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ABSTRACT

Complementarity problems, a class of mathematical optimization
problems with orthogonality constraints, are widely used in many
robotics tasks, such as locomotion and manipulation, due to their
ability to model non-smooth phenomena (e.g., contact dynamics).
In this paper, we propose a method to analyze the stability of com-
plementarity systems with neural network controllers. First, we
introduce a method to represent neural networks with rectified
linear unit (ReLU) activations as the solution to a linear comple-
mentarity problem. Then, we show that systems with ReLU network
controllers have an equivalent linear complementarity system (LCS)
description. Using the LCS representation, we turn the stability ver-
ification problem into a linear matrix inequality (LMI) feasibility
problem. We demonstrate the approach on several examples, includ-
ing multi-contact problems and friction models with non-unique
solutions.
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1 INTRODUCTION

Due to recent advancements in deep learning, there has been an
increasing interest in using neural networks (NNs) to stabilize dy-
namical systems. For instance, neural networks have been used to
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approximate model predictive control policies through supervised
learning [27, 29, 37, 50], or reinforcement learning [11]. Although
neural network controllers can achieve satisfactory performance
under mild assumptions about the model of the dynamical system or
the environment it operates in, they lack guarantees. This drawback
limits the application of neural networks in safety-critical systems.
Therefore, it is critical to develop tools that can provide useful
certificates of stability, and robustness for NN-driven systems.

Many important robotics systems are non-smooth and researchers
have shown the effectiveness of NN policies on such systems with-
out providing formal guarantees [23, 48, 51]. The goal of this paper
is to introduce a method for stability analysis of non-smooth sys-
tems in feedback loops with NN controllers. Our framework is
inspired by complementarity systems [26], differential equations
coupled with the solution of a linear complementarity problem.
Complementarity problems are a class of mathematical optimiza-
tion problems with orthogonality constraints [13]. Linear comple-
mentarity problems, in particular, are widely used in computational
non-smooth mechanics with unilateral contacts and friction [8],
and more generally, in applications involving quadratic program-
ming [36]. In simple terms, a linear complementarity problem can
be stated as the following potentially non-convex quadratic opti-
mization problem,

minimize AT (FA+¢q) subjectto FA+q >0, 1 > 0.

With the objective function being non-negative, the solutions to the
optimization problem satisfy the complementarity condition (FA +
q) " A = 0. In the context of contact dynamics, for example, one can
interpret A as a contact force between a robot and a surface, and FA+
q is a gap function relating the contact force and the distance from
the robot to the contact surface. Because of their ability to model
set-valued and non-smooth functions, complementarity problems
are widely used within the robotics community for stability analysis
[2,9, 22,28, 40], simulating contact dynamics [24, 45], and trajectory
optimization [39].

1.1 Related Work

The connection between nonlinearities in neural networks and
mathematical optimization has been exploited recently in various
contexts. In [19, 20, 41] the authors use quadratic constraints to
describe ReLU activation functions followed by a semidefinite relax-
ation to perform robustness analysis of ReLU networks. In [21], the
authors exploit the fact that all commonly used activation functions
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in deep learning are gradients of convex potentials, hence they sat-
isfy incremental quadratic constraints that can be used to bound
the global Lipschitz constant of feed-forward neural networks. The
works [17, 18, 47] perform reachability analysis for closed-loop
systems with neural network controllers and [43] considers safety
verification for such systems. The work in [1] integrates quadratic
programs as end-to-end trainable deep networks to encode con-
straints and more complex dependencies between the hidden states.
Yin et al. [49] considers uncertain linear time-invariant systems
with neural network controllers. By over approximating the input-
output map of the neural network and uncertainties by quadratic
and integral quadratic constraints, respectively, the authors develop
an SDP whose solution yields quadratic Lyapunov functions. In [10]
the authors develop a learning-based iterative sample guided strat-
egy based on the analytic center cutting plane method to search for
Lyapunov functions for piece-wise affine systems in feedback with
ReLU networks where the generation of samples relies on solving
mixed-integer quadratic programs. In [30], the authors use a mixed-
integer programming formulation to perform output range analysis
of ReLU neural networks and provide guarantees for constraint
satisfaction and asymptotic stability of the closed-loop system.

1.2 Contributions

Inspired by the connection between ReLU functions and linear
complementarity problems, we develop a method to analyze linear
complementarity systems in feedback with ReLU network con-
trollers. Our starting point is to show that we can represent ReLU
neural networks as linear complementarity problems (Lemma 2).
Next, we demonstrate that linear complementarity systems with
neural network controllers have an equivalent LCS representation.
Then, we leverage the theory of stability analysis for complemen-
tarity systems and derive the discrete time version of the results in
[9]. We describe the sufficient conditions for stability in the form
of Linear Matrix Inequalities (LMI’s). Denoting by N the number
of neurons in the network plus the number of complementarity
variables in the LCS, the size of the LMI’s scales linearly with N.
Furthermore, the maximum possible number of decision variables
in our LMI scales quadratically with N. To the best of our knowl-
edge, this is the first work on analyzing the stability of LCS systems
with neural network controllers.

