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Abstract

Charge transfer in positronium-proton collisions is calculated using the quantum-mechanical

convergent close-coupling method and classical trajectory Monte-Carlo method. Previous calcu-

lations revealed that at low incident energy the cross section in both theories scales as n2
Ps/EPs,

where nPs and EPs are the principal quantum number and the center-of-mass energy of the incident

positronium atom, respectively. However, the quantum cross section is systematically lower than

classical one in absolute magnitude. To investigate the origin of this quantum suppression effect,

we compare the charge transfer probabilities as functions of the impact parameter. We show that

the quantum suppression in the cross section is mainly due to the low-impact parameter behavior

of the probabilities governed by the quantum uncertainty principle.

PACS numbers:
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I. INTRODUCTION

Quantum-classical correspondence has been a fascinating and challenging topic since

the early days of the quantum theory. It is particularly peculiar with regard to systems

interacting by the Coulomb force. Although it is usually suggested that quasiclassical and

semiclassical methods work better for highly excited states, the Bohr quantization rules

give the exact spectrum for the hydrogenlike atom including its ground state. The Bohr-

Heisenberg correspondence principle allows us to obtain exact formulas for spontaneous

emission of the hydrogen atom [1], although their rigorous derivation requires not only

quantum mechanics, but also quantum field theory. With regard to collisions of two charged

particles, it is well known that the Rutherford formula for elastic scattering cross section is

exactly the same in classical and quantum mechanics. When other processes, for example

inelastic collisions and bremsstrahlung are considered, the classical domain corresponds to

a large Coulomb parameter e2/h̄v [2], that is, it corresponds to low velocities v, rather than

to high velocities which would be expected from treatment of scattering by a short-range

potential.

The dipole interaction decaying as 1/r2 with the distance is another interesting example.

In both classical and quantum mechanics the integrated elastic cross section is divergent, and

the differential cross section is inversely proportional to the collision energy [2, 3]. Although

the spherically symmetric 1/r2 potential does not exist in nature, the 1/r2 dependence is

relevant to scattering of a charged particle by a polar molecule and by a hydrogenlike atom.

In the latter case the effective 1/r2 interaction appears due to the degeneracy of excited

states belonging to manifolds with the fixed principal quantum number n [4, 5].

Of a special interest is the charge transfer in collisions of positronium (Ps) atoms with

protons/antiprotons leading to formation of hydrogen/antihydrogen atoms

Ps∗ + p→ H∗ + e+ (1)

Ps∗ + p̄→ H̄∗ + e− (2)

where the asterisk labels excited states. The second process is of crucial importance for the

physics of the antihydrogen creation [6–10]. Quantum calculations [11–14] of this process

become extremely challenging with the growth of the principal quantum number n, and

researchers have to turn to more feasible classical methods like Classical Trajectories Monte
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Carlo (CTMC) calculations. Then the question arises: how much CTMC results can be

trusted? It was suggested by Krasnicky et al [15, 16] that classical trajectory Monte Carlo

(CTMC) calculations describe this process quite well, and indeed comparisons of CTMC

and convergent close-coupling (CCC) results exhibit a remarkable agreement both in energy

dependence of the cross sections and their absolute values if the Ps is initially in excited

states. However, a substantial disagreement between classical and quantum results was

found in l-mixing collision process [17], that is the process of changing of the Ps angular

momentum due to collisions with protons. More recently we pointed out [18] that quantum

results in the charge transfer process are lower than classical due to the special quantum-

mechanical low-energy behavior of the partial cross sections. Specifically, it was shown that

for a given collision energy the maximum angular momentum contributing to the charge

transfer cross section depends linearly on n. As a result, at low energies the cross section

for a fixed energy scales as n2 rather than n4 which would be expected from simple classical

arguments. However, as Krasnicky et al [16] correctly pointed out, the classical cross section

as a function of n and velocity v scales as

σ(n, v) = n4σ(1, nv).

(This classical scaling law was derived in 1966 by Abrines and Percival [19]). Therefore only

in case when σ is independent of velocity, it scales as n4. However, if it depends on velocity

as 1/v2, we obtain n2 law for a fixed v. Another important characteristic of collisions is the

maximum value of the impact parameter contributing to the charge transfer, or the cut-off

impact parameter. It was shown that the cut-off impact parameter in classical calculations

is proportional to n/v [16], in accordance with the quantum-mechanical result [18].

