Test-Case Prioritization for Configuration Testing

Runxiang Cheng
University of Illinois
Urbana-Champaign, IL, USA
rcheng12@illinois.edu

Darko Marinov

University of Illinois
Urbana-Champaign, IL, USA
marinov@illinois.edu

ABSTRACT

Configuration changes are among the dominant causes of failures of
large-scale software system deployment. Given the velocity of con-
figuration changes, typically at the scale of hundreds to thousands
of times daily in modern cloud systems, checking these configura-
tion changes is critical to prevent failures due to misconfigurations.
Recent work has proposed configuration testing, Ctest, a technique
that tests configuration changes together with the code that uses
the changed configurations. Ctest can automatically generate a
large number of ctests that can effectively detect misconfigurations,
including those that are hard to detect by traditional techniques.
However, running ctests can take a long time to detect misconfigu-
rations. Inspired by traditional test-case prioritization (TCP) that
aims to reorder test executions to speed up detection of regression
code faults, we propose to apply TCP to reorder ctests to speed up
detection of misconfigurations. We extensively evaluate a total of
84 traditional and novel ctest-specific TCP techniques. The experi-
mental results on five widely used cloud projects demonstrate that
TCP can substantially speed up misconfiguration detection. Our
study provides guidelines for applying TCP to configuration testing
in practice.

CCS CONCEPTS

« Software and its engineering — Software testing and de-
bugging; Software reliability.

KEYWORDS

Test prioritization, configuration, software testing, reliability

ACM Reference Format:

Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu. 2021.
Test-Case Prioritization for Configuration Testing. In Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA °21), July 11-17, 2021, Virtual, Denmark. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3460319.3464810

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA °21, July 11-17, 2021, Virtual, Denmark

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8459-9/21/07...$15.00
https://doi.org/10.1145/3460319.3464810

452

Lingming Zhang
University of Illinois
Urbana-Champaign, IL, USA
lingming@illinois.edu

Tianyin Xu
University of Illinois
Urbana-Champaign, IL, USA
tyxu@illinois.edu

1 INTRODUCTION

Besides source-code changes, configuration changes are among the
dominant causes of failures in large-scale software system deploy-
ments. In fact, configuration changes can be much more frequent
than code changes. Many companies are deploying configuration
changes to production systems hundreds to thousands of times
a day [31, 33, 55, 64], hence misconfigurations become inevitable.
For example, 16% of the service-level incidents at Facebook are
induced by configuration changes [60], including major outages
that turn down the entire service [21, 56], and misconfigurations
were reported as the second largest cause of service disruptions
in a main Google service [3]. The prevalence and severity of mis-
configurations have been repeatedly reported by many failure stud-
ies [14, 23, 35, 37, 46, 68, 69, 73, 74].

Recently, Ctest has been proposed as a promising technique
for configuration testing, i.e., testing a configuration before de-
ployment [59, 70]. Ctest can effectively detect misconfigurations.
The key idea of configuration testing is to connect configuration
changes to software tests, so that configuration changes can be
tested in the context of code affected by the changes. In this way,
configuration testing can reason about the program behavior under
the actual configuration values to be deployed and detect sophisti-
cated misconfigurations that can hardly be detected by rule-based
validation [4, 7, 17, 42, 60] or data-driven approaches [33, 38, 53, 54,
62, 66, 67, 76, 78]. Attractively, our prior work [59] shows that con-
figuration test cases, or ctests, can be generated by parameterizing
existing software tests abundant in mature software projects—up
to 83.2% of existing tests can be transformed into ctests.

At a high level, a ctest is a software test parameterized by a set of
configuration parameters. Running a ctest instantiates each param-
eter with a concrete value (e.g., the default value, the current value
in production, or a new value to be deployed to production). Given
a configuration change, all the ctests which are parameterized by
at least one of the changed parameters are selected to run. Because
one configuration parameter can parameterize many ctests, a con-
figuration change can require running a large number of ctests.
For example, some configuration changes from the HDFS project
require running more than 2,000 ctests on average, which is over
half of the total number of tests in that project [59]. Overall, in
the Ctest dataset of five open-source projects (HCommon, HDFS,
HBase, ZooKeeper, and Alluxio) [59], the number of ctests per con-
figuration parameter is 1-3,069 (average 821), and a configuration
change modifies 1-29 (average 6) parameters.

ISSTA °21, July 11-17, 2021, Virtual, Denmark

One main challenge in adopting configuration testing in contin-
uous deployment is the time required to detect misconfigurations.
This test-running time is on the critical path from the point where
configuration changes are made to the point where they are de-
ployed to production. For example, in the Ctest dataset, the time to
run all ctests ranges from 20 minutes to 230 minutes (with an aver-
age of 97 minutes) per project. Given the velocity of configuration
changes in modern deployment cycles [33, 60, 68], misconfigura-
tions inevitably happen. With the large number of ctests to run be-
fore deployment, the time to detect the misconfiguration is crucial,
because developers cannot start troubleshooting until the miscon-
figuration is detected. The time to detect the misconfiguration can
greatly affect configuration deployment.

We are the first to address the cost of configuration testing using
test-case prioritization (TCP). Traditionally, TCP aims to order re-
gression tests to expose code bugs faster during software evolution.
TCP has been extensively studied for over two decades [10, 48, 75].
For example, widely studied are the total TCP strategy [48] that
favors tests covering more code elements and the additional TCP
strategy [49] that favors tests covering more code elements not yet
covered by already prioritized tests. Inspired by traditional TCP,
we aim to leverage TCP techniques to order ctests to substantially
speed up misconfiguration detection for configuration changes.

We extensively evaluate 84 TCP techniques on the large Ctest
dataset [59], with 7,974 ctests for five open-source projects and 66
real-world configuration change files collected from public Docker
images that have some misconfigured parameter values. Our exper-
iments with configuration changes do not involve code changes,
matching realistic scenarios where only a new configuration is
about to be deployed. We start with 16 basic TCP techniques: (1) ran-
domized as the baseline, (2) traditional techniques based on code
coverage, (3) quickest-time-first (QTF) technique, (4) recently pro-
posed techniques based on information retrieval (IR), and (5) our
novel configuration-specific TCP techniques.

We next enhance the basic TCP techniques using two sources
of inspiration. First, using the idea of cost-cognizant TCP [9, 30],
we enhance basic TCP techniques with the test execution time to
design hybrid TCP techniques. Second, inspired by cross-checking
configurations of multiple system instances used in troubleshooting
systems such as the Microsoft PSS [18, 63, 64], we design a new fam-
ily of peer-based TCP techniques that consider the test outcomes of
ctests on related configuration changes. The insight is to prioritize
earlier ctests that detected misconfigurations of a parameter in
peer deployments, because these ctests are likely effective for the
parameter change regardless of the value. Following Microsoft PSS,
our peer-based TCP techniques are privacy preserving and do not
use potentially sensitive value information of peer deployments
but use only parameter names.

Our study leads to the following key findings:

e Among basic techniques, QTF yields competitive perfor-
mance and often outperforms sophisticated techniques (e.g.,
based on code coverage or IR) and even some configuration-
specific techniques (e.g., based on parameter-coverage and
stack traces) by up to 22% (using an APFDc-like metric, §4.2).

e Hybrid TCP techniques that enhance basic techniques with
the test execution time improve the performance of basic
techniques by up to 27%. Our results confirm that hybrid,

453

Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu

cost-cognizant TCP techniques are effective, even in the new
domain of configuration testing.

e Peer-based TCP techniques can outperform other techniques
and improve the performance of TCP even further by 15%.
The results encourage sharing configuration test outcomes
for the same project: “make friends and don’t test alone!”

Our paper makes the following contributions:

e Our work reduces the time to find misconfigurations, one
of the main challenges of adopting configuration testing in
real-world continuous deployment process.

e We evaluate 84 traditional and ctest-specific TCP techniques
for configuration testing, and we have released our code and
data at https://github.com/xlab-uiuc/ctest_prio_art.

e We analyze the effectiveness of TCP for ctests and find highly
promising results for reducing the time to find test failures
and thus detecting misconfigurations early.

2 BACKGROUND

Configuration testing is a testing technique for detecting misconfig-
urations (manifesting as failing tests) to prevent them from being
deployed to production systems. The basic idea is to connect soft-
ware tests with the specific configuration to be deployed. In this
way, configuration testing can test configuration changes in the
context of code that is affected by the changed configuration. A con-
figuration test case (ctest) is parameterized by a set of configuration
parameters. Running a ctest instantiates each of its input parame-
ters with an actual configuration value to be deployed to production.
Like regular software tests, ctests exercise the program and check
(via assertions) that program behavior satisfies certain properties
(e.g., correctness, performance, security). Figure 1 illustrates an
example ctest from prior work [59].

Ctest (configuration testing) differs from approaches that explore
multiple configurations, e.g., configuration-aware testing, combi-
natorial testing, or misconfiguration-injection testing [16, 22, 24,
32, 34, 44, 57, 72], which sample representative configurations or
misconfigurations through systematic or random exploration of
the enormous space of value combinations. Systematic exploration
can be prohibitively expensive due to combinatorial explosion [34],
while random exploration can have a low probability of covering all
the values that will be deployed [32]. Ctest has neither the cost of
systematic exploration nor the low coverage of random exploration.
Ctest focuses on testing only one specific configuration that is to
be deployed to the production system.

A ctest £(P) is parameterized by a set of configuration param-
eters P. Running a ctest instantiates each parameter p € P with a
concrete value as an argument. P is typically a small subset of all
the configuration parameters (denoted as P).

A system configuration is defined as the values of all the con-
figuration parameters, denoted as C = ;=1 jp|{(pi — vi)}, ie.,
it assigns a value v; to every parameter p; € P. Running a ctest
instantiates each parameter p; € P with its value in the system
configuration v; such that (p; — v;) € C.