2 BACKGROUND

2.1 Notation

We denote the set of non-negative integers by Ny, the set of d-
dimensional vectors with real components as R? and the set of
n X m dimensional matrices by R™™, For two vectors a € R™
and b € R™, we use the notation 0 < a L b > 0 to denote that
a>0,b>0 alb=0.Fora positive integer [, [ denotes the set
{1,2,...,1}. Given a matrix M € R and two subsets I C k and
J € 1, we define Mij = (mij)ier,jej- For the case where J = I, we
use the shorthand notation Mi,.

2.2 Linear Complementarity Problem

The theory of linear complementarity problems (LCP) will be used
throughout this work [13].
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DEFINITION 1. Given a vector ¢ € R™, and a matrix F € R™*™,

the LCP(q, F) describes the following mathematical program:
find AeR™

subjectto y=FA+gq,
0<ALiLy=0.

The solution set of the LCP(q, F) is denoted by
SOL(q.F)={A:y=FA+q0<ALy>0}

The LCP(gq, F) may have multiple solutions or none at all. The
cardinality of the solution set SOL(gq, F) depends on the matrix F
and the vector gq.

DEFINITION 2. A matrix F € R™ ™ js q P-matrix, if the de-
terminant of all of its principal sub-matrices are positive; that is,
det(Fpq) > 0 foralla € {1,...,m}.

The solution set SOL(q, F) is a singleton for all g if F is a P-
matrix [13]. If we denote the unique element of SOL(q, F) as A(q),
then A(q) is a piece-wise linear function of q. We can describe this
function explicitly as in [9]. Consider y = FA(g) + ¢, and define the
index sets

a(q) = {i: Ai(q) > 0=y;},

Blg) ={i: Ai(q) =0 <y},
Then, A(q) is equivalent to

Aa(q) = _(Foca)_lIoc-% Aﬁ(q) =0, (1)

where a = a(q) and § = (q). Furthermore, A(q) as in (1) is Lips-
chitz continuous since it is a continuous piece-wise linear function
of q [42].

2.3 Linear Complementarity Systems

We are now ready to introduce linear complementarity systems
(LCS). In this work, we consider an LCS as a difference equation
coupled with a variable that is the solution of an LCP.

DEFINITION 3. A linear complementarity system describes the

trajectories (xXi)ken, and (Ax)ken, for an input sequence (ug)ren,
starting from xq such that

X4l = Axk + Buk +D/1k +z,
Yk :Exk+F/1k +Huk +c, (2)
0< A Ly >0.

where x;. € R, A € R"™, y € R™, A € R?%x*"x B ¢ RMxXMu,
D e R™XM 7z € R E € R™M*Mx F e RW*M H e R"XM gnd
c € R™,

For a given k, x; and ug, the corresponding complementarity
variable Ay can be found by solving LCP(Exy + Huy +c, F) (see Def-
inition 1). Similarly, x4 can be computed using the first equation
in (2) when xg, ux and A are known. In general, the trajectories
(xx) and (Ay) are not unique since SOL(Exy. + Huy. + ¢, F) can have
multiple elements; hence, (2) is a difference inclusion [16].

In this work, we will focus on autonomous linear complemen-
tarity systems (A-LCS) because we consider the input as a function
of the state and the complementarity variable, i.e., up = ug (xg, Ar).
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An A-LCS represents the evolution of trajectories (xt)xen, and
(Ak)ken, according to following dynamics,
X4l = Axk + Dﬂ.k + z,
yr = Exp + FAr +¢, 3)
0<Ag Ly >0,
and unlike (2) there is no input. Moving forward, we will consider
A-LCS models that can have non-unique trajectories.

We note that, however, the existence of a special case of (3) is
continuous piecewise affine systems [25]. If F is a P-matrix, then
A(x) is unique for all x and (3) is equivalent to

Xk41 = Axg + Buyg + DA(xg) + 2,

where A(xg) is the unique element of SOL(Exy + ¢, F) and can be
explicitly described as in (1). In this setting, (2) is a piece-wise
affine dynamical system and has a unique solution for any initial
condition xg.

2.4 Stability of A-LCS

We introduce the notions of stability for A-LCS that are similar
to [44]. An equilibrium point x, for (3) is defined as a point that
satisfies xe = Axe+DAe+z where A, = SOL(Ex+c, F) is a singleton.
Without loss of generality, we assume x, = 0 is an equilibrium of
the system, i.e., D - SOL(c, F) = {-z}.

