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We consider the five classes of multivariate statistical problems identi-
fied by James (Ann. Math. Stat. 35 (1964) 475–501), which together cover
much of classical multivariate analysis, plus a simpler limiting case, sym-
metric matrix denoising. Each of James’ problems involves the eigenvalues
of E−1H where H and E are proportional to high-dimensional Wishart ma-
trices. Under the null hypothesis, both Wisharts are central with identity co-
variance. Under the alternative, the noncentrality or the covariance parameter
of H has a single eigenvalue, a spike, that stands alone. When the spike is
smaller than a case-specific phase transition threshold, none of the sample
eigenvalues separate from the bulk, making the testing problem challenging.
Using a unified strategy for the six cases, we show that the log likelihood ra-
tio processes parameterized by the value of the subcritical spike converge to
Gaussian processes with logarithmic correlation. We then derive asymptotic
power envelopes for tests for the presence of a spike.

1. Introduction. High-dimensional multivariate models and methods, such as regres-
sion, principal components and canonical correlation analysis, repay study in frameworks
where the dimensionality diverges to infinity together with the sample size. “Spiked” models
that deviate from a reference model along a small fixed number of unknown directions have
proven to be a fruitful abstraction and research tool in this context. A basic statistical question
that arises in the analysis of such models is how to test for the presence of spikes in the data.

James [18] arranges multivariate statistical problems in five different groups with broadly
similar features. His remarkable classification, recalled in Table 1, relies on the five most
common hypergeometric functions pFq. In this paper we describe rank-one spiked models
that represent each of James’ classes in a high-dimensional setting. We derive the asymptotic
behavior of the corresponding likelihood ratios in a regime where the dimensionality p of
the data and the degrees of freedom n1, n2 increase proportionally. Specifically, we study
the ratios of the joint densities of the relevant data under the alternative hypothesis, which
assumes the presence of a spike, to that under the null of no spike. In each case, the relevant
data consist of the maximal invariant statistic represented by eigenvalues of a large random
matrix.

We find that the joint distributions of the eigenvalues under the alternative hypothesis
and under the null are mutually contiguous when the values of the spike is below a phase
transition threshold. The value of the threshold depends on the problem type. Furthermore,
we find that the log likelihood ratio processes, parametrized by the value of the spike, are
asymptotically Gaussian with logarithmic mean and autocovariance functions. These findings
allow us to compute the asymptotic power envelopes for the tests for the presence of spikes
in five multivariate models representing each of James’ classes.

Our analysis is based on classical results that assume Gaussian data. All the likelihood
ratios that we study correspond to the joint densities of the solutions to the basic equation of
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TABLE 1
The five cases of James [18]

Statistical method n1H n2E

0F0 PCA Principal components analysis Wp(n1,� + �) n2�

[latent roots of covariance matrix]

1F0 SigD Signal Detection Wp(n1,� + �) Wp(n2,�)

[equality of covariance matrices]

0F1 REG0 Multivariate regression, known error covariance Wp(n1,�,n1�) n2�

[noncentral means]

1F1 REG Multivariate regression, unknown error covariance Wp(n1,�,n1�) Wp(n2,�)

[noncentral latent roots]

2F1 CCA Canonical correlation analysis Wp(n1,�,�(Y )) Wp(n2,�)

James’ names for the cases, when different from ours, are shown in brackets. The final two columns interpret H

and E of (1) for Gaussian data, so that Wp denotes a p-variate central or noncentral Wishart distribution; see
Definitions. Matrix � has low rank, equal to one in this paper. For CCA, �(Y) is a random noncentrality matrix;
see Section 3.2 in the Supplementary Material [19] for definition. In cases 1 and 3, E is deterministic, � is known
and n2 disappears. Otherwise, E is assumed independent of H .

classical multivariate statistics,

(1) det(H − λE) = 0,

where the hypothesis H and error sums of squares E are proportional to Wishart matrices, as
summarized for the various cases in Table 1. The five cases can be linked via sufficiency and
invariance arguments to the statistical problems listed in the table. We briefly discuss these
links in the next section.

James’ classification suggests common features that call for a systematic approach. Thus
the main steps of our asymptotic analysis are the same for all the five cases. The likelihood
ratios have explicit forms that involve hypergeometric functions of two high-dimensional
matrix arguments. However, one of the arguments has low rank under our spiked model al-
ternatives. Indeed, for tractability we focus on the rank one setting. We can then represent the
hypergeometric function of two high-dimensional matrix arguments in the form of a contour
integral that involves a scalar hypergeometric function of the same type, Lemma 1, using the
recent result of [12]. Then, we deform the contour of integration so that the integral becomes
amenable to Laplace approximation analysis, extending [28], Chapter 4.

Using the Laplace approximation technique, we show that the log likelihood ratios are
asymptotically equivalent to simpler random functions of the spike parameters, Theorems
10 and 11. The randomness enters via a linear spectral statistic of a large random matrix of
either sample covariance or F -ratio type. Using central limit theorems for the two cases, due
to [5] and [39], respectively, we derive the asymptotic Gaussianity and obtain the mean and
the autocovariance functions of the log likelihood ratio processes, Theorem 12.

These asymptotics of the log likelihood processes show that the corresponding statistical
experiments do not converge to Gaussian shift models. In other words, the experiments that
consist of observing the solutions to equation (1), parameterized by the value of the spike
under the alternative hypothesis, are not of Locally Asymptotically Normal (LAN) type. This
implies that there are no ready-to-use optimality results associated with LAN experiments
that can be applied in our setting. However at the fundamental level the derived asymptotics
of the log likelihood ratio processes is all that is needed for the asymptotic analysis of the
risk of the corresponding statistical decisions.

In this paper we use the derived asymptotics together with the Neyman–Pearson lemma
and Le Cam’s third lemma to find simple analytic expressions for the asymptotic power en-
velopes for the statistical tests of the null hypothesis of no spike in the data, Theorem 13. The
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form of the envelope depends only on whether both H and E in equation (1) are Wisharts or
only H is Wishart whereas E is deterministic.

For most of the cases, as the value of the spike under the alternative increases, the envelope,
at first, rises very slowly. Then, as the spike approaches the phase transition, the rise quickly
accelerates and the envelope “hits” unity at the threshold. However, in cases of two Wisharts
and when the dimensionality is not much smaller than the degrees of freedom of E, the enve-
lope rises more rapidly. In such cases the information in all the eigenvalues of E−1H might
be useful for detecting population spikes which lie far below the phase transition threshold.

A type of the analysis performed in this paper has been previously implemented in the
study of the principal components case by [31]. Our work here identifies common features in
James’ classification of multivariate statistical problems and uses them to extend the analysis
to the full system. One of the hardest challenges in such an extension is the rigorous im-
plementation of the Laplace approximation step. With this goal in mind, we have developed
asymptotic approximations to the hypergeometric functions 1F1 and 2F1 which are uniform
in certain domains of the complex plane, Lemma 3.

The simple observation that the solutions to equation (1) can be interpreted as the eigen-
values of random matrix E−1H relates our work to the vast literature on the spectrum of
large random matrices. Three extensively studied classical ensembles of random matrices are
the Gaussian, Laguerre and Jacobi ensembles, for example, [23]. However, only the Laguerre
and Jacobi ensembles appear in high-dimensional analysis of James’ five-fold classification.
This prompts us to look for a “missing” class in James’ system that could be linked to the
Gaussian ensemble.

Such a class is easy to obtain by taking the limit of
√

n1(H − �) with � = Ip as n1 →
∞, for p fixed. We call the corresponding statistical problem “symmetric matrix denoising”
(SMD). Under the null hypothesis, the observations are given by a p × p matrix Z/

√
p with

Z from the Gaussian Orthogonal Ensemble. Under the alternative, the observations are given
by Z/

√
p + �, where � is a deterministic symmetric matrix of low rank, again of rank one

for this paper. We add this “case zero” to James’ classification and derive the asymptotics of
the corresponding log likelihood ratio and power envelope.

To summarize, the contributions of this paper are as follows:

• We revisit James’ classification, which covers a large part of classical multivariate anal-
ysis, now in the setting of high-dimensional data and show that the classification accommo-
dates low-rank structures as departures from the classical null hypotheses.

