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Abstract

The cross section of dissociative electron attachment (DEA) to polyatomic molecules strongly de-

pends on the number of vibrational modes in the target molecule. In the present paper, we develop

the nonlocal complex potential theory to treat the disscoiation dynamics when there are more than

one vibrational mode in the neutral molecule. We also introduce a semiclassical approach to obtain

cross section by computing the matrix elements of the Green’s function and the electron capture

amplitudes using classical trajectories. We demonstrate the application of the multimode nonlocal

and semiclassical theories to a generic molecule of type CY3X with the inclusion of symmetric

C−X stretch and CY3 deform (“ umbrella”) vibrational modes . Finally we present and compare

the DEA cross section for CF3Cl computed using both nonlocal and semiclassical approaches.

PACS numbers:
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I. INTRODUCTION

Dissociative electron attachment (DEA) to molecules is an important process in gaseous

dielectrics and other environments including excimer lasers, discharges used for etching, the

earth’s atmosphere, astrophysics, and radiation damage [1–4]. The complexity in the in-

teraction between the electron and nuclear motions during a DEA process is what makes

the theoretical description of DEA challenging. Earlier theoretical studies on DEA have

mainly focused on simpler molecules such as diatomics [5–7] where the nuclear motion in

the resonant state is purely one dimensional. A lot of efforts has recently been made to

include several vibrational degrees of freedom in DEA [8–15]. All this work has been done

in the framework of the local approximation, or the boomerang model [16]. In this model,

the motion of the intermediate negative-ion state is described by a Schrödinger equation

with a local complex potential whose imaginary part is responsible for the electron autode-

tachment. However, the exact potential describing this motion is in fact a nonlocal energy

dependent operator [17–20]. Nonlocal effects are important when the width of the negative

ion resonance is large, for example in low-energy DEA to H2 molecule [20]. They are also

crucial in description of threshold structures and vibrational Feshbach resonances [21].

In view of the tremendous amount of computational work necessary to obtain multi-

dimensional complex potential energy surfaces and the solution of the multidimensional

Schrödinger equation for the nuclear motion, it is apparent that the way to solve DEA

problems for molecules larger than triatomic is to make further (in addition to local) ap-

proximations. One approach is to “freeze” all vibrational modes other than that which is

most important for the DEA process. Sometimes this dominant mode can be associated

with the reaction coordinate, and then one-dimensional model for vibrational dynamics

can be justified. However, in many cases this mode cannot be identified, and inclusion of

several vibrational modes becomes essential. Typical examples are DEA to CO2 [22] and

water [12, 13] molecules. In other cases, although the mode dominant in DEA process can

be identified, the influence of other modes on the DEA dynamics is important. We will

consider a process of the type

e+ AB(ν)→ AB− → A(µ) +B−

where ν is the set of vibrational quantum numbers identifying the initial state of the molecule

AB and µ is a set of vibrational quantum numbers identifying the final state of the fragment
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A. We assume that the anion fragment B− is atomic.

Typical examples are methyl halides and perfluoromethyl halides. The process

e+ CY3X→ CY3X− → CY3 + X−. (1)

where X stands for a halogen atom, and Y for the H or F atom, can be reasonably described

by a model with one active coordinate corresponding to C-X stretch vibration [23–25].

However, it was shown [14, 15] that in the CF3Cl case the symmetric deformation vibrations

can strongly influence the dissociation dynamics. This was found by performing local DEA

and vibrational excitation calculations for the process

e+ CF3Cl(ν2, ν3)→ CF3Cl− → CF3(ν ′2) + Cl−,

Here ν2, ν3 stand for symmetric deformation vibrations (or so-called “umbrella” mode) and

symmetric stretch C-Cl vibrations. Only one mode, in addition to the reaction mode ν3,

was included.

The molecule CF3Cl belongs to the C3v point group. The low-energy shape resonance

driving the DEA process at E = 1.8 eV has the A1 symmetry. Therefore, the degenerate

vibrations of the E symmetry, CF d-stretch (ν4), CF3 d-deform (ν5) and CF3 rock (ν6) [27]

can be excited resonantly only in pairs. Conversely, if the molecule is initially in vibrationally

excited state of the E symmetry, the direct electron capture into the resonant state of the

A1 symmetry is not possible. (It is possible only as a second-order process). We can also

assume that the symmetric CF stretch vibration (ν1) is unlikely to be excited as the C-F

bond length in CF3Cl, 1.34 Å[28] is very close to that of the anion (1.37 Å[28]) and the free

radical CF3 (1.32 Å[29]). Accordingly we can assume that initial excitation of the symmetric

C-F stretch does not influence substantially the DEA process. These assumptions are also

justified by experimental results [30] showing a strong electron-impact vibrational excitation

of ν2 and ν3 modes via the low-energy A1 resonance while the other vibrational modes were

not significantly excited.

Inclusion of additional vibrational modes in the theoretical description of DEA to

molecules of type CY3X is of interest due to two major reasons. First, the inclusion of

ν2 mode in DEA calculations of DEA to CY3X provides the internal energy of the CY3

radical. This energy can be affected by the interaction of final-state products: CY3 and X−

or due to a significant Frank-Condon factor for transition between the initial CY3X state
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and the antibonding CY3X− state. Previous studies of low-energy electron attachment to

CH3I, CF3I and CF3Br [31] have shown an insignificant internal energy redistribution in the

final products whereas for high-energy electrons, final state interaction becomes important

[32–34]. The second reason to include additional vibrational modes in DEA is the strong

sensitivity of DEA cross section to the initial vibrational state of the target molecule. Previ-

ous DEA calculations done with one-mode approximation for methyl halides [24, 25, 35, 36]

have explained well the observed temperature dependence of DEA cross section for these

compounds. However, situation is somewhat different with perfluoromethyl halides. The

one-mode approximation for CF3Cl [23, 37] could not confirm the observed low-energy peak

in the DEA cross section at the vibrational temperature T = 800 K [38]: the calculated

peak is too narrow as compared to the experiment. It looks like the theoretical cross section

at low electron energies is not growing fast enough with the vibrational energy. For the

CF3Br the same pattern was noticed [39]: the rate of dissociative attachment calculated

with one-mode approximation results in a slower growth at high vibrational temperatures

as compared to the experimental observations. This suggests that the excited vibrational

modes in perfluoromethyl halides are important, perhaps because at a given vibrational

temperature they are more populated than in methyl halides. Since these strong vibrational

temperature effects occur at low electron energies, where the local approximation fails, the

nonlocal theory is needed to describe these peaks.

The goal of the present paper is to give a general formulation of the nonlocal DEA theory

for molecules with more than one vibrational degrees of freedom and demonstrate this theory

for a model molecule of the type CY3X with inclusion of two vibrational degrees of freedom.

In the present paper we concentrate on the nuclear dynamics, and are not concerned with

accurate calculation of complex potential energy surfaces. To illustrate our method, we use

previous calculation of the surfaces for CF3Cl which are parametrized in an analytical form

convenient for calculations.

