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Modelling of cardiac electrical behaviour has led
to important mechanistic insights, but important
challenges, including uncertainty in model
formulations and parameter values, make it
difficult to obtain quantitatively accurate results.
An alternative approach is combining models with
observations from experiments to produce a data-
informed reconstruction of system states over time.
Here, we extend our earlier data-assimilation studies
using an ensemble Kalman filter to reconstruct a
three-dimensional time series of states with complex
spatio-temporal dynamics using only surface
observations of voltage. We consider the effects
of several algorithmic and model parameters on
the accuracy of reconstructions of known scroll-wave
truth states using synthetic observations. In particular,
we study the algorithm’s sensitivity to parameters
governing different parts of the process and its
robustness to several model-error conditions. We find
that the algorithm can achieve an acceptable level of
error in many cases, with the weakest performance
occurring for model-error cases and more extreme
parameter regimes with more complex dynamics.
Analysis of the poorest-performing cases indicates an
initial decrease in error followed by an increase when
the ensemble spread is reduced. Our results suggest
avenues for further improvement through increasing
ensemble spread by incorporating additive inflation
or using a parameter or multi-model ensemble.
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This article is part of the theme issue ‘Uncertainty quantification in cardiac and
cardiovascular modelling and simulation’.

1. Introduction

During arrhythmic states like ventricular fibrillation, the heart can experience complicated
spatio-temporal states, including one or more re-entrant scroll waves of electrical activity [1-3].
Understanding these complicated dynamics is compounded by the difficulty in observing all
the information that typically would be desired, often multiple state variables at high spatio-
temporal resolution. In particular, in vitro experiments using high-resolution optical mapping
[4-7] typically are limited to recordings of voltage and possibly intracellular calcium from
only the exposed surfaces of the tissue, with only limited ability for observations in the tissue
interior [8].

Mathematical and computational models provide another useful tool for studying cardiac
dynamics and have been useful for gaining insights into many phenomena, including
alternans [9-17], the stability of spiral and scroll waves [18-24], and control [25-33]. However,
although the models often can be tuned to match a small set of tissue-level biomarkers (such
as action potential duration at one frequency or re-entrant wave frequency), they typically
do not produce detailed state estimates with sufficient quantitative accuracy to reproduce
experimental or clinical observations. Several factors contribute to this lack of accuracy, and
although biological heterogeneity and variability should not be overlooked, significant modelling
issues including uncertainty in the values of model parameters and in the model equations
themselves as well as difficulty in calibrating the models are critical impediments. A number
of previous efforts have focused on improving the accuracy and reliability of cardiac models
in various ways. Such efforts include making improvements to the models themselves, such
as through better methods for parameter estimation [34-38] or through the development and
use of models with fewer parameters [19,39-41] to reduce issues of identifiability [42], by
seeking to improve predictions through the use of a population of models [43-48], or by
tracking uncertainty in aspects of the model and propagating that uncertainty forward to
predictions [49,50]. These approaches may lead to improvements in the accuracy of models and
their predictions.

Here, we seek to use models for a somewhat different purpose: to create a high-resolution
reconstruction of the dynamics of an experiment where direct observations are sparse in space
and in time as well as in model space, in the sense that typically only one or two variables
can be observed directly. In this setting, the model is used to provide an initial estimate of the
state, but that estimate is updated when observations are available. The relative weights of the
model estimate and the observations during the assimilation process are changed dynamically
depending on the level of uncertainty in both.

In this manuscript, we extend our previous results to examine the performance of our data-
assimilation approach in a variety of situations likely to be encountered when assimilating
real-world observations in three-dimensional settings using surface-only observations. First,
we consider the sensitivity of our data-assimilation approach to different types of parameters
in an idealized setting where observations are generated from the same model used for
state reconstruction (i.e. no model error). In particular, we study how a model parameter, an
algorithmic parameter, and an observation parameter affect the accuracy and convergence of
the algorithm. Second, we consider how the algorithm performs in the presence of model error.
For these cases, we consider the effects of error in an electrophysiological parameter and in a
structural parameter.
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2. Methods
(@) Model