DEFINITION 4. The equilibrium xe = 0 of A-LCS is
(1) stable if for any given € > 0, there exists a § > 0 such that

[lxol] <6 = |lxkl] < € Vk =0,

for any trajectory {x;} starting from xo,
(2) asymptotically stable if it is stable and there is a & > 0 such
that
oll <6 = Tim [Jxll =0,

for any trajectory {x;.} starting from xg.
(3) geometrically stable if there exists § > 0, > 1 and0 < p < 1
such that

lxoll <8 = [lxill < ap®lxoll Vk 2 0,
for any trajectory {x;} starting from xq.
Notice that if F is a P-matrix, these are equivalent to the notions
of stability for difference equations where the right side is Lipschitz

continuous [31] since there is a unique trajectory {xi} starting
from any initial condition xq.

3 LINEAR COMPLEMENTARITY SYSTEMS
WITH NEURAL NETWORK CONTROLLERS

In this section, we demonstrate that neural networks with rectified
linear units (ReLU) have an equivalent LCP representation. Then,
we show that an LCS combined with a neural network controller
has an alternative complementarity system description.

DEFINITION 5. A ReLU neural network ¢: R"™ +— R"™ with L
hidden layers is the composite function
¢(x) = (hr © AReLy © hp-1© ... © AReLy © ho) (x), 4

where Agry(x) = max{0,x} is the ReLU activation layer, and
hi(x) = 0;x + c; are the affine layers with 0; € R™"+1X1 ¢; € RMi+1,
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Figure 1: Two-layered neural network with ReLU activation
functions (Example 1).

Here, nj, 1 < i < L denotes the number of hidden neurons in the i-th
layer, ng = ny, andnp41 = ng. We denote by ny = Z{.“:l n; the total
number of neurons.

3.1 Representing ReLU Neural Networks as
Linear Complementarity Problems

ReLU neural networks are piece-wise affine functions. Similarly,
the linear complementarity problem describes a piece-wise affine
function as shown in (1) as long as F is a P-matrix. In this sec-
tion, we will explore the connection between two piece-wise affine
representations.

It has been shown that ReLU neural networks can be represented
with quadratic constraints [41], [20]. Now, our goal is to show the
connection between these results and linear complementarity prob-
lems. We will describe a method to represent a multi-layered ReLU
neural network as a linear complementarity problem exploring the
cascade connections of complementarity problems [7].

First we consider a single ReLU unit Arepy(x) = max(0, x) and
its equivalent LCP representation.

LEMMA 1. [26] Consider the following LCP for a given x € R%:
find ALCP ¢ R

subjectto §=-x+ ALCP,

0<ACP Ly,

ALCP

Then ALCP is unique and is given by = max{0, x}.

Xij. m]

Proor. If x; < 0, then AILCP = 0 and if x; > 0, then Aich =

Next, we consider a two layered neural network and transform
it into an LCP using Lemma 1.

Example 1. Consider a two layered network shown in Figure
1 where @ Jayer(X) = AReLU © h1 © AReLU © ho(x) With hg(x) = x
and h1(x) = f2x + C2. An alternative representation is @ jayer (x)

= [13 (x)T ).4(x)T]T where
A1(x) = max{0,x1}, (5)

A2(x) = max{0, x2}, (6)

A3(x) = max{0,011 21 (x) + 02222 (x) + &b}, (7)

8)

Aa(x) = max{0,03%1a(x) + 3}
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Here A; represents the output of the ith ReLU activation function,

9{ K and E{ represent the coefficients of the affine function. Observe

that the two-layered NN is equivalent to [jﬂ where A is the unique
solution of the following LCP:
find AeRr?

subject to  y1 = —x1 + A1,
Y2 = —x2 + A,
g3 = —0" 0 — 0% A0 — T + A3,
Yq = —9;’212 - E% + A4,
0<AQ Lig 20,
0<Az Lo =0,
0<A3Li3=0,
0<A4Lgg=0.

Here, {/1,~}l.2=1 can be represented as A; = max{0, x;} and {Ai}?:3
are as in (7), (8) after direct application of Lemma 1. Then, we

A
conclude that Aﬂ = P2-layer-

Now, we show that all neural networks of the form (4) have an
equivalent LCP representation.