We will explore completely quantum version and semiclassical version of the theory.

Completely quantum nonlocal calculations become infeasible when the number of degrees of

freedom exceeds three, therefore the classical or semiclassical treatment of nuclear motion

should be explored. At this point we specify what we mean by classical, semiclassical

and quasiclassical approaches. First, in all three methods the electron motion is treated

quantum-mechanically, and we distinguish different methods by the way the nuclear motion
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is treated. The classical approach [14, 40–42] was developed within the framework of the

local theory, and it is not clear how to extend it to the nonlocal version, mainly because

there is no classical analogue of the nonlocal complex potential. The quasiclassical approach

[43, 51] starts with the Schrödinger equation for the nuclear motion, and finds its solution in

the WKB approximation modified by the uniform Airy function approximation. All integrals

involving calculation of capture amplitudes and matrix elements of the Green’s function are

calculated by the stationary phase method corresponding to the Franck-Condon principle.

Quasiclassical calculations of DEA to many molecules were done in the past. However,

generalization of this method to multidimensional case presents big challenges, therefore

at this point we switch to the semiclassical methods based on the Van-Vleck-Gutzwiller

propagator. A general formulation of quantum and semiclassical theories will be given in

Secs. We apply then the general formulation to DEA to the CF3Cl molecule in Sec. .

Results are presented in Sec.

II. COORDINATES AND HAMILTONIAN

We start with a general case describing a polyatomic molecule with N vibrational degrees

of freedom, but, as we go along, we will be introducing several approximations appropriate

to DEA to a generic CY3X molecule.

We use first the Born-Oppenheimer approximation allowing us to describe molecular

motion in terms of the potential energy surface U0. In addition we assume a fixed orientation

of the molecule in the initial state, so that the Hamiltonian of the system in the initial state

can be written as

Hi = HM(p1, ..., pN , q1, ..., qN) +He(r, q1, ..., qN)

where q1, ..., qN are internal vibrational coordinates for the neutral molecule, p1, ..., pN are

conjugated momenta, and r is the electron position vector. The electron Hamiltonian He

can be written as

He = Te + V (r, q1, ..., qN)

where Te is the electron kinetic energy, and V (r, q1, ..., qN) is the electron interaction with

the molecule. We assume one-electron approximation by incorporating effectively all inter-

actions, including exchange and correlation, into V . The Hamiltonian of the molecule HM
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is

HM = TM(p1, ...pN) + U0(q1, ..., qN)

where U0 is the potential energy surface for the ground electronic state. The eigenvalues of

the operator HM are εν where ν = {ν1, ..., νN} is the set of vibrational quantum numbers

for the neutral molecule.

The final-state Hamiltonian is represented in the form

HI = T (Pr, P1, ..., PN−1;Qr, Q1, ..., QN−1) + U−(Qr, Q1, ..., QN−1) (2)

where Q1, ..., QN−1 are vibrational coordinates of the products, and P1, ..., PN−1, are corre-

sponding conjugated momenta, Qr, Pr are the reaction coordinate and conjugated momen-

tum, and U− is the anion complex potential as a function of coordinates Q. We assume that

at Qr →∞ HI can be separated as

HI = Trel(Pr, Qr) + Tp(P1, ..., PN−1;Q1, ..., QN−1) + U−(∞, Q1, ...QN−1)

where Trel is the kinetic energy of the relative motion, and Tp kinetic energy of the products.

Generally rotational coordinates should be included as well, because the internuclear axis

can start rotating as a result of dissociation. However, assuming a symmetric dissociation

of the type relevant to reaction (1), we neglect the rotational effects.

III. RESONANT R-MATRIX THEORY

Resonant R-matrix theory of DEA [43] is completely equivalent to the nonlocal complex

potential theory, and was used before [23] for calculation of DEA to CF3Cl in one-mode

approximation. Since this version is convenient for model calculations, we will extend it to

the multimode version.

Employing the Born-Oppenheimer approximation, we start by writing the Schrödinger

equation for the electron motion with fixed nuclear coordinates

HeΨ = EeΨ

where Ee is the electron energy. In one-electron approximation the solution Ψ, after

its expansion in spherical harmonics, can be represented by the Lmax × Lmax matrix

ψlml′m′(r, q1, ..., qN) where Lmax is the maximum number of angular momentum channels
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lm included in the expansion of the wavefunction for a given symmetry of the negative-ion

resonance. We then introduce the R-matrix sphere of radius r0 outside which only long-range

interactions are important. The R matrix can be written as

R(q) = ψ

(
dψ

dr

)−1
∣∣∣∣∣
r=r0

where q represents the totality of all vibrational coordinates of the target q1, ..., qN .

Turning now to the resonant theory, we assume for simplicity that only one angular

mode dominates the resonant scattering, so that the R matrix is reduced to one element,

R-function R(q). This is a typical assumption used in most DEA calculations. However,

for calculation of the angular distribution of the products the theory should be developed

further to include several angular modes [44, 45].

In the resonant approximation we keep one pole term of the R-matrix expansion plus a

background term Rb independent of q [43]

R(q) =
γ2(q)

E1(q)− Ee
+Rb(Ee).

where γ(q) is the R-matrix surface amplitude, E1(q) is the first pole corresponding to the

negative-ion resonance, and Ee is the electron energy. To include vibrational motion we

replace E1(q) by the Hamiltonian for the anion motion [43, 46], so that the R function

becomes an operator

R(q) = γ(q)[HI − E]−1γ(q) +Rb(E) (3)

where E is the total energy of the system, including the vibrational energy, and HI is the

negative-ion Hamiltonian. To incorporate the outgoing-wave boundary conditions in the

dissociating channel we add to energy E in Eq. (3) an infinitesimal iη and represent the

Hamiltonian HI in the final-state form given by Eq. (2).

Next we solve the equation for the S operator by substituting Eq. (3) into the basic

equation of the R-matrix theory and using the representation of vibrational eigenstates of

the neutral molecule

u = R
du

dr

∣∣∣∣
r=r0

(4)

where u is the matrix of electron radial wavefunctions at r > r0

u = u− − u+S
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where u± are matrices with the asymptotic form

u±νν′ ∼ k−1/2
ν e±ikνrδνν′

where kν are electron wavenumbers in corresponding vibrational channels, k2
ν = 2(E − εν),

εν are energy eigenstates for the neutral molecule. In accordance with the one-angular-mode

approximation, we will assume from now on that u, u±, and S are diagonal in lm, and R in

Eq. (3) has only one nonzero matrix element for l = lr, m = mr where lr, mr are angular

momentum and its projection dominating the resonance scattering.