Tissue is represented using a typical monodomain formulation
du=V - (DO)Vtt) = lion, 21

where u is the voltage, D(x) is the diffusion tensor and Ijo is the total transmembrane ionic
current. Here, the ionic current is represented by the Fenton-Karma (FK) model [19]. The FK
model consists of three state variables, the voltage 1 and two inactivation gating variables,
one for the fast inward (sodium) current and one for the slow inward (calcium) current. The
model includes a third non-gated slow outward current corresponding to potassium; the three
currents are summed to form [ion. The parameters of the model can be tuned to set important
dynamical properties including action potential duration and rate adaptation, upstroke speed,
restitution curve steepness and minimum diastolic interval. It has been used previously to
reproduce experimental data [19,51] and clinical data [52] as well as to reproduce the dynamics
of more complicated models [19]. The FK model is used here both for the numerical prediction
model within the data-assimilation algorithm and to generate truth states from which synthetic
observations are created; both of these processes are described below. We use the same model
parameter values as in [53]. For some cases, the excitability parameter r; was varied as indicated.

The domain is set in all cases to a 200 x 200 x 50 grid with a spatial resolution of 0.02 cm,
corresponding to a domain size of 4 x 4 x 1 cm. The smallest dimension (1 cm) corresponds to the
tissue thickness. No-flux boundary conditions are used on all surfaces. The model equations are
solved using centred finite differencing in space and an explicit Euler method in time using a time
step of 0.025 ms. The diffusion tensor D(x) incorporates information about the orientation of fibres.
Here, we use a simplified geometry in which fibres are oriented along a primary axis in planes
parallel to the epicardial and endocardial surfaces that rotates linearly with tissue depth [19],
with the total rotation 60° except when noted otherwise. Wave propagation is fastest along the
fibre direction, leading to anisotropic conduction. Along the fibres, the diffusion coefficient is

0.001 cm? ms_1 ; in all other directions, it is 0.0002 cm? ms_l. Spiral waves were initiated using a
cross-field protocol and stacked to produce a scroll wave with a transmural filament.

(b) Data assimilation

Data assimilation is the process of estimating the state of a complex system by combining a prior
estimate of the system state with new observations of the system to yield a more accurate state
representation. There are many methods of data assimilation, and, in fact, state estimation has
been used by other groups for cardiac cells and small one-dimensional tissues [54,55] as well as
two-dimensional tissue with optical mapping data [56]. Here, we build on our previous work
using a variation on the ensemble Kalman filter, the local ensemble transform Kalman filter
(LETKEF) [57], which is particularly well suited for large three-dimensional domains.

The LETKF is one of the class of ensemble Kalman filters (EnKFs). EnKFs and variational
methods, such as three-dimensional variational (3DVAR) and four-dimensional variational
(4DVAR), are the two most popular classes of data-assimilation methods in use for large
domains in the atmospheric and oceanic communities [58,59]. Studies have compared 4DVAR and
LETKF in simple chaotic systems such as the Lorenz 40 variable model and a quasi-geostrophic
atmospheric model and have found that both methods have comparable average analysis and
forecast errors as long as certain analysis intervals are used [60,61]. Similar performance has
also been seen in more complex models, such as with the Japanese operational atmospheric
system [58]. Both ensemble Kalman filter [53,55] and variational assimilation [56,62,63] methods
have been used to estimate states and conductivity parameters in cardiac tissue.
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The full details of the LETKF algorithm can be found in [57] and a detailed description of the
application of the LETKF to the FK model can be found in [53]. Here, we present a high-level
description of the LETKF and the data assimilation process.

Data assimilation is an iterative process over time. The prior state estimate is called the
background, denoted x’, and here is given by a model simulation. The uncertainty in the
background in the LETKF is assumed to be Gaussian and the covariance, P, is prescribed as
the sample covariance of a small number of different model simulations called the ensemble. For
a collection of k ensemble members, {xb(i) :i=1,...,k}, the background is the mean,

1 k
b_ = b(i)
x’ = p E x’W,
i=1
with covariance

k
Pl — . 1 - Z (PO xby (b _ )T
i=1

The background estimate and covariance are combined with the observations, 1°, and their
covariance, R, to generate the most likely state, called the analysis, x?, and its associated
covariance, P?. This most likely state is the one that minimizes the cost function

J0) = (x = TP (x — o) + [1° — HOI'R [y — Hw)l,

where H(x) defines the mapping from model space to observation space. The observation
covariance, R, is taken as a constant throughout the simulation (although it does not have
to be) and is prescribed as the identity matrix times the prescribed observation error. The
background error covariance is never explicitly computed in the algorithm. Instead the analysis
error covariance can be directly solved for in ensemble space and then the background ensemble
members are transformed into the analysis ensemble through multiplication by the symmetric
square root of this analysis error covariance. The new analysis is then the background plus
an innovation vector based on a weighting of the difference between the observations and the
background. See [57] or [53] eqns 4-6 for more details. To move to the next time, each of the
analysis ensemble members is used as initial conditions for the model and integrated forward in
time to the next assimilation time where the result becomes a background ensemble member at
that time.