• We show that in such high-dimensional settings with rank-one structure, random matrix
theory allows tractable approximations to the joint eigenvalue density functions, in place of
slowly converging zonal polynomial series.

• We show that the log likelihood ratio processes, when parametrized by spike magnitude,
converge to Gaussian process limits in the subcritical interval.

• Hence, we show that informative tests are possible based on all of the eigenvalues
whereas tests based on the largest eigenvalue alone are uninformative.

• As a tool, we develop new uniform approximations to certain hypergeometric functions.
• We identify symmetric matrix denoising as a limiting case of each of James’ models. It

is the simplest model displaying all the phenomena seen in the paper. We clarify the manner
in which the simpler cases are limits of the more complex ones.

The rest of the paper fleshes out this program and its conclusions. The proofs are largely
deferred to the extensive Supplementary Material [19]. They reflect substantial effort to iden-
tify and exploit common structure in the six cases. Indeed, some of this common structure
appears remarkable and not yet fully explained.
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Definitions and global assumptions. Let Z be an n × p data matrix with rows drawn
i.i.d. from Np(0,�), a p-dimensional normal distribution with mean 0 and covariance �.
Suppose that M is also n × p, but deterministic. If Y = M + Z, then H = Y ′Y has a p-
dimensional Wishart distribution Wp(n,�,�) with n degrees of freedom, covariance matrix
� and noncentrality matrix � = �−1M ′M . The central Wishart distribution, corresponding
to M = 0, is denoted Wp(n,�).

Throughout the paper we shall assume that

p ≤ min{n1, n2},
where p is the dimensionality of matrices H and E and n1, n2 are the degrees of freedom of
the corresponding Wishart distributions, as summarized in Table 1. The assumption p ≤ n2
ensures almost sure invertibility of matrix E in (1), whereas the assumption p ≤ n1, while
not essential, is made for brevity, as it reduces the number of various situations which need
to be considered.

2. Links to statistical problems. We briefly review examples of statistical problems,
old and new, that lead to each of James’ five cases, plus symmetric matrix denoising, and
explain our choice of labels for those cases.

PCA. In the first case n1 i.i.d. Np(0,�) observations are used to test the null hypothesis
that the population covariance � equals a given matrix �. The alternative of interest is

� = � + � with � = θψψ ′,
where θ > 0 and ψ are unknown and ψ is normalized so that ‖�−1/2ψ‖ = 1.

Without loss of generality (wlog), we may assume that � = Ip . Then, under the null, the
data are isotropic noise, whereas, under the alternative, the first principal component explains
a larger portion of the variation than the other principal components.

The null and the alternative hypotheses can be formulated in terms of the spectral “spike”
parameter θ as

(2) H0 : θ0 = 0 and H1 : θ0 = θ > 0,

where θ0 is the true value of the “spike.” This testing problem remains invariant under the
multiplication of the p × n1 data matrix, from the left and from the right by orthogonal
matrices, and under the corresponding transformation in the parameter space. A maximal
invariant statistic consists of the solutions λ1 ≥ · · · ≥ λp of equation (1) with n1H equal to the
sample covariance matrix and E = �. We restrict attention to the invariant tests. Therefore,
the relevant data are summarized by λ1, . . . , λp . For convenience, details of the invariance
and sufficiency arguments for all cases are in Section 2.1 in the Supplementary Material [19].

SigD. Consider testing the equality of covariance matrices, � and �, corresponding to
two independent p-dimensional zero-mean Gaussian samples of sizes n1 and n2. The alter-
native hypothesis is the same as for case PCA. Invariance considerations lead to tests based
on the eigenvalues of the F -ratio of the sample covariance matrices. Matrix H from (1)
equals the sample covariance corresponding to the observations that might contain a “signal”
responsible for the covariance spike, whereas matrix E equals the other “noise” sample co-
variance matrix. We again can assume that the population covariance of the “noise” � = Ip ,
although this time it is unknown to the statistician (Section 2.1 in the Supplementary Material
[19] explains why such an assumption involves no loss of generality). Here, we find it more
convenient to work with the p solutions to the equation

(3) det
(
H − λ

(
E + n1

n2
H

))
= 0,
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which we also denote λ1 ≥ · · · ≥ λp to make the notations as uniform across the different
cases as possible. Note that as the second sample size n2 → ∞, while n1 and p are held
constant, equation (3) reduces to equation (1), E converges to � and SigD reduces to PCA.

REG0, REG. Now, consider linear regression with multivariate response

Y = Xβ + ε

when the goal is to test linear restrictions on the matrix of coefficients β . In case REG0 the
covariance matrix � of the i.i.d. Gaussian rows of the error matrix ε is assumed known. REG
corresponds to unknown �.

As explained in [25], pp. 433–434, the problem of testing linear restrictions on β can be
cast in the canonical form, where the matrix of transformed response variables is split into
three parts, Y1, Y2 and Y3. Matrix Y1 is n1 × p, where p is the number of response variables
and n1 is the number of linear restrictions (per each of the p columns of matrix β). Under the
null hypothesis, EY1 = 0, whereas under the alternative,

(4) EY1 = √
n1θϕψ ′,

where θ > 0, ‖�−1/2ψ‖ = 1 and ‖ϕ‖ = 1. Matrices Y2 and Y3 are (q − n1) × p and
(T − q) × p, respectively, where q is the number of regressors and T is the number of
observations. These matrices have, respectively, unrestricted and zero means under both the
null and the alternative. Section 2.1 in the Supplementary Material [19] contains a discussion
of the relationship between alternative (4) and a corresponding constraint on the coefficients
of the untransformed regression model.

In the important example of comparison of q group means, that is, one-way MANOVA, the
null hypothesis imposes equality of all means, while a rank one alternative would posit that
the q mean vectors lie along a line, for example μk = μ1 + skψ for scalar sk, k = 2, . . . , q

and ψ ∈ R
p . This will be a plausible reduction of a global alternative hypothesis in some

applications.
For REG0, sufficiency and invariance arguments lead to tests based on the solutions

λ1, . . . , λp of (1) with

H = Y ′
1Y1/n1 and E = �.

These solutions represent a multivariate analog of the difference between the sum of squared
residuals in the restricted and unrestricted regressions. Under the null hypothesis, n1H is
distributed as Wp(n1,�) whereas, under the alternative, it is distributed as Wp(n1,�,n1�),
where � = θ�−1ψψ ′. Without loss of generality, we may assume that � = Ip .

The canonical form of REG0 is essentially equivalent to the recently studied setting of
matrix denoising

Y1 = M + Z.

References, which point to a variety of applications, include [11, 15, 26, 36]. Often M is
assumed to have low rank and the matrix valued noise Z to have i.i.d. Gaussian entries. Here,
we test M = 0 vs. a rank one alternative.

For REG, similar arguments lead to tests based on the p solutions λ1, . . . , λp of (3) with

H = Y ′
1Y1/n1 and E = Y ′

3Y3/n2,

where the error d.f. n2 = T − q . These solutions represent a multivariate analog of the F

ratio: the difference between the sum of squared residuals in the restricted and unrestricted
regressions to the sum of squared residuals in the restricted regression. Again, we may assume
wlog that �, although unknown to the statistician, equals Ip . Note that, as n2 → ∞ while n1
and p are held constant, REG reduces to REG0.
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CCA. Consider testing for independence between Gaussian vectors xt ∈ R
p and yt ∈

R
n1 , given zero mean observations with t = 1, . . . , n1 + n2. Partition the population and

sample covariance matrices of the observations (x′
t , y

′
t )

′ into(
�xx �xy

�yx �yy

)
and

(
Sxx Sxy

Syx Syy

)
,

respectively. Under H0 : �xy = 0, the alternative of interest is

(5) �xy =
√

n1θ

n1θ + n1 + n2
ψϕ′,

where the vectors of nuisance parameters ψ ∈ R
p and ϕ ∈ R

n1 are normalized so that∥∥�−1/2
xx ψ

∥∥ = ∥∥�−1/2
yy ϕ

∥∥ = 1.