A configuration change updates the values of a subset of the
configuration parameters. A configuration change is in the form
of a configuration file diff D. To test a given D, not all available
ctests are run. A ctest f(P) is selected to test a given D if at least

Test-Case Prioritization for Configuration Testing

Configuration Change
- hbase.http.max.threads
+ hbase.http.max.threads

@Ctest

public void ctestGetMasterInfoPort() {...} ‘,f"
‘ max = conf.getInt(“hbase.http.max.threads”);
/* http/HttpServer.java */
protected void doStart() {
if (needed > max)
throw new IllegalStateException(String.format(
“Insufficient threads...”));
} /* jetty-server-9.3.27.v20190418.jar */

The value of needed is 6
and is larger than 5 in the

configuration change.
Figure 1: A ctest which exercises doStart with the value to
be changed and detects the misconfiguration.

one configuration parameter in D is in the input parameter set P.A
configuration diff, D, passes if all selected ctests pass, and it fails if
any selected ctest fails. Figure 2 gives an example of configuration
testing for a given configuration file diff.

Overall, ctests check whether the configuration to be deployed
has some misconfigurations, which will manifest as ctest failure(s).
TCP for ctests pushes this further by trying to detect these miscon-
figurations, if any, as soon as possible by first running ctests that
are more likely to fail for the new configuration.

3 TCP TECHNIQUES

We next present all the TCP techniques we study for reducing the
cost of detecting misconfigurations in configuration testing. §3.1
presents basic TCP techniques that do not require peer configura-
tion changes, while §3.2 presents basic TCP techniques that analyze
the correlation between peer configuration changes and test fail-
ures to achieve more precise test prioritization. Lastly, §3.3 further
introduces hybrid TCP techniques that combine basic peer-based
or non-peer-based techniques with test execution time. Table 1
summarizes the notation for all evaluated TCP techniques.

3.1 Non-peer-Based TCP

The non-peer-based TCP techniques include both traditional TCP
techniques widely studied for regression testing (§3.1.1) and new
TCP techniques we design for configuration testing (§3.1.2).

3.1.1 Traditional TCP Techniques. We study the following tradi-
tional TCP techniques:

Code-Coverage-Based TCP. TCP techniques based on code cover-
age have been extensively evaluated [28, 48, 75] and are still widely
used for comparisons against newly proposed techniques [40, 41].
Code-coverage-based TCP techniques determine the test execution
order based on the code coverage of each test. For example, the total
technique sorts tests in the descending order of the number of code
elements (e.g., methods or statements) covered by each test, while
the additional technique sorts tests in the descending order of the
number of code elements covered by each test but uncovered by the
already prioritized tests [49]. In the literature, code-coverage-based
TCP has been widely studied at both the method and statement
granularities [28]. Thus, we also evaluate total and additional code-
coverage-based TCP at both method (denoted as CC}7, and CCZ’d d)
and statement granularity (denoted as CCj,,, and CC; ,).

454

ISSTA °21, July 11-17, 2021, Virtual, Denmark

1/ Config file /I Ctest suite

pl = 0.1 t1(Py), Pu = {p1,p2}

p2 = false t2(Pyy), Py = {p2,p3}

p3 = foo t3(Py3), Py = {p3}

p4 = /data t4(Pey), P = {p3,p4}

p5 = 250 t5(Pys), Pes = {p4,p5}

/I Config file diff // Selected ctests // Run selected ctests

-pl=o0.1 t1(p1,p2) > ctest config.diff

- p2 = false = t2(p2,p3) #mvn test -Dtest=t1(pl=2,p2=true)
+pl =2 mvn test -Dtest=t2(p2=true,p3=foo)
+ p2 = true

Figure 2: An overview of configuration testing for a config-
uration file diff. Only t1 and t2 are selected to run because
they may be affected by the configuration change. The ctest
framework [36] is built on top of Maven.

IR-Based TCP. Techniques based on information retrieval (IR)
have been recently proposed and shown effective in test-case prior-
itization [41, 51]. IR-based techniques transform the TCP problem
into an IR problem and address it with off-the-shelf retrieval models
(e.g., Tf-idf [52] and BM25 [47]). A typical IR-based technique ex-
tracts code tokens from test files to form a corpus of documents, and
represents code change information (e.g., tokens extracted from
code change diff) as the query. In this way, a similarity value can
be computed between the query and each test document. Tests
that are more similar to code changes are prioritized earlier to de-
tect problematic changes faster. We implement and evaluate the
IRpign and IRy, techniques with BM25, as it has shown the best
results [41, 51].

QTF-Based TCP. The Quickest Time First (QTF) technique simply
orders all the tests in the ascending order of their execution time
in prior testing runs [50]. Although simple, the QTF technique has
been shown to be competitive compared with state-of-the-art TCP
techniques for regression testing [6]. Therefore, we also evaluate
QTF in the context of configuration testing.

3.1.2 Configuration-Specific TCP Techniques. We further design
the following TCP techniques specifically for configuration testing:
Parameter-Coverage-Based TCP. Inspired by traditional TCP
techniques based on code coverage, we propose novel TCP tech-
niques based on parameter coverage. Following the definition of
ctest (§2), each ctest £(P) can test a non-empty set of input con-
figuration parameters P. We treat P as the parameters covered by
f. We propose total and additional TCP techniques based on such
parameter coverage, denoted as PCyo; and PC, 4, respectively.
We also consider the parameter change information to design
change-aware, parameter-coverage-based TCP. For each configura-
tion change D, the set of changed parameters is denoted Pp. For
each ctest /(P), we determine its priority based on the set of covered
changed parameters, i.e., PN Pp. Change-aware parameter coverage
prioritizes ctests that are more relevant to the configuration change,
thus can potentially detect misconfigurations earlier. We evalu-
ate both total and additional techniques based on change-aware
parameter coverage, denoted as PCtDot and PC? 1> Tespectively.
Stack-Trace-Based TCP. Different ctests may read and test the
same parameter in different invocation contexts and thus may have
different capabilities in detecting problematic parameter changes.
For example, two ctests f1 (P;) and f5(P;) may read p € P; N Py in

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Table 1: Notation for all evaluated TCP techniques

TCP Category Notation
Traditional (§3.1.1)

Method-level code-coverage-based ccm
Statement-level code-coverage-based CC*
IR-based with high tokenization Rpign
IR-based with low tokenization IRjow
Quickest time first QTF
Configuration-specific (§3.1.2)

Change-unaware parameter-coverage-based PC
Change-aware parameter-coverage-based pcP
Change-unaware stack-trace-based ST
Change-aware stack-trace-based STP
Peer-based (§3.2)

All configurations Conf?/!
Configurations sharing parameter changes ConfPP
Configurations sharing parameter coverage Conf"®
Configurations sharing root causes ConfRC
Shared parameter coverage with peers ParaP®
Shared root causes with peers ParaRC
Hybrid Models (§3.3)

Divide-by-time hybrids *+Tgiy
Break-tie-by-time hybrids s+ Ttie
Others

Total techniques *tot
Additional techniques *qdd
Randomized order Rand

different source code locations, and the invocation contexts can be
used to prioritize the two reads. Thus, we use the invocation con-
texts for each parameter read for more precise ctest prioritization.
A ctest £(P) instantiates each parameter p € P by reading its
value from configuration file(s) via API calls provided by the con-
figuration management class(es) in the system. The ctest infras-
tructure [36, 59] intercepts the configuration APIs and logs the
stack trace of each API invocation during generation of ctests from
regular tests (and not necessarily during ctest execution). The set
of methods within the invocation contexts for all parameter reads
of each test can be extracted from the stack traces and leveraged for
TCP. We implement both the total and additional techniques based
on such information, denoted as ST;o; and ST 44, respectively.
While ST;o; and ST, 4,4 consider all the methods from all stack
traces where f reads all the parameters from P, the change-aware
variants for a configuration change D consider all the methods from
all stack traces where f reads only the parameters from P N Ppy. The
total and additional techniques for this change-aware variants are

denoted as STgt and STaD 4> Tespectively.

3.2 Peer-Based TCP

We now present a family of new ctest TCP techniques, termed peer-
based TCP, that consider the test outcomes of ctests from related,

455

Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu

peer configurations. Data from peer systems have been used in
troubleshooting systems such as the Microsoft PSS [18, 63, 64],
e.g., PeerPressure utilizes configuration data from peer machines to
infer root causes of misbehavior [64]. Inspired by this idea, peer-
based TCP prioritizes ctests that detected misconfigurations of a
parameter in peer deployments, as these ctests are likely to be
effective for the parameter change regardless of the value.

Deploying peer-based TCP can be done via a server/database
that receives, anonymizes, and stores failed configurations and ctest
outcomes from internal or community sources, to be used for future
prioritization, e.g., PeerPressure utilized the GeneBank database to
troubleshoot misconfigurations at Microsoft [64]. Specifically, our
peer-based TCP are privacy preserving and do not use potentially
sensitive values of peer deployments.

The general definition of peer-based TCP is simple. Let D be
a configuration change to be tested by a ctest suite T, and S be a
set of peer configuration changes (D ¢ S) that have been tested.
A peer-based TCP technique orders T based on various statistics
collected from S. Depending on the granularity of the peer anal-
ysis, we propose two categories of peer-based techniques, at the
configuration granularity (§3.2.1) and the parameter granularity
(§3.2.2). Given a ctest #, D, and information from S, each technique
computes a set of elements X(i,D, S) for the ctest; these sets can
be ordered using a total (X;o;) or additional (X,44) approach, and
we evaluate both on all categories of peer-based techniques.

We illustrate all our proposed techniques using the example
shown in Figure 3. It contains a configuration change D, its ctest
suite T, and a set of peer configuration changes S. Note that each
change is with respect to some default configuration and lists param-
eters whose values changed. The root-cause information specifies
the misconfigured parameter(s) that caused a ctest to fail on a con-
figuration change (e.g., only p3 caused t1 to fail on D1). Empty cells
indicate that the test passed. Thus, T has three types of orders for
D: optimal (run passing t3 last), sub-optimal (run t3 second), and
worst-case (run t3 first).

3.2.1 Techniques at the Configuration Granularity. We now discuss
TCP techniques based on peer configuration changes at different
granularity levels:

All Configurations (Conf?!). The Conf?! set of each ctest f(P)
is simply the set of all peer configuration changes where { failed:

(1)

where Fail({, D’) indicates that { failed on a peer configuration
change D’. For the example in Figure 3, Conf“”(ﬂ, D,S) = {D1,
D2,D3,D4}, Conf®!(t2,D,S) = {D1,D2,D3}, and Conf®!(t3,D,S) =
{D1,D2,D3,D4,D5}. Thus, Conf‘%lt orders Tas t3-t1-t2, and Confzgd
can order T as t3-t2-t1 or t3-t1-t2. According to the root causes

of D, both techniques only produce worst-case orders of T.