The LETKEF algorithm has a few important parameters. Choices must be made about the length
of the time interval between analyses as well as the size of the ensemble. The minimizing state
is found at each grid point independently using only the observations that are within some
prescribed radius of the grid point being estimated. This is the local piece of the LETKF and
it helps both to increase the speed of the algorithm—by reducing computation and facilitating
parallelization—and allows for an overall larger dimensionality of correction globally. Localizing
the ensemble can also help eliminate spurious long-distance correlations that can arise due to the
small ensemble size. One drawback of the ensemble Kalman filter approach is that the (likely
high-dimensional) uncertainty is quantified with a relatively low-dimensional ensemble, which
can lead to underestimation of the true uncertainty. One way this is addressed is by artificially
inflating the ensemble covariance at every analysis step by multiplying by an inflation parameter,
p. There are other methods of inflation, including varying the multiplicative parameter across the
domain or adding some perturbation to the covariance, but in this study we elect to use a single
multiplicative inflation value throughout the entire domain.

Initial values must also be selected for each of the ensemble members. This can be done by
adding some type of error to the state at some time or by selecting states from a longer simulation.
The advantage of selecting states from a simulation is that each of those states is physically
consistent. Selecting states from a model run prior to the start of the assimilation is the approach
we use here.
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(c) Specific studies

In this manuscript, we perform two types of studies. First, we study the sensitivity of the
data-assimilation approach to different types of parameters. There are many parameters used
throughout all aspects of the data assimilation process, and it is important to quantify how
the accuracy of state estimates depends on the values of these parameters. In some cases, we
have expectations regarding this dependence; for example, we would expect that when tissue is
thicker and other parameters remain the same, error typically would increase overall because the
interior of the domain would become even further from the surface observations. Because of the
large number of parameters involved, an exhaustive evaluation of all parameters is not possible.
Here, we choose to study a single parameter from each of three categories: a model parameter,
an algorithmic parameter and an observation parameter. Specifically, we study the effects of the
total fibre rotation through the tissue depth (model parameter), the localization radius (algorithm
parameter) and the standard deviation of the Gaussian error used to create synthetic observation
points (observation parameter). For these cases, we will study how the accuracy of the state
estimates compares as the value of each parameter of interest is varied.

Second, we analyse how the algorithm performs in the presence of model error. Here, we
naturally focus on model parameters, but we choose one of each of two types of parameters,
one associated with electrophysiology and one with tissue structure. The electrophysiological
parameter is 77, which is an excitability parameter that essentially functions as the reciprocal of
the sodium channel conductance. We also consider the tissue structure parameter corresponding
to the total fibre rotation from the epicardial to the endocardial surface.

We emphasize that all studies in this paper are completed with synthetic observations; that
is the observations are generated by subsampling a previous simulation (considered the truth)
and then adding randomly generated Gaussian error with a zero mean and prescribed standard
deviation. The simulation used for generating the observations is considered the ‘truth” and the
subsequent assimilation studies aim to estimate this known state. We note that the error is not
truly Gaussian, as random errors that lead to negative voltage observations are set to zero.

To assess the accuracy of the analyses, we evaluate what percentage of the grid points are
incorrectly above or below a prescribed threshold in the analysis. A point is incorrectly above the
threshold if it is above the threshold in the analysis but below in the truth and incorrectly below
the threshold if it is below the threshold in the analysis but above in the truth. Then we define the
threshold-based error, egresh, as

no. pts incorrectly above threshold + no. pts incorrectly below threshold
no. points ’

€thresh =

The magnitude of the error depends on the choice of the threshold value. Low values, being
close to the fast inward (sodium) channel activation threshold (here 1, = 0.13), are more sensitive
to noise and minor differences, so a slightly higher value is preferable to minimize such factors.
However, as the threshold is increased, it becomes less meaningful because the variable u is above
a high threshold for a relatively small portion of the action potential. In this paper, we use an
intermediate threshold value of 0.25.