The peculiar parameterizations of the alternative θ 
= 0 in (4) and (5) are chosen to allow uni-
fied treatments of PCA and REG0 and of SigD, REG and CCA in our main results, Theorems
11 and 12 below.

The test can be based on the squared sample canonical correlations λ1, . . . , λp , which are
solutions to (1) with

H = SxyS
−1
yy Syx and E = Sxx.

Remarkably, the squared sample canonical correlations also solve (3) with different H and
E, such that E is a central Wishart matrix and H is a noncentral Wishart matrix conditionally
on a random noncentrality parameter (see Section 3.2 in the Supplementary Material [19]).

SMD. We observe a p × p matrix X = � + Z/
√

p, where Z is a noise matrix from the
Gaussian Orthogonal Ensemble (GOE), that is, it is symmetric and

Zii ∼ N(0,2) and Zij ∼ N(0,1) if i > j.

We seek to make inference about a symmetric rank-one “signal” matrix � = θψψ ′. The null
and the alternative hypotheses are given by (2). The nuisance vector ψ ∈ R

p is normalized
so that ‖ψ‖ = 1. The problem remains invariant under the multiplication of X from the left
by an orthogonal matrix and from the right by its transpose. A maximal invariant statistic
consists of the solutions λ1, . . . , λp to (1) with H = X and E = Ip . We consider tests based
on λ1, . . . , λp .

The SMD case can be viewed as a degenerate version of each of the above cases. For
example, consider PCA with p held fixed and n1 → ∞. Take � = Ip for convenience, and
set � = Ip + √

p/n1� with � = θψψ ′, so that the original value of the spike is rescaled
to be a local perturbation. Now, write H in the form �1/2Ȟ�1/2 where Ȟ ∼ Wp(n1, Ip).
A standard matrix central limit theorem for p fixed, for example, [16], Theorem 2.5.1, says
that

Ȟ = Ip + Z/
√

n1 + oP
(
n

−1/2
1

)
,

where Z belongs to GOE. Writing �1/2 = Ip + 1
2

√
p/n1� + o(n

−1/2
1 ) and introducing μ =√

n1/p(λ − 1), we can rewrite

det(H − λIp) = (p/n1)
p/2 det

[
� + Z/

√
p − μIp + oP(1)

]
,

so that PCA degenerates to SMD. Compare also [7].
Indeed, each of the cases eventually degenerate to SMD via sequential asymptotic links

(Section 2.2 in the Supplemenatary Material [19] has details). For convenience, we summa-
rize links between the different cases and the definitions of the corresponding matrices H and
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FIG. 1. Matrices H and E and links between the different cases. Without loss of generality, matrix E or, in
SigD, REG and CCA cases, its population counterpart � is assumed to be equal to Ip . Matrix � has the form
θψψ ′ with θ ≥ 0 and ‖ψ‖ = 1.

E in Figure 1. We note that the SMD model has been studied recently, for example, [9, 21]
and references therein, though not with our techniques.

Cases SMD, PCA and REG0, forming the upper half of the diagram, correspond to random
H and deterministic E. The cases in the lower half of the diagram correspond to both H and
E being random. Cases PCA and SigD are “parallel” to cases REG0 and REG in the sense that
the alternative hypothesis is characterized by a rank one perturbation of the covariance and
of the noncentrality parameter of H for the former and for the latter two cases, respectively.
Case CCA “stands alone” because of the different structure of H and E. As discussed above,
CCA can be reinterpreted in terms of H and E such that E is Wishart, but H is a noncentral
Wishart only after conditioning on a random noncentrality parameter.

3. The likelihood ratios. Our goal is to study the asymptotic behavior of likelihood
ratios based on the observed eigenvalues

� = diag{λ1, . . . , λp}.
Let p(�; θ) be the joint density of the eigenvalues under the alternative and p(�;0) the
corresponding density under the null. James’ formulas for these joint densities lead to our
starting point, which is a unified form for the likelihood ratio

(6) L(θ;�) = p(�; θ)

p(�;0)
= α(θ)pFq(a, b;�,�),

where � = �(θ) is a p-dimensional matrix diag{�11,0, . . . ,0} and the values of �11, α(θ),
p, q, a and b are as given in Table 2.

For SMD, we prove that L(θ;�) is as in (6) in Section 3.1 in the Supplementary Material
[19]. For PCA, the explicit form of the likelihood ratio is derived in [31]. For SigD, REG0
and REG, the expressions (6) follow, respectively, from equations (65), (68) and (73) of [18].
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TABLE 2
Parameters of the explicit expression (6) for the likelihood ratios. Here, n ≡ n1 + n2

Case pFq α(θ) a b �11

SMD 0F0 exp(−pθ2/4) – – θp/2
PCA 0F0 (1 + θ)−n1/2 – – θn1/(2(1 + θ))

SigD 1F0 (1 + θ)−n1/2 n/2 – θn1/(n2(1 + θ))

REG0 0F1 exp(−n1θ/2) – n1/2 θn2
1/4

REG 1F1 exp(−n1θ/2) n/2 n1/2 θn2
1/(2n2)

CCA 2F1 (1 + n1θ/n)−n/2 (n/2, n/2) n1/2 θn2
1/(n2

2 + n2n1(1 + θ))

For CCA, the expression is a corollary of [25], Theorem 11.3.2. Further details appear in
Section 3.2 in the Supplementary Material [19].

Recall that hypergeometric functions of two matrix arguments � and � are defined as

pFq(a, b;�,�) =
∞∑

k=0

1

k!
∑
κ
k

(a1)κ · · · (ap)κ
(b1)κ · · · (bq)κ

Cκ(�)Cκ(�)

Cκ(Ip)
,

where a = (a1, . . . , ap) and b = (b1, . . . , bq) are parameters, κ are partitions of the integer k,
(aj )κ and (bi)κ are the generalized Pochhammer symbols and Cκ are the zonal polynomials,
for example, [25], Definition 7.3.2. Note that some links between the cases illustrated in Fig-
ure 1 can also be established via asymptotic relations between the hypergeometric functions.
For example, the confluence relations

0F0(�,�) = lim
a→∞ 1F0

(
a;a−1�,�

)
and

0F1(b;�,�) = lim
a→∞ 1F1

(
a, b;a−1�,�

)
,

for example, [29], equation 35.8.9, imply the links SigD �→ PCA and REG �→ REG0 as
n2 → ∞ for p and n1 held constant.

In the next section we shall study the asymptotic behavior of the likelihood ratios (6) as
n1, n2 and p go to infinity so that

(7) c1 ≡ p/n1 → γ1 ∈ (0,1) and c2 ≡ p/n2 → γ2 ∈ (0,1].
We denote this asymptotic regime by n,p →γ ∞, where n = {n1, n2} and γ = {γ1, γ2}. To
make our exposition as uniform as possible, we use this notation for all the cases, even though
the simpler ones, such as SMD, do not refer to n. We briefly discuss possible extensions of
our analysis to the situations with γ1 ≥ 1 in Section 7.

We are interested in the asymptotics of the likelihood ratios under the null hypothesis,
that is, when the true value of the spike, θ0, equals zero. First, some background on the
eigenvalues. Under the null, λ1, . . . , λp are the eigenvalues of GOE/

√
p in the SMD case,

of Wp(n1, Ip)/n1 for PCA and REG0 and of a p-dimensional multivariate beta matrix, for
example, [24], p. 110, with parameters n1/2 and n2/2 and, here, scaled by a factor of n2/n1,
in the SigD, REG and CCA cases. The empirical distribution of λ1, . . . , λp

F̂ = 1

p

p∑
j=1

I {λj ≤ λ}

is well known, [3], to converge weakly almost surely (a.s.) in each case

F̂ ⇒ Fγ =

⎧⎪⎪⎨
⎪⎪⎩

F SC for SMD,

F MP for PCA, REG0,

F W for SigD, REG, CCA,
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TABLE 3
Semicircle, Marchenko–Pastur and scaled Wachter distributions

Case F lim
γ Density, λ ∈ [β−, β+] β± Threshold θ̄

SMD SC R(λ)
2π

±2 1

PCA
REG0

MP R(λ)
2πγ1λ

(1 ± √
γ1)2 √

γ1

SigD
REG
CCA

W (γ1+γ2)R(λ)
2πγ1λ(γ1−γ2λ)

γ1(
ρ±1
ρ±γ2

)2 ρ+γ2
1−γ2

R(λ) = √
(β+ − λ)(λ − β−) ρ = √

γ1 + γ2 − γ1γ2

the semicircle, Marchenko–Pastur and (scaled) Wachter distributions, respectively. Table 3
recalls the explicit forms of these limiting distributions. The cumulative distribution functions
F lim

γ (λ) are linked in the sense that

F W
γ (λ) → F MP

γ1
(λ) as γ2 → 0,

F MP
γ1

(
√

γ1λ + 1) → F SC(λ) as γ1 → 0.