Solving Eq. (3) leads to the following representation for the S operator [47, 48]

S =
ũ−

ũ+
− 2i

ũ+
γ(E −HI − F )−1γ

1

ũ+
(5)

where

ũ± = u±(r0)−Rb
du±

dr

∣∣∣∣
r=r0

,

F = −γLγ (6)

and L is an operator function of E −HM with the eigenvalues

Lν =
1

ũ+
ν

du+
ν

dr

∣∣∣∣
r=r0

.

Eq. (5) corresponds to the Nesbet’s energy-modified adiabatic approximatiion [49] whereby

the energy Ee in S(Ee, R) is replaced by the operator E−HM . He then used matrix elements

of S for calculation of vibrational excitation. We will go one step further by expressing the

Hamiltonian for the nuclear motion in terms of the operators entering Eq. (6).

Compare Eq. (5) with the standard expression for the S matrix in approximation of an

isolated resonance

S = Sb − 2πi
V × V

E − ER + iΓ/2

where Sb is the background term, V is a column of partial capture amplitudess, × sign

denotes the direct product, ER is the resonance energy, and Γ is the resonance width.

It is clear now that the partial capture amplitude can be obtained as

V =
γ

π1/2ũ+
(7)

and the resonance energy and width can be expressed through the real and imaginary parts

of the operator HI + F . This operator can be considered as a modified Hamiltonian for
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the nuclear motion which takes into account the autodetachment width. The corresponding

wavefunction can be obtained by solving the Schrödinger-type equation

(HI + F )Φ
(+)
µK(Qr, Q) = EΦ

(+)
µK(Qr, Q) (8)

with plane plus outgoing-wave boundary condition in coordinate Qr, where the symbol Q

represents the set of variables {Q1, ..., QN−1}, K the final-state wave-vector, and µ the set

of vibrational quantum numbers of the fragments in the final state. For example, in the

case of DEA to CF3Cl this will be the vibrational number of the umbrella state in the CF3

radical. Eq. (6) is equivalent to the basic equation of the nonlocal complex potential theory.

Function ΦµK(Qr, Q) is normalized to the δ-function of energy with E = K2/2M where M

is the reduced mass of the products, and K is their relative momentum. Then the DEA

cross section can be written as [20]

σµν =
4π3

k2
ν

∣∣∣∣∫ dQrdQΦ
(+)
µ−K(Qr, Q)V (q)ζν(q)

∣∣∣∣2 (9)

where |ν〉 = ζν(q) is the initial state of the neutral molecule, kν is the electron momentum

in the initial channel. Note that Φ
(+)
µ−K = Φ

(−)∗
µK even for scattering by a complex potential

[50], although the function Φ
(−)
µK is no longer a solution of the Schrödinger equation with the

original potential. If we are not interested in the angular distribution of the DEA products,

there is no need to specify the direction of K, and Φ
(+)
µ−K can be simply written as Φ

(+)
µK .

From now on we will be also omitting the superscript (+).

To solve Eq. (8) we rewrite it in the integral form

ΦµK(Qr, Q) = χµK(Qr, Q)−
∫
G

(+)
E (Qr, Q,Q

′
r, Q

′)(γLγ)(Q′r, Q
′)ΦµK(Q′r, Q

′)dQ′rdQ
′ (10)

where χµK(Qr, Q) is the solution of the Schrödinger equation with the local potential

U−(Qr, Q), and G
(+)
E (Qr, Q,Q

′
r, Q

′) is the Green’s function for the same equation with the

outgoing wave boundary condition. (Note that here we use the more conventional definition

of the Green’s operator, G
(+)
E = (E + iη−H)−1 which has the opposite sign to that used in

Ref. [43]). Although the functions χµK(Qr, Q) and ΦµK(Qr, Q) represent the final state, it

is convenient to treat them as Dirac kets.

Multiply now Eq. (10) by the Dirac bra 〈ν|γ, where |ν〉 is the initial vibrational state,

and introduce capture amplitudes

xνµ(E) = 〈ν|γ|χµK〉, (11)
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yνµ(E) = 〈ν|γ|ΦµK〉. (12)

Then this equation can be converted into a system of linear algebraic equations for the

amplitudes yνµ(E)

yνµ(E) = xνµ(E)−
∑
ν′

〈ν|γG(+)γ|ν ′〉Lν′yν′µ(E). (13)

Strictly speaking, the sum over vibrational states should also include integration over the

vibrational continuum. In one-dimensional case this problem can be solved either by em-

ploying the Lanczos basis [20] or by using the quasiclassical representation of the Green’s

operator [51]. However, in multidimensional case this task is much more challenging. Our

previous calculations showed that for heavy molecules, when the density of vibrational states

is high, the influence of vibrational continuum is insignificant, therefore we neglect it in the

present paper. Using Eq. (9) and the connection between R-matrix surface amplitudes γ and

capture amplitudes, Eq. (7), we can calculate the DEA cross section from the vibrational

state ν with the formation of the products in the state µ as

σνµ(E) =
4π2

k2
ν

∣∣∣∣yνµ(E)

ũ+
ν

∣∣∣∣2 . (14)

Generally, for calculation of amplitudes yνµ(E) it is necessary to express coordinates q in

terms of Q, but in some symmetric situations this is a simple task. For example, in DEA to

CY3X we take

q1 = R, q2 = r, Qr = R + ηr, Q1 = r, η =
3mY

mC + 3mY

where R is the C-X distance, and r is the distance between C and the plane formed by Y

atoms. Accordingly

q1 = Qr − ηQ1, q2 = Q1

IV. CAPTURE AMPLITUDES IN TERMS OF THE GREEN’S FUNCTION

For the functions entering Eq. (10) we have

(E −HI)χµE(Qr, Q) = 0 (15)

(E −HI)G
(+)
E = δ(Qr −Q′r)δ(Q−Q′).
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Expand now χµE(Qr, Q) in eigenstates of the Hamiltonian of the products

Hp = Tp(P ;Q) + U−(∞, Q) (16)

defined as

Hpφµ(Q) = εµφµ(Q). (17)

The expansion has the form

χµE(Qr, Q) = N
∑
µ′

ψ
(r)
µ′µ(Qr)φµ(Q), (18)

where ψ
(r)
µ′µ(Qr) are coefficient functions regular at the origin, and N is the normalization

constant. We will assume now that the kinetic energy of the relative motion of the products

is given by

Tr = − 1

2M

d2

dQ2
r

where M is the reduced mass of the products. Then ψ
(r)
µ′µ(Qr) satisfy the following equations

1

2M

d2

dQ2
r

ψµν −
∑
µ′

[U−µµ′(Qr) + (eµ − E)δµµ′ ]ψµ′ν = 0, (19)

U−µµ′(Qr) =

∫
φµ(Q)[U−(Qr, Q)− U−(∞, Q)]φµ′(Q)dQ. (20)

We require ingoing and outgoing fluxes to be unity in each final channel which leads to the

following asymptotic behavior of ψ
(r)
µ′µ(Qr)

ψ
(r)
µ′µ(Qr) ∼ δµ′µ

e−iKµQr
√
vµ
− eiKµ′Qr
√
vµ′

Sµ′µ (21)

where Sµ′µ is the scattering matrix, Kµ is the asymptotic momentum for the relative motion

in channel µ, and vµ = Kµ/M is the relative velocity in channel µ. Since Eq. (14) assumes

that Φ
(+)
µK (Qr, Q) is energy-normalized, we also obtain

N = (2π)−1/2.