In all cases, we use an ensemble size of 20 members for the LETKF and observations that are
located at every third grid point of the epicardial and endocardial surfaces of the tissue. Every
third grid point corresponds to a spatial resolution of 0.06 cm. This resolution is chosen to be
on the higher end of spatial resolution for optical-mapping data [64]. Observations every three
grid points means that the vector y° of observations is size 67 x 67 x 2 =28978 and the size of
the background state vector x” is 200 x 200 x 50 x 3 = 6000000, where 200, 200 and 50 are the
spatial dimensions and 3 is the number of variables. The observations are taken every 5 ms,
which is then the assimilation interval for all cases. All cases are initialized by using the 20 states
from the previous 100 ms of the truth state. This is the method that was previously used in [53],
which is also the source for the values of all remaining algorithmic parameters. As a result of
the initialization method, both the initial spread and background error are large. Here, the term
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spread is defined as the root mean squared distance of the ensemble members from the ensemble
mean at a given point. Spread is computed pointwise at a point (x, y, z) in the domain as

. 1/2

1 . 2
sprd(x,y,z) = 1 Z (xh(l)(x, v,2) — (v, Z))
i=1

(i) Sensitivity

We consider three sets of scenarios to begin exploration of the sensitivity of the data-assimilation
system to changes in different parameters. Each set of scenarios uses a parameter value that was
used in previous three-dimensional experiments as well as at least one different value to explore
the impact of changing the parameter. The three sets of scenarios cover three different sources of
sensitivity: model parameters, LETKF parameters and observation parameters.

As a model parameter, we choose the total fibre rotation. The initial scenarios studied in
[53] used a fibre rotation of 60°, and here we also conduct simulations with a fibre rotation
of 120°. A higher total fibre rotation while keeping the tissue thickness constant results in
greater differences between the epicardial and endocardial surfaces and can lead to specific a
mechanism for scroll-wave break-up as the filament accumulates localized twist [19]. Therefore,
data assimilation may be more difficult for the larger twist value, as it is likely that there would
be more change through the tissue that is not being observed.

For an LETKF parameter, we vary the effect of the localization radius, o. Every observation

within 2 x \/1350 of a grid point is used in computing the analysis at that grid point, so varying
the localization radius changes which observations are used in the analysis. This is particularly
important in the transmural direction as there are only observations on the epicardial and
endocardial surfaces; thus, the localization radius determines how far into the tissue interior
the information from the observations propagates. We use values of 4, 6, and 8 grid points.
A localization radius of 6 was used in initial assimilation cases because that leads to the
observations impacting the analysis close to, but not actually changing, the very centre of the
tissue. A localization radius of 8 means that observations at one surface influence more than half
the tissue thickness, with the centre seeing observations from both surfaces, while a radius of 4
leaves a larger gap in the centre where no change is made by the analysis.

Finally, we explore the effects of different observation errors. We previously used an
observation error of 0.05 as the standard deviation of the error added to the true voltage values
to obtain the synthetic data [53]. While this is a reasonable nominal error for this data, there is
variability in the error experimentally and there are additional uncertainties that could increase
the error such as interpolation error, representativeness error, or error caused by averaging
through different tissue layers. Here, we explore the effect of doubling the observations error
to 0.1 to look at the robustness of the assimilation to increased observation error.

(i) Model error

Along with the sensitivity studies, we also consider two cases of model error, one in an
electrophysiological parameter of the FK model and another in the structural parameters that
define the tissue. First, we consider changes to the excitability parameter 7;. As the value of 7, is
increased (decreased), the system becomes more (less) excitable, resulting in a steeper (less steep)
action potential upstroke as well as a faster (slower) conduction velocity, among other dynamical
effects. In this case, we set t; = 0.41 in the truth state but vary its value in the numerical prediction
model, including two lower values (r; = 0.39 and 7; = 0.37) and one higher value (r; = 0.43).