Nevertheless, a thorough inspection of the results of Krasnicky et al [16] show a systematic

disagreement between classical and quantum-mechanical values, the quantum-mechanical

cross sections are almost always lower, sometimes by 50-60%, sometimes by a lower amount.

It looks like quantum suppression does exist, but its nature is more subtle than suggested

before. The physics analysis of the discrepancies between classical and quantum results is

crucial for estimation of reliability of any future CTMC calculations of the charge transfer

process. The present paper aims to investigate the origin of these discrepancies. We will be

discussing cross section for the process (1), but the results apply, of course, to the process

(2) as well due to the charge conjugation symmetry. Atomic units are used throughout the
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paper unless stated otherwise.

II. DEPENDENCE ON THE IMPACT PARAMETER

The classical cross section for the charge transfer process is computed via the integral of

the product of transition probability P (b) and the impact parameter b, i.e., 2πbP (b) over

a range of impact parameters. Since in collision problems quantum and classical mechanics

usually disagree in a certain range of impact parameters, we want to investigate how P (b)

for the charge transfer process depends on the impact parameter b. While in CTMC method

calculation of this quantity is straightforward, in quantum calculations we operate with the

relative angular momentum rather than with the impact parameter. Moreover, in contrast

to the impact parameter, it is a discrete quantity and it is not conserved during collisions.

To get a rough idea about the quantum analog of the P (b) function, we introduce the

“quantum” impact parameter as

b = (L+
1

2
)/k,

where k is the initial Ps momentum in a.u., and calculate P (b) at discrete values of b

corresponding to the relative angular momentum L = 0, 1, 2, .... Alternatively, we can vary

b continuously and calculate probabilities P (L) corresponding to L = {bk−1/2}, where {x}

is the integer closest to x. Quantum-mechanical probability is given by

P (b) =
σLk2

π(2L+ 1)
=
σLk

2πb
,

where σL is a partial cross section.

For detailed comparisons we have performed two types of calculations, one for nPs → nH

rates averaged over the initial angular momentum states of Ps and summed over final angular

momentum states of H. This probability in quantum calculations is given by

P (k, b) =
k

2πn2
Psb

∑
lPslH

(2lPs + 1)σL
lHlPs

(k, b). (3)

In the other set of calculations we choose a specific initial angular momentum lPs but

sum over final lH. In both calculations we average over the orientation of the initial orbit

and sum over all orientations of the final orbit. In quantum calculations this corresponds to

averaging over initial magnetic quantum number and summing over final magnetic quantum

number.
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The description of CCC calculations are extensively described in refs. [11, 12]. For

specific applications of the CCC theory to the problem of interest see [13, 14, 20]. In CTMC

calculations we follow a methodology similar to that described in ref. [16] and use the

microcanonical distribution [19, 21] for initial states. In brief, for a given principal quantum

number, nPs of Ps atom, the following quantities for the relative motion of the electron and

positron (elliptical orbits) can be obtained:

EPs = − 1

4n2
Ps

, a = 2n2
Ps, e

2 = 1− l2Ps/n2
Ps, (4)

where EPs is the binding energy of the Ps atom, a is the semi-major axis, e is the eccentricity

of the ellipse and lPs is the magnitude of the orbital angular momentum. With these param-

eters, the equations for the elliptical orbit on the zx plane (z directed along the perihelion

axis of the orbit) can be written as,

x = a
√

1− e2 sin ξ, z = a(cos ξ − e),

ẋ =
lPs cos ξ

n2
Ps(1− e cos ξ)

, ż = − sin ξ

nPs(1− e cos ξ)
, (5)

where ξ is the eccentric anomaly which is related to the mean anomaly ζ according to

ζ = ξ − e sin ξ (6)

In the microcanonical distribution (fixed nPs), we randomly select e2 ∈ [0, 1] from a uniform

distribution and identify the classical orbital angular momentum values lc = nPs

√
1− e2

according to the criterion lPs < lc ≤ lPs + 1. Note that classically lc ∈ (0, nPs) whereas in

quantum mechanics lPs = 0, ..., nPs − 1. Another random selection is done for the mean

anomaly ζ ∈ [0, 2π] and Eq. (6) is then numerically solved for ψ ∈ [0, 2π] in order to

obtain the equations of motion (Eq. (5)). Next, we do successive Euler rotations about

the fixed axes z − y − z with angles φ ∈ [0, 2π], θ ∈ [0, π] and ψ ∈ [0, 2π], respectively.