To calculate the capture amplitude, Eq. (11), expand first the Green’s function GE in (real)

eigenstates of Hp

G
(+)
E (Qr, Q,Q

′
r, Q

′) =
∑
µµ′

φµ(Q)Gµµ′(Qr, Q
′
r)φµ′(Q

′) (22)
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where the matrix Green’s function Gµµ′(Qr, Q
′
r) is the solution of the system of equations

(with the outgoing-wave boundary condition)

1

2M

d2

dQ2
r

Gµν −
∑
µ′

[U−µµ′(Qr) + (eµ − E)δµµ′ ]Gµ′ν = δ(Qr −Q′r)δµν . (23)

The function Gµµ′(Qr, Q
′
r) can be written in the following matrix form

iG(Qr, Q
′
r) = ψ(+)(Qr)ψ

(r)T (Q′r)η(Qr −Q′r) + ψ(r)(Qr)ψ
(+)T (Q′r)η(Q′r −Qr) (24)

where the superscript T denotes the transposition, η(x) is the step (Heaviside) function,

and ψ(r), ψ(+) are solutions of corresponding homogeneous equations (Eq. (23) with zero

right-hand side). Asymptotic behavior of ψ(r) is given by Eq. (21), and ψ(+) behaves as the

outgoing wave

ψ(+) ∼ 1√
v
eiKQr . (25)

According to the standard definition of the S matrix, ψ± solutions are normalized to the

unit flux in each channel. Eq. (24) was used in Ref.[14] without derivation. We give the

derivation in the present paper in Appendix B.

Look now at the asymptotic behavior of the integral

Xν(Qr, Q) =

∫
G

(+)
E (Qr, Q,Q

′
r, Q

′)γ(q′)ζν(q
′)dQ′rdQ

′ (26)

at Qr →∞. Then

Gµµ′(Qr, Q
′
r) ∼

eiKµQr

i
√
vµ

ψ
(r)
µ′µ(Q′r) (27)

and

G
(+)
E (Qr, Q,Q

′
r, Q

′) ∼
∑
µµ′

eiKµQr

i
√
vµ

ψ
(r)
µ′µ(Q′r)φµ(Q)φµ′(Q

′). (28)

Then in the same limit

Xν(Qr, Q) ∼
∑
µ′µ

eiKµQr

i
√
vµ

φµ(Q)

∫
ψ

(r)
µ′µ(Q′r)φµ′(Q

′)γ(q′)ζν(q
′)dQ′rdQ

′

or

Xν(Qr, Q) ∼
√

2π
∑
µ

eiKµQr

i
√
vµ

φµ(Q)

∫
χµE(Q′r, Q

′)γ(q′)ζν(q
′)dQ′rdQ

′,

or, using Eq. (11),

Xν(Qr, Q) ∼
√

2π
∑
µ

eiKµQr

i
√
vµ

φµ(Q)xνµ.
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Using the completeness of the set φµ(Q), we conclude√
2π/vµe

iKµQrxνµ = i

∫
Xν(Qr, Q)φµ(Q)dQ,

√
2π/vµe

iKµQrxνµ = i

∫
φµ(Q)G

(+)
E (Qr, Q,Q

′
r, Q

′)γ(q′)ζν(q
′)dQ′rdQ

′dQ. (29)

Therefore calculation of the zero-order capture amplitude xνµ is reduced to calculation of

a 2N − 1-dimensional integral containing the Green’s function at large Qr and matching

the result to the left-hand side of Eq. (29). Although in quantum calculations the capture

amplitude can be evaluated directly from Eq. (11), representation (29) is useful for semiclas-

sical calculations. The matrix elements of the Green’s function are reduced to calculation

of 2N -dimensional integral

〈ν|γG(+)
E γ|ν ′〉 =

∫
ζν(q)γ(q)G

(+)
E (Qr, Q,Q

′
r, Q

′)γ(q′)ζν′(q
′)dqdq′. (30)

V. QUANTUM CALCULATIONS OF THE CAPTURE AMPLITUDE AND THE

MATRIX ELEMENTS OF THE GREEN’S FUNCTION

Eqs. (29), (30) do not involve the explicit form of the Green’s function which can be

calculated by quantum-mechanical or semiclassical methods. In quantum-mechanical calcu-

lations we use the exact expresion, Eq. (22), and then

〈ν|γG(+)
E γ|ν ′〉 =

∑
µµ′

∫
λµν(Qr)Gµµ′(Qr, Q

′
r)λµ′ν′(Q

′
r)dQrdQ

′
r (31)

where

λµν(Qr) =

∫
φµ(Q)γ(Qr, Q)ζν(q)dQ. (32)

We can also use Eq. (11) to find the capture amplitude as

xνµ(E) =
1√
2π

∑
µ′

∫
ψ

(r)
µ′µ(Qr)λµ′ν(Qr)dQr. (33)

which agrees with the Green’s function representation (29).

To construct the matrix Green’s function, Gµµ′(Qr, Q
′
r), we need to obtain matrices of

regular and outgoing-wave solutions, ψ(r) and ψ(+). To find ψ(r) matrix, we first integrate

outward the homogeneous coupled equations with regular boundary conditions at the origin
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and form a corresponding square matrix ψ(a). At some intermediate distance ρ0, we match

this matrix with the matrix ψ(r) satisfying the required boundary conditions at Qr →∞

ψ(a)C = ψ(−) − ψ(+)S at Qr = Qρ0 , (34)

and a similar equation for derivatives, where C is a matrix of coefficients which should be de-

termined, together with the S matrix, from matching conditions. Solutions ψ± are obtained

by the inward integration of the coupled homogeneous equations from the asymptotic region

to Qr = Qr0. Since exponentially growing solutions in the closed channels are unphysical,

matrices C,ψ(−) and S in Eq. (34) are rectangular with Nµ rows and No columns, where

Nµ is the total number of product channels, and No is the number of open channels. After

S and C are found, ψ(r) is calculated as ψ(a)C. The computational scheme is described in

Appendix A for the generic case of a CY3X molecule.