Conf?!({,D,S) = {D’ € S | Fail({, D’)}

Conf?! s change-unaware and can prioritize earlier a ctest that
failed many peer configuration changes even if they share no
changed parameter(s) with D, degrading T’s performance in detect-
ing the misconfigurations in the parameters changed in D. Thus,
all the following peer-based TCP techniques are change-aware and
consider which parameters have changed for better prioritization.
Configurations Sharing Parameter Changes (Conf""). The
ConfPP set of each ctest #(P) restricts the set to peer configuration

Test-Case Prioritization for Configuration Testing

/I Ctest suite /I Current config change

T = {t1, t2, t3} D, P, = {p1, p2, p3} ‘
tl(Ptl)J Pei = {p2, p3, p4, p5} X
t2(Py,), Py, = {pl, p6} /I Root causes of ctest failures
t3(P3), P = {p2, p4} t1 t2 t3
/I Peer config changes D1 {p3} {p1} {p4}
s = {D1, D2, D3, D4, D5} D2 {p4} {p1l} {p4}
D1, Py = {pl, p2, p3, p4} D3 {p4a} {p1l} {p4}
D2, Py, = {p1, p2, p4} D4 5 4
D3, Pp; = {pl, p4} (e} {p4y
D4, Py, = {p4, pS, pé} D5 {p4}
D5, Pps = {p4} D {p3} {p1}

Figure 3: An example to illustrate peer-based TCP

changes that have changed parameters in common' with D:
ConfPP(i,D,8) = {D’ € S | Ppy N Pp # {} AFail(£, D")} (2)

For our example, ConfPP(t1,D,S) = {D1,D2, D3}, because Pp; N
Pp = {p1,p2, p3},Pp2NPp = {p1, p2}, and Pp3NPp = {p1}. Similarly,
ConfPP(t2,0,S) = {D1,02,D3} and ConfPP(t3,D,5) = {D1,D2,
D3}. Both Confﬁg and Conf?ﬂl can produce all 6 permutations of
T because all 3 ctests have the same priority.

While more precise than Conf®!, ConfP?
changed parameters in common between D’ and D are not even
read by . In this way, a larger set for Conf®” may not indicate
that £ is more effective in detecting misconfigurations on the cur-
rent changed parameters read by £. Therefore, we next consider
parameter coverage information for more precise TCP.
Configurations Sharing Parameter Coverage (Conf”C). The
Conf?’C set of each ctest #(P) further restricts the set to peer con-
figuration changes that have changed parameters in common with
D and also some parameter(s) in common read by i:

Conf’C(£,D,S) = {D’ € S | Ppy N Pp NP # {} AFail(£, D")} (3)

For our example, Conf’C (t1,D, S) = {D1, D2} because Pp; NPp N
Pt1 = {p2,p3} and Pp; NPp NP1 = {p2}, while Pp3NPp NP1 = {}.
Similarly, Conf’®(t2,D,S) = {D1,D2,D3} and Conf’“(t3,D,S) =
{D1,D2}.Both Conff(g or Configd canorder T as t2-t1-t3 or t2-t3-
t1. Either technique has 50% probability of producing an optimal
or sub-optimal order of T, and produces no worst-case order.

ConfPC may still be imprecise when the exact parameter(s) that

caused 7 to fail on D’ are not in Ppy N Pp N P, which happens when
the root-cause parameter(s) of f on D’ are not in Pp, thus not in
Ppr N Pp. In such a scenario, even if the technique prioritizes ctests
with larger ConfPC, the misconfiguration detection efficiency on
D may not improve simply because the root-cause parameter(s) of
the peer configuration changes are not in Pp. Therefore, we next
consider the root-cause parameter information.
Configurations Sharing Root Causes (ConfXC). The ConfRC
set of each ctest £(P) further restricts the set to peer configura-
tion changes whose root-cause misconfigured parameters are also
changed in D:

ConffC(1,D,S) = {D’ € S | RC(}, D")NPp # {} AFail(£, D)} (4)

could include D’ when

RC(%,D’) is the set of root-cause misconfigured parameter(s) that
actually caused the failure of # in configuration change D’. Note

Note that it considers only parameter names and not values.

456

ISSTA °21, July 11-17, 2021, Virtual, Denmark

that RC(£,D’) C P because a parameter must be read by f (i.e, in
P) to be a root cause of the failure of f.

In Figure 3, ConfRC(t1,D,S) = {D1} because only RC(t1,D1) N
Pp = {p3} is non-empty. Similarly, ConfRC(t2,D,9) = {D1,D2,
D3} and ConfRC(t3,D,S) = {}. Conffoct orders T as t2-t1-t3, and
Confggd can order T as t2-t1-t3 or t2-t3-t1. The probability of
producing an optimal order of T is 50-100%, and no worst-case
order is produced.

While ConfRC is more precise than the earlier peer-based tech-
niques, it requires to maintain the root-cause information for all
failed peer configuration changes. Developers could record such
information while debugging misconfigurations, but such informa-
tion may not always be available (§4.3).

3.2.2 Techniques at the Parameter Granularity. We now discuss
our peer-based techniques based on individual parameters in peer
configurations at different precision levels. Conf®! and ConfP”
techniques do not consider parameter coverage and thus have no
parameter-granularity counterparts.

Shared Parameter Coverage with Peers (Para’C). The Para’C
set of each ctest #(P) is the set of parameters from peer configura-
tion changes in Confpc(f, D, S) described in §3.2.1:

Para”" (i, D,$) = UD’eS, Fail(,D"))
Collecting for each ctest the parameters instead of failed peer
configuration changes explores another possibility where peer-
based TCP could prioritize earlier ctests that failed on a relatively
smaller number of peer configuration changes but a larger set of
configuration parameters from the changes.

For our example, ParaPC(tL D,S) = {p2,p3}, ParaPC(tZ, D,S) =
{p1}, and ParaP€(t3,D,S) = {p2}. Parafoct orders T as t1-t2-t3
or t1-t3-t2. Parasgd orders T as t1-t2-t3. The probability of pro-
ducing optimal orders of T is 50-100%, with no worst-case order
produced, which is an overall improvement to the counterpart
(ConfPC) from §3.2.1.

Shared Root Causes with Peers (Para®C). The ParaRCset of each
test £(P) is the set of parameters from peer configuration changes
in ConfR€ (£,D,S) described in §3.2.1:

Para®C (i, D, S) = U

Pp N Pp Nnp

i ’
D’ €S, Fail(i,D") RC(t, D) N Pp ©)
For our example, ParaRC(t1,0,5) = {p3}, ParaRC(t2,D,5) =
{p1}, and ParaRC (t3,D, S) = {}. Both Paralfoc; and Parafgd can order
T as t1-t2-t3 or t2-t1-t3. The probability of producing optimal
orders of T is thus 100%, which improves over the counterpart

(ConfRC) from §3.2.1.

3.3 Hybrid TCP

Various TCP techniques have been reported to benefit by addition-
ally considering test execution time [9, 30, 41, 50]. For example,
the cost-cognizant additional code-coverage-based technique [30],
which considers the additional code coverage per time unit for each
test, can substantially improve the additional technique in terms of
the time for detecting regression faults. Therefore, besides all the
basic TCP techniques introduced in §3.1-3.2, we introduce hybrid
techniques that combine the basic techniques with test execution
time. Inspired by the prior work in cost-cognizant TCP [30, 41, 50],

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Test-Case Order O1: t1-t2-t3

100 A 100 A

Test-Case Order 02: t2-t1-t3

501 501

Area=67% Area=67%

Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu

Test-Case Order O3: t1-t3-t2 Test-Case Order O4: t3-t1-t2

100 A 100 A

50 :

Area=50%

50 .

Area=33%

20 40 60 80
% Ctest suite executed

T T — T 0
20 40 60 80 100

% Ctest suite executed

100 A 100 A

100

50 50

Area=79%

Area=71%

20 40 60
% Ctest suite executed

T T T 0 — T
20 40 60 80

% Ctest suite executed

—/

50 1 :

Area=54%

0 L T
80 100 100

100 A 100 A

504 ’

Area=29%

20 40 60 80
% Ctest suite cost incurred

20
% Ctest suite cost incurred

40 60 80 100

Percentage of Detected Misconfigurations

100

20 40 60 80
% Ctest suite cost incurred

20 40 60 80

% Ctest suite cost incurred

100 100

Figure 4: An example to illustrate APMD (first row) and APMDc (second row) for four test-case orders

we define and implement two generic cost-cognizant hybrid TCP
models. We apply both models to all aforementioned TCP tech-
niques to construct hybrid TCP techniques, and evaluate their pri-
oritization effectiveness for ctests.

3.3.1 Divide-by-Time. Following the traditional cost-cognizant
TCP techniques, the Divide-by-time (T ;;,) model constructs hy-
brid TCP techniques that prioritize tests in the descending order
of the input tests’ priority values per time unit, i.e., the original
priority values divided by the test execution time. For example, a
hybrid additional code-coverage TCP technique with Ty;,, model
(CC™, +T4i,) prioritizes the test with the largest value of the num-

add
ber of uncovered methods divided by the test execution time.

3.3.2 Break-Tie-by-Time. We further study how to use time infor-
mation in the Break-tie-by-time (T;;.) model. It constructs hybrid
TCP techniques that order tests that are “tied” by the basic TCP
technique (i.e., multiple tests have the same priority score) in the
ascending order of their test execution time (as QTF). For example,
hybrid technique CC"™ +T;j, orders the tied tests with QTF when

tot
multiple tests have the same amount of covered methods.

4 EXPERIMENTAL SETUP
4.1 Research Questions

In this study, we aim to answer the following research questions:

e RQ1: How do basic non-peer-based TCP techniques perform
in detecting real-world misconfigurations?

e RQ2: How do hybrid non-peer-based TCP techniques per-
form compared with the basic non-peer-based techniques?

e RQ3: How do peer-based TCP techniques perform compared
to non-peer-based TCP techniques?