These angles are also obtained randomly with uniform distribution in their allowed ranges.

Once the rotated coordinates and velocities are brought to the lab frame, they are used as

initial conditions for the classical trajectories in CTMC calculations. In propagating the

classical trajectories, we implement the regularization technique of the three-body problem

as explained in [22]. For each impact parameter, about 5 × 104 trajectories are sampled

from the initial microcanonical distribution. Each trajectory is then propagated until the

positron reaches an asymptotic distance after a close encounter with the proton. At the
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end of the integration, the energies of the relative motion of the p − e and e − e+ pairs

are computed in order to determine the formation of p − e bound system. The transition

probability, P(b) is then computed as the ratio between the number of trajectories leading

to a p − e bound pair and the total number of trajectories propagated. Sample results for

integrated cross sections agree very well with the results published in [16].

III. RESULTS AND DISCUSSION

Figure 1 shows the total and partial cross sections for hydrogen formation as a function

of the incident positronium center-of-mass energy. Here we have presented the partial and

summed cross sections for the Ps(nPs = 3) → H(nH = 4) transitions. The summed cross

sections obey the n2
Ps/EPs scaling investigated in detail in Ref. [18]. The quantum cross

section always appears to be lower than the classical cross section for very low Ps incident

energy. Similar behavior is observed also in the Ps(nPs = 4) → H(nH = 5) transition as

shown in Fig. 2. To understand the difference between the quantum and classical results, we

explore the probabilities for the above two transitions as functions of the impact parameter.

In Figs. 3 and 4 we present our results of calculations of the first type (average over initial Ps

angular momentum states) for the nPs = 3 → nH = 4 and nPs = 4 → nH = 5 probabilities

at two different energies. Irregularities in the CTMC probabilities are due to statistical

uncertainties in the random selection of the parameters of the orbits, and irregularities

in the quantum results are due to the discrete representation for the impact parameter

b = (L + 1
2
)/k. The alternative approach based on the equation L = {bk − 1/2} leads to

sudden jumps in the probability dependence on b, and the corresponding results are not

shown here. The general features of the partial and summed probabilities shown in Figs. 3

and 4 can be summarized as follows. At low impact parameters the classical probabilities

always appear to be higher than the quantum results. At large impact parameters, the

quantum probabilities in some cases show higher values compared to the classical results.

Within an intermediate range of impact parameters, some agreement between the classical

and quantum probabilities can be observed (see, for example, Fig. 3e).

The quantum suppression of the probability at lower impact parameters can be inter-

preted in terms of the uncertainty principle. Indeed, classical calculations at b < 2n2
Ps

involve hard head-on collisions between the electron and the proton which lead to formation
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FIG. 1: Cross sections for hydrogen formation as a function of Ps center-of-mass energy. From

panels (a)-(d), quantum and classical cross sections for Ps(nPs = 3) → H(nH = 4, lH = 0, 1, 2, 3)

are presented. Panel (e) shows the summed cross section over the final angular momentum states.

All cross sections are averaged over the initial angular momentum states.

of H with a large probability. Even when b > 2n2
Ps, the Ps electron can have several close

encounters with the proton before it lands on a bound orbit forming hydrogen. In contrast,

in quantum calculations the uncertainty in the electron position prevents electron from ap-

proaching the proton. In some cases we observe quantum enhancement of the probabilities

at large impact parameters which can be explained due to the quantum tunneling effects in

7



102

103

104

105

10-3 10-2 10-1

(a)Cr
os

s-
se

ct
io

n 
(a

.u
.)