If ϕ is a “well-behaved” function, the centered linear spectral statistic

(8)
p∑

j=1

ϕ(λj ) − p

∫
ϕ(λ)dF lim

c (λ)

converges in distribution to a Gaussian random variable in each of the semicircle [6],
Marchenko–Pastur [5] and Wachter [39] cases. Note that the centering constant is defined
in terms of Fc, where c= {c1, c2}. That is, the “correct centering” can be computed using the
densities from Table 3, where γ1 and γ2 are replaced by c1 ≡ p/n1 and c2 ≡ p/n2, respec-
tively.

Finally, let us recall the behavior of the largest eigenvalue λ1 under the alternative hypoth-
esis. As long as θ ≤ θ̄ , the phase transition threshold reported in Table 3, the top eigenvalue
λ1 → β+, the upper boundary of support of Fγ , almost surely. When θ > θ̄ , λ1 separates
from “the bulk” of the other eigenvalues and a.s. converges to a point strictly above β+. For
details, we refer to [8, 10, 12, 22, 27, 30] for the respective cases SMD, PCA, SigD, REG0,
REG and CCA.

The fact that λ1 converges to different limits under the null and, under the alternative hy-
pothesis, sheds light on the behavior of the likelihood ratio when θ is above the phase transi-
tion threshold θ̄ . In such super-critical cases, the likelihood ratio degenerates. The sequences
of measures corresponding to the distributions of � under the null and under super-critical al-
ternatives are asymptotically mutually singular as n,p →γ ∞, as shown in [22] and [31] for
SMD and PCA, respectively. In contrast, as we show below, the sequences of measures cor-
responding to the distributions of � under the null and under subcritical alternatives θ < θ̄

are mutually contiguous, and the likelihood ratio converges to a Gaussian process. In the
super-critical setting, an analysis of the likelihood ratios under local alternatives appears in
[13].

4. Contour integral representation. The asymptotic behavior of the likelihood ratios
(6) depends on that of pFq(a, b;�,�). When the dimension of the matrix arguments remains
fixed, there is a large and well-established literature on the asymptotics of pFq(a, b;�,�) for
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large parameters and norm of the matrix arguments; see [24] for a review. In contrast, rela-
tively little is known about when the dimensionality of the matrix arguments �,� diverge
to infinity. It is this regime we study in this paper, noting that, in single-spiked models, the
matrix argument � has rank one. This allows us to represent pFq(a, b;�,�) in the form of
a contour integral of a hypergeometric function with a single scalar argument. Such a repre-
sentation implies contour integral representations for the corresponding likelihood ratios.

LEMMA 1. Assume that p ≤ min{n1, n2}. Let K be a contour in the complex plane C

that starts at −∞, encircles 0 and λ1, . . . , λp counterclockwise and returns to −∞. Then,

(9) L(θ;�) = �(s + 1)α(θ)qs

�s
112π i

∫
K

pFq(a − s, b − s;�11z)

p∏
j=1

(z − λj )
−1/2 dz,

where s = p/2 − 1, the values of α(θ), �11, a, b, p, and q for the different cases are given in
Table 2; a − s and b − s denote vectors with elements aj − s and bj − s, respectively, and

qs =
p∏

j=1

�(aj − s)

�(aj )

q∏
i=1

�(bi)

�(bi − s)
.

In cases SigD and CCA, we require, in addition, that the contour K does not intersect
[�−1

11 ,∞) which ensures the analyticity of the integrand in an open subset of C that in-
cludes K.

The statement of the lemma immediately follows from [12], Proposition 1, and from equa-
tion (6). Our next step is to apply the Laplace approximation to integrals (9). To this end, we
shall transform the right-hand side of (9) so that it has a “Laplace form”

(10) L(θ;�) = √
πp

1

2π i

∫
K

exp
{−(p/2)f (z; θ)

}
g(z; θ)dz.

The dependence on θ will usually not be shown explicitly. Leaving
√

πp/(2π i) separate from
g(z) allows us to choose f (z) and g(z) that are bounded in probability and makes some of
the expressions below more compact. In order to apply the Laplace approximation, we shall
deform the contour of integration so that it passes through a critical point z0 of f (z) and is
such that Ref (z) is strictly increasing as z moves away from z0 along the contour, at least in
a vicinity of z0.

4.1. The Laplace form. We shall transform (9) to (10) in three steps. As a result, func-
tions f and g will have the forms of a sum and a product,

f (z) = fc + fe(z) + fh(z) and

g(z) = gc × ge(z) × gh(z),
(11)

where fc and gc do not depend on z. The subscripts (c,e,h) are mnemonic for “coefficient”,
“eigenvalues” and “hypergeometric.”

First, using the definitions of α(θ), qs , �11 and employing Stirling’s approximation, we
obtain a decomposition

(12)
�(s + 1)α(θ)qs√

πp�s
11

= exp
{−(p/2)fc

}
gc,

where gc remains bounded as n,p →γ ∞. The values of fc and gc are given in Table 4.
Details of the derivation are given in Section 4.1 in the Supplementary Material [19].
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TABLE 4
Values of fc and ǧc = gc/(1 + o(1)) for the different cases. The terms o(1) do

not depend on θ and converge to zero as n,p →γ ∞. In the table,
l(θ) = 1 + (1 + θ)c2/c1 and r2 = c1 + c2 − c1c2

Case fc ǧc = gc/(1 + o(1))

SMD 1 + θ2/2 + log θ θ

PCA 1 + 1−c1
c1

log(1 + θ) + log θ
c1

θ(1 + θ)−1c−1
1

SigD f PCA
c + f10 ǧPCA

c ǧ10

REG0 1 + θ+c1
c1

+ log θ
c1

+ 1−c1
c1

log(1 − c1) θc−1
1 (1 − c1)−1/2

REG f
REG0
c + f10 ǧ

REG0
c ǧ10

CCA f REG
c + f21 ǧREG

c ǧ10/l(θ)

f10 = −1 − r2

c1c2
log r2

c1+c2
+ log c1+c2

c1
ǧ10 = c−1

1 r(c1 + c2)1/2

f21 = −1 − θ
c1

− r2

c1c2
log r2

c1l(θ)

Second, we consider the decomposition

(13)
p∏

j=1

(z − λj )
−1/2 = exp

{−(p/2)fe(z)
}
ge(z),

where

(14) fe(z) =
∫

ln(z − λ)dFc(λ)

and

(15) ge(z) = exp
{
−(p/2)

∫
ln(z − λ)d

(
F̂ (λ) − Fc(λ)

)}
.

For fe(z) and ge(z) to be well defined, we need z not to belong to the support of Fc, which we
assume. In addition, z /∈ supp(F̂ ) since by definition contour K encircles it. Note that ge(z)

is the exponent of a linear spectral statistic which converges to a Gaussian random variable
as n,p →γ ∞ under the null hypothesis.

Third and finally, we describe a decomposition

(16) pFq(a − s, b − s;�11z) = exp
{−(p/2)fh(z)

}
gh(z).

For the q = 0 cases, the corresponding pFq. can be expressed in terms of elementary func-
tions. Indeed, 0F0(z) = ez and 1F0(a; z) = (1 − z)−a . We set

(17) fh(z) =
⎧⎨
⎩

−zθ for SMD,

−zθ/
(
c1(1 + θ)

)
for PCA,

ln
[
1 − c2zθ/

{
c1(1 + θ)

}]
r2/(c1c2) for SigD

and

(18) gh(z) =
{

1 for SMD and PCA,[
1 − c2zθ/

{
c1(1 + θ)

}]−1 for SigD.