VI. SEMICLASSICAL APPROACH

Calculation of the matrix elements of the Green’s function entering Eq. (13) presents a

big computational challenge. Although for specific calculations in the 2d case we use the

exact approach, as discussed in the next section, it is worth exploring semiclassical methods

since going beyond 3d case within the formalism of quantum mechanics becomes practically

infeasible. We remind the reader that the quasiclassical theory of DEA [51] is based on the

WKB solution of the one-dimensional Schrödinger equation, and the semiclassical theory

starts from classical trajectories which serve as an input for calculation of the van Vleck-

Gutzwiller propagator [52, 53] (VVG). In contrast to the former, the latter version can be

easily generalized to multidimensional case. In our notations a classical trajectory can be

written as

Q = Q(Q′,P′, t)

where Q = {Qr, Q} represents the totality of all internuclear coordinates, and P = {Pr, P}

conjugated momenta, and Q′,P′ are initial coordinates and momenta. Introducing the prin-

cipal Hamiltonian function describing the propagation from the initial point in the coordinate

space Q′ to the final point Q

R(Q′,Q, t) =

∫ t

0

L(t′)dt′
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where L is the Lagrangian, we can write the V V G propagator as

GV V G(Q′,Q, t) = − i

(2πi)N/2
exp{i[R(Q′,Q, t)− λπ/2]}

∣∣∣∣det
∂Q

∂P′

∣∣∣∣−1/2

, t > 0 (35)

where λ is the Maslov index [54] indicating how many times the determinant under the square

root turns to 0. The stationary Green’s function with outgoing-wave boundary condition is

given by the Fourier transform

G
(+)
E (Q′,Q) =

∫ ∞
0

GV V G(Q′,Q, t)eiEtdt (36)

and therefore, the matrix elements of γGγ are given by

〈ν ′|γGγ|ν〉 = − i

(2πi)N/2

∫
dQdQ′ζν′(q)γ(q′)ζν(q)γ(q)∫ ∞

0

dt exp{i[R(Q′,Q, t) + Et− λπ/2]}
∣∣∣∣det

∂Q

∂P′

∣∣∣∣−1/2

(37)

A. SEMICLASSICAL INITIAL VALUE REPRESENTATION

The major difficulty in calculating integral (37) is the so-called root-search problem [55,

56]. For each set of Q′ and Q we have to find the initial momenta P′ which can be a

tedious task in the multidimensional case. To solve this problem Miller proposed to use the

Initial Value Representation (IVR)[57] by switching to the integration variables Q′,P′. The

integration is reduced then to

〈ν ′|γGγ|ν〉 = − i

(2πi)N/2

∫
dQ′ζν′(Q

′)γ(Q′)

∫
dP′∫ ∞

0

dtζν(Q(Q′,P′, t))γ(Q(Q′,P′, t)) exp{i[R(Q′,P′, t) + Et− λπ/2]}
∣∣∣∣det

∂Q

∂P′

∣∣∣∣1/2 (38)

Now for each set of Q′,P′ we run just one trajectory allowing us to calculate the time

integral. The number of required trajectories is determined by the number of points in

the initial phase space (Q′,P′). An additional advantage of representation (38) is that the

integrand does not contain singularities associated with the zeros of the Jacobian ∂Q/∂P′.

A useful representation for the zero-order capture amplitude xνµ(E) can be obtained from

the spectral representation of the diagonal matrix elements of the Green’s function

〈ν ′|γGγ|ν〉 = −
∑
µ

∫
dK

〈ν|γ|Kµ〉〈µK|γ|ν〉
K2/2M + eµ − E − iη

(39)
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where K is the momentum for the relative motion of the products, eµ are the energy eigen-

values of the products and |Kµ〉 are eigenstates of the final-state Hamiltonian Hf . Assuming

again that the products dissociate along the straight line, we can replace these eigenstates

by χµE(Q) normalized to the δ-function of energy. Taking then the imaginary part of the

both sides of Eq. (39), we obtain

Im 〈ν|γGγ|ν〉 = −π
∑
µ

|〈ν|γ|χµE〉|2 (40)

This equation allows us to check the quality of the semiclassical calculations of the Green’s

function by verifying that the left-hand-side is negative and agrees with the right-hand-side

calculated by the quantum mechanical methods.

B. Stationary semiclassical method

In the stationary formalism the IVR method exhibits an apparent deficiency: the necessity

of numerical time integration of a rapidly oscillating function. This integration cannot be

peformed by the stationary phase method since the initial wavefunction in Eq. (38) implicitly

depends on t. To take advantage of the stationary phase method, we return to the van Vleck-

Gutzwiller propagator, Eq. (35). Calculating the time integral by the stationary phase

method, we obtain the known result for the 1D semiclassical energy-dependent Green’s

function

G(R,R′) =
−iM√

|P (R)P (R′)|

∑
ei[S(R,R′)−σπ/2] (41)

where R = Qr is the reaction coordinate in the 1d case. Here P (R) and P (R′) are the

momenta at R,R′. S(R,R′) is the reduced or abbreviated action (S = R + Et). The

summation is done over all classical paths connecting R′ and R. σ in the exponent counts

the number of turning points encountered by a trajectory. By substituting Eq. (41) in Eq.

(29), we have

xSCν =
√
Me−iKR

∫
dR′

1√
|P (R′)|

γ(R′)ζν(R
′)
∑

ei[S(R,R′)−σπ/2]. (42)

Note that here K = |P (R)|. The root search for trajectories between R′ and R can be

avoided by running multiple trajectories from each R′ and ending at some asymptotic R

(similar approach will be taken in the multidimensional case). These trajectories must
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satisfy the relation: E = P ′2/2m + U−1D(R′) at each initial R′, where E is the total energy.

The integration in Eq. (42) can be regularized at the turning points by switching to the

momentum variable

dR′ =

∣∣∣∣P ′(∂U−1D∂R′

)−1∣∣∣∣dP ′/M,

assuming a repulsive potential in the region of integration. For matrix elements of the

Green’s function, we directly evaluate the SC-IVR expression given by Eq. (38) in sec.

VI A. As pointed out in sec. VI A, another approach to computing the capture amplitudes

and the matrix elements is the quasiclassical (WKB) approximation [51, 60–62]. In this

method, in addition to writing down the wavefunctions in terms of the WKB solutions, the

spatial integrals are evaluated by using the stationary points determined by the Franck-

Condon principle [62, 63].

The generalization to the multidimensional case is straightforward: To compute the semi-

classical capture amplitudes, we use the stationary Green’s function which is obtained by

applying the stationary phase approximation (SPA) on the time integral of Eq. (36). Then

the multidimensional stationary Green’s function reads

GE(Q′,Q) = − i

(2πi)
N−1

2

∑
t∗

∣∣∣∣det
∂Q

∂P′

∣∣∣∣−1/2∣∣∣∣−∂E∂t∗
∣∣∣∣−1/2

× exp{i[R(Q′,Q, t∗) + Et∗ − λπ/2− σπ/2]}, (43)

where the summation is over all t∗ which are the solutions of the stationary phase condition,

∂R(Q′,Q, t)

∂t
+ E = 0. (44)

The constant σ in the exponent of Eq. (43) is 0 or 1 if −∂E/∂t∗ is positive or negative,

respectively. According to the Hamilton-Jacobi theory, the solutions, t∗, to the stationary

phase condition in Eq. (44) are the classical trajectories with energy E and connecting

the points Q′ and Q with travel time t∗. Then the capture amplitude for a given E can be

computed using Eq. (29) by doing Monte-Carlo integration where an ensemble of trajectories

with energy E is propagated up to an asymptotic distance Qr. For a given outgoing channel

µ, the ensemble of trajectories must also produce final CY3 fragments with energy close to the

corresponding quantum value : (µ+1/2)ω2f . Figure 6 shows the comparison between the 2D

quantum and semiclassical capture amplitudes for capturing an electron in the ground state

of the neutral molecule and producing CY3 fragments in the ground state. About 5×104
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trajectories were used in the semiclassical calculations. Trajectories which have caustic

divergence on the final point of integration, i.e., at (Qr, Q) are omitted from the Monte-

Carlo sum.