Second, because in the sensitivity studies we created synthetic observations for a fibre rotation
value of 120°, we consider an additional model error experiment with error in fibre rotation. The
truth is set to have fibre rotation of 120° and the corresponding observations are used, but the
model used to propagate forward in time from the analysis to the next background has 60° fibre
rotation.
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3. Results

(a) Baseline performance

Before proceeding to the cases where parameters are varied, we first illustrate the base case of a
simulation of a transmural (I-shaped) filament in a 2ecm x 2cm x 0.5 cm domain for 1500 ms. The
left column of figure 1 illustrates the truth at times spaced 500 ms apart on five parallel slices of the
domain, with tissue depth in the vertical dimension stretched to improve visualization. Synthetic
surface observations of the voltage variable u were made by subsampling the truth in space and
time as described above. These observations were used in the data-assimilation algorithm, with
the resulting updated estimate of the voltage u shown in the central column of figure 1 and the
error shown in the right column. After the first assimilation, the state estimate retains its blurriness
in the interior, as the influence of the surface observations does not extend throughout the entire
depth; the error plot with the highest error on the interior slice also emphasizes this point. Over
time, however, the state estimate improves considerably. The error remains highest in the interior
of the domain and also along wavefronts and backs, but error on the surfaces essentially drops to
zero and the algorithm is capable of reproducing major events like wave break-up.

For the different cases considered below, we focus on error either through the use of a time
series of error plots as in the right column of figure 1 or through the use of plots of threshold error
over time.

The accurate performance of the LETKEF is predicated on the uncertainty in the background
state being properly quantified by the spread of the ensemble. In the base case, we see that
ensemble spread matches up well with the background error both in location and magnitude
and, as a result, the LETKF is able to make accurate corrections and lower the overall error
(figure 2). As error decreases with time, the spread also decreases, but after 1600 ms the spread is
generally largest in areas where the background error is largest. The exception appears to be at the
boundary of the domain on the left side of the figure, which has non-trivial background error that
is not captured by the uncertainty quantification. As a result of the accuracy of the uncertainty
quantification in the LETKEF, the analysis threshold error is reduced over time (base case is shown
as black lines in figure 3). Larger reductions in error are seen initially from the background to the
analysis, which makes sense because the uncertainty is greater initially.

(b) Parameter sensitivity cases

The first scenarios we consider involve assessing the performance of the data-assimilation
algorithm for different parameter regimes with no model error. In other words, we seek to
assess the sensitivity of the algorithm’s accuracy to different parameters. Many parameters are
involved in the algorithm, so here we choose one parameter from each of three categories: model
parameters, algorithmic parameters and observation parameters.

(i) Model parameter: total fibre rotation

The numerical model used by the data-assimilation algorithm includes not only the
electrophysiological parameters associated with the mathematical equations (here, the 13
parameters associated with the FK model [19]) but also the parameters associated with tissue
structure such as conductivity, size, and boundary conditions. Here, we consider a structural
parameter consisting of the total fibre rotation across the wall. We considered cases where the
true total fibre rotation A6 between the epicardial and endocardial surfaces was 120° in addition
to the 60° fibre rotation of the base case. The 120° rotation case is expected to be more challenging
as it has the potential for greater differences between the tissue surface and the interior where
there are no observations. As shown in figure 3, data assimilation does reduce the threshold error
in the 120° rotation case from the background to the analysis, indicating that it is functioning
properly. While the initial error reduction is similar to the 60° rotation case, the error jumps
around 900-1000 ms in the 120° rotation case and stays above that of the 60° rotation error for
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(@) truth voltage after 0 ms (b) analysis mean voltage after 0 ms (c) analysis error voltage after 0 ms
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Figure 1. The truth (a), analysis (b) and analysis error (c) at 500 ms intervals of the baseline simulation. It is clear that the
observations at the surfaces correct the surfaces quickly, but the errors are larger in the interior of the tissue. Errors are also
largest along the edges of the wave. Note that the transmural direction is stretched to facilitate visualization. (Online version
in colour.)

the next 500 ms. This larger error arises from the increasingly complex dynamics due to the high
rate of fibre rotation [19], including increased wave breaks (many of which originate far from the
surface observations) as well as faster and greater decreases in correlation between the epicardial
and endocardial surfaces.
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(a) background error voltage after 100 ms (b) background spread after 100 ms
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Figure 2. The background error () and the spread in the background ensemble () of the base case experiment with no model
error and a total fibre rotation of 60° after 100 and 1600 ms. (Online version in colour.)
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Figure 3. The threshold error of the voltage with no model error for two different total fibre rotation values: A6 = 60° (black)
and A6 = 120° (red). In both cases, data assimilation reduces the error in the analysis (solid lines) from the background (dotted
lines). While the 60° rotation case shows a steady reduction in error over time, the 120° rotation case has larger error after around
1000 ms. (Online version in colour.)
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Figure 4. Error in voltage u for three values of the localization radius o. As o increases, each individual observation point is
used to update state estimates at further distances from the location of that observation. The highest error occurs for the case
with the largest value of o, which corresponds to observations on each surface being assimilated through up to 58.4% of the
tissue depth, so that the centre of the domain is influenced directly by observations on both surfaces. (Online version in colour.)