Unfortunately, for the q = 1 cases, the corresponding pFq do not admit exact representa-
tions in terms of elementary functions. Therefore, we shall consider their asymptotic approx-
imations instead. Let

m = (n1 − p)/2 and κ = (n − p)/(n1 − p).
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Further, let

(19) ηj =
⎧⎪⎨
⎪⎩

zθ/(1 − c1)
2 for j = 0,

zθc2/
[
c1(1 − c1)

]
for j = 1,

zθc2
2/

[
c2

1l(θ)
]

for j = 2,

where

(20) l(θ) = 1 + (1 + θ)c2/c1.

With this notation, we have

(21) pFq =
⎧⎨
⎩

0F1
(
m + 1;m2η0

) ≡ F0 for REG0,

1F1(mκ + 1;m + 1;mη1) ≡ F1 for REG,

2F1(mκ + 1,mκ + 1;m + 1;η2) ≡ F2 for CCA.

The function F0(z) can be expressed in terms of the modified Bessel function of the first
kind Im(·); see [1], equation 9.6.47, as

(22) F0 = �(m + 1)
(
m2η0

)−m/2
Im

(
2mη

1/2
0

)
.

This representation allows us to use a known uniform asymptotic approximation of the Bessel
function [1], equation 9.7.7, to obtain Lemma 2, proven in Section 4.2 in the Supplementary
Material [19]. To state it, let

(23) ϕ0(t) = ln t − t − η0/t + 1 and t0 = (1 + √
1 + 4η0)/2.

Further, for any δ > 0, let �0δ be the set of η0 ∈ C such that

| argη0| ≤ π − δ and η0 
= 0.

LEMMA 2. As m → ∞, we have

(24) F0 = (1 + 4η0)
−1/4 exp

{−mϕ0(t0)
}(

1 + o(1)
)
.

The convergence o(1) → 0 holds uniformly with respect to η0 ∈ �0δ for any δ > 0.

To foreshadow our results for F1(z) and F2(z), we note that the right-hand side of (24) can
be formally linked, via (22), to the saddle-point approximation of the integral representation;
see [38], p. 181,

Im

(
2mη

1/2
0

) = η
m/2
0 em

2π i

∫ (0+)

−∞
exp

{−mϕ0(t)
}
t−1 dt.

Point t0 can be interpreted as a saddle point of ϕ0(t), and the term (1 + 4η0)
−1/4 in (24) can

be interpreted as a factor of (ϕ′′
0 (t0))

−1/2.
Turning now to functions F1(z) and F2(z), to obtain uniform asymptotic approximations,

we use the contour integral representations; see [29], equations 13.4.9 and 15.6.2,

(25) Fj = Cm

2π i

∫ (1+)

0
exp

{−mϕj (t)
}
ψj(t)dt,

where

Cm = �(m + 1)�(m(κ − 1) + 1)

�(mκ + 1)
,(26)

ϕj (t) =
{−ηj t − κ ln t + (κ − 1) ln(t − 1) for j = 1,

−κ ln
(
t/(1 − ηj t)

) + (κ − 1) ln(t − 1) for j = 2
(27)
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and

(28) ψj(t) =
{

(t − 1)−1 for j = 1,

(t − 1)−1(1 − ηj t)
−1 for j = 2.

For j = 2, the contour does not encircle 1/η2, and the representation is valid for η2 such
that | arg(1 − η2)| < π . We derive a saddle-point approximation to the integral in (25) to be
summarized in Lemma 3 below. The relevant saddle points are

(29) tj =
⎧⎨
⎩

1
2ηj

{
ηj − 1 +

√
(ηj − 1)2 + 4κηj

}
for j = 1,

1
2ηj (κ−1)

{−1 +
√

1 + 4κ(κ − 1)ηj

}
for j = 2.

We shall need the following additional notation. Let

(30) ωj = argϕ′′
j (tj ) + π and ω0j = arg(tj − 1),

where the branches of arg(·) are chosen so that |ωj + 2ω0j | ≤ π/2.

LEMMA 3. As m → ∞, we have for j = 1,2

(31) Fj = Cmψj(tj )e
−iωj /2∣∣2πmϕ′′

j (tj )
∣∣−1/2 exp

{−mϕj(tj )
}(

1 + o(1)
)
.

The convergence o(1) → 0 holds uniformly with respect to (κ, η) ∈ �jδ for any δ > 0, where
�jδ are as defined in Table 5.

Pointwise asymptotic approximation (31) was established in [35] for j = 1, and in [33,
34] for j = 2. However, those papers do not study the uniformity of the approximation er-
ror which is important for our analysis. Lemma 3 is proved at length in Section 4.3 in the
Supplementary Material [19]. It is fair to say that the corresponding derivations constitute
the technically most challenging part of our analysis. This further highlights the technical
difficulties that occur when going from SMD, PCA and SigD cases to REG0, REG and CCA.

Using Lemmas 2 and 3 and Stirling’s approximation

(32) Cm =
√

πp(1 − c1)

r
exp

{
m(κ − 1) ln(κ − 1) − mκ lnκ

}(
1 + o(1)

)
,

we set the components of the “Laplace form” (16) of pFq for the q = 1 cases as follows:

(33) fh(z) =

⎧⎪⎪⎨
⎪⎪⎩

1 − c1

c1
ϕ0(t0) REG0,

1 − c1

c1

(
ϕj (tj ) + κ lnκ − (κ − 1) ln(κ − 1)

)
REG, CCA

TABLE 5
Definition of �jδ from Lemma 3

�jδ = �δ ∩ �̂jδ with the following �δ and �̂jδ

Set Definition: pairs (x, z) ∈R×C s.t.

�δ δ ≤ x − 1 ≤ 1/δ, |z| ≤ 1/δ, and infy∈R\[0,∞) |z − y| ≥ δ

�̂1δ Re z ≥ −2x + 1

�̂2δ infy∈R\(−∞,1] |z − y| ≥ δ and x is unconstrained
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and

(34) gh(z) =
⎧⎨
⎩

(1 + 4η0)
−1/4(

1 + o(1)
)

REG0,√
c1/r2e−iωj /2∣∣ϕ′′

j (tj )
∣∣−1/2

ψj(tj )
(
1 + o(1)

)
REG, CCA.

To express tj and ηj in terms of z, one should use (29) and (19). We do not need to know how
exactly the o(1) in (34) depend on z. For our purposes, the knowledge of the fact that o(1)

are analytic functions of ηj that converge to zero uniformly with respect to (κ, ηj ) ∈ �jδ is
sufficient. The analyticity of o(1) follows from the analyticity of the functions on the left-
hand sides and of the factors of 1 + o(1) on the right-hand sides of the equations (24) and
(31).

Confluences of functions f . As c2 → 0 with c1 held fixed, we have

f SigD(z) → f PCA(z),

f REG(z), f CCA(z) → f REG0(z).
(35)

Also, as c1 → 0,

(36) f PCA(z), f REG0(z) → f SMD(z),

after making the substitutions θ → √
c1θ and z → √

c1z + 1 on the left-hand side. Some
details appear in Section 4.4 in the Supplementary Material [19].

4.2. Saddle points and contours of steep descent. We shall now show how to deform
contours K in (10) into the contours of steep descent. First, we find saddle points of functions
f (z) for each of the six cases. Note that

−dfe(z)/dz =
∫

(λ − z)−1 dFc(λ) = mc(z),

the Stieltjes transform of Fc. Although the Stieltjes transform is formally defined on C
+, the

definition remains valid on the part of the real line outside the support [b−, b+] of Fc. Since
we assume that p ≤ n1, Fc does not have any nontrivial mass at 0.

To find saddle points z0 of f (z), we therefore solve the equation

(37) mc(z) = dfh(z)/dz.

A proof of the following lemma appears in Section 4.5 in the Supplementary Material [19].