E (eV)

H (5s) -CCC
H (5s) -CTMC

103

104

105

106

10-3 10-2 10-1

(b)Cr
os

s-
se

ct
io

n 
(a

.u
.)

E (eV)

H (5p) -CCC
H (5p) -CTMC

103

104

105

106

10-3 10-2 10-1

(c)Cr
os

s-
se

ct
io

n 
(a

.u
.)

E (eV)

H (5d) -CCC
H (5d) -CTMC

103

104

105

106

10-3 10-2 10-1

(d)Cr
os

s-
se

ct
io

n 
(a

.u
.)

E (eV)

H (5f) -CCC
H (5f) -CTMC

103

104

105

106

10-3 10-2 10-1

(e)Cr
os

s-
se

ct
io

n 
(a

.u
.)

E (eV)

H (5g) -CCC
H (5g) -CTMC

104

105

106

10-3 10-2 10-1

(f)Cr
os

s-
se

ct
io

n 
(a

.u
.)

E (eV)

H (5) -CCC
H (5) -CTMC

FIG. 2: Same as in Fig. 1, but for the Ps(nPs = 4)→ H(nH = 5, lH = 0, 1, 2, 3, 4) transitions.

1/r2 potential.

This argument is valid for any initial Ps angular momentum. To demonstrate this,

in Fig. 5, we present calculations performed for specific initial angular momentum of Ps,

lPs = 0, 1, 2, 3 (calculations of type 2). The same trend is observed in these cases.

IV. CONCLUSIONS

With the help of CTMC simulations, we have computed the cross sections and probabili-

ties for (anti)hydrogen formation in specific final states nH = 4, 5. Comparison between the
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FIG. 3: Probabilities for the nPs = 3 → nH = 4 transition as a function of the impact parameter

b at collision energy 0.099603 eV. Panels (a)-(d). Quantum (solid circles) and classical (red line)

probabilities when the final hydrogen state is at lH = 0, .., 3. These probabilities are averaged over

the initial angular momentum states of Ps. Panel (e). Probability summed over the final angular

momentum of states of H.

CCC and CTMC cross sections reproduced the similar observation that were reported in

[16]. In the present work, we analyzed the behavior of CTMC and quantum probabilities as

functions of the impact parameters. The quantum suppression in the cross sections can be

explained by the low-impact-parameter behavior of transition probabilities: in this region

the quantum uncertainty principle prevents localization of electron near the proton site and

suppresses the transition probability. Although at high impact parameters the quantum
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FIG. 4: The same as in Fig. 3, but now the probabilities are calculated for the nPs = 4→ nH = 5

transition at collision energy 0.046101 eV. The latter corresponds to the collision energy where the

quantum cross section is lower than the CTMC results shown in Fig. 1.

transition probability is somewhat higher than classical due to the tunneling effect, the

quantum integrated cross section is still lower than the classical one.

We conclude that 1/r2 potential presents the case where the difference between classical

and quantum results is very subtle: although the energy dependence of both cross sections at

low energies is similar, a certain discrepancy in magnitude is still observed. Another discrep-

ancy might appear due to resonance scattering which is quantum-mechanical phenomenon

observed below thresholds for excitation of Ps or hydrogen [23]. It is also apparent from the

present analysis that a more substantial discrepancy would appear in angle-differential cross
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FIG. 5: Panels (a)-(d). Quantum (solid circles) and classical (red line) probabilities as functions

of the impact parameter b for the nPs = 4(lPs = 0, 1, 2, 3)→ nH = 5 transitions. Ps collision energy

at 0.046101 eV. Probabilities are summed over the final angular momentum states.

section. In particular the Gailitis-Damburg oscillations [4, 5], a pure quantum-mechanical

phenomenon, although smeared out completely in the total charge transfer cross sections

[23], might appear in an angle-differential cross section.

Acknowledgments

This work was supported by the US National Science Foundation under Grant No. PHY-

1803744 and was completed utilizing the Holland Computing Center of the University of

Nebraska, which receives support from the Nebraska Research Initiative. DVF, ASK and

11



IB were supported by the Australian Research Council.