LEMMA 2. For any x, the ReLU neural network in (4) can be ex-
pressed as ¢(x) = DA(x) + z, where A(x) is the unique solution of the
following linear complementarity problem:

find A

subjectto 7§ = Ex+FA+¢,
0<ALy=0,

where ¢ = . , E= , the lower triangular matrix

0 cee . =04 I

andz=c¢r,D = [0 0 0 GL] where F is a P-matrix.
Proor. First, we write AT = [A]  A] Al_,] e RIXm
where each sub vector A; has the same dimension as ¢;. Next, we
show that Ag(x) = AreLu © ho(x). Observe that Ag is independent

of A1,...,Ar_1 since F is lower-triangular. Hence A is the unique
element of the following LCP:
find Ao

subject to 7o = —0px — Co + Ao,
0<ApLip=0.
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Following Lemma 1, Ag(x) = max{0,ho(x)} = ArerLu © ho(x).
Similarly, notice that for i > 0, A; only depends on A;_1(x) and is
the unique element of:

find Ai
subjectto  3; = —0idi—1(x) — ¢ + A,
0<ALy=0,
and is equivalent to A;(x) = Apery © hi © A;—1(x) as a direct appli-
cation of Lemma 1. Using this equivalency recursively,
DA(x)+Z=hy 0o AReLy © A1 © ... 0 AReLU © ho(x).

Notice that F,q is lower triangular with ones on the diagonal for
any « such that card(a) > 2 hence F is a P-matrix. O

Each neuron in the NN is represented with a complementarity
variable, therefore the dimension of the complementarity vector
(A) is equal to the number of neurons in the network. As seen
in Lemma 2, transforming a ReLU neural network into an LCP
only requires concatenating vectors and matrices. Furthermore,
this transormation allows us to consider the ReLU neural network
controller as an LCP based controller [46].

3.2 Linear Complementarity Systems with
Neural Network Controllers

We will use the LCP representation of the neural network (4) and
describe an LCS with a NN controller as an A-LCS. Consider a linear
complementarity system with a ReLU neural network controller

uk = () B
Xky1 = Axk + B¢(xk) + D/lk + 2z,
Gk = Exg + FA + Hp(xp) +6, ©)
0<Ak Lij>0,
where x; € R™ is the state, ik € R™ is the complementarity
variable, ¢(x) € R™ is a ReLU neural network as in (4) with n;
neurons. Notice that (9) is not in the A-LCS form. Using Lemma 2,
we can transform (9) into an A-LCS in a higher dimensional space.
To see this, observe that (9) is equivalent to
Xps1 = Axg + B(DA +2) + DAy + 2,
Uk = Exk +F~ik +H(D/ik +2Z)+¢,
Y = Exk +F_Zk +c,
0<Ae Li=0,
0< A L >0,
after direct application of Lemma 2 where A € R™. We can write it

succinctly as
Xpy1 = Axp + DAy + 2,

Yg = Exy +Fﬂk +c, (10)
0<Ap Ly =0,

where A = B’; s Yk = [gi]D = [ﬁ BD],E = [g],F =
c+Hz

[g HFD] = ,and z = BZ + Z. Here, the size of x; € R

does not change, but notice that now A € R™ where ny = nz +nj.




Stability Analysis of Complementarity Systems with Neural Network Controllers

Using controllers of the form (4), we exclusively consider the linear
complementarity system model (10) for notational compactness.

Similarly, one can consider the scenario where both the system
dynamics and the controller are represented by ReLU neural net-
works as in xgq = ¢1(xg) + Bpa(xx), where ¢1 represents the
autonomous part of the dynamics (obtained by, for example, sys-
tem identification) and ¢2 is the controller. Using Lemma 2, this
system has an equivalent A-LCS representation similar to (10), but
the details are omitted for brevity.

After obtaining an A-LCS representation of the closed-loop sys-
tem, one can directly use the existing tools for stability analysis
of complementarity systems, such as Lyapunov functions [9] and
semidefinite programming [2]. We elaborate on this in the next
section.

4 STABILITY ANALYSIS OF THE
CLOSED-LOOP SYSTEM

In this section, we provide sufficient conditions for stability in the
sense of Lyapunov for an A-LCS. Then, we show that the stability
verification problem is equivalent to finding a feasible solution to
a set of linear matrix inequalities (LMI’s). To begin, consider the
following Lyapunov function candidate that was introduced in [9]:

ka p Q  hy||xx

Vixe k) = || |QF R ha| |,

1] [h] Rl m3][1 (11)
N——
=M

where P € S, Q € R™*" R € S", hy € R™, hy € R™, and
h3 € R are to be chosen. Note that if F in (10) is a P-matrix, then
Ak is a piecewise affine function of xj, implying that the Lyapunov
function (11) is quadratic in the pair (xg, Ax) but it is piecewise
quadratic (PWQ) in the state xi. If F is not a P-matrix, then V can
be set valued since there can be multiple A;’s corresponding to
each x. In either case, V reduces to a common quadratic Lyapunov
function in the special case Q = R = 0. Therefore, (11) is more
expressive than a common quadratic Lyapunov function.

In the following theorem, we construct sufficient conditions for
the stability of (10), using the Lyapunov function (11). This is the
discrete time version of the results in [9].

