𝑥𝑘 | |22 ≥

𝑦𝑘
𝜆𝑘
1


⊤

𝑊3


𝑦𝑘
𝜆𝑘
1

 +

𝑦𝑘+1
𝜆𝑘+1
1


⊤

𝑊4


𝑦𝑘
𝜆𝑘
1


+2𝜆⊤

𝑘
diag(𝜏3)𝑦𝑘 +2𝜆⊤

𝑘+1 diag(𝜏4)𝑦𝑘+1
Similarly, all the terms on the right hand side are non-negative

since 0 ≤ 𝜆𝑘 ⊥ 𝑦𝑘 ≥ 0 for all 𝑘 . This concludes the proof. □

Notice that (12) captures the non-smooth structure of the LCS

combined with the ReLU neural network controller. In addition to

that, we can assign a different quadratic function to each polyhedral

partition that is created by the neural network without enumerating

those partitions by exploiting the complementarity structure of

the neural network. Observe that (13a), (13b) are LMI’s of size

(𝑛𝑥 + 𝑛𝜆 + 1), and (13c) is an LMI of size (𝑛𝑥 + 2𝑛𝜆 + 1).
Note that Theorem 13 is a global result forX = R𝑛 . We can adapt

the theorem to bounded regions X containing the origin.

Remark 1. For the equilibrium 𝑥𝑒 = 0, the region of attraction is
defined as

R = {𝑥0 : lim
𝑘→∞

| |𝑥𝑘 | | = 0}.

If one adds (to the left side) +𝜂𝐿 to (13c) where

𝐿 =


−𝑃 −𝑄 0 ℎ1

−𝑄𝑇 𝑅 0 −ℎ2
0 0 0 0

−ℎ𝑇1 −ℎ𝑇2 0 𝜉 − ℎ3

 ,
and 𝜂 is a non-negative scalar variable, then the closed-loop system is
geometrically stable and the sub-level set

V𝜉 = {𝑥 : 𝑉 (𝑥, 𝜆) ≤ 𝜉 ∀(𝑥, 𝜆) ∈ Γ1},
is an approximation of the ROA, i.e.,V𝜉 ⊆ R. To see this, note that
the resulting matrix inequality would imply

𝛼1∥𝑥𝑘 ∥22 ≤ 𝑉 (𝑥𝑘 , 𝜆𝑘 ) ≤ 𝛼2∥𝑥𝑘 ∥22,
𝑉 (𝑥𝑘+1, 𝜆𝑘+1)−𝑉 (𝑥𝑘 , 𝜆𝑘 ) + 𝛼3∥𝑥𝑘 ∥22 + 𝜂 (𝜉 −𝑉 (𝑥𝑘 , 𝜆𝑘 )) ≤ 0.

From the second inequality, if 𝑉 (𝑥𝑘 , 𝜆𝑘 ) ≤ 𝜉 , then for some 𝛾 ∈
(0, 1) we have 𝑉 (𝑥𝑘+1, 𝜆𝑘+1) ≤ 𝛾𝑉 (𝑥𝑘 , 𝜆𝑘 ) ≤ 𝜉 . By induction,
if 𝑉 (𝑥0, 𝛾0) ≤ 𝜉 , then 𝛼1∥𝑥𝑘 ∥22 ≤ 𝑉 (𝑥𝑘 , 𝛾𝑘 ) ≤ 𝛾𝑘𝑉 (𝑥0, 𝛾0) ≤
𝛾𝑘𝛼2∥𝑥0∥22.

Remark 2. In order to prove the Lyapunov conditions over the
ellipsoid X = {𝑥 : 𝑥𝑇𝑁𝑥 ≤ 𝜉}, one can add (to the left side) −𝛽1𝑁1

to (13a), +𝛽2𝑁1 to (13b) and +𝛽3𝑁2 to (13c) where

𝑁1 =


−𝑁 0 0
0 0 0
0 0 𝜉

 , 𝑁2 =


−𝑁 0 0 0
0 0 0 0
0 0 0 𝜉

 ,
and 𝛽𝑖 are non-negative scalar variables.