LEMMA 4. The saddle points z0(θ, c) of f (z) satisfy

(38) z0(θ, c) =
⎧⎨
⎩

θ + 1/θ for SMD,

(1 + θ)(θ + c1)/θ for PCA and REG0,

(1 + θ)(θ + c1)/
[
θl(θ)

]
for SigD, REG, and CCA.

For θ ∈ (0, θ̄c), z0 > b+, where θ̄c is the threshold corresponding to Fc which is an analogue
of the threshold θ̄γ ≡ θ̄ corresponding to Fγ given in Table 3.

As c2 → 0 while c1 stays constant, the value of z0 for SigD, REG and CCA converges to
that for PCA and REG0. The latter value in its turn converges to the value of z0 for SMD
when c1 → 0, after the transformations θ �→ √

c1θ and z0 �→ √
c1z0 + 1. Precisely, solving

equation
√

c1z0 + 1 = (1 + √
c1θ)(

√
c1θ + c1)/(

√
c1θ)

for z0 and taking limit as c1 → 0 yields z0 = θ + 1/θ .
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FIG. 2. Deformed contour K for SMD, PCA and SigD.

REMARK 5. For all of the six cases that we study, f (z0) equals zero. Section 4.6 in the
Supplementary Material [19] has a verification of this important fact.

REMARK 6. As n,p →γ ∞, z0(θ, c) → z0(θ,γ ) > β+, where the latter inequality holds

for any θ ∈ (0, θ̄ ). Since λ1
a.s.→ β+, the inequality z0(θ, c) > λ1 must hold with probability

approaching one as n,p →γ ∞.

For the rest of the paper, assume that θ ∈ (0, θ̄ ). We deform contour K in (10) so that it
passes through the saddle point z0 as follows. Let K = K+ ∪ K−, where K− is the complex
conjugate of K+ and K+ = K1 ∪K2. For SMD, PCA and SigD, let

K1 = {z0 + it : 0 ≤ t ≤ 2z0} and(39)

K2 = {x + i2z0 : −∞ < x ≤ z0}.(40)

The deformed contour is shown on Figure 2.
Note that the singularities of the integrand in (10) are situated at z = λj (plus an additional

singularity at z = c1(1 + θ)/(θc2) < z0 for SigD). Since z0 > λ1 holds with probability ap-
proaching one as n,p →γ ∞, Cauchy’s theorem ensures that the deformation of the contour
does not change the value of L(θ;�) with probability approaching one as n,p →γ ∞.

Strictly speaking, the deformation of the contour is not continuous because K+ does not
approach K− at −∞. In particular, in contrast to the original contour, the deformed one is
not “closed” at −∞. Nevertheless, such an “opening up” at −∞ does not lead to the change
of the value of the integral because the integrand converges fast to zero in absolute value as
Re z → −∞.

REMARK 7. In the event of asymptotically negligible probability that the deformed con-
tour K does not encircle all λj , we not only lose the equality (10) but also face the difficulty
that function g(z) ceases to be well defined as the definition of ge(z) contains a logarithm of
a nonpositive number. To eliminate any ambiguity, if such an event holds, we shall redefine
ge(z) as unity.

For REG0 and CCA, let

z1 =
{

−(1 − c1)
2/[4θ ] for REG0,

−c1(1 − c1)
2l(θ)/

[
4θr2]

for CCA,
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FIG. 3. Deformed contour K for REG0 and CCA.

and let

K1 = {
z1 + |z0 − z1| exp{iγ } : γ ∈ [0, π/2]} and

K2 = {
z1 − x + |z0 − z1| exp{iπ/2} : x ≥ 0

}
.

The corresponding contour K is shown on Figure 3. Similarly to the SMD, PCA and SigD
cases, the deformation of the contour in (10) to K does not change the value of L(θ;�) with
probability approaching one as n,p →γ ∞.

For REG, deformed contour K in z-plane is simpler to describe as an image of a contour
C in τ -plane, where τ = η1t1 with

(41) η1 = zθc2/
[
c1(1 − c1)

]
and t1 as defined in (29). Let C = C+ ∪ C−, where C− is the complex conjugate of C+ and
C+ = C1 ∪ C2, and let

C1 = {−κ + |τ0 + κ| exp{iγ } : γ ∈ [0, π/2]} and

C2 = {−κ − x + |τ0 + κ| exp{iπ/2} : x ≥ 0
}
,

where τ0 = (θ + c1)/(1 − c1).
Using (41) and the identity

(42) η1 = τ(τ + 1)/(τ + κ),

we obtain

(43) z = c1(1 − c1)

θc2

τ(τ + 1)

τ + κ
.

We define the deformed contour K in z-plane as the image of C under the transformation
τ → z given by (43). The parts K+,K−,K1 and K2 of K are defined as the images of the
corresponding parts of C. Note that τ0 is transformed to z0 so that K passes through the saddle
point z0.

The next lemma, proven in Section 4.7 in the Supplementary Material [19], shows that K1
are contours of steep descent of −Ref (z) for all the six cases, SMD, PCA, SigD, REG0,
REG and CCA.

LEMMA 8. For any of the six cases that we study, as z moves along the corresponding
K1 away from z0, −Ref (z) is strictly decreasing.



TESTING IN SPIKED MODELS 1247

5. Laplace approximation. The goal of this section is to derive Laplace approximations
to the integral (9) for the six cases that we study. First, consider a general integral

Ip,ω =
∫
Kp,ω

e−pφp,ω(z)χp,ω(z)dz,

where p is large, ω ∈ � ⊂ R
k is a k-dimensional parameter and Kp,ω is a path in C that

starts at ap,ω and ends at bp,ω. We allow χp,ω(z) to be a random element of the normed
space of continuous functions on Kp,ω with the supremum norm. Assume that there is a
domain Tp,ω ⊃ Kp,ω on which for sufficiently large p, φp,ω(z) and χp,ω(z) are single-valued
holomorphic functions of z, in the case of χp,ω with probability increasing to 1.

We describe an extension of the Laplace approximation detailed by Olver [28], p. 127, to
a situation in which functions φ, χ and contour K depend on p and ω and, in addition, χ is
random. In Olver’s original theorem, both functions and contour are fixed. In what follows,
however, we omit subscripts p and ω from φp,ω, χp,ω, Kp,ω, etc. to lighten notation.

Suppose that φ′(z) = 0 at z0, which is an interior point of K, and suppose that Reφ(z)

is strictly increasing as z moves away from z0 along the path. In other words, the path K is
a contour of steep descent of −Reφ(z). Denote a closed segment of K contained between
z1 and z2 as [z1, z2]K. Similarly, denote the segments that exclude one or both endpoints as
[z1, z2)K, (z1, z2]K and (z1, z2)K. Let β be the limiting value of arg(z − z0) on the principal
branch as z → z0 along (z0, b)K. Finally, let φs and χs be the coefficients in the power series
representations

(44) φ(z) =
∞∑

s=0

φs(z − z0)
s, χ(z) =

∞∑
s=0

χs(z − z0)
s.

We assume that there exist positive constants C1, . . . ,C4 that do not depend on p or ω,
such that for all ω ∈ �, for sufficiently large p:

A0. The length of the path K is bounded, uniformly over ω ∈ � and all sufficiently
large p. Furthermore,

sup
z∈(z0,b)K

|z − z0| > C1 and sup
z∈(a,z0)K

|z − z0| > C1,

A1. Functions φ(z) and χ(z) are holomorphic in the ball |z − z0| ≤ C1,
A2. The coefficient φ2 satisfies C2 ≤ |φ2| ≤ C3,
A3. The third derivative of φ(z) satisfies inequality

sup
|z−z0|≤C1

∣∣d3φ(z)/dz3∣∣ ≤ C4,

A4. For any positive ε < C1, which does not depend on p and ω, and for all z1 ∈ K such
that |z1 − z0| = ε, there exist positive constants C5,C6, such that