(ii) Algorithmic parameter: localization radius

The data-assimilation algorithm uses a number of different parameters, such as the ensemble size,
factors to inflate the covariance matrix and the localization radius o, which is used to identify
which observations are close enough to a given grid point to include during assimilation. Here,
we consider the performance of the algorithm as we set the value of o to 4, 6 and 8, which
correspond, respectively, to each individual observation point being assimilated by grid points
up to 29.2, 43.8 and 58.4% of the tissue depth. The observations from both tissue surfaces can
be felt in the middle of the domain thickness for o =8; for 0 =4 and o =6, the middle of the
domain thickness does not use any observations during assimilation and instead is updated only
indirectly.

Figure 4 shows the error in the reconstructed voltage variable obtained for the three values of
o. Initially, the scenario with o = 8 experiences the lowest error, which suggests that the centre of
the thickness benefits from assimilation of observations from both surfaces. However, over time,
the dynamics of the interior may differ more significantly from the dynamics of both surfaces,
which also differ from each other. Thus, the error increases for the case where o = 8. For smaller
values of o, the error initially is large and it takes longer to decrease, as the observations provide
corrections to the interior only indirectly as the dynamics change and propagate through the
domain thickness. Lower error ultimately is attained when o =6 than when o =4. Therefore, o
must be chosen with care: if it is too large, the interior of the domain must merge conflicting
observations, leading to larger error, whereas if it is too small, it may take too long for corrections
to propagate to the interior.

(iii) Observation parameter: observation error

Because our present study uses synthetic observations to allow an assessment of accuracy, we
have access to a number of parameters involved in creating these observations, including their
resolution in space, time, and state variable space and the distribution used in adding noise
to the subsampled truth values. Here, we consider the sensitivity to the standard deviation of
the Gaussian error added to the truth values to create the synthetic observations. The base case
assumed an error standard deviation of 0.05, so to investigate the impact of larger error, we test
the data-assimilation algorithm while doubling the observation error standard deviation to 0.1.
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Figure 5. Threshold error in voltage u for observation error standard deviations of 0.05 (black) and 0.1 (red). As the observation
error increases, the error in the analysis increases as well. (Online version in colour.)

Even with the larger error the LETKF reduces the analysis error, although the error reduction
is not as swift and the analysis error using 0.1 observation error does not reach the same low
levels as using 0.05 observation error (figure 5). The observation error gives a theoretical limit on
the possible accuracy of the analysis, so the fact that a larger observation error leads to a large
analysis error not surprising. What is encouraging is that the larger observation error does not
appear to change the overall effectiveness of the LETKF in reducing the analysis error.

(c) Model error cases

In the remaining scenarios, we consider cases in which the numerical prediction model is different
from the model used as the truth. Here, we consider only cases in which model parameters were
changed, but it is possible to use an entirely different model for the truth (for example, we used
the Beeler—Reuter for some studies in [65]) or to use experimental data for the observations.

(i) Electrophysiological parameter: excitability

To obtain some insights into the effects of varying an electrophysiological parameter, we
considered the excitability 7;, which has strong dynamical effects on conduction velocity,
wavelength, and other properties. We considered one case with lowered excitability (z; = 0.43)
and two cases with higher excitability (r; =0.39 and 73 =0.37) along with a reference case
without model error (r; =0.41). The results can be seen in figure 6. For the case with no model
error, the error level quickly decreases and then remains around the level of noise added to the
observations. With model error, there is an asymmetry in terms of the error increases seen with
increased versus decreased excitability. When the excitability is increased, higher error occurs
when the value of 7 is further from the value used in the truth, as expected. For decreased
excitability, the error is higher than for either case of increased excitability. This asymmetry may
be due to nonlinearity in the dynamical effects of 7;: the system is more sensitive to decreases
in excitability than to increases of the same magnitude. However, it also may stem from the
corresponding effects on the data-assimilation process, in that the algorithm may find it easier
to compensate for an increase in excitability than a reduction.
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Figure 6. Error in voltage u for four values of the excitability parameter 4. The case with no model error (z; = 0.41) is shown
in black. The highest error occurs for the case with reduced excitability (t; = 0.43). (Online version in colour.)