THEOREM 2. Consider the A-LCS in (10) with the equilibrium
Xe = 0, the Lyapunov function (11) and a domain X € R". If there
exist M € S"xtm*Ll o1 > 0, and ag > az > 0 such that

arllxgll3 < V0 A) < azllxill3, V0 A) € T
V(X1 Aes1) = Vo Ak) < = lxgll3, Vg, A Agar) € T,
where xp,1 = Axy + DA + z and
I ={(xg,Ak) : 0 <Ap LExp+FA+c>0, x; € X},
o = { (% Ao Aks1) : 0 < A L Exg + FAp+¢ >0,
0 < Agy1 L Exgyq +FAppp +¢ >0, x; € X}

Then the equilibrium is Lyapunov stable if a3 = 0 and geometrically
stable if aa > a3 > 0.

PrOOF. Observe that for all (xg, A):

2 2
allxillz < V(xg, A) < Vi(xo, do) < azllxoll2,
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and Lyapunov stability follows. For geometric stability, notice
that Lyapunov decrease condition is equivalent to V (xg,1, Ags1) —
YV (xp, A) < 0, for some y € (0,1). Then

arllxgl3 < Ve A) < ¥*V(xo0,40) < azylIxoll3-

The result follows. ]

Note that we do not require M in (11) to be positive definite to
satisfy the requirements of Theorem 2. In light of this theorem, we
must solve the following feasibility problem to verify that if the
equilibrium of the closed-loop system (10) is stable on X:

find P,Q,R, hi, ho, h3, a1, a2, a3 (12)
st arllxgll3 < V(g Ak) < azllxgll3, for (xg, ) € Ty,
AV < —agllxell3, for (xp, A, Ags1) € T,

where AV = V(xp41, Akr1)—V (xk, A ). In the following proposition,
we turn (12) with X = R" into an LMI feasibility problem using the
S-procedure [6].

ProOPOSITION 1. The following LMI’s solve (12) with X = R":

Ty - STWiSy - %(53,1 +541) 20, (13a)
Ty + S WaS1 + %(53,2 +544) <0, (13b)
T3 + SITW3So + ST wySs + %[(54 +8])+(Se+S4)] =0, (13c)

where G1 = DTPz+DThy —hs, Go = zTPD+h{D—h2, G3 = zTQ+

E F ¢ E F 0 ¢ 0 0 0
hg,sl =10 I 0,S=|0 I 0 O0S3;i=|LE JF Jc]|,
0 0 1 00 0 1 0 0 0
0 0 0 O EA ED Fc Ecz+c
Sa=|BE J3F 0 Jsc|,S5=|0 0 I 0 |
0 0 0 0 0 0 0 1
0 0 0 0 P-ail Q M
S¢ = |JaEA  JuED JuF J4Ez+c|,T1 = QT R  hol,
0 0 0 0 hl kD hs
P-—al Q M
T=| QF R haf,
hT Kl s
ATPA-P+asl ATPD-Q ATQ ATPz-m
e p'pA-QT DTPD-R DTQ Gy
3= oTA 0oTD R Qlz+hy
zTPA-h G Gz z'Pz-hlz

Here, W; are decision variables with non-negative entries, and J; =
diag(r;) where r; € R™ are free decision variables.

ProoOF. First define e/ =[x, 4. 1] By left and right mul-

tiplying both sides of (13a) by e/;'— and ey, respectively, we obtain

-
9 Yk Yk

V(x ) —anllxgells = |A| Wi [ [+24] diag(z1)yg
1 1

The right hand side is non-negative due to the complementarity
constraint 0 < A L yg > 0. Similarly, by left and right multiplying
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both sides of (13b) by e];'— and ey, respectively, we obtain

.
) Yk Yk

aallxills = V(x Ak) = |A| We [ [+224] diag(r2)ys
1 1

Again, the right hand side is non-negative due to the complemen-
tarity constraint 0 < A L y > 0.

Now, we define p;c'— = [x;cr /1]1— /1];'—+1 1]. Notice that if we
left and right multiply both sides of (13c) by p]: and py, we obtain

T T

NEC Yk|  |Ykse1 Yk
—AV —ag|lxell5 = | A | W3 | Ak |+ | Aksr| Wa |k
1 1 1 1

+2/ diag(t3)yx +24/, ; diag(t4)yes1

Similarly, all the terms on the right hand side are non-negative
since 0 < Ag L yg > O for all k. This concludes the proof. O

Notice that (12) captures the non-smooth structure of the LCS
combined with the ReLU neural network controller. In addition to
that, we can assign a different quadratic function to each polyhedral
partition that is created by the neural network without enumerating
those partitions by exploiting the complementarity structure of
the neural network. Observe that (13a), (13b) are LMI’s of size
(ny + ny + 1), and (13c) is an LMI of size (ny + 2ny + 1).