Figure 2: Block diagram of the closed-loop system.

5 EXAMPLES
We use YALMIP [32] toolbox with MOSEK [35] to formulate and

solve the linear matrix inequality feasibility problems. PATH [15]

has been used to solve the linear complementarity problems when

simulating the system. PyTorch is used for training neural network

controllers [38]. The experiments are done on a desktop computer

with the processor Intel i7-9700 and 16GB RAM unless stated oth-

erwise. For all of the experiments, we consider the closed-loop

system in Figure 2 and the linear-quadratic regulator controller is

designed with state penalty matrix 𝑄LQR = 10𝐼 and input penalty

matrix 𝑅LQR = 𝐼 unless stated otherwise. Now, we introduce the

mixed-integer problem for (2) that connects the complementarity

constraints into equivalent big-M mixed integer constraints:

min
𝑥𝑘 ,𝜆𝑘 ,𝑢𝑘

𝑁−1∑︁
𝑘=0

𝑥𝑇
𝑘
𝑄OPT𝑥𝑘 + 𝑢𝑇

𝑘
𝑅OPT𝑢𝑘 + 𝑥𝑇

𝑘
𝑄OPT

𝑁
𝑥𝑘

s.t. 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐷𝜆𝑘 + 𝑧,
𝑀1𝑠𝑘 ≥ 𝐸𝑥𝑘 + 𝐹𝜆𝑘 + 𝐻𝑢𝑘 + 𝑐 ≥ 0,

𝑀2 (1 − 𝑠𝑘 ) ≥ 𝜆𝑘 ≥ 0,

𝑠𝑘 ∈ {0, 1}𝑚, 𝑥0 = 𝑥 (0),

(14)

where 1 is a vector of ones, and 𝑀1, 𝑀2 are scalars that are used

for the big M method. Moving forward, we will consider function

𝜋OPT (𝑥 (0)) that returns the first element of the optimal input se-

quence, 𝑢∗0, for a given 𝑥 (0) and learn this function using a neural

network 𝜙 (𝑥). The code for all examples is available
1
.

1
https://github.com/AlpAydinoglu/sverification

Figure 3: Neural network (𝜙) policy for the double-integrator
example.

https://github.com/AlpAydinoglu/sverification
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Figure 4: Sublevel sets of the piece-wise quadratic Lyapunov
function𝑉 (𝑥𝑘 , 𝜆𝑘 ) with four different trajectories for the dou-
ble integrator example. A sublevel set that lies in the con-
straint set is shown in blue.

5.1 Double Integrator
In this example, we consider a double integrator model:

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 ,

where 𝐴 =

[
1 1
0 1

]
, 𝐵 =

[
0.5
1

]
, and 𝐴 = 𝐴 + 𝐵𝐾LQR, where LQR

gains are 𝑄LQR = 0.1𝐼 and 𝑅LQR = 1. This simple model serves as

an example where we approximate an explicit model predictive

controller (explicit MPC) [4] using a neural network and verify the

stability of the resulting system. We consider the state and input

constraints:

X = {𝑥 :

[
−4
−4

]
≤ 𝑥 ≤

[
4
4

]
}, U = {𝑢 : −3 ≤ 𝑢 ≤ 3},

and obtain 2000 samples of the form (𝑥, 𝜋MPC (𝑥)) with 𝑁 = 10,
𝑄MPC = 10𝐼 , and 𝑅MPC = 1 where 𝑄MPC

is the penalty on the

state, 𝑅MPC
is the penalty on the input and 𝜋MPC (𝑥) is the first

element of the optimal input sequence for a given state 𝑥 [5]. Next

we approximate the explicit MPC controller using a ReLU network

𝜙 (𝑥) with two layers and 10 neurons in each layer as in Figure 3.