(ii)) Tissue structure parameter: total fibre rotation

We also considered performance when the total fibre rotation across the myocardial wall was
incorrect. Specifically, we considered two error cases to compare with the no-error case where
the true total fibre rotation A# between the epicardial and endocardial surfaces was 60° and the
model in the LETKF used the correct A8 = 60° or 120°. In one error case, the true fibre rotation
is A9 =60° while the model has the incorrect 120° fibre rotation and in the other the true fibre
rotation is A8 =120° and the model in the LETKF has a fibre rotation of 60°. In other words,
in the base case this is the same fibre rotation as in the truth from which the observations are
sampled, whereas in the other cases, the observations come from truth simulations using total
fibre rotations that are different than the model used in the LEKTE.

In all three cases, the error is immediately reduced to around 0.1 owing to the incorporation
of observations (figure 7). The model-error and no-model-error cases have similar error for
approximately the first 1000 ms. After around 1000 ms, the case with no model error continues
to reduce error, while error increases when the LETKF uses incorrect fibre rotation in the model
for the ensemble forecast. Both cases with fibre rotation error exhibit similar error patterns.

The fact that the state is initially well approximated even with the model error indicates that
data assimilation has the potential to correct for model error. One potential reason for the eventual
divergence could be that because each ensemble member uses the same incorrect model, the
model error is not represented in the spread and thus the system develops too much confidence in
the forecasts. The global root mean squared spread in the model-error case continues to decrease
over time, even as the error begins to increase after 1000 ms, as shown in figure 8.

The ensemble spread is supposed to quantify the uncertainty in the state estimate, but because
the same model is used to propagate each ensemble member, the background ensemble is
mostly quantifying dynamic uncertainty in the system and not any model-driven uncertainty.
Soon after the start of the assimilation, the uncertainty and the error near the epicardial and
endocardial surfaces are low because the initial large uncertainty allows the LETKEF to fit its
state estimate closely to the data available at the surfaces; see top row of figure 9. Over time,
the ensemble members begin to converge and make similar incorrect forecasts for the epicardial
and endocardial surfaces. However, because the ensemble spread is low, the LETKF incorrectly
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the base case when the truth has 60° fibre rotation along with the model used in the data assimilation (black). There are two
error cases, one where the truth has 120° and the model has 60° (red) fibre rotation and the opposite case where the truth has
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Figure 8. The global root mean squared spread in the background ensemble in the LETKF when there is no model error and the
truth has 60° total fibre rotation (black) and when there is model error and the truth has 120° fibre rotation (red). The spread
decreases in both cases, which indicates the LETKF believes the uncertainty is reduced in both cases. In the model error case,
however, the error is actually growing, as seen in figure 7. (Online version in colour.)

believes that these forecasts are accurate, even though the actual background error at the
epicardial and endocardial surfaces is high (figure 9, bottom row). As a result, only very small
corrections are made, even though the error is large and observations are available at the surface
locations.
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Figure 9. The background error (a) and the spread in the background ensemble () of the scenario with model error in the total
fibre rotation of 120° rotation in the truth but 60° rotation in the model used for the ensemble forecast) after 100 and 1600 ms.
(Online version in colour.)

4. Discussion

In this paper, we have studied the performance of an LETKF-based data-assimilation algorithm at
reconstructing three-dimensional cardiac scroll wave states as different parameters were varied.
Specifically, we considered how performance depended on different ranges of model, algorithmic
and observation parameters and on the presence of model error through electrophysiological and
structural parameters.

Overall, the performance of the LETKF was fairly robust to parameter changes as none of the
scenarios here saw the assimilation fail. In particular, in both observation error cases, the same
trend is seem in which the limiting value of the error (without model error) depends linearly
on the magnitude of the observation error. Variations in the localization parameter indicated the
need to choose an intermediate value, as the localization radius of o =6 had the lowest error
of the localization parameters. This choice allowed surface observations to be felt over a long
distance while also ensuring they would not influence assimilation directly beyond the centre of
the domain to avoid difficulties with merging potentially conflicting observations.