Note that Theorem 13 is a global result for X = R". We can adapt
the theorem to bounded regions X containing the origin.

REMARK 1. For the equilibrium x, = 0, the region of attraction is
defined as
R = {xo : lim ||l = 0).
If one adds (to the left side) +nL to (13c) where
P -Q 0 n
I -0 R 0 ~-ho
10 0 0 0o |’
-kl —hl 0 &-hs
and n is a non-negative scalar variable, then the closed-loop system is
geometrically stable and the sub-level set

Ve={x:V(x,4) <&V(x,A) €T1},
is an approximation of the ROA, i.e., (V§ C R. To see this, note that
the resulting matrix inequality would imply

2 2
a1 llxllz < V(e Ag) < azllxells,

V(X1 Akr1) =V (s ) + asllxg 13 +1(8 = V(g Ag)) < 0.
From the second inequality, if V(xx,Ax) < &, then for somey €
(0,1) we have V(xxy1, Ag1) < yV(xg, Ax) < & By induction,
if V(x0.y0) < & then arllxilly < Vxeyi) < v*Vixo.v0) <
y*asllxol2.

REMARK 2. In order to prove the Lyapunov conditions over the
ellipsoid X = {x : xTNx < &}, one can add (to the left side) — 1 N1
to (13a), +f2 N1 to (13b) and +f3 Ny to (13c) where

-N 0 0 -N 0 0 0
Ni={0 0 0[,No=|0 0 0 of,
0 0 ¢ 0 0 0 ¢

and f; are non-negative scalar variables.
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LQR
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Figure 2: Block diagram of the closed-loop system.

5 EXAMPLES

We use YALMIP [32] toolbox with MOSEK [35] to formulate and
solve the linear matrix inequality feasibility problems. PATH [15]
has been used to solve the linear complementarity problems when
simulating the system. PyTorch is used for training neural network
controllers [38]. The experiments are done on a desktop computer
with the processor Intel i7-9700 and 16GB RAM unless stated oth-
erwise. For all of the experiments, we consider the closed-loop
system in Figure 2 and the linear-quadratic regulator controller is
designed with state penalty matrix Q"R = 10I and input penalty
matrix RFOR = [ unless stated otherwise. Now, we introduce the
mixed-integer problem for (2) that connects the complementarity
constraints into equivalent big-M mixed integer constraints:

N-1
min Z x{QOPTxk + uZROPTuk + x{Qg,PTxk
XA, Uk e

st Xpy1 = Axg + Bugp + DA + 2,
Misg = Exg + FAp + Hugp +¢ > 0,
Ma(1=sp) = 4 20,

s € {0,1}™, xg = x(0),

(14)

where 1 is a vector of ones, and M7, My are scalars that are used
for the big M method. Moving forward, we will consider function
7opT(x(0)) that returns the first element of the optimal input se-
quence, “8’ for a given x(0) and learn this function using a neural
network ¢ (x). The code for all examples is available!.

Lhttps://github.com/AlpAydinoglu/sverification

Figure 3: Neural network (§) policy for the double-integrator
example.


https://github.com/AlpAydinoglu/sverification

Stability Analysis of Complementarity Systems with Neural Network Controllers

N

Figure 4: Sublevel sets of the piece-wise quadratic Lyapunov
function V (xg, Ax) with four different trajectories for the dou-
ble integrator example. A sublevel set that lies in the con-
straint set is shown in blue.

5.1 Double Integrator
In this example, we consider a double integrator model:

X4l = Axk + Buk,

where A = [1 ! B = [0'5

0 1 1
gains are QUR = (.17 and RVRR = 1. This simple model serves as
an example where we approximate an explicit model predictive
controller (explicit MPC) [4] using a neural network and verify the
stability of the resulting system. We consider the state and input
constraints:

], and A = A+ BK R, where LQR

X:{xW:ﬂst[ﬂhil=w:—3£us3h

and obtain 2000 samples of the form (x, mypc(x)) with N = 10,
OMPC = 101, and RMPC = 1 where QMPC is the penalty on the
state, RMPC is the penalty on the input and mypc(x) is the first
element of the optimal input sequence for a given state x [5]. Next
we approximate the explicit MPC controller using a ReLU network
¢(x) with two layers and 10 neurons in each layer as in Figure 3.
Now, consider the closed-loop system:

X1 = Axg + B (x). (15)

First, we find the equivalent LCP representation of ¢(x) using
Lemma 2. Then, we write the equivalent LCS representation of (15)

3 300
2 250
1 —~, 200
~— ~<
x0 < 150
1 ~ 100
2 50
3 R —
0 2 4 6 0 2 4 6
iteration(k) iteration(k)

Figure 5: Envelopes for 1000 trajectories and their corre-
sponding Lyapunov functions (in gray) with a sample trajec-
tory (in black) for the double integrator example.
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Figure 6: Regulation task of a cart-pole system exploiting
contact with the soft walls.

as described in Section 3.2. We computed the piece-wise quadratic
Lyapunov function of the form (11) and verified exponential stabil-
ity in 0.81 seconds. The sublevel sets of the Lyapunov functions are
plotted in Figure 4 and the envelopes of 1000 trajectories with their
corresponding Lyapunov functions in Figure 5.