Now, consider the closed-loop system:

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝜙 (𝑥𝑘 ) . (15)

First, we find the equivalent LCP representation of 𝜙 (𝑥) using
Lemma 2. Then, we write the equivalent LCS representation of (15)

Figure 5: Envelopes for 1000 trajectories and their corre-
sponding Lyapunov functions (in gray) with a sample trajec-
tory (in black) for the double integrator example.

Figure 6: Regulation task of a cart-pole system exploiting
contact with the soft walls.

as described in Section 3.2. We computed the piece-wise quadratic

Lyapunov function of the form (11) and verified exponential stabil-

ity in 0.81 seconds. The sublevel sets of the Lyapunov functions are

plotted in Figure 4 and the envelopes of 1000 trajectories with their

corresponding Lyapunov functions in Figure 5.

5.2 Cart-pole with Soft Walls
We consider the regulation problem of a cart-pole with soft-walls

as in Figure 6. This problem has been studied in [3, 14, 33] and is

a benchmark in contact-based control algorithms. In this model,

𝑥1 represents the position of the cart, 𝑥2 represents the angle of

the pole and 𝑥3, 𝑥4 are their time derivatives respectively. Here,

𝜆1 and 𝜆2 represent the contact force applied by the soft walls to

the pole from the right and left walls, respectively. We consider the

linearized model around 𝑥2 = 0:

¤𝑥1 = 𝑥3,

¤𝑥2 = 𝑥4,

¤𝑥3 = 𝑔
𝑚𝑝

𝑚𝑐
𝑥2 +

1

𝑚𝑐
𝑢1,

¤𝑥4 =
𝑔(𝑚𝑐 +𝑚𝑝 )

𝑙𝑚𝑐
𝑥2 +

1

𝑙𝑚𝑐
𝑢1 +

1

𝑙𝑚𝑝
𝜆1 −

1

𝑙𝑚𝑝
𝜆2,

0 ≤ 𝜆1 ⊥ 𝑙𝑥2 − 𝑥1 +
1

𝑘1
𝜆1 + 𝑑 ≥ 0,

0 ≤ 𝜆2 ⊥ 𝑥1 − 𝑙𝑥2 +
1

𝑘2
𝜆2 + 𝑑 ≥ 0,

where𝑚𝑐 = 1 is the mass of the cart,𝑚𝑝 = 1 is the mass of the

pole, 𝑙 = 1 is the length of the pole, 𝑘1 = 𝑘2 = 1 are the stiffness

parameter of the walls, 𝑑 = 1 is the distance between the origin and

the soft walls. Then, we discretize the dynamics using the explicit

Euler method with time step𝑇𝑠 = 0.1 to obtain the system matrices:

𝐴 =


1 0 0.1 0
0 1 0 0.1
0 0.981 1 0
0 1.962 0 1

 , 𝐵 =


0
0
0.1
0.1

 , 𝐷 =


0 0
0 0
0 0
0.1 −0.1

 , 𝐸 =

[
−1 1 0 0
1 −1 0 0

]
, 𝐹 =

[
1 0
0 1

]
, 𝑐 =

[
1
1

]
, 𝐴 = 𝐴 + 𝐵𝐾𝐿𝑄𝑅 and,

𝐾𝐿𝑄𝑅 is the gain of the linear-quadratic regulator that stabilizes

the linear system (𝐴, 𝐵). However, the equilibrium 𝑥𝑒 = 0 is not

globally stable due to the soft walls. We solve the optimal control
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Figure 7: Envelopes for 1000 trajectories and the correspond-
ing Lyapunov functions (in gray) with a sample trajectory
(in black) for the cart-pole example.