VII. MODEL POTENTIAL ENERGY SURFACES AND R-MATRIX SURFACE

AMPLITUDE

For a molecule of the type CY3X, we use the following 2D model potentials which are

functions of the inter-nuclear separation of C−X (= R) and C−Y3 (= r) [26], as shown in

Fig. 1 (note that the C−Y length is kept constant in the present calculations)

U0(R, r) = U0
1D(R) +

1

2

[
k0 + (k0

e − k0)e−Γ0(R−Re)
][
r − r0

ef − (r0
e − r0

ef )e
−∆0(R−Re)

]2
, (45)

U−(R, r) = U−1D(R) +
1

2

[
k + (ke − k)e−Γ(R−Re)

][
r − ref − (re − ref )e−∆(R−Re)

]2
, (46)

where U0(R, r) and U−(R, r) are neutral and anion potential surfaces. At the equilibrium

value of R, R = Re, apart from some constants, the neutral and anion potential give the

harmonic terms k0
e(r−r0

e)
2/2 and ke(r−re)2/2 respectively. The constants in the exponents;

Γ0,Γ,∆0 and ∆ are positive. Therefore, as R→∞, the neutral and anion potentials reduce

to their harmonic oscillator limits; k0(r − r0
ef )

2/2 and k(r − ref )2/2, respectively. k0, k, r0
ef

and ref are the force constants and equilibrium C-Y3 separations at R→∞. The potential

curves depending on only R are given in terms of the 1D Morse potentials,

V 0
1D(R) = A(e−α(R−Re) − 1)2 (47)

U−1D(R) = Be−2β(R−Re) − Ce−β(R−Re) +D. (48)

We use the following parameterization for the R-matrix surface amplitude [23] for both 1D

and 2D calculations.

γ1D(R) = a0 +
a1

e−ζ(R−Re) + a2

, (49)

For the values of the parameters; A,B,C,D, α, β, a0, a1, a2 and ζ in Eqs. (47)-(49), we use

the data given in [23](model 2). In order to obtain most accurate results with many vibra-

tional modes, the surface amplitude function must include the dependence on all internal

coordinates. As was stressed in Introduction, it is not the goal of the present paper to
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calculate all fixed-nuclei parameters ab initio. Instead we will investigate the effect of r

dependence of γ by representing it in the following parametric form

γ±(R, r) = γ1D(R)[1± a(r − re)] (50)

and studying the dependence of the DEA cross sections on parameter a.

Figure 2 shows the 1D neutral and anion curves as function of R, and 1D cuts of the 2D

potential surfaces which are given by Eqs. (45) and (46).

FIG. 1: Internal coordinates of the CY3X molecule. R, the reaction coordinates, is the distance between the C and X atoms.

r is the perpendicular distance between the C atom and the plane formed by 3 Y atoms.

The total kinetic energy of the nuclear motion in terms of the internal coordinates R and

r has the form [26]

T (R, r) =
1

2
µ1Ṙ

2 +
1

2
µ2ṙ

2 + µ3Ṙṙ (51)

where,

µ1 =
mX(mC + 3mY)

mt

;mt = mC +mX + 3mY

µ2 = 3mY(cot2 θ +
mC +mX

mt

)

µ3 =
3mYmX

mt

θ is the equilibrium angle of the X−C−Y bend. mC,mX and mY are the masses of the C,X

and Y atoms, and mt is the total mass. Terms in the kinetic energy can be decoupled by

introducing the reaction coordinate given by [26],

ρ = R + ηr, η =
3mY

mC + 3mY

. (52)
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FIG. 2: Panel (a). Plots of 1D neutral and anion potential curves V 0
1D and U−1D, respectively, are compared against the

corresponding 1D cuts of the 2D potential surfaces, V 0(R, r) and U−(R, r) along a fixed C−Y3 separation. Panel (b). 1D

cuts of the neutral and anion surfaces along the equilibrium C−X separation: Re.

Therefore the kinetic energy term now reduces to

T (ρ, r) =
1

2
µρρ̇

2 +
1

2
µrṙ

2 (53)

where µρ is the mass corresponding to the motion of ρ coordinate and µr is the mass

corresponding to the umbrella motion of the CY3 radical.

µρ =
mX(mC + 3mY)

mt

µr = 3mY(cot2 θ +
mC

mC + 3mY

)

The two normal modes of vibrations in the ground state and weakly excited states of the

neutral molecule can be obtained by a harmonic approximation to the potential in Eq. (45).

The exact eigenstates and eigenenergies of the target molecule can be found by calculating

the matrix elements of the Hamiltonian HM = T + U0(ρ, r) in a suitable basis. In the

present calculations the basis is chosen as products of the eigenfunctions of the 1D harmonic

Hamiltonians corresponding to the independent motion along ρ and r coordinates. Table I

gives the vibrational frequencies ω2 (CY3 s-deform or “umbrella”) and ω3 (C−X s-stretch) for

lower states which were fitted to measued normal mode frequencies; ω2f is the vibrational
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frequency of the free CY3 radical. For higher states normal modes mix and cannot be

identified as pure s-deform and C−X s-stretch.

TABLE I: Normal mode frequencies calculated using the model potential energy surface. For comparison, the values for

CF3Cl molecules are also presented.

Vibrational mode(cm−1) Present work CF3Cl

ω2 775.5 775.12 [58]

ω3 468.9 463.33 [58]

ω2f 701.0 701 [59]

VIII. 1D APPROXIMATION RESULTS

Figure 3 compares the quantum and semiclassical capture amplitudes which are computed

using Eq. (33) and Eq. (42), respectively. Comparison of the quantum and semiclassical

matrix elements of the Green’s function is shown in Fig. 4. In both Figs. 3 and 4, we show

the corresponding quasiclassical results which are obtained by using the expressions derived

in ref. [62]. DEA cross sections obtained from the 1D capture amplitudes and matrix

elements are shown in Fig. 5. The excellent agreement between the one-mode quantum

and semiclassical results gives us a confidence in reliability of semiclassical approach in

multimode DEA calculations. The peak values of present quantum and semiclassical cross

sections are higher than the previously published quasiclassical results [23]. This difference

can be attributed to the difference in the matrix elements shown in Fig. 4. With regard

to comparison with experiment [38, 41], our results are not qualitatively different from the

previous calculations: they show good agreement with experiment at T = 300 K, but the

low-energy peak at T = 800 K is too narrow as compared with experiment.