5.2 Cart-pole with Soft Walls

We consider the regulation problem of a cart-pole with soft-walls
as in Figure 6. This problem has been studied in [3, 14, 33] and is
a benchmark in contact-based control algorithms. In this model,
x1 represents the position of the cart, xo represents the angle of
the pole and x3, x4 are their time derivatives respectively. Here,
A1 and A2 represent the contact force applied by the soft walls to
the pole from the right and left walls, respectively. We consider the
linearized model around xo = 0:

X1 = x3,
X2 = X4,
. mp 1
X3 =g—XxX2+ —uj,
me me
. g(me+mp) 1 1 1
X4 = T P+ —uy+—A; — —Ag,
Im, Im¢ Imy, Imy,

1
OS11J_ZXQ—X1+k—).1+dZO,
1

1
0< A2 J_xl—lxg+k—/12+d20,
2

where m. = 1 is the mass of the cart, mpy = 1is the mass of the
pole, I = 1 is the length of the pole, k1 = k2 = 1 are the stiffness
parameter of the walls, d = 1 is the distance between the origin and
the soft walls. Then, we discretize the dynamics using the explicit
Euler method with time step T; = 0.1 to obtain the system matrices:

1 0 01 0 0 0 0
~ 0 1 0 01 0| = 0 0 ~
A= 0 0981 1 0 B = O.l’D_ 0 0 B =
0 1962 0 1 0.1 01 -0.1
-1 1 0 0] 3 1 0] . 1 ~
[1 1 0 0],F = 0 1 ,C = [1 , A :A+BKLQR and,

K1 R is the gain of the linear-quadratic regulator that stabilizes

the linear system (A, B). However, the equilibrium x, = 0 is not
globally stable due to the soft walls. We solve the optimal control
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Figure 7: Envelopes for 1000 trajectories and the correspond-
ing Lyapunov functions (in gray) with a sample trajectory
(in black) for the cart-pole example.

problem (14) with N = 10, QOPT =10, R°PT = 1, and QIC\)]PT as
the solution of the discrete algebraic Riccati equation to generate
samples of the form (x, 7opT(x)). For this particular problem, we
generate 4000 samples and we train a neural network ¢ (x) with two
layers, each with 10 neurons, to approximate the optimal controller
mopt and we used the ADAM optimizer to do the training. Then, we
analyze the linear complementarity system with the neural network
controller uy. = ¢(x). Following the procedure in Section 3, we first
express the neural network as a linear complementarity problem
using Lemma 2 and then transform the LCS with the NN controller
into the form (10). We compute a Lyapunov function of the form
(11) in 1.61 seconds that verifies that the closed-loop system with
the neural network controller ¢(x) is globally exponentially stable.
For this example, a common Lyapunov function is enough to verify
stability. In Figure 7, we present the envelopes for 1000 trajectories.

5.3 Box with Friction

In this example, we consider the regulation task of a box on a surface
as in Figure 8. This simple model serves as an example where the
contact forces A; are not unique due to Coulomb friction between
the surface and the box. Here, x1 is the position of the cart, x2 is the
velocity of the cart, u is the input applied to the cart, g = 9.81 is the
gravitational acceleration, m = 1 is the mass of the cart, and p = 0.1
is the coeflicient of friction between the cart and the surface. The
system can be modeled by:

Xk+1 = Axk + Buk +Bik, (16)
0 Sik J_E~xk+ﬁik + Huy, +¢>0,

—

U
_’

m
NNNNNNNNN
- " T
M %

Figure 8: Regulation task of a box on a surface with friction.
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10 5 0 5 10
X

Figure 9: Sublevel sets of the piece-wise quadratic Lyapunov
function V(xg, Ax) with four different trajectories for the box
with friction example.