problem (14) with 𝑁 = 10, 𝑄OPT = 10𝐼 , 𝑅OPT = 1, and 𝑄OPT

𝑁
as

the solution of the discrete algebraic Riccati equation to generate

samples of the form (𝑥, 𝜋OPT (𝑥)). For this particular problem, we

generate 4000 samples and we train a neural network𝜙 (𝑥) with two
layers, each with 10 neurons, to approximate the optimal controller

𝜋OPT and we used the ADAM optimizer to do the training. Then, we

analyze the linear complementarity systemwith the neural network

controller𝑢𝑘 = 𝜙 (𝑥𝑘 ). Following the procedure in Section 3, we first
express the neural network as a linear complementarity problem

using Lemma 2 and then transform the LCS with the NN controller

into the form (10). We compute a Lyapunov function of the form

(11) in 1.61 seconds that verifies that the closed-loop system with

the neural network controller 𝜙 (𝑥) is globally exponentially stable.

For this example, a common Lyapunov function is enough to verify

stability. In Figure 7, we present the envelopes for 1000 trajectories.

5.3 Box with Friction
In this example, we consider the regulation task of a box on a surface

as in Figure 8. This simple model serves as an example where the

contact forces 𝜆𝑘 are not unique due to Coulomb friction between

the surface and the box. Here, 𝑥1 is the position of the cart, 𝑥2 is the

velocity of the cart, 𝑢 is the input applied to the cart, 𝑔 = 9.81 is the

gravitational acceleration,𝑚 = 1 is the mass of the cart, and 𝜇 = 0.1
is the coefficient of friction between the cart and the surface. The

system can be modeled by:

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐷𝜆𝑘 ,

0 ≤ 𝜆𝑘 ⊥ 𝐸𝑥𝑘 + 𝐹𝜆𝑘 + 𝐻𝑢𝑘 + 𝑐 ≥ 0,
(16)

Figure 8: Regulation task of a box on a surface with friction.

Figure 9: Sublevel sets of the piece-wise quadratic Lyapunov
function𝑉 (𝑥𝑘 , 𝜆𝑘 ) with four different trajectories for the box
with friction example.

where 𝐴 =

[
1 0.1
0 1

]
, 𝐵 =

[
0
0.1

]
, 𝐷 =

[
0 0 0
0.1 −0.1 0

]
, 𝐸 =

0 1
0 −1
0 0

 , 𝐹 =


1 −1 1
−1 1 1
−1 −1 0

 , 𝑐 =


0
0

0.981

 ,𝐻 =


1
−1
0

 ,𝐸 = 𝐸 +𝐻𝐾𝐿𝑄𝑅 ,

𝐴 = 𝐴 + 𝐵𝐾𝐿𝑄𝑅 and, 𝐾𝐿𝑄𝑅 is the gain that (the linear-quadratic

regulator controller) stabilizes the linear system (𝐴, 𝐵). Observe
that the matrix 𝐹 is not a P-matrix, hence for a given 𝑥𝑘 , the con-

tact forces 𝜆𝑘 are not unique. Similar to the previous example, we

generate 2000 samples (𝑥, 𝜋OPT (𝑥)) for the LCS in (16) with 𝑁 = 5,
𝑄OPT = 𝑄OPT

𝑁
= 0.1, 𝑅OPT = 1 and train a neural network 𝜙 (𝑥)

that approximates the optimal controller. Then we convert the sys-

tem in (16) with the neural network controller 𝜙 (𝑥) into the form

(10). Next, we compute the piece-wise quadratic Lyapunov function

(with sublevel sets shown in Figure 9) of the form (11) in 1.05 sec-

onds such that the exponential stability condition is verified outside

a ball around the origin, D = {𝑥 : | |𝑥 | |22 > 0.6}. More precisely, we

prove convergence to a set (smallest sublevel set of 𝑉 that contains

D) which contains the equilibrium. This is expected because the

trajectories do not reach the origin due to stiction. We demonstrate

the envelopes for 1000 trajectories and their respective Lyapunov

functions in Figure 10.