4.2 Metrics

Common metrics to evaluate traditional TCP techniques are Aver-
age Percentage of Faults Detected (APFD) and Average Percentage
of Faults Detected per Cost (APFDc) [75]. APFDc is a cost-aware
variant of APFD that considers the cost of test executions [9, 30].
In the context of configuration testing, however, test failures are
caused by misconfigurations and not (code) regression faults. Thus,
we adapted the definition of APFD and APFDc to derive two new
metrics for evaluating TCP techniques for configuration testing:

457

Average Percentage of Misconfigurations Detected (APMD) and Av-
erage Percentage of Misconfigurations Detected per Cost (APMDc).
The only difference in the definitions is that APFD and APFDc
consider code bugs, while our metrics consider misconfigurations.
Higher APMD and APMDc values (i.e., closer to 1.0) indicate all mis-
configurations are detected earlier, while lower values (i.e., closer
to 0.0) indicate all misconfigurations are detected later.

We illustrate APMD and APMDc for the following example sce-

nario. Let T = {t1, t2, t3} be a ctest suite for a configuration change
D, Pp = {p1,p2}; t1 failed on p1, t2 failed on p2, and t3 passed;
the execution costs of t1, t2, and t3 are 1, 2, and 3 seconds, respec-
tively. Figure 4 illustrates the APMD and APMDc values for four
orders (i.e., 01,02, 03, and 04) of T; from left to right, 01 and 02 are
optimal (run passing t3 last), 03 is sub-optimal (runs t3 second),
04 is the worst-case (runs t3 first).
Average Percentage of Misconfigurations Detected (APMD).
APMD is our adaption of APFD [48] in the context of configuration
testing. Let n be the number of configuration tests to be run, m
be the number of misconfigured parameters in the configuration
change, and TF; be the position (in the order) of the first failed
configuration test that detects the i*" misconfigured parameter:

1

2n

Z;r:llTFi
nxXm

APMD =1 -)

APMD computes the area under the curve between the percent-
age of detected misconfigurations in a configuration change and
the percentage of the test suite executed, as illustrated in Figure 4.
Note that a larger area always implies faster overall detection for all
misconfigurations in the current configuration change. For example,
01 detects 50% of the misconfigurations in D (i.e., p1) after executing
33.3% of T (i.e., t1), and 01 detects 100% of the misconfigurations
in D (i.e., p1, p2) after executing 66.7% of T (i.e., t1, t2). Thus, the
APMD value of 01 is 67% as 1 — 13+—22 + % = 0.67 using Formula 7.
However, like APFD, APMD is cost-unaware. Although 01 and 02
have the same APMD value, 01 is actually more cost-effective than
02 because 01 halves the cost to detect the first misconfiguration
compared to 02.

Average Percentage of Misconfigurations Detected per Cost
(APMDc). APMDc considers the cost, as in APFDc, which com-
monly uses test execution time [6, 11]. Let n, m, and TF; be the same

Test-Case Prioritization for Configuration Testing

as for APMD, and t; be the execution time? of the h configuration
test in the prioritized order:

m n 1
25 (Zlorp, i — 3iTF)

APMDc =
Z;l:l tiXm

®)

Similar to APMD, APMDc computes the area under the curve
between the percentage of detected misconfigurations in a configu-
ration change and the percentage of its test suite cost incurred, as
illustrated in Figure 4. For example, the total cost of T is 6 seconds;
01 detects 50% of the misconfigurations in D after incurring 17% of
the total cost (i.e., 1 second from t1), and 01 detects 100% of the
misconfigurations in D after incurring 50% of the total cost (i.e., 1
second from t1 and 2 seconds from t2). Thus, the APMDc value

1+2+3-1.1)+(2+3-1 -2
of 01 is 79% as (1424 dé:;; 2 _ 0.79 using Formula 8. The

APMDc value of 02 is lower than that of 01, showing that APMDc
can properly distinguish the more cost-effective order.

APMDc, like APFDc, more precisely captures the cost/time that
developers would actually experience to detect all misconfigura-
tions. Prior studies [6, 30] show that APFD can rank TCP techniques
for regression faults differently than APFDc, and thus APFD is less
reliable. We still evaluate both APMD and APMDc to check if the
same holds for TCP techniques in the new application domain of
configuration testing.

4.3 Dataset Collection

We build our evaluation dataset from the Ctest dataset [59], which
contains 66 configuration changes with misconfigurations collected
from real-world Docker images on Docker Hub [8, 71] for five
widely-used projects: HCommon, HDFS, HBase, ZooKeeper, and
Alluxio. The dataset also includes ctests for these projects. To com-
pute APMD and APMDc, we ran ctests on all configuration changes
and collected test outcomes and execution time.

We also identified the root-cause misconfigured parameter(s) for
each test failure. Root-cause information is necessary to precisely
compute APMD and APMDc for any TCP technique. (Prior research
on regression testing has likewise had to map each test failure to
the code fault(s) to compute APFD and APFDc [9, 30].) It is also
necessary for constructing peer information for some peer-based
TCP techniques (§3.2). Automated root-cause localization such as
delta debugging [77] is not applicable because misconfigurations
are not monotone due to configuration dependencies [7]. While
several advanced misconfiguration-diagnosis techniques exist [1, 2,
45, 65, 82, 83], we manually localized the root causes to ensure the
precision; most failure-inducing misconfigured parameters can be
easily identified as root causes by inspecting failure logs. Besides
the techniques that need root causes, all others are fully automatic.
We excluded flaky tests from the dataset using best-effort reruns [5].
Table 2 shows the version, number of configuration changes, and
average numbers of parameters, misconfigured parameters, and
ctests per change of each project.

ZNote that the time for APMDc is measured when running tests on the changed
configuration, while the time used to prioritize tests (in QTF and hybrid techniques) is
from running tests prior to the change.

458

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Table 2: Configuration Change Dataset

Avg #Params

Project Ver. #Changes Al Misconf Avg #Ctests
HCommon 2.8.5 20 3.75 1.05 955.75
HDFS 2.8.5 16 5.19 1.31 1680.12
HBase 2.2.2 12 8.33 1.92 1254.25
ZooKeeper 3.5.6 14 6.57 1.71 74.36
Alluxio 2.1.0 4 13.75 1.25 949.00

4.4 Implementation

We implemented the main logic of all the studied TCP techniques
in Python 3. Our infrastructure for test information collection and
test prioritization is written in Java and Python.

4.4.1 Test Information Collection. We next discuss how we col-
lected the necessary test information required by the studied TCP
techniques. We used OpenClover [39] to collect code coverage at
statement and method granularity (§3.1.1). To collect ctest execu-
tion time (§3.1.1, §3.3), we ran each ctest 5 times prior to configura-
tion changes on the same machine, and used the averages as the
time for prioritization. Execution times reported as 0.000 by Maven
are changed to 0.001 because Maven rounds off time to 3 decimal
places. For IR data (§3.1.1), we implemented a parser in Java 8 with
JavaParser 3.18.0 [19] to collect tokens from test class files for all
evaluated projects. We also performed an automated step of ctest
generation with the open-sourced Ctest prototype [36] to collect in-
vocation contexts for stack-trace-based TCP techniques (§3.1.2). We
directly collected parameter coverage (§3.1.2) from open-sourced
ctests [36]. Inspired by cross validation [58], for each configuration
change in the dataset, we treated the other configuration changes
from the same project as its peer configuration changes (§3.2).

4.4.2 Test Prioritization. Because most of the studied TCP tech-
niques are built based on the traditional total and additional tech-
niques, we implemented generic total and additional TCP functions
following the traditional definitions. We also implemented the QTF
TCP technique according to the traditional definition.

For IR-based techniques (§3.1.1), the choice of retrieval model
and the approach to construct data objects can substantially affect
the performance [41, 51]. Our IR-based TCP techniques used the
BM25 retrieval model [47], as well as High;oge,, and Low;ogep, for
data-object construction, which have been demonstrated to achieve
state-of-the-art performance by Peng et al. [41]. Specifically, our
IRp;gn TCP technique used the Highyogen construction, where a
document only contains identifiers from a test file. Similarly, our
IR}, TCP technique used the Low, ., construction, where a doc-
ument contains identifiers, comments, and string literals from a test
file. We collected documents at test-case level utilizing Saha et al.’s
approach [51], treating each test method as a test case, as common
in JUnit. We processed documents following standard tokenization
steps [41]. Unlike code changes, which can contain a variety of ele-
ments, a configuration change only contains names and values of
the changed parameters. To construct query for each configuration
change, we only use tokenized names of the changed parameters,
because actual configuration values are often too specific to be
found in the test code.

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu

1.0

0.9

Sos

B APMDc
APMD

<o7
0.6
Qos
o

<04

0.3

0.2

©rt

iy

STaga QTF ST2. CCl PCaga PCy IRhigh

IR/ow

[Rand PC2, PCoot cco, CCs, STot ST2,

Figure 5: Distribution of APMDc and APMD values for basic non-peer-based TCP techniques (sorted by average APMDc)

4.5 Experimental Procedure

To compare all the studied TCP techniques, we also implemented
a randomized TCP technique (denoted as Rand) to serve as base-
line, which shuffles ctests with a random seed. For all studied TCP
techniques with no break-tie strategy specified, ties are also bro-
ken with random seeds. Thus, to amount for different results from
randomization, we ran each TCP technique on every configuration
change 100 times, each time with a different seed. Specifically, for
each TCP technique, we did the following: (1) load the collected
configuration change dataset, i.e., ctest outcome, execution time,
root-cause analysis results under configuration changes, etc. (§4.3);
(2) load the test information for the current technique (§4.4); (3)
select a configuration change D that has not been run under the
current technique; (4) initialize a random seed; (5) apply current
technique to order the ctest suite of D; (6) compute APMD and AP-
MDc of the ctest suite order based on the collected ctest outcome,
execution time, and root causes; (7) repeat steps (4)—(6) 100 times;
(8) repeat steps (3)—(7) on all 66 configuration changes.