[1] V. B. Berestetskii, L. P. Pitaevskii, E. M. Lifshitz, Quantum Electrodynamics: Volume 4

(Course of Theoretical Physics) 2nd ed. (Pergamon, Oxford, 1982), Sec. 45.

[2] L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (Pergamon,

Oxford, 1977).

[3] L. D. Landau and E. M. Lifshitz, Mechanics, 3rd ed., Course of theoretical physics (Pergamon

press, Oxford, 1969) Chap. 19,20.

[4] M. Gailitis and R. Damburg, Proc. Phys. Soc. 82 192 (1963).

[5] M. Gailitis, J. Phys. B: Atom. Molec. Phys. 15, 3423 (1982).

[6] J. W. Humberston, M. Charlton, F. M. Jacobsen, and B. I. Deutch, J. Phys. B: At. Mol. Phys.

20, L25 (1987).

[7] M. Charlton, Phys. Lett. A 143, 143 (1990).

[8] B. I. Deutch et al., Hyperfine Interact. 76, 151 (1993).

[9] C. H. Storry et al. (ATRAP Collaboration), Phys. Rev. Lett. 93, 263401 (2004).

[10] S. Aghion et al. (AEgIS Collaboration), Phys. Rev. A 94, 012507 (2016).

[11] A. S. Kadyrov and I. Bray, Phys. Rev. A 66, 012710 (2002).

[12] A. S. Kadyrov and I. Bray, J. Phys. B: At. Mol. Opt. Phys. 49, 222002 (2016).

[13] A. S. Kadyrov, C. M. Rawlins, A. T. Stelbovics, I. Bray, and M. Charlton, Phys. Rev. Lett.

114, 183201 (2015).

[14] C. M. Rawlins A. S. Kadyrov, A. T. Stelbovics, I. Bray, and M. Charlton, Phys. Rev. A 93,

012709 (2016).

[15] D. Krasnicky, R. Caravita, C. Canali and G. Testera, Phys. Rev. A 94, 022714 (2016)

[16] D. Krasnicky, G. Testera and N. Zurlo, J. Phys. B: At. Mol. Opt. Phys. 52, 115202 (2019)

[17] I. I. Fabrikant, A. S. Kadyrov, I Bray and M. Charlton, J. Phys. B 50, 134001 (2017).

[18] A. S. Kadyrov, I. Bray, M. Charlton and I. I. Fabrikant, Nat. Commun. 8, 1544 (2017).

[19] R. Abrines and I. C. Percival, Proc. Phys. Soc. 88, 861 (1966).

[20] A. S. Kadyrov, C. M. Rawlins, M. Charlton, I. I. Fabrikant, I. Bray, Hyperfine Interact. 239,

42 (2018).

[21] I. C. Percival, Adv. At. Mol. Phys. 11, 1 (1976).

12

https://doi.org/10.1088/0370-1328/82/2/305
https://doi.org/10.1088/0022-3700/15/19/012
https://doi.org/10.1103/PhysRevA.66.012710
https://doi.org/10.1088/0953-4075/49/22/222002
https://doi.org/10.1103/PhysRevLett.114.183201
https://doi.org/10.1103/PhysRevLett.114.183201
https://doi.org/10.1103/PhysRevA.93.012709
https://doi.org/10.1103/PhysRevA.93.012709
https://doi.org/10.1103/PhysRevA.94.022714
https://doi.org/10.1088/1361-6455/ab1151
https://doi.org/10.1088/1361-6455/aa743c
https://doi.org/10.1038/s41467-017-01721-y
https://doi.org/10.1088/0370-1328/88/4/306
https://doi.org/10.1007/s10751-018-1519-x
https://doi.org/10.1007/s10751-018-1519-x
Show less https://doi.org/10.1016/S0065-2199(08)60028-7 


[22] A. S. Arseth and K. Zare, Celestial Mechanics 10, 185 (1974).

[23] I. I. Fabrikant, A. W. Bray, A. S. Kadyrov and I. Bray, Phys. Rev. A 94, 012701 (2016).

13

https://doi.org/10.1007/BF01227619
https://doi.org/10.1103/PhysRevA.94.012701

	Introduction
	Dependence on the impact parameter
	Results and discussion
	conclusions
	Acknowledgments
	References