Figure 10: Envelopes for 1000 trajectories and the correspond-
ing Lyapunov functions (in gray) with a sample trajectory
(in black) for the box with friction example.
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Figure 11: Regulation task of five carts to their respective
origins.

5.4 Five Carts
We consider the regulation task of five carts as in Figure 11. Here

𝑥𝑖 describes the state of the 𝑖-th cart, the interaction between the

carts is modeled by soft springs represented by 𝜆𝑖 , and all carts can

be controlled via the applied force 𝑢𝑖 . We approximate Newtons’s

second law with a force balance equation and obtain the following

quasi-static model:

𝑥
(1)
𝑘+1 = 𝑥

(1)
𝑘

+ 𝑢 (1)
𝑘

− 𝜆 (1)
𝑘
,

𝑥
(𝑖)
𝑘+1 = 𝑥

(𝑖)
𝑘

+ 𝑢 (𝑖)
𝑘

− 𝜆 (𝑖−1)
𝑘

− 𝜆 (𝑖)
𝑘
, for 𝑖 = 2, 3, 4,

𝑥
(5)
𝑘+1 = 𝑥

(5)
𝑘

+ 𝑢 (5)
𝑘

+ 𝜆 (4)
𝑘
,

0 ≤ 𝜆
(𝑖)
𝑘

⊥ 𝑥
(𝑖+1)
𝑘

− 𝑥 (𝑖)
𝑘

+ 𝜆 (𝑖)
𝑘

≥ 0.

We designed an LQR controller with with state penalty matrix

𝑄LQR = 𝐼 and input penalty matrix 𝑅LQR = 𝐼 . Then, we solve the

optimal control problem (14) with 𝑁 = 10, 𝑄OPT = 𝑄OPT

𝑁
= 10𝐼 ,

and 𝑅OPT = 1 to generate 2000 samples of the form (𝑥, 𝜋OPT (𝑥)).
Using these samples, we train 𝜙 (𝑥) with two layers of size 10 and

express the neural network as a linear complementarity problem

using Lemma 2.

We compute a piece-wise quadratic Lyapunov function of the

form (11) in 1.63 seconds (sub-level sets as in Figure 12) that verifies

that the closed-loop systemwith the neural network controller𝜙 (𝑥)
is globally exponentially stable outside a ballD = {𝑥 : | |𝑥 | |22 > 0.1}.
We also verified that there is not a common Lyapunov function

that satisfies the LMI’s in (13). We note that a common Lyapunov

function that satisfies Theorem 2 might exist, but no such function

satisfies our relaxation in (13). On the other hand, this demonstrates

the importance of searching over a wider class of functions. In

Figure 13, we present the envelopes for 1000 trajectories and the

Figure 12: Sublevel sets of the piece-wise quadratic Lyapunov
function for the five carts example on the planes P1 = {𝑥 :
𝑥1 = 𝑥3 = 𝑥5 = 0} and P2 = {𝑥 : 𝑥1 = 𝑥2 = 𝑥4 = 0} respectively.

Figure 13: Envelopes for 1000 trajectories and the correspond-
ing Lyapunov functions (in gray) with a sample trajectory
(in black) for the five carts example.

corresponding Lyapunov functions. We note that memory is the

limiting factor in terms of scalability of our method and present

scalability tests in Table 1.

6 CONCLUSION AND FUTUREWORK
In this work, we have shown that neural networks with ReLU

activation functions have an equivalent linear complementarity

problem representation. Furthermore, we have shown that a linear

complementarity system with a ReLU neural network controller

can be transformed into an LCS with a higher dimensional com-

plementarity variable than the original system. This allows one to

use the existing literature on linear complementarity systems when

analyzing an LCS with NN controller with ReLU activations.

Towards this direction, we have derived the discrete-time version

of the stability results in [9] and shown that searching for a Lya-

punov function for an LCS with ReLU NN controller is equivalent

to finding a feasible solution to a set of linear matrix inequalities.