Re
(
φ(z1) − φ0

)
> C5 and

∣∣Im(
φ(z1) − φ0

)∣∣ < C6,

A5. For a subset � of C that consists of all points whose Euclidean distance from K is no
larger than C1,

sup
z∈�

∣∣χ(z)
∣∣ = OP(1)

as p → ∞, where OP(1) is uniform in ω ∈ �.
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Assumptions A0–A5 ensure that Olver’s proof of the Laplace approximation theorem
(Theorem 7.1 on p. 127 of Olver [28]) can be extended to cases where functions φ(z) and
χ(z), as well as the contour K, depend on p and ω. Note that in Olver’s notations, φ(z), χ(z)

and p are, respectively, p(t), q(t) and z.
The first part of A0, which requires the boundedness of |K|, taken together with A5, and

the assumption that K is a contour of steep descent guarantee the absolute convergence of the
integral

∫
K e−p(φ(z)−φ0)χ(z)dz, in probability. The second part of A0 ensures that as p → ∞,

K does not collapse to a point.
Assumption A1 excludes situations where z0 approaches singular points of φ(z) or χ(z)

as p → ∞. Assumption A2 guarantees that the second derivative of φ(z) at z0 does not
degenerate to 0 or infinity as p → ∞. Assumption A3 implies that |φ(z) − φ(z0)| can
be bounded from below by a fixed quadratic function of z in a vicinity of z0 as p → ∞.
This ensures a regular behavior of function (φ(z) − φ(z0))

1/2. Assumption A4 implies that
| arg(φ(z) − φ(z0))| < π/2 is some neighborhood of z0 as p → ∞. We need this condition
to be able to use an asymptotic expansion of an incomplete Gamma function in our proofs
(Section 5.1 of the Supplementary Material [19]). Assumption A5 ensures that |χ(z)| remains
bounded in probability as p → ∞.

LEMMA 9. Under assumptions A0–A5, for any positive integer k, as p → ∞, we have

Ip,ω = 2e−pφ0

[
k−1∑
s=0

�

(
s + 1

2

)
a2s

ps+1/2 + OP(1)

pk+1/2

]
,

where OP(1) is uniform in ω ∈ � and the coefficients a2s can be expressed through φs and
χs defined above. In particular, we have a0 = χ0/[2φ

1/2
2 ], where φ

1/2
2 = exp{(log |φ2| +

i argφ2)/2} with the branch of argφ2 chosen so that | argφ2 + 2β| ≤ π/2.

Lemma 9 is proved in Section 5.1 in the Supplementary Material [19]. We use it to obtain
the Laplace approximation to

(45) L1(θ;�) = √
πp

1

2π i

∫
K1∪K̄1

e−(p/2)f (z)g(z)dz.

Then, we show that L1(θ;�) asymptotically dominates the “residual” L(θ;�) − L1(θ;�).
For this analysis, it is important to know the values of f (z0) and d2f (z0)/dz2. As was men-
tioned in Remark 5, f (z0) = 0 for all the six cases that we study. The values of d2f (z0)/dz2

are derived in Section 5.2 in the Supplementary Material [19]. All of them are negative.
The explicit form of D2 ≡ θ2(−d2f (z0)/dz2)−1, which is somewhat shorter than that for
d2f (z0)/dz2, is reported in Table 6. We formulate the main result of this section in the fol-
lowing theorem, proven in Section 5.3 in the Supplementary Material [19].

TABLE 6
The values of D2 ≡ θ2(−d2f (z0)/dz2)−1 for the different cases

Case Value of D2 Case Value of D2

SMD 1 − θ2 REG0 c1(1 + c1 + 2θ)(c1 − θ2)

PCA c1(c1 − θ2)(1 + θ)2 REG c1h(c1 + θ + (1 + θ)l)/ l4

SigD r2h(1 + θ)2/l4 CCA c2
1h(2(c1 + θ) + l(1 − c1))/(l3(c1 + c2))

l ≡ l(θ) = 1 + (1 + θ)c2/c1 h ≡ h(θ) = c1 + c2(1 + θ)2 − θ2
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THEOREM 10. Suppose that the null hypothesis holds, that is, θ0 = 0. Let θ̄ be the thresh-
old corresponding to Fγ , as given in Table 3, and let ε be an arbitrarily small fixed positive
number. Then, for any θ ∈ (0, θ̄ − ε], as n,p →γ ∞, we have

(46) L(θ;�) = g(z0)√
−d2f (z0)/dz2

+ OP
(
p−1)

,

where OP(p−1) is uniform in θ ∈ (0, θ̄ − ε] and the principal branch of the square root is
taken.

6. Asymptotics of LR. Combining the results of Theorem 10 with the definitions of
g(z) and the values of −d2f (z0)/dz2, given in Table 6, it is straightforward to establish the
following theorem, details in Section 6.1 in the Supplementary Material [19]. Let

�p(θ) = p

∫
ln

(
z0(θ) − λ

)
d
(
F̂ (λ) − Fc(λ)

)
.

In accordance with Remark 7, we define �p(θ) as zero in the event of asymptotically negli-
gible probability that z0 ≤ λ1.

THEOREM 11. Suppose that the null hypothesis holds, that is, θ0 = 0. Let θ̄ be the thresh-
old corresponding to Fγ , as given in Table 3, and let ε be an arbitrarily small fixed positive
number. Then, for any θ ∈ (0, θ̄ − ε], as n,p →γ ∞, we have

L(θ;�) = exp
{
−1

2
�p(θ) + 1

2
ln

(
1 − [

δp(θ)
]2)}(

1 + oP(1)
)
,

where

δp(θ) =
⎧⎨
⎩

θ for SMD,

θ/
√

c1 for PCA and REG0,

θr/
(
c1l(θ)

)
for SigD, REG, and CCA,

r2 = c1 + c2 − c1c2 and oP(1) is uniform in θ ∈ (0, θ̄ − ε].

Statistic �p(θ) is a linear spectral statistic. As follows from the CLT for such statistics
derived by [5, 6] and [39] for the Semicircle, Marchenko–Pastur and Wachter limiting distri-
butions Fc, respectively, statistic �p(θ) weakly converges to a Gaussian process indexed by
θ ∈ (0, θ̄ − ε]. The explicit form of the mean and the covariance structure can be obtained
from the general formulae for the asymptotic mean and covariance of linear spectral statistics
given in [6], Theorem 1.1, for SMD, in [5], Theorem 1.1, for PCA and REG0, and in [39],
Theorem 4.1 and Example 4.1, for the remaining cases. Section 6.2 in the Supplementary
Material [19] provides details on the use of [5, 6, 39] to establish convergence of �p(θ), and
the use of Theorem 11 to obtain the following theorem:

THEOREM 12. Suppose that the null hypothesis holds, that is, θ0 = 0. Let θ̄ be the thresh-
old corresponding to Fγ , as given in Table 3, and let ε be an arbitrarily small fixed positive
number. Further, let C[0, θ̄ − ε] be the space of continuous functions on [0, θ̄ − ε] equipped
with the supremum norm. Then, lnL(θ;�) viewed as random elements of C[0, θ̄ − ε] con-
verge weakly to L(θ) with Gaussian finite dimensional distributions such that

EL(θ) = 1

4
ln

(
1 − δ2(θ)

)
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and

Cov
(
L(θ1),L(θ2)

) = −1

2
ln

(
1 − δ(θ1)δ(θ2)

)
with

δ(θ) =
⎧⎨
⎩

θ for SMD,

θ/
√

γ1 for PCA and REG0,

θρ/(γ1 + γ2 + θγ2) for SigD, REG, and CCA.

Here, ρ,γ1, γ2 are the limits of r, c1, c2 as n,p →γ ∞.

Let {Pp,θ } and {Pp,0} be the sequences of measures corresponding to the joint distributions
of λ1, . . . , λp when θ0 = θ and when θ0 = 0, respectively. Then, Theorem 12 implies, via Le
Cam’s first lemma, the mutual contiguity of {Pp,θ } and {Pp,0} as n,p →γ ∞, for each θ < θ̄ .
This reveals the statistical meaning of the phase transition thresholds as the upper boundaries
of the contiguity regions for spiked models.

The precise form of the autocovariance of L(θ) shows that,1 although the experiment
of observing λ1, . . . , λp is asymptotically normal, it does not converge to a Gaussian shift
experiment. In particular, the optimality results available for Gaussian shifts cannot be used
in our framework. To analyze asymptotic risks of various statistical problems related to the
experiment of observing λ1, . . . , λp , one should directly use Theorem 12.