In total, we evaluated 84 TCP techniques for configuration test-
ing: 16 basic non-peer-based techniques, of which 15 are described
in §3.1 and 1 is randomized baseline; 12 basic peer-based techniques
described in §3.2; 32 hybrid non-peer-based techniques, of which 16
each use T ;, and T;;e models (§3.3); and 24 hybrid peer-based ones.
In total, we performed 554,400 (84"66*100) unique TCP executions.

5 RESULTS AND ANALYSIS
5.1 RQ1: Basic Non-peer-Based TCP

This RQ compares non-peer-based traditional and configuration-
specific TCP techniques on APMD and APMDc. In Figure 5, each
violin plot and its embedded box plot show the distribution of
APMD or APMDc values per project per run for each TCP technique.
Each volin/box plot represents 500 (5°100) data points, for five
projects and 100 random seeds. The white bar in each box plot
shows the median, while the dot shows the (arithmetic) mean over
all the data points for each TCP technique.

We further show the Tukey HSD test [61] results in Table 3.
Tukey HSD is a post-hoc test based on the studentized range distri-
bution; it compares all possible pairs of means to find out which
specific groups’ means (compared with each other) are significantly
different. We performed this test on APMD and APMDc values to
check for statistically significant differences among the studied TCP
techniques [41]. In the table, Column "Average" shows the mean
APMDc ("A.c") and APMD ("A.") values per technique (same as the
dots in Figure 5). Importantly, Column "Group" presents the results

459

of the Tukey HSD test. Tukey HSD puts techniques into different
groups if they have statistically significant differences. Groups are
named by capital letters, where "A" denotes the best group, and the
performance degrades in alphabetical order. A technique having
multiple letters has performance between these letter groups. From
the results, we make the following observations.

5.1.1 Total vs. Additional. We
can observe that additional
techniques tend to outperform

Table 3: Results for basic
non-peer-based TCP

TCP :Zeraie A(c;m“l; total ones on APMD and AP-
i . ’ . MDec. For example, stack-trace-

STeaq | 895 917 A AB baged TCP has the highest
QTF | 890 .768 | AB G average APMDc value (0.895)
sTP., | 877 898 | ABC BCD among all studied techniques
ccm | 875 934 | ABC A when using the additional strat-
PC,u4 | 870 883 | ABC CDE egy, but it has one of the
PCP | 870 873 | ABC CDE lowest average APMDC values
WRygn | 865 898 | ABC BCD (0.743) wh.en. using t.he total
Ry, | 859 904 | ABC ABC strategy. Similar findings can
ccs | ss6 924 | BC AB be observed for code-coverage-
add based TCP on the APMD val-
Rand | 856 855 | BC E ues, as well as other studied
PCh, | 841 869| C DE techniques. The Tukey HSD
PCor | 803 811| D F test results also confirm our ob-
CClpy | 798 869 | D DE servation, e.g., for APMDc, al-
CCS,, |.785 865 | D E most all additional techniques
STior | .743 786 | E FG areinbetter Tukey HSD groups
STR, | 728 777 | E G than Rand, while all total tech-

niques are in worse groups. The
key reason is that the additional strategy considers the impact of
already prioritized tests and tends to execute more diverse tests,
which can expose misconfigurations earlier. This finding is con-
sistent with prior studies on traditional regression testing, which
showed that additional techniques generally perform better than
total techniques in TCP [20, 48, 51, 79]. In summary, we are the
first to find that the additional strategy is preferred over the total
strategy even for configuration testing.

5.1.2 Comparing Coverage Criteria. From Table 3, we can observe
that traditional code coverage at method granularity is still effective
in test-case prioritization for configuration testing. For example,
the additional code-coverage-based TCP techniques outperformed
others in APMD, in which CC;”d d has the best performance. The
reason is that a ctest with higher code coverage is more likely

to exercise its covered configuration parameters in more project

Test-Case Prioritization for Configuration Testing

components, and thus has a higher chance to detect potential mis-
configuration(s). Moreover, configuration-specific coverage criteria
can outperform traditional code coverage on APMDc. For example,
the additional stack-trace-based TCP (ST ,44) is in a statistically bet-
ter group than CCZ’d 4 i APMDc. The potential reason is that ctests
with larger traditional code coverage also tend to run slower; in
contrast, configuration-specific coverage can also effectively guide
misconfiguration detection, but ctests with higher configuration-
specific coverage do not necessarily run slower.

Among the configuration-specific coverage criteria, the best
stack-trace-based TCP technique (ST 44) usually performs better
than the best parameter-coverage-based TCP techniques (PC,44)
on APMD and APMDc. The reason is that different ctests read-
ing the same parameters may have greatly different invocation
contexts and thus may have different capabilities in detecting mis-
configurations. Another interesting finding is that both the best
stack-trace-based and parameter-coverage-based techniques tend
to outperform their change-aware counterparts. For example, ST, ;4
achieves 0.895 (0.917) in APMDc (APMD), while STaD g has 0.877
(0.898). The reason is that majority of configuration changes are
relatively small. Thus, the additional techniques cannot easily prior-
itize ctests with new change-aware configuration-specific coverage,
and behave as random baseline when no ctests have new coverage.

5.1.3 IR-Based TCP. Although IR-based techniques (§3.1.1) have
been recently claimed to be the state-of-the-art in test-case prioriti-
zation and unsafe selection for traditional regression testing [41, 51],
they never perform the best in configuration testing on APMD and
APMDc. There are several potential reasons. First, configuration
changes are usually small and less informative than code changes.
Second, unlike code changes, configuration changes have no sur-
rounding context [41]. Thus, each change query is built simply
from tokenized names of changed parameters (§4.4), which can
often be too ambiguous. For example, the query built from changed
parameters {dataDir, datalogDir} is a bag of words [data, dir,
data, log, dir], which can be common in test files. Another inter-
esting finding is that IR-based techniques never perform the worst
in configuration testing. In fact, IR-based techniques are the most
stable ones: in Figure 5, the plots for IR-based techniques are more
concentrated near the median for both APMD and APMDc. The
stability across runs for each project comes from test documents
being large and diverse, so few ties are produced. Also, IR-based
techniques prioritize ctests whose documents are more related to
the names of changed parameters.

5.1.4 QTF-Based TCP. QTF has the second highest average AP-
MDc, but the absolutely lowest average APMD across all projects.
The reason is that a considerable portion of ctests are transformed
from unit tests that have rather short execution time. Thus, QTF pri-
oritizes these faster ctests first and can end up running many more
ctests than other TCP techniques before detecting the misconfigu-
rations, leading to low APMD values. However, when considering
the test cost for APMDc, QTF is much more cost-effective, because
the ctests prioritized earlier have short execution time. For example,
on HDFS, many ctests prioritized earlier cost less than 0.1 second.

5.1.5 APMD vs. APMDc. While the rankings of many TCP tech-
niques are similar by both APMD and APMDc, the diametrically

460

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Table 4: Per-project results for basic non-peer-based TCP

TCP HCom. HDFS HBase ZooK. Alluxio
Ac A |Ac A |Ac A |Ac A |Ac A
STaqq | 990 998 | .608 .652 | 971 .974 | .963 964 | 941 .995
QTF 998 990 | .865 .621 | 997 963 | 909 .883 | .679 .385
ST?dd 998 .999 | .604 .646 | 908 .928 | .934 923 | 939 .996
Ccamdd 990 .999 | 587 742 | .871 945 | 993 993 | 935 .993
PCprgq | 929 992 | 726 .739 | 948 .948 | 935 .928 | .811 .807
Pcfdd 995 996 | .685 .681 | .947 947 | 917 928 | .807 .813
IRhigh 918 .895 | .855 .887 | .960 .980 | .925 .925 | .669 .803
IR;o 4y 934 911 | .876 914 | 904 974 | 909 915 | .672 .808
CCde 991 998 | .520 .718 | .853 .922 | 993 993 | .923 .986
Rand 992 993 | 577 578 | 947 946 | 939 938 | .823 .820
PC?OZ 985 993 | 874 .868 | .701 .685 | .947 961 | .698 .837
PCior 958 979 | .647 567 | 776 762 | 948 947 | .685 .799
CCZ;t 985 992 | 382 .660 | .778 793 | .993 993 | .852 .906
CC?M 986 .992 | 378 .658 | .776 .793 | .993 993 | .793 .892
STtor 985 985 | .230 .308 | .781 .779 | .986 .991 | .730 .866
STBM 978 992 | .268 342 | .780 .774 | 940 917 | .675 .860

opposite ranking of QTF when using APMD and APMDc indicates
that APMD is not appropriate and can be misleading for configura-
tion testing. This finding is consistent with prior work on traditional
regression testing: APFD has been shown to be misleading in com-
paring TCP techniques because it does not consider test execution
time [6, 30]. Therefore, in the following sections, we only focus
on the APMDc results. Moreover, the high effectiveness of QTF in
APMDc also inspired us to combine the basic techniques with test
execution time information for hybrid techniques (§3.3).

5.1.6 Per-Project Results. Table 4 further presents the detailed av-
erage results for each studied project. The main findings—such as
additional is better than total, and QTF is competitive—from the
overall distribution of APMD/APMDc across all projects are also
similar for individual projects. Thus, we do not show per-project
results in the other RQs due to space limit and results being similar.

5.2 RQ2: Hybrid Non-peer-Based TCP

This RQ evaluates the effectiveness of hybrid non-peer-based TCP
techniques with two hybrid models discussed in §3.3. Figure 6
shows the distribution of APMDc values for each hybrid non-peer-
based technique: the names of corresponding basic non-peer-based
techniques are shown on the x-axis, while the green/orange violin
plots show the distribution of APMDc values for Divide-by-time
(T 4ip)/Break-tie-by-time (T;e) hybrid non-peer-based TCP tech-
niques. Table 5 shows the overall average APMDc values and Tukey
HSD groups for each TCP technique under the two hybrid models.
Note that QTF+T 4;, serves as a baseline for T ;,, hybrid techniques—
it is effectively Rand—while Rand+T;;, serves as a baseline for T;;e
hybrid techniques—it is literally Rand.