The proposed method exploits the complementarity structure of

both the system and the NN controller and avoids enumerating the

exponential number of potential modes. We have also demonstrated

the effectiveness of our method on numerical examples, including

a difference inclusion model.

As future work, we are planning to explore tools from algebraic

geometry that use samples instead of the S-procedure terms which

result in a stronger relaxation [12]. Also, we consider using passiv-

ity results [34] in order to develop algorithms that can verify the

stability for larger neural networks. At last, it is of interest to learn

stabilizing neural network controllers utilizing the complementar-

ity viewpoint.

RAM Number of neurons Solve time
8GB RAM 20 2.1 seconds

8GB RAM 60 194.72 seconds

8GB RAM 100 OOM

16GB RAM 100 1364.78 seconds

16GB RAM 140 OOM

Table 1: Scalability tests.



HSCC ’21, May 19–21, 2021, Nashville, TN, USA Alp Aydinoglu, Mahyar Fazlyab, Manfred Morari, and Michael Posa

ACKNOWLEDGMENTS
The authors would like to thank Yike Li (University of Pennsylvania)

for the code that computes the optimal control sequence for the cart-

pole example. This work was supported by the National Science

Foundation under Grant No. CMMI-1830218.

REFERENCES
[1] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer

in neural networks. arXiv preprint arXiv:1703.00443, 2017.
[2] Alp Aydinoglu, Victor M Preciado, and Michael Posa. Contact-aware controller

design for complementarity systems. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 1525–1531. IEEE, 2020.

[3] Alp Aydinoglu, Victor M Preciado, and Michael Posa. Stabilization of comple-

mentarity systems via contact-aware controllers. arXiv preprint arXiv:2008.02104,
2020.

[4] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N Pistikopoulos.

The explicit linear quadratic regulator for constrained systems. Automatica,
38(1):3–20, 2002.

[5] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive control for
linear and hybrid systems. Cambridge University Press, 2017.

[6] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan.

Linear matrix inequalities in system and control theory. SIAM, 1994.

[7] Bernard Brogliato. Some perspectives on the analysis and control of complemen-

tarity systems. IEEE Transactions on Automatic Control, 48(6):918–935, 2003.
[8] Bernard Brogliato and B Brogliato. Nonsmooth mechanics. Springer, 1999.
[9] M Kanat Camlibel, Jong-Shi Pang, and Jinglai Shen. Lyapunov stability of comple-

mentarity and extended systems. SIAM Journal on Optimization, 17(4):1056–1101,
2007.

[10] Shaoru Chen, Mahyar Fazlyab, Manfred Morari, George J Pappas, and Victor M

Preciado. Learning lyapunov functions for piecewise affine systems with neural

network controllers. arXiv preprint arXiv:2008.06546, 2020.
[11] Steven Chen, Kelsey Saulnier, Nikolay Atanasov, Daniel D Lee, Vijay Kumar,

George J Pappas, and Manfred Morari. Approximating explicit model predictive

control using constrained neural networks. In 2018 Annual American control
conference (ACC), pages 1520–1527. IEEE, 2018.

[12] Diego Cifuentes and Pablo A Parrilo. Sampling algebraic varieties for sum of

squares programs. SIAM Journal on Optimization, 27(4):2381–2404, 2017.
[13] RichardWCottle, Jong-Shi Pang, and Richard E Stone. The linear complementarity

problem. SIAM, 2009.

[14] Robin Deits, Twan Koolen, and Russ Tedrake. Lvis: Learning from value function

intervals for contact-aware robot controllers. In 2019 International Conference on
Robotics and Automation (ICRA), pages 7762–7768. IEEE, 2019.

[15] Steven P Dirkse and Michael C Ferris. The path solver: a nommonotone stabi-

lization scheme for mixed complementarity problems. Optimization methods and
software, 5(2):123–156, 1995.