-1 oo 0] = 0 0 0] 2
where A = |5 ’Bz[o.l’Dz[m 01 of F=
0 1 1 -1 1 0 1
0 -1|,F=|-1 1 1|é=| 0 |\H=|-1|,E=E+HKiQr.
0 0 -1 -1 0 0.981 0

A=A+ BKLor and, Kigg is the gain that (the linear-quadratic
regulator controller) stabilizes the linear system (A, B). Observe
that the matrix F is not a P-matrix, hence for a given x, the con-
tact forces A are not unique. Similar to the previous example, we
generate 2000 samples (x, zopT(x)) for the LCS in (16) with N = 5,
QOPT = QJ%PT = 0.1, RO’T = 1 and train a neural network ¢(x)
that approximates the optimal controller. Then we convert the sys-
tem in (16) with the neural network controller ¢(x) into the form
(10). Next, we compute the piece-wise quadratic Lyapunov function
(with sublevel sets shown in Figure 9) of the form (11) in 1.05 sec-
onds such that the exponential stability condition is verified outside
a ball around the origin, D = {x : ||x| |§ > 0.6}. More precisely, we
prove convergence to a set (smallest sublevel set of V' that contains
D) which contains the equilibrium. This is expected because the
trajectories do not reach the origin due to stiction. We demonstrate
the envelopes for 1000 trajectories and their respective Lyapunov
functions in Figure 10.

0 20 40 60 80 0 20 40 60 80
iteration(k) iteration(k)

Figure 10: Envelopes for 1000 trajectories and the correspond-
ing Lyapunov functions (in gray) with a sample trajectory
(in black) for the box with friction example.
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Figure 11: Regulation task of five carts to their respective
origins.

5.4 Five Carts

We consider the regulation task of five carts as in Figure 11. Here
x; describes the state of the i-th cart, the interaction between the
carts is modeled by soft springs represented by A;, and all carts can
be controlled via the applied force u;. We approximate Newtons’s
second law with a force balance equation and obtain the following
quasi-static model:

M _ (0,0 0
k k>

xk+1 = xk

x,ii)l = X,(Ci) + u,(ci) - A](ci_n - /1,(:), fori=2,34,
(5) _ _(5) (5) (4)

X =X Uy +/1k R

040 1L x#D 04300 5
We designed an LQR controller with with state penalty matrix
QURR = [ and input penalty matrix RFQR = I. Then, we solve the
optimal control problem (14) with N = 10, QT = QJ(\)IP T = 101,

and ROPT = 1 to generate 2000 samples of the form (x, 7opt(x)).

Using these samples, we train ¢(x) with two layers of size 10 and
express the neural network as a linear complementarity problem
using Lemma 2.

We compute a piece-wise quadratic Lyapunov function of the
form (11) in 1.63 seconds (sub-level sets as in Figure 12) that verifies
that the closed-loop system with the neural network controller ¢ (x)
is globally exponentially stable outside aball D = {x : ||x]| |% > 0.1}
We also verified that there is not a common Lyapunov function
that satisfies the LMI’s in (13). We note that a common Lyapunov
function that satisfies Theorem 2 might exist, but no such function
satisfies our relaxation in (13). On the other hand, this demonstrates
the importance of searching over a wider class of functions. In
Figure 13, we present the envelopes for 1000 trajectories and the

2 2 \

N
N

-1 / -1 !
2 /A 2 \ A

-2 0 2 -2 0 2
Figure 12: Sublevel sets of the piece-wise quadratic Lyapunov

function for the five carts example on the planes 1 = {x :
x1 =x3 =x5 =0} and Py = {x : x1 = x2 = x4 = 0} respectively.
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Figure 13: Envelopes for 1000 trajectories and the correspond-
ing Lyapunov functions (in gray) with a sample trajectory
(in black) for the five carts example.

corresponding Lyapunov functions. We note that memory is the
limiting factor in terms of scalability of our method and present
scalability tests in Table 1.

6 CONCLUSION AND FUTURE WORK

In this work, we have shown that neural networks with ReLU
activation functions have an equivalent linear complementarity
problem representation. Furthermore, we have shown that a linear
complementarity system with a ReLU neural network controller
can be transformed into an LCS with a higher dimensional com-
plementarity variable than the original system. This allows one to
use the existing literature on linear complementarity systems when
analyzing an LCS with NN controller with ReLU activations.

Towards this direction, we have derived the discrete-time version
of the stability results in [9] and shown that searching for a Lya-
punov function for an LCS with ReLU NN controller is equivalent
to finding a feasible solution to a set of linear matrix inequalities.
The proposed method exploits the complementarity structure of
both the system and the NN controller and avoids enumerating the
exponential number of potential modes. We have also demonstrated
the effectiveness of our method on numerical examples, including
a difference inclusion model.

As future work, we are planning to explore tools from algebraic
geometry that use samples instead of the S-procedure terms which
result in a stronger relaxation [12]. Also, we consider using passiv-
ity results [34] in order to develop algorithms that can verify the
stability for larger neural networks. At last, it is of interest to learn
stabilizing neural network controllers utilizing the complementar-
ity viewpoint.

RAM Number of neurons Solve time
8GB RAM 20 2.1 seconds
8GB RAM 60 194.72 seconds
8GB RAM 100 OOM
16GB RAM 100 1364.78 seconds
16GB RAM 140 OOM

Table 1: Scalability tests.
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