5.2.1 Hybrid vs. Basic Non-peer-Based TCP. Both hybrid models
improved the average APMDc values across projects on most of
the basic non-peer-based techniques. For example, excluding the
baselines, the average APMDc values over all basic non-peer-based
techniques is 0.838 (Table 3), while the same values for T;;. and

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu

1.0

? L.
W v
0.8)
v 0.7
o
Zo06
<<
0.5
0.4
m o Tay
03 Tie
0.2
CCoyy CCluq STD, CChe PCiot STtot STada ST2,4 PCP, CCht IRhigh IR/ow Rand PCada PCP, QTF

Figure 6: Distribution of APMDc values for hybrid non-peer-based TCP techniques (sorted by average APMDc from Ty;,)

T i, hybrid techniques are 0.848 and 0.905, respectively. Also, the
best basic non-peer-based technique (ST ,44) achieves an APMDc
value of 0.895, while the best hybrid non-peer-based technique,
CCr s+ Taivs achieves an APMDc of 0.961. CC™", /+Tg;, performs
much better than CC;”d & CC;" 4 favors ctests with larger code cov-
erage but they also tend to run slower, while CC;”d o+ Ldio considers
code coverage per time unit cost (§3.3.1), so CC;ndd+TdiU makes
a better trade-off between the coverage and cost information. In
summary, this finding indicates that the hybrid models can substan-
tially boost the basic non-peer-based TCP techniques. This finding
was previously reported for traditional regression testing [41] but
not for configuration testing.

5.2.2 Divide- vs. Break-Tie-by-
Time. Table 5 shows that T y;,
hybrid techniques overall per-

Table 5: Results for hybrid
non-peer-based TCP

TCP T?Z,era%;e Td(i;vmu?l}ie form better than Ty hybrid

techniques. The average AP-
CCoaa | 961 890 A BC " MDc values range from 0.850 to
CClaa | 958 88| A CD 961 for Tgiy, while they range
STioe | 924 723 | B from 0.723 to 0.928 for Tyze. In-
CClor | 920 798 | BC F terestingly, the additional TCP
PCipr | 919 813 | BC EF techniques with configuration-
STeor | 915 743 | BCD G specific coverage tend to per-
STyuqq | 908 .928 | BCDE A form better with Ty than
STD, | 908 922 | BCDE AB with Ty, opposite to our over-
pcP, | 907 833 |BCDE DE all finding. The reason is that
CCS,, | .898 785 | CDEF F ctests usually do not read as
IRy, | 893 865 | DEF CD many (changed) configuration
IR, |.893 859 | DEF cD parameters as they cover tradi-
Rand | 886 856 | EFG cp tional methods or statements;
PChuq | 876 909 | FG AB when using the add.itional st.rat—
pcD | 865 889 | GH BC egy on conﬁguratlf)n—sps:aﬁc
OTF | 850 890 | H pc coverage, the basic priority

scores of ctests quickly become
0 (already prioritized ctests cover all parameters, and yet-to-
prioritize ctests cannot cover any more parameters), thus making
Ty, effectively become random. For example, on HDFS, PCZ;7 d
cannot provide additional coverage after prioritizing 2—4 ctests. In
contrast, the Ty hybrid model can break such ties by ordering the
tied tests in the ascending order of their execution time (§3.3), thus
outperforming Ty;, in such cases.

5.2.3 Total vs. Additional. With the T;;e model, the additional hy-
brid techniques outperform all the total ones on average APMDc

461

values. This finding is consistent with our finding for the basic non-
peer-based techniques in §5.1.1. Interestingly, this no longer holds
for the Ty;, model. Although the very best T;, hybrid techniques
(CClyy+Taip and CC , +Tg;,) are additional, all other additional
techniques under-perform their total counterparts with the Ty;,,
hybrid model. The reason is that the priority of ctests can easily
become 0 when using the additional strategy, making Ty;,, behave
as random (§5.2.2), while the total strategy can still effectively prior-
itize different ctests. Thus, the Ty;, hybrid model is more effective
for total TCP techniques that seldom encounter 0 priority scores.
Also, Ty;, can be more effective for basic criteria that include more
elements and are more diverse, such as traditional code coverage.

5.3 RQ3: Peer-Based TCP

This RQ evaluates the effectiveness of both basic (§3.2) and hybrid
(§3.3) peer-based TCP techniques for configuration testing. Figure 7
shows the distribution of APMDc values for all the evaluated peer-
based techniques. Table 6 further shows the average APMDc values
and the Tukey HSD groups for these techniques.

5.3.1 Peer-Based vs. Non-peer-Based TCP. According to Table 6, 7
of the 12 basic peer-based techniques outperform the best non-peer-
based technique (i.e., CC;’; d+Tdiv) by average APMDc. Moreover,
as seen in Figure 7, all APMDc values for all peer-based techniques
are well above 0.65, while multiple basic and hybrid non-peer-
based techniques have APMDc values well below 0.65 even up to
0.2 (Figure 5 and Figure 6), indicating the effectiveness and stability
of the basic peer-based techniques for configuration testing.
Para;J g , and Paragg ., are statistically significantly better than
other basic peer-based techniques, as they are both within the best
Tukey HSD group "A". These two techniques are not statistically dif-
ferent, although Parag 5 has a slightly higher average APMDc. This

o C PC
finding is surprising as Para_; ,

but still performs as well as Para

requires no root-cause information,

RC
add’
tion (§3.2). The reason is that on some projects (e.g., ZooKeeper),

many ctests have similar ParaRC, so the additional strategy suffers
the same problem as in §5.2.3. Meanwhile, Para’C values of these
ctests are more diverse (and larger than their ParaR® values).
Different from the results for the non-peer-based techniques, the
hybrid models have only limited effectiveness for the peer-based
techniques. The T ;;, model can only improve the effectiveness for

which requires such informa-

the inferior peer-based techniques. For example, Conf?(l)lt, the worst
basic technique, is improved from 0.899 into 0.945, while the two

best basic techniques (Parafl7 5 , and Parafg ;) have almost no change.

Test-Case Prioritization for Configuration Testing

ISSTA °21, July 11-17, 2021, Virtual, Denmark

1.00 v .
0.90
1%
a
=
o
< 0.80
I Basic
T "
0.70 div
L] Ttle
0.65
Paraf, Parafg, Paraf$ ConfBS, Confty Confall, Conf2f, ParafS ConfRS Conftg Confgl Conf2h

Figure 7: Distribution of APMDc values for peer-based TCP techniques (sorted by average APMDc from Basic)

Table 6: Results for peer-based TCP techniques

TCP Average Group
Basic le'l, Ttie Basic Tdill Ttie

ParaPq, | 985 983 991 | A AB A
ParaR{, | 984 985 979 | A A A
ParaRC | 976 976 977 | AB B A
ConfRC | 968 967 977 B C A
ConfPC | 967 966 977 B C A
Conf¥l | 964 960 977 | B cC A
ConfDP | 962 960 977 B C A
ParalC | 926 952 926 | C D B
ConfRC | 918 968 924 | C C B
Confl& | 899 949 902 | D D C
Conf#l | 899 945 899 | D D C
ConfPP | 899 945 899 | D D C

The T;je model can only slightly improve the effectiveness of the
superior peer-based techniques. For example, Parai g 4 changes from

0.985 to 0.991, while the inferior techniques (such as Conf‘%lt) do
not change at all. The reason is that total techniques usually have
fewer ties, making T ;;, more effective than Tyje.

5.3.2 Configuration vs. Parameter Granularity. Using both addi-
tional and total strategies, techniques at the parameter granularity
have mostly outperformed techniques at the configuration granular-
ity. For example, as seen from Table 6, with the additional strategy,
the basic techniques at the parameter granularity (Para’®, ParaRC)
are both in group "A", while all basic techniques at the configuration
granularity (Conf®!, ConfP?, Conf’®, ConfR) are in group "B".
Similarly, with the total strategy, the basic ParaRCand Para’C are
in groups "AB" and "C", respectively, while all basic techniques at
configuration granularity are within groups "C" or "D". This result
is expected as the parameter granularity captures parameter-level
information from other failed peer configuration changes, while

the configuration granularity is more coarse-grained (§3.2.2).

5.3.3 Total vs. Additional. Similar to the results for the non-peer-
based techniques, the additional strategy generally performs better
than the total strategy for the basic and T;;, peer-based techniques.

Except that Table 6 shows the basic Parafoct is a total technique

462

Table 7: Results for the best TCP techniques

TCP | HCom. ‘ HDFS ‘ HBase | ZooK. | Alluxio | Avg ‘ Group
ParalC +Tre | 999 988 999 971 .998 .991 A
Paraf¢, 995 982 990 975 981 | .985 A
ccm, +Taio 1.00 886 989 .946 983 | .961 B
ST qd 1990 608 971 .963 941 | 895 C
QTF 998 865 997 .909 679 | 890 C
Rand 992 577 947 1939 823 | 856 D

at the parameter granularity that performed slightly better than
basic additional techniques at the configuration granularity, be-
cause ParaRC leverages more fine-grained information about peer
misconfigured parameters to guide more effective prioritization.

5.4 Summary

We compare the best techniques from each of the basic/hybrid peer-
based/non-peer-based categories, i.e., ST, 44 (basic non-peer-based),
CCl 4+ Tdin (hybrid non-peer-based), Parag g 4 (basic peer-based),
and Paraf: g d+Ttie (hybrid peer-based). We also include Rand and
QTF as the baselines. Note that the QTF technique is rather com-
petitive as it outperforms almost all the basic non-peer-based TCP
techniques (Table 3). Table 7 presents the main comparison results.
We can observe that all four techniques significantly outperform
the Rand baseline, and three of them significantly outperform the
QTF baseline. In summary: (1) CC;”dd+le-v is the best non-peer-
based technique and recommended when no peer configuration
information is available, (2) Parag 5 . and its Tyje counterpart are the
best techniques (i.e., both in group "A") and recommended when
peer configuration information is available.

5.5 Threats to Validity

External validity. The threats to external validity mainly lie in
projects and dataset used in this work. To reduce such threats, we
directly use all the real-world projects and configuration changes
from the Ctest dataset [36]. However, our evaluation is only based
on ctests, which cannot represent all possible types of configuration
tests. Future work should consider more diverse datasets and other
types of configuration tests.