IX. 2D APPROXIMATION RESULTS

In two mode calculation of the exact matrix elements, both regular and irregular solution

matrices: (ψ(r) and ψ(+)) of the homogeneous coupled channel equation are required in the

full integration range of ρ. Method of computing the regular solution is given in sec. V
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FIG. 3: (Color online) Panels (a) and (b) compare the real and imaginary parts of quantum, semiclassical (SC) and

quasiclassical (QC) capture amplitudes to the ground state, as a function of the incident energy.

and is similar to the description given in ref. [14]. In the present calculation, the irregular

solution must also be integrated inward from the asymptotic region deep into the classically

forbidden region. Since the solutions of the coupled equation (Eq. (19) in sec. IV) grow ex-

ponentially in the closed channels, the solutions become numerically unstable as the number

of closed channels increases. Therefore, it is necessary to maintain the stability and linear

independence of the solutions with respect to the increasing number of open and closed

channels. In the present non-local calculations we use about five open channels including

only one closed channel and do integration with a small step size (h ≈ 10−4 − 10−3) to

avoid such numerical issues. In the two-mode version of the local theory, Tarana et al [15]

employed the exterior complex scaling (ECS) method with a discrete variable representation

(DVR) basis [64] to generate stable solutions of the multi-channel problem. Fortunately, in

the semiclassical approach such numerical issues are not encountered. Figure 7 compares

the quantum and semiclassical matrix elements of the Green’s function. The convergence of

the quantum calculations is reached when the final number of umbrella channels (µmax + 1)

is about 4 or 5 where µmax is the maximum vibrational quantum number for umbrella mo-

tion. It is important to note that the semiclassical calculation of the matrix elements has

no limitation in the number of open and closed channels.
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FIG. 4: (Color online) Panels (a) -(d) compare the real and imaginary parts of the quantum, semiclassical (SC) and

quasiclassical (QC) matrix elements of the Green’s function as function of the incident electron energy.

The quantum and semiclassical temperature-averaged cross sections are obtained by using

a 200× 200 matrix Green’s function. In semiclassical approach, calculation of such a large

complex matrix with oscillatory functions is computationally challenging (the well-known

“sign problem”). For example, Monte-Carlo evaluation of the matrix elements requires

a large number of classical trajectories to reach the convergence. Since we need matrix

elements between different vibrational levels, special techniques like the time-averaging of

the SC-IVR integral [65] or Filinov transformation [66], cannot be used to reduce the number

of trajectories in the present problem. However, there are two simplifying factors: First the

multi-dimensional SC-IVR integral can be calculated only once for all energies. Second, the

columns of the Green’s function matrix can be conveniently computed in a parallel computer

environment. With these realizations, we calculate the SC-IVR integral directly on a grid

using about 5× 105 trajectories.

In Fig. 8 we show the temperature-averaged DEA cross sections for the 2D model at two
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FIG. 5: (Color online) Temperature averaged DEA cross section versus the incident electron energy. Quantum and

semiclassical cross sections are compared with the experiment [38, 41] and previous 1D quasiclassical calculations [23].

different temperatures (300 K and 800 K). In 2D calculations, the cross sections are summed

over the final umbrella channels. The 2D cross sections are significantly higher than the 1D

results as previously reported in the local approximation [14]. With more accurate potential

energy surfaces (PES) for CF3Cl, Tarana et al. [15] obtained close agreement between the

1D and 2D cross section in the local approximation. However, in the present work, we do not

use the exact PES for the anion and the neutral molecule as our major concern is to develop

the multimode nonlocal theory. for computing DEA cross section. The overall agreement of

the semiclassical two-mode cross section with the quantum results suggests the validity of

the semiclassical approach in DEA calculations.

So far in our 2D calculations we have used the parameterized R-matrix surface amplitude

which depends only on the C−Cl separation. Figure 9 investigates how the 2D cross section

(at 800 K) varies if the R-matrix surface amplitude depends on both internal coordinates as

shown in Eq. (50). No much change in the low-energy peak is observed.

Figure 10 shows the DEA cross section to each final umbrella channel. In the given
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FIG. 6: (Color online)As a function of the incident electron energy, panels (a) and (b) compare the real and imaginary parts

of 2D quantum and semiclassical (SC) capture amplitudes to the ground state of the neutral molecule and producing CY3

fragments in the ground state.

incident electron energy range, results show that the most of the free CY3 radicals produced

are in the vibrationally excited states with the highest population at µ = 3. In Fig. 11

we show how the DEA cross section varies as function of energy when the target molecule

is in the first lowest excited states. These excited states are mixtures of C−Cl stretch

and CF3 umbrella vibrational quantum numbers. The resonance peak shifts towards the

low-electron energies when the target molecule is in an excited state. We can also see a

significant enhancement in the cross section compared to when the target molecule is in an

ground state. We can also fix the incident electron energy and analyze how the DEA cross

section varies as a function of the vibrational energy of the target molecule. We show the

corresponding results in Fig. 12 for two electron energies. For low vibrational temperatures

(< 1000 K), the two-mode DEA cross section is seen to be higher than the one-mode cross

section. As the vibrational temperature increases, two-mode cross section more or less follow

the trend in one-mode results.

X. CONCLUSIONS

In the present paper, we developed the multimode nonlocal theory to treat DEA to

polyatomic molecules when there are more than one degree of vibrational freedom. We also
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FIG. 7: (Color online)Panels (a) and (b) compare the real and imaginary parts of the ground-state matrix element as a

function of electron energy. Convergence of the quantum matrix elements is achieved by increasing the number of final

umbrella channels. Semiclassical result is also shown.

introduced a semiclassical version of the nonlocal theory. By using model potential energy

surfaces, we obtained both quantum and semiclassical DEA cross sections for the molecule

CF3Cl.

The nonlocal theory developed in the present work can be applied to molecules having

more than two vibrational modes. However, as justified in our results, the semiclassical

approach to compute multimode DEA cross section is more favored compared with the full

quantum treatment. As the number of dimensions grows, it is easier to run classical tra-

jectories compared to solving the coupled Schrodinger equation. In the current two-mode

semiclassical approach, we evaluated the capture amplitude using the Monte-Carlo integra-

tion, and the SC-IVR matrix elements using grid integration in 4-d phase-space (in addition

to the time integration). Suitable and efficient Monte-Carlo schemes must be explored in

order to compute the capture amplitudes and matrix elements in higher dimensions than

required in the present calculations.
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FIG. 8: Panel (a). Temperature-averaged DEA cross section at 300 K. Both quantum and semiclassical 2D cross sections are

shown and compared with the results from the 1D approximation. Panel (b). Same as in Panel (a), but with the temperature

at 800 K.
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APPENDIX A: COMPUTATIONAL SCHEME

We need to calculate the zero-order capture amplitude, Eq. (33), and matrix elements of

the Green’s function, Eq. (31). For notational convenience we introduce

x̄νµ = (2π)1/2xνµ.