[16] Asen Dontchev and Frank Lempio. Difference methods for differential inclusions:

a survey. SIAM review, 34(2):263–294, 1992.
[17] Souradeep Dutta, Xin Chen, Susmit Jha, Sriram Sankaranarayanan, and Ashish

Tiwari. Sherlock-a tool for verification of neural network feedback systems:

demo abstract. In Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control, pages 262–263, 2019.

[18] Jiameng Fan, Chao Huang, Xin Chen, Wenchao Li, and Qi Zhu. Reachnn*: A tool

for reachability analysis of neural-network controlled systems. In International
Symposium on Automated Technology for Verification and Analysis, pages 537–542.
Springer, 2020.

[19] Mahyar Fazlyab, Manfred Morari, and George J Pappas. Probabilistic verification

and reachability analysis of neural networks via semidefinite programming. In

2019 IEEE 58th Conference on Decision and Control (CDC), pages 2726–2731. IEEE,
2019.

[20] Mahyar Fazlyab, Manfred Morari, and George J Pappas. Safety verification and

robustness analysis of neural networks via quadratic constraints and semidefinite

programming. arXiv preprint arXiv:1903.01287, 2019.
[21] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George

Pappas. Efficient and accurate estimation of lipschitz constants for deep neural

networks. In Advances in Neural Information Processing Systems, pages 11427–
11438, 2019.

[22] Daniel Goeleven and Bernard Brogliato. Stability and instability matrices for

linear evolution variational inequalities. IEEE Transactions on Automatic Control,
49(4):521–534, 2004.

[23] Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and Sergey

Levine. Learning to walk via deep reinforcement learning. arXiv preprint
arXiv:1812.11103, 2018.

[24] Mathew Halm and Michael Posa. A quasi-static model and simulation approach

for pushing, grasping, and jamming. In International Workshop on the Algorithmic
Foundations of Robotics, pages 491–507. Springer, 2018.

[25] Wilhemus PMH Heemels, Bart De Schutter, and Alberto Bemporad. Equivalence

of hybrid dynamical models. Automatica, 37(7):1085–1091, 2001.
[26] WPMH Heemels, Johannes M Schumacher, and S Weiland. Linear complemen-

tarity systems. SIAM journal on applied mathematics, 60(4):1234–1269, 2000.
[27] Michael Hertneck, Johannes Köhler, Sebastian Trimpe, and FrankAllgöwer. Learn-

ing an approximate model predictive controller with guarantees. IEEE Control
Systems Letters, 2(3):543–548, 2018.

[28] Luigi Iannelli, Raffaele Iervolino, and Francesco Vasca. Linear complementarity

systems and cone-copositive lyapunov stability. IEEE Control Systems Letters,
3(4):799–804, 2019.

[29] Benjamin Karg and Sergio Lucia. Efficient representation and approximation of

model predictive control laws via deep learning. IEEE Transactions on Cybernetics,
50(9):3866–3878, 2020.

[30] Benjamin Karg and Sergio Lucia. Stability and feasibility of neural network-based

controllers via output range analysis. arXiv preprint arXiv:2004.00521, 2020.
[31] Hassan K Khalil and Jessy W Grizzle. Nonlinear systems, volume 3. Prentice hall

Upper Saddle River, NJ, 2002.

[32] Johan Lofberg. Yalmip: A toolbox for modeling and optimization in matlab.

In 2004 IEEE international conference on robotics and automation (IEEE Cat. No.
04CH37508), pages 284–289. IEEE, 2004.

[33] Tobia Marcucci and Russ Tedrake. Warm start of mixed-integer programs for

model predictive control of hybrid systems. IEEE Transactions on Automatic
Control, 2020.

[34] Felix A Miranda-Villatoro, Fulvio Forni, and Rodolphe Sepulchre. Dominance

analysis of linear complementarity systems. arXiv preprint arXiv:1802.00284,
2018.