Error was larger in the other cases, most notably when the fibre rotation was increased to 120°
in both the sensitivity and model-error cases. Errors in the model led to systematic errors in the
assimilation results because the background ensemble spread decreases and no longer accurately
quantifies the uncertainty of the system. Even so, there was initial error reduction in the model-
error cases even if there is potential for drift away from the true solution as time passes. An
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important future goal will be to identify ways to prevent the ensemble from collapsing in this
manner. In our previous one-dimensional studies [65], we used additive error to increase the
spread of the ensemble. With additive error, perturbations are addition to ensemble members
with the goal of introducing new directions to the ensemble. Previously, we added a multiple
of the difference in the state at a randomly selected time and the state one assimilation interval
(5 ms) later in a prior run of the model. An additional benefit was that after incorporating additive
inflation, performance was similar regardless of the chosen multiplicative inflation parameter,
thereby improving the robustness of the algorithm and reducing the need for fine-tuning. Another
possibility we have not yet pursued would be better representing model error into the ensemble
framework through a parameter ensemble or a multi-model system [66,67].

(a) Connections to uncertainty quantification

Data assimilation inherently involves reconciling model predictions with experimental data,
which is at the heart of efforts to quantify uncertainty in models. Within this manuscript, we
have focused on using data assimilation for state reconstruction, but it can be used in other ways
that complement ongoing work in uncertainty quantification (UQ) for cardiac models. UQ in the
framework of ensemble Kalman filter data assimilation is accomplished through the ensemble.

One important way in which data assimilation can be extended is to estimate parameters;
global parameters can be added to an augmented state vector and their time derivatives set to
zero, so that their values will receive updates when the state is corrected. Some preliminary efforts
in this direction are given in [68], which found in a one-dimensional setting that some, but not all,
FK parameters could be estimated accurately and reliably in this manner. Another possibility
to consider in the future would be to identify robust interpretations in the context of UQ of
the measures of uncertainty associated with the ensemble. In the standard LETKF framework,
it is assumed that the largest source of uncertainty is due to the system dynamics. In parameter
estimation or dealing with other types of model error, using a multi-model approach can help
to incorporate uncertainty associated with different model parameters into the ensemble. Care
must be taken, however, to ensure that the ensemble size does not dramatically increase and
slow down the computation. There may be parallels with population-based approaches currently
in use by the broader modelling community [43-48], especially if the ensemble members use
different parameter values.

(b) Limitations

Our work involves a number of important limitations. We necessarily limited our studies to
a small number of parameters. We may see differences in results when studying more values
of the parameters or when considering the effects of other parameters. The data-assimilation
algorithm includes randomness in the generation of synthetic observations, but we did not
make comparisons of different observation sets; in addition, we considered only single cases
of dynamical states and ensemble initialization. Most of the simulations were run for 1.5-2 s.
Although this is enough time for complex dynamics to develop, it is possible that the data-
assimilation performance may be affected over longer runs either positively (through improved
state reconstruction with time) or negatively (through the occurrence of ensemble collapse, when
the individual ensemble members converge and the resulting overconfidence in the numerical
prediction leads to a downplaying of the observations). For the FK model used for numerical
prediction, we used a single set of parameter values with the intention of achieving a sustained
spiral-wave break-up scenario. Different parameters for the model, such as more realistic values
of 7; corresponding to higher excitability, may lead to different results. In particular, differences
in dynamical states (e.g. more or more complex spiral-wave break-up) may lead to differences
in performance. Although we studied many of these types of variations previously in one-
dimensional rings [65], we cannot guarantee similar results will occur in three-dimensional
cases.
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A minor limitation of our current implementation is that the localization radius is uniform
in all three dimensions. Although we expect that the performance effects when varying the
localization radius are dominated by the differences in the depth of observations included when
assimilating each grid point, it is possible that the number of observations included in the other
directions may have secondary effects. A localization procedure with a different radius for the
transmural direction, or even an anisotropic localization taking fibre orientation into account,
could show some differences in results.

(c) Future work

Our next steps include implementing additive inflation for three-dimensional cases and
considering the use of different parameter values or even models in the ensemble with the goal of
reducing the incidence of ensemble collapse. We also would like to study algorithm performance
over a broader range of dynamical states and using observations obtained from experiments
rather than synthetic observations. In addition, we wish to analyse in more detail the effects of
observation spatial distribution on the results as a function of tissue thickness and dynamics, with
the goal of determining the applicability of our approach to the clinical setting.
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