Internal validity. The threats to internal validity mainly lie in
the potential bugs in our techniques and experimental scripts. To
reduce such threats, the authors regularly check the results and

ISSTA °21, July 11-17, 2021, Virtual, Denmark

code to eliminate potential bugs. Furthermore, we released all our
dataset and code to benefit the community.

Construct validity. The threats to construct validity mainly lie in
the metrics used in our study. To reduce such threats, we adapt two
widely-used metrics for evaluating TCP techniques (APFD and its
cost-aware variant APFDc) and propose new metrics (APMD and
its cost-aware variant APMDc) for configuration testing.

6 DISCUSSION AND FUTURE WORK

To better measure the overall detection time for all the misconfig-
ured parameters within each configuration change, we introduced
APMDc (together with APMD) as our main evaluation metric. How-
ever, APMDc may not be preferred for practitioners with more
interest in how TCP affects the time to detect misconfigurations.
Thus, we also relate changes to APMDc with changes to the total
test time. APMDc captures time to detect all misconfigured param-
eters in a configuration change. If there is only one misconfigured
parameter, then 0.1 increase in APMDc maps to exactly 10% reduc-
tion of total time. If there are more misconfigured parameters, 0.1
may map to less or more than 10% time reduction to detect either
the first misconfigured parameter or all misconfigured parameters.
For our studied projects, 0.1 increase in APMDc maps to from 7.86%
(HCommon) to 21.93% (HBase) average time reduction to detect
all misconfigured parameters. The reduction can be even larger to
find the first misconfigured parameter, e.g., 0.1 increase in APMDc
maps to 53.38% (Alluxio) average time reduction.

Our study also points to several directions for future work. Since
historical data were reported to be useful in traditional test-case pri-
oritization [10, 25,41, 50], we could leverage historical configuration
change test results from earlier code versions to develop history-
based TCP techniques for configuration testing. We also consider
improving the current configuration-specific TCP techniques and
evaluating them on larger datasets. For example, we can fuse deeper
context information (e.g., how ctests use their parameters acquired
from configuration taint analysis) into stack-trace-based TCP tech-
niques, or improve peer-based TCP techniques by combining more
data from peer configurations (e.g., test time, failure stack traces).

Furthermore, we plan to understand the impact of software evo-
lution on the performance of our evaluated TCP techniques for
configuration testing. Although prior work has shown that the
traditional prioritization techniques remain robust over multiple
system releases [15], this conclusion may not hold in the context
of configuration testing. Configurations and configuration-related
code are updated frequently [60, 84], so certain types of test infor-
mation may be more sensitive to software evolution. For example,
data from old peer configuration changes could be less accurate in
guiding peer-based TCP techniques on recent system releases.

We only evaluate the performance of TCP techniques on con-
figuration changes. However, sometimes software developers may
change both configuration and code in the same commit. In such
context, a TCP technique should consider both configuration and
code information, and balance the effectiveness in speeding up
both misconfiguration and code fault detection. We plan to study
how the mixture of configuration and code testing can shift the
performance of our evaluated TCP techniques, and understand how
to develop competitive TCP techniques in such context.

463

Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu

7 RELATED WORK

We have already introduced the background on configuration test-
ing (§2) and discussed the related test-case prioritization (TCP)
techniques (§3), so this section briefly discusses the basics and ap-
plications of TCP. TCP techniques were initially proposed to reorder
test executions for traditional software systems (e.g., common C
and Java applications) to speed up detection of regression faults dur-
ing software evolution. To date, a large number of code-coverage-
based TCP techniques have been proposed for such purpose, includ-
ing techniques based on traditional total/additional heuristics [28],
adaptive random testing [20], genetic algorithms [26], and con-
straint solving [80]. More recently, researchers have also looked
into TCP techniques that do not require code-coverage informa-
tion, e.g., techniques based on information retrieval [41] or static
program analysis [29]. Interestingly, although more and more TCP
techniques have been proposed, the traditional additional technique
and its cost-cognizant variant (e.g., hybrid with Divide-by-time)
have still remained among the most effective TCP techniques [6].
Besides the traditional application scenarios, TCP has also been
applied to various other scenarios, e.g., mutation testing [81], fault
localization [13], and automated program repair [12, 27, 43]. More-
over, researchers have applied TCP techniques for testing config-
urable systems [44, 57]. However, they still target the traditional
regression testing problem, i.e., detecting regression faults caused
by code changes, while also considering prioritizing the potential
configurations that may likely expose regression faults. In contrast,
this paper makes the first attempt to apply TCP for speeding up
misconfiguration detection for configuration testing.

8 CONCLUSION

We have performed the first extensive study of TCP for config-
uration testing. We have implemented 84 traditional and novel
ctest-specific TCP techniques. The experimental results on five pop-
ular cloud projects demonstrate that TCP can substantially speed
up misconfiguration detection. We have also analyzed the impact
of various controllable factors for applying TCP in configuration
testing, including coverage criteria, hybrid models, total/additional
strategies, peer-data granularities, and study metrics. In sum, our
study reveals various practical guidelines for applying TCP in con-
figuration testing, including: (1) among the basic TCP techniques,
QTF is surprisingly competitive and often outperforms sophisti-
cated techniques (based on code coverage or IR) and even some
ctest-specific techniques (based on parameter coverage or stack
traces), (2) hybrid TCP techniques (which enhance basic techniques
with text execution cost information) can boost the performance of
most basic techniques, and (3) peer-based TCP techniques (which
leverage peer configuration data for better prioritization) can sub-
stantially outperform all other studied TCP techniques.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.
This work was partially supported by NSF grants CCF-1763788,
1763906, 1816615, 1942430, 2029049, and CNS-1740916, 1956007. We
also acknowledge support for research on regression testing from
Facebook, Futurewei, and Google; a Facebook Distributed Systems
Research award; Microsoft Azure credits; and Google Cloud credits.

Test-Case Prioritization for Configuration Testing

REFERENCES

[1] Mona Attariyan, Michael Chow, and Jason Flinn. 2012. X-ray: Automating Root-

[2

[3

[11

[12

[13

[14

[15

[16

[17

[18

[19
[20

[21

[22

[23

==

]

]

]

]

1
]

]

[24]

[25

[26

[27

[28

]

]

Cause Diagnosis of Performance Anomalies in Production Software. In OSDL
Mona Attariyan and Jason Flinn. 2010. Automating Configuration Troubleshoot-
ing with Dynamic Information Flow Analysis. In OSDL

Luiz André Barroso, Urs Holzle, and Parthasarathy Ranganathan. 2018. The
Datacenter as a Computer: Designing Warehouse-Scale Machines. Morgan and
Claypool Publishers. https://doi.org/10.2200/S00874ED3V01Y201809CAC046
Salman Baset, Sahil Suneja, Nilton Bila, Ozan Tuncer, and Canturk Isci. 2017.
Usable Declarative Configuration Specification and Validation for Applications,
Systems, and Cloud. In Middleware. https://doi.org/10.1145/3154448.3154453
Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2018. DeFlaker: Automatically Detecting Flaky Tests. In
ICSE. https://doi.org/10.1145/3180155.3180164

Junjie Chen, Yiling Lou, Lingming Zhang, Jianyi Zhou, Xiaoleng Wang, Dan
Hao, and Lu Zhang. 2018. Optimizing Test Prioritization via Test Distribution
Analysis. In ESEC/FSE. https://doi.org/10.1145/3236024.3236053

Qingrong Chen, Teng Wang, Owolabi Legunsen, Shanshan Li, and Tianyin Xu.
2020. Understanding and Discovering Software Configuration Dependencies in
Cloud and Datacenter Systems. In ESEC/FSE. https://doi.org/10.1145/3368089.
3409727

Docker Hub 2020. Docker Hub. https://www.docker.com/products/docker-hub.
Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel. 2001. Incorporating
Varying Test Costs and Fault Severities into Test Case Prioritization. In ICSE.
https://doi.org/10.1109/ICSE.2001.919106

Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for Improv-
ing Regression Testing in Continuous Integration Development Environments.
In FSE. https://doi.org/10.1145/2635868.2635910

Michael G. Epitropakis, Shin Yoo, Mark Harman, and Edmund K Burke. 2015.
Empirical Evaluation of Pareto Efficient Multi-Objective Regression Test Case
Prioritisation. In ISSTA. https://doi.org/10.1145/2771783.2771788

Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical Program
Repair via Bytecode Mutation. In ISSTA. https://doi.org/10.1145/3293882.3330559
Alberto Gonzalez-Sanchez, Eric Piel, Hans-Gerhard Gross, and Arjan JC van
Gemund. 2010. Prioritizing Tests for Software Fault Localization. In QSIC. https:
//doi.org/10.1109/QSIC.2010.28

Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung Laksono, Anang D.
Satria, Jeffry Adityatama, and Kurnia J. Eliazar. 2016. Why Does the Cloud
Stop Computing? Lessons from Hundreds of Service Outages. In SoCC. https:
//doi.org/10.1145/2987550.2987583

Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Comparing White-Box and Black-Box Test Prioritization. In ICSE. https:
//doi.org/10.1145/2884781.2884791

Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Patrick Hey-
mans, and Yves Le Traon. 2014. Bypassing the Combinatorial Explosion: Using
Similarity to Generate and Prioritize T-Wise Test Configurations for Software
Product Lines. TSE 40, 7 (2014). https://doi.org/10.1109/TSE.2014.2327020
Peng Huang, William J. Bolosky, Abhishek Sigh, and Yuanyuan Zhou. 2015. Con-
fValley: A Systematic Configuration Validation Framework for Cloud Services.
In EuroSys. https://doi.org/10.1145/2741948.2741963

Qiang Huang, Helen J. Wang, and Nikita Borisov. 2005. Privacy-Preserving
Friends Troubleshooting Network. In NDSS.

JavaParser 2020. JavaParser. https://javaparser.org/about.html.

Bo Jiang, Zhenyu Zhang, Wing Kwong Chan, and TH Tse. 2009. Adaptive Random
Test Case Prioritization. In ASE. https://doi.org/10.1109/ASE.2009.77

Robert Johnson. 2010. More Details on Today’s Outage. http://www.facebook.
com/note.php?note_id=431441338919.