Here, we use it to derive the asymptotic power envelopes for tests of the null hypothesis
θ0 = 0 against the point alternative θ0 > 0. By the Neyman–Pearson lemma, the most power-
ful test would reject the null when lnL(θ;�) is above a critical value. By Theorem 12 and
Le Cam’s third lemma (see [37], Chapter 6),

lnL(θ;�)
d→ N

(
±1

4
ln

(
1 − δ2(θ)

)
,−1

2
ln

(
1 − δ2(θ)

))

with the plus sign holding under the null and the minus under the alternative. This implies
the following theorem.

THEOREM 13. Let θ̄ be the threshold corresponding to Fγ , as given in Table 3. For any
θ ∈ [0, θ̄ ), the value of the asymptotic power envelope for the tests of the null θ0 = 0 against
the alternative θ0 > 0, which are based on λ1, . . . , λp and have asymptotic size α, is given by

PE(θ) = 1 − �
[
�−1(1 − α) − σ(θ)

]
, σ (θ) =

√
−1

2
ln

(
1 − δ2(θ)

)
.

Here, � denotes the standard normal cumulative distribution function. For θ ≥ θ̄ , the value
of the asymptotic power envelope equals one.

The envelopes differ only for cases with different limiting spectral distributions: Semicir-
cle, Marchenko–Pastur and Wachter, denoted PESC(θ), PEMP(θ, γ1) and PEW(θ,γ ), respec-
tively. Figure 4 shows the graphs of the envelopes for α = 0.05 and γ1 = γ2 = 0.9. Such large
values of γ1 and γ2 correspond to situations where the dimensionality p is not very different
from the degrees of freedom n1 and n2.

1Fyodorov, Khoruzhenko and Simm [17] have an interesting discussion of ubiquity of random processes with
logarithmic covariance structure in physics and engineering applications. In that paper such processes appear as
limiting objects related to the behavior of the characteristic polynomials of large matrices from Gaussian Unitary
Ensemble.
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FIG. 4. The asymptotic power envelopes PESC(θ), PEMP(θ, γ1) and PEW(θ,γ ) for α = 0.05, γ1 = γ2 = 0.9.

Envelope PEMP(θ, γ1) can be obtained from PEW(θ,γ ) by sending γ2 to zero. Further,
PESC(θ) can be obtained from PEMP(θ, γ1) by transformation θ �−→ √

γ1θ . Further, note the
difference in the horizontal scale of the bottom panel of Figure 4 relative to the two other
panels. For γ1 = γ2 = 0.9, the phase transition threshold corresponding to the Wachter distri-
bution is relatively large. It equals (γ2 + ρ)/(1 − γ2) ≈ 18.9. Moreover, the value of PEW(θ)

becomes substantially larger than the nominal size α = 0.05 for θ that are situated far below
this threshold. This suggests that the information in all the eigenvalues λ1, . . . , λp might be
effectively used to detect spikes that are small relative to the phase transition threshold in two
sample problems. We leave a confirmation or rejection of this speculation for future research.

7. Concluding remarks. Note that Theorem 12 establishes the weak convergence of the
log likelihood ratio viewed as a random element of the space of continuous functions. This is
much stronger than simply the convergence of the finite dimensional distributions of the log
likelihood process. In particular, the theorem can be used to find the asymptotic distribution
of the supremum of the likelihood ratio and, thus, to find the asymptotic critical values of
the likelihood ratio test. It also can be used to construct asymptotic confidence intervals for a
subcritical spike as well as to describe the asymptotic properties of its maximum likelihood
estimator. We do not pursue this line of research here but provide a general outline.

Consider the log likelihood ratio lnL(θ;�) − lnL(θ0;�). According to Theorem 12, this
ratio converges to X(θ) ≡ L(θ)−L(θ0). By Le Cam’s third lemma, under the null hypothesis
that the true value of the spike equals θ0, X(θ) is a Gaussian process with mean

EX(θ) = 1

4
ln

(1 − δ2(θ))(1 − δ2(θ0))

(1 − δ(θ)δ(θ0))2

and covariance function

Cov
(
X(θ1),X(θ2)

) = −1

2
ln

(1 − δ(θ1)δ(θ2))(1 − δ(θ0)δ(θ0))

(1 − δ(θ1)δ(θ0))(1 − δ(θ2)δ(θ0))
.
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An approximation to the distribution of the supremum of such a process over θ ∈ [0, θ̄ −ε]
can be obtained via simulation. Alternatively, it might be expressed analytically in the form of
converging Rice series (see, e.g., [2]). Quantiles of the distribution can be used as asymptotic
critical values for the likelihood ratio test of the hypothesis θ = θ0. Inverting the test, we
obtain asymptotic confidence intervals for the true value of a subcritical spike.

The maximum likelihood estimator for the spike, θ̂ML, equals the arg max of lnL(θ;�) −
lnL(θ0;�) over θ ∈ [0, θ̄ − ε]. By Lemma 2.6 of [20], the limiting process X(θ) achieves
maximum at a unique point with probability one. Therefore, by the argmax continuous map-
ping theorem, θ̂ML converges in distribution to the arg max of X(θ). The distribution of such
an arg max can be approximated using simulations.

Unfortunately, the quality of the estimator θ̂ML cannot be “good.” For PCA we were able
to prove that no estimator of θ has root mean squared error better than the order of magnitude
of the subcritical parameter θ . This result will appear in another work.

Our asymptotic discussion of James’ framework can likely be extended to a fixed number
of subcritical spikes. Such an extension would require developing Laplace approximations
to multiple contour integrals and uniform approximations to hypergeometric functions of
two matrix arguments in terms of elementary functions. Alternatively, one may employ large
deviation analysis of spherical integrals, as in [32], which covers the PCA case. As this paper
is already long, the extension will appear separately.

Addressing the case of slowly increasing number of spikes may require new techniques,
perhaps, similar to those developed in [14]. In such a case, relatively little is known even
about the phase transition phenomenon. For sample covariance matrices, Theorem 1.1 of [4]
can be used to show that the phase transition still happens at the usual threshold θ̄ = √

γ1.
However, it is not clear whether the experiments of observing sample covariance eigenval-
ues corresponding to the null case and an alternative with a growing number of subcritical
eigenvalues remain mutually contiguous.

Note that, intuitively, the asymptotic power of the likelihood ratio test of the null hypoth-
esis of no spikes against the alternative of one spike should not decrease, if the rank-one
assumption on the alternative is wrong and there are additional spikes. In Section 7.1 in the
Supplementary Material [19], we confirm this intuition for SMD and PCA cases. A confir-
mation or refutation of the intuition for the other James’ cases requires further analysis and
is left for future research.

In this paper we make the assumption that n2 ≥ p to ensure the invertibility of matrix E in
(1) with probability one. However, we also make the assumption n1 ≥ p, mostly to simplify
our exposition. It can probably be lifted without a substantial reformulation of the problem.
Indeed, for SMD the assumption is irrelevant. For PCA, the case p > n1 was explicitly cov-
ered in [31]. For REG0, the assumption can be relaxed using the symmetry of the problem.
Specifically, the canonical REG0 problem tests restriction M = 0 in the model Y = M + ε,
where each matrix is n1 ×p and ε has i.i.d. standard normal components. Clearly, interchang-
ing roles of n1 and p yield essentially the same problem.

For CCA, the sample canonical correlations are not well defined for p > n1. For SigD,
our derivations (not reported here) show that the equivalent of (6) for p > n1 involves the
hypergeometric function 2F1. Therefore, SigD with p > n1 represents the fifth, rather than
the second, group of multivariate statistical problems according to James’ [18] classification.
For REG, an equivalent of (6) for p > n1 can be obtained using [18], equation (74). However,
further analysis of SigD and REG in the situation where p > n1 needs more substantial
changes to our derivations. We leave such an analysis for future research.

Finally, many existing results in the random matrix literature do not require that the data
are Gaussian. This suggests that some results about tests for the presence of the spikes in
the data may remain valid without the Gaussian assumption. We hope that the results of this
paper might provide a benchmark for such future studies.
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