[35] APS Mosek. The mosek optimization software. Online at http://www. mosek. com,

54(2-1):5, 2010.

[36] Brendan O’Donoghue. Operator splitting for a homogeneous embedding of the

monotone linear complementarity problem. arXiv preprint arXiv:2004.02177, 2020.
[37] Thomas Parisini and Riccardo Zoppoli. A receding-horizon regulator for nonlin-

ear systems and a neural approximation. Automatica, 31(10):1443–1451, 1995.
[38] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

Automatic differentiation in pytorch. 2017.

[39] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for trajectory

optimization of rigid bodies through contact. The International Journal of Robotics
Research, 33(1):69–81, 2014.

[40] Michael Posa, Mark Tobenkin, and Russ Tedrake. Stability analysis and control

of rigid-body systems with impacts and friction. IEEE Transactions on Automatic
Control, 61(6):1423–1437, 2015.

[41] Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relax-

ations for certifying robustness to adversarial examples. In Advances in Neural
Information Processing Systems, pages 10877–10887, 2018.

[42] Stefan Scholtes. Introduction to piecewise differentiable equations. Springer Science
& Business Media, 2012.

[43] Chelsea Sidrane and Mykel J Kochenderfer. Overt: Verification of nonlinear

dynamical systems with neural network controllers via overapproximation. In

Safe Machine Learning workshop at ICLR, 2019.
[44] Georgi V Smirnov. Introduction to the theory of differential inclusions, volume 41.

American Mathematical Soc., 2002.

[45] David E Stewart and Jeffrey C Trinkle. An implicit time-stepping scheme for

rigid body dynamics with inelastic collisions and coulomb friction. International
Journal for Numerical Methods in Engineering, 39(15):2673–2691, 1996.

[46] Aneel Tanwani, Bernard Brogliato, and Christophe Prieur. Well-posedness and

output regulation for implicit time-varying evolution variational inequalities.

SIAM Journal on Control and Optimization, 56(2):751–781, 2018.
[47] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau,

Luan Viet Nguyen, Weiming Xiang, Stanley Bak, and Taylor T Johnson. Nnv:

The neural network verification tool for deep neural networks and learning-

enabled cyber-physical systems. In International Conference on Computer Aided
Verification, pages 3–17. Springer, 2020.

[48] Zhaoming Xie, Glen Berseth, Patrick Clary, Jonathan Hurst, and Michiel van de

Panne. Feedback control for cassie with deep reinforcement learning. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1241–1246. IEEE, 2018.

[49] He Yin, Peter Seiler, and Murat Arcak. Stability analysis using quadratic

constraints for systems with neural network controllers. arXiv preprint
arXiv:2006.07579, 2020.

[50] Xiaojing Zhang, Monimoy Bujarbaruah, and Francesco Borrelli. Safe and near-

optimal policy learning for model predictive control using primal-dual neural

networks. In 2019 American Control Conference (ACC), pages 354–359. IEEE, 2019.
[51] Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, and Vikash

Kumar. Dexterous manipulation with deep reinforcement learning: Efficient,

general, and low-cost. In 2019 International Conference on Robotics and Automation
(ICRA), pages 3651–3657. IEEE, 2019.


	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Background
	2.1 Notation
	2.2 Linear Complementarity Problem
	2.3 Linear Complementarity Systems
	2.4 Stability of A-LCS

	3 Linear Complementarity Systems with Neural Network Controllers
	3.1 Representing ReLU Neural Networks as Linear Complementarity Problems
	3.2 Linear Complementarity Systems with Neural Network Controllers

	4 Stability Analysis of the Closed-Loop System
	5 Examples
	5.1 Double Integrator
	5.2 Cart-pole with Soft Walls
	5.3 Box with Friction
	5.4 Five Carts

	6 Conclusion and Future Work
	Acknowledgments
	References