Lorenzo Keller, Prasang Upadhyaya, and George Candea. 2008. ConfErr: A
Tool for Assessing Resilience to Human Configuration Errors. In DSN. https:
//doi.org/10.1109/DSN.2008.4630084

Stuart Kendrick. 2012. What Takes Us Down? USENIX ;login: 37, 5 (2012).
Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don Batory, Sab-
rina Souto, Paulo Barros, and Marcelo D’Amorim. 2013. SPLat: Lightweight
Dynamic Analysis for Reducing Combinatorics in Testing Configurable Systems.
In ESEC/FSE. https://doi.org/10.1145/2491411.2491459

Jung-Min Kim and Adam Porter. 2002. A History-Based Test Prioritization
Technique for Regression Testing in Resource Constrained Environments. In
ICSE. https://doi.org/10.1145/581339.581357

Zheng Li, Mark Harman, and Robert M Hierons. 2007. Search Algorithms for
Regression Test Case Prioritization. TSE 33, 4 (2007). https://doi.org/10.1109/
TSE.2007.38

Yiling Lou, Samuel Benton, Dan Hao, Lu Zhang, and Lingming Zhang. 2021. How
Does Regression Test Selection Affect Program Repair? An Extensive Study on 2
Million Patches. arXiv:2105.07311 (2021).

Yafeng Lu, Yiling Lou, Shiyang Cheng, Lingming Zhang, Dan Hao, Yangfan Zhou,
and Lu Zhang. 2016. How Does Regression Test Prioritization Perform in Real-
World Software Evolution?. In ICSE. https://doi.org/10.1145/2884781.2884874

464

[29

[30

(31]

[32

@
&

&
=

N
g

"~
&

[44

[45

[46

[47

'S
&

[49

[50]

(51

[52

[53

[54

[55]

[56]

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Qi Luo, Kevin Moran, Lingming Zhang, and Denys Poshyvanyk. 2018. How
do Static and Dynamic Test Case Prioritization Techniques Perform on Modern
Software Systems? An Extensive Study on GitHub Projects. TSE 45, 11 (2018).
https://doi.org/10.1109/TSE.2018.2822270

Alexey G. Malishevsky, Joseph R Ruthruff, Gregg Rothermel, and Sebastian
Elbaum. 2006. Cost-Cognizant Test Case Prioritization. Technical Report. TR-UNL-
CSE-2006-0004, University of Nebraska-Lincoln.

Ben Maurer. 2015. Fail at Scale: Reliability in the Face of Rapid Change. CACM
58, 11 (2015). https://doi.org/10.1145/2838344.2839461

Flavio Medeiros, Christian Késtner, Marcio Ribeiro, Rohit Gheyi, and Sven Apel.
2016. A Comparison of 10 Sampling Algorithms for Configurable Systems. In
ICSE. https://doi.org/10.1145/2884781.2884793

Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, B. Ashok, Chetan Bansal, Chandra
Maddila, Christian Bird, Sumit Asthana, and Aditya Kumar. 2020. Rex: Preventing
Bugs and Misconfiguration in Large Services using Correlated Change Analysis.
In NSDL

Mukelabai Mukelabai, Damir Ne3i¢, Salome Maro, Thorsten Berger, and Jan-
Philipp Steghéfer. 2018. Tackling Combinatorial Explosion: A Study of Industrial
Needs and Practices for Analyzing Highly Configurable Systems. In ASE. https:
//doi.org/10.1145/3238147.3238201

Kiran Nagaraja, Fabio Oliveira, Ricardo Bianchini, Richard P. Martin, and Thu D.
Nguyen. 2004. Understanding and Dealing with Operator Mistakes in Internet
Services. In OSDL

openctest 2020. openctest. https://github.com/xlab-uiuc/openctest.

David Oppenheimer, Archana Ganapathi, and David A. Patterson. 2003. Why Do
Internet Services Fail, and What Can Be Done About It?. In USITS.

Noam Palatin, Arie Leizarowitz, Assaf Schuster, and Ran Wolff. 2006. Mining
for Misconfigured Machines in Grid Systems. In KDD. https://doi.org/10.1145/
1150402.1150488

Marek Parfianowicz and Grzegorz Lewandowski. 2017-2018. OpenClover. https:
//openclover.org.

David Paterson, José Campos, Rui Abreu, Gregory M. Kapfhammer, Gordon
Fraser, and Phil McMinn. 2019. An Empirical Study on the Use of Defect Prediction
for Test Case Prioritization. In ICST. https://doi.org/10.1109/ICST.2019.00041
Qianyang Peng, August Shi, and Lingming Zhang. 2020. Empirically Revisiting
and Enhancing IR-Based Test-Case Prioritization. In ISSTA. https://doi.org/10.
1145/3395363.3397383

Rahul Potharaju, Joseph Chan, Luhui Hu, Cristina Nita-Rotaru, Mingshi Wang,
Liyuan Zhang, and Navendu Jain. 2015. ConfSeer: Leveraging Customer Support
Knowledge Bases for Automated Misconfiguration Detection. In VLDB. https:
//doi.org/10.14778/2824032.2824079

Yuhua Qi, Xiaoguang Mao, and Yan Lei. 2013. Efficient Automated Program
Repair Through Fault-Recorded Testing Prioritization. In ICSM. https://doi.org/
10.1109/ICSM.2013.29

Xiao Qu, Myra B. Cohen, and Gregg Rothermel. 2008. Configuration-Aware
Regression Testing: An Empirical Study of Sampling and Prioritization. In ISSTA.
https://doi.org/10.1145/1390630.1390641

Ariel Rabkin and Randy Katz. 2011. Precomputing Possible Configuration Error
Diagnosis. In ASE. https://doi.org/10.1109/ASE.2011.6100053

Ariel Rabkin and Randy Katz. 2013. How Hadoop Clusters Break. IEEE Software
30, 4 (2013). https://doi.org/10.1109/MS.2012.73

Stephen E. Robertson, Steve Walker, and Micheline Hancock-Beaulieu. 2000.
Experimentation as a Way of Life: Okapi at TREC. Inf. Process. Manag. 36, 1
(2000). https://doi.org/10.1016/S0306-4573(99)00046- 1

Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. 1999.
Test Case Prioritization: An Empirical Study. In ICSM. https://doi.org/10.1109/
ICSM.1999.792604

Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.
2001. Prioritizing Test Cases for Regression Testing. TSE 27, 10 (2001). https:
//doi.org/10.1145/347324.348910

David Saff and Michael D. Ernst. 2003. Reducing Wasted Development Time via
Continuous Testing. In ISSRE. https://doi.org/10.1109/ISSRE.2003.1251050
Ripon K. Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E. Perry. 2015.
An Information Retrieval Approach for Regression Test Prioritization Based on
Program Changes. In ICSE. https://doi.org/10.1109/ICSE.2015.47

Gerard Salton and Christopher Buckley. 1988. Term-Weighting Approaches in
Automatic Text Retrieval. Inf. Process. Manag. 24, 5 (1988). https://doi.org/10.
1016/0306-4573(88)90021-0

Mark Santolucito, Ennan Zhai, Rahul Dhodapkar, Aaron Shim, and Ruzica Piskac.
2017. Synthesizing Configuration File Specifications with Association Rule
Learning. In OOPSLA. https://doi.org/10.1145/3133888

Mark Santolucito, Ennan Zhai, and Ruzica Piskac. 2016. Probabilistic Automated
Language Learning for Configuration Files. In CAV. https://doi.org/10.1007/978-
3-319-41540-6_5

Alex Sherman, Phil Lisiecki, Andy Berkheimer, and Joel Wein. 2005. ACMS:
Akamai Configuration Management System. In NSDIL

Jonathan Shieber. 2019. Facebook Blames a Server Configuration Change for
Yesterday’s Outage. https://techcrunch.com/2019/03/14/facebook-blames-a-
misconfigured-server-for-yesterdays-outage.

ISSTA °21, July 11-17, 2021, Virtual, Denmark

[57] Hema Srikanth, Myra B Cohen, and Xiao Qu. 2009. Reducing Field Failures
in System Configurable Software: Cost-Based Prioritization. In ISSRE. https:
//doi.org/10.1109/ISSRE.2009.26

[58] M. Stone. 1974. Cross-Validatory Choice and Assessment of Statistical Predictions.
Journal of the Royal Statistical Society. Series B (Methodological) 36, 2 (1974).
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x

[59] Xudong Sun, Runxiang Cheng, Jianyan Chen, Elaine Ang, Owolabi Legunsen,

and Tianyin Xu. 2020. Testing Configuration Changes in Context to Prevent

Production Failures. In OSDL

Chungiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander,

Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl. 2015. Holis-

tic Configuration Management at Facebook. In SOSP. https://doi.org/10.1145/

2815400.2815401

[61] John W. Tukey. 1949. Comparing Individual Means in the Analysis of Variance.
Biometrics 5, 2 (1949). https://doi.org/10.2307/3001913

[62] Ozan Tuncer, Nilton Bila, Canturk Isci, and Ayse K. Coskun. 2018. ConfEx:

An Analytics Framework for Text-Based Software Configurations in the Cloud.

Technical Report RC25675 (WAT1803-107). IBM Research. https://doi.org/10.

1109/DSN-W.2018.00019

Helen J. Wang, Yih-Chun Hu, Chun Yuan, Zheng Zhang, and Yi-Min Wang.

2004. Friends Troubleshooting Network: Towards Privacy-Preserving, Automatic

Troubleshooting. In IPTPS. https://doi.org/10.1007/978-3-540-30183-7_18

Helen J. Wang, John C. Platt, Yu Chen, Ruyun Zhang, and Yi-Min Wang. 2004.

Automatic Misconfiguration Troubleshooting with PeerPressure. In OSDL

[65] Andrew Whitaker, Richard S. Cox, and Steven D. Gribble. 2004. Configuration
Debugging as Search: Finding the Needle in the Haystack. In OSDL

[66] Chengcheng Xiang, Haochen Huang, Andrew Yoo, Yuanyuan Zhou, and Shankar
Pasupathy. 2020. PracExtractor: Extracting Configuration Good Practices from
Manuals to Detect Server Misconfigurations. In USENIX ATC.

[67] Chengcheng Xiang, Yudong Wu, Bingyu Shen, Mingyao Shen, Haochen