We introduce now matrices with respect to asymptotic channels µ and the following nota-

tions: x̄ν and λν are columns with elements x̄νµ and λµν , and ψ is a square matrix with the
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FIG. 9: Comparison of the temperature-averaged cross sections (at 800 K) which are computed using 1D and 2D

approximations for the R-matrix surface amplitude function.

elements ψµ′µ. Then

x̄ν =

∫ ∞
0

ψ(r)T (ρ)λν(ρ)dρ

where the superscript T means transposition. For ψ(r), according to Eq. (34), we use

ψ(r)(ρ) = ψ(a)(ρ)C for ρ < ρ0

ψ(r)(ρ) = ψ(−)(ρ)− ψ(+)(ρ)S for ρ > ρ0. (A1)

Then

x̄ν = CTJν(ρ0) + I(−)ν(ρ0)− SI(+)ν(ρ0) (A2)

where

Jν(ρ) =

∫ ρ

0

ψ(a)T (ρ′)λν(ρ′)dρ′

I(±)ν(ρ) =

∫ ∞
ρ

ψ(±)T (ρ′)λν(ρ′)dρ′

and the symmetry of the S matrix has been used.

We will turn now to calculation of the Green-function matrix. According to Eqs. (24),
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FIG. 10: (Color online) DEA cross sections (Quantum) to different final umbrella channels corresponding the CY3

vibrations.

(31)

i〈ν ′|γG+
Eγ|ν〉 =

∫ ∞
0

dρλνT (ρ)[ψ(+)(ρ)

∫ ρ

0

ψ(r)T (ρ′)λν
′
(ρ′)dρ′+ψ(r)(ρ)

∫ ∞
ρ

ψ(+)T (ρ′)λν
′
(ρ′)dρ′.

(A3)

Using again expressions (A1) for ψ(r), we obtain

i〈ν ′|γG+
Eγ|ν〉 =

∫ ∞
0

dρλνT (ρ)
{
ψ(+)(ρ)

[
θ(ρ0 − ρ)CTJν

′
(ρ)+

θ(ρ− ρ0)
(
CTJν

′
(ρ0)− I(−)ν′(ρ) + I(−)ν′(ρ0)− S(−I(+)ν′(ρ) + I(+)ν′(ρ0))

)]
+
[
θ(ρ0 − ρ)ψ(a)(ρ)C + θ(ρ− ρ0)(ψ(−)(ρ)− ψ(+)(ρ)S)

]
I(+)ν′(ρ)

}
. (A4)

Finally, splitting the integration region into two and using Eq. (A2), we obtain

i〈ν ′|γG+
Eγ|ν〉 =

∫ ρ0

0

dρλνT (ρ)
[
ψ(+)(ρ)CTJν

′
(ρ) + ψ(a)(ρ)CI(+)ν′(ρ)

]
+

∫ ∞
ρ0

dρλνT (ρ)
{
ψ(+)(ρ)

[
x̄ν
′ − I(−)ν′(ρ)

]
+ ψ(−)(ρ)I(+)ν′(ρ)

}
. (A5)

APPENDIX B: MATRIX GREEN’S FUNCTION

Consider the Matrix Green’s function for the coupled equations in Eq. (19),

1

2mρ

d2

dρ2
ψµµ′(ρ)−

∑
µ′′

[Uµµ′′(ρ) + (eµ − E)δµµ′′ ]ψµ′′µ′(ρ) = 0.
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FIG. 11: DEA cross section when the target molecule is at specific excited state ν = (ν2, ν3), where ν2 corresponds to

umbrella vibrations of CF3 fragment and ν3 corresponds to the symmetric stretch of C-Cl. Panels (a) and (b) show the DEA

cross sections when the target molecule is in the lowest excited states which are mixtures of umbrella and stretch vibrations.

The regular and irregular solutions of the homogeneous equation, ψ
(r)
µµ′ and ψ

(+)
µµ′ , respectively,

have the asymptotic boundary conditions

ψ
(r)
µµ′ ∼ ψ

(−)
µµ′ − ψ

(+)
µµ′′Sµ′′µ′ , ψ

(±)
µµ′ ∼

δµµ′√
vµ
e±iKρ

where vµ = Kµ/mρ and K2
µ = 2mρ(E − eµ). In order for the Green’s function to satisfy

boundary conditions at 0 and ∞, it should have the following form

Gµµ′(ρ, ρ
′) =

[ψ(r)(ρ)A(ρ′)]µµ′ ρ ≤ ρ′

[ψ(+)(ρ)B(ρ′)]µµ′ ρ ≥ ρ′
(B1)

where the matrices A and B satisfy (from the conditions on the Green’s function for equal

arguments),

ψ(r)(ρ′)A(ρ′) = ψ(+)(ρ′)B(ρ′), (B2)

[
d

dρ
ψ(+)(ρ)

]
ρ=ρ′

B(ρ′)−
[
d

dρ
ψ(r)(ρ)

]
ρ=ρ′

A(ρ′) = 2mρ (B3)
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FIG. 12: Panel (a). DEA cross section as a function of vibrational energy when the incident electron energy is 0.4 eV.

Present 2D quantum and semiclassical results are compared with the 1D quasiclassical approach as explained in [23]. Panel

(b). Same as in Panel (a), but with an electron energy of 0.8 eV.

By multiplying Eq. (B2) with [dψ(+)T/dρ]ρ′ from the left, and Eq. (B3) with ψ(+)T (ρ′) from

the left, we have[(
d

dρ
ψ(+)T

)
ρ′
ψ(r) − ψ(+)T

(
d

dρ
ψ(r)

)
ρ′

]
A+

[
ψ(+)T

(
d

dρ
ψ(+)

)
ρ′
−
(
d

dρ
ψ(+)T

)
ρ′
ψ(+)

]
B = 2mρψ

(+)T

(B4)

Both generalized Wronskians in the left-hand-side of Eq. (B4) are independent of ρ′, there-

fore they can be calculated at the limit ρ′ →∞ [67]. The first Wronskian gives a unit matrix

multiplied by 2imρ, and the second Wronskian is 0. Therefore

A =
1

i
ψ(+)T (ρ′) (B5)

Similarly, multiplying Eq. Eq. (B2) by [dψ(r)T/dρ]ρ′ from the left, and Eq. (B3) by ψ(+)T (ρ′)

from the left, we have

B =
1

i
ψ(r)T (ρ′) (B6)
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Now, Eq. (B1) can be rewritten as

G(ρ, ρ′) =


1
i
ψ(r)(ρ)ψ(+)T (ρ′) ρ ≤ ρ′

1
i
ψ(+)(ρ)ψ(r)T (ρ′) ρ ≥ ρ′

(B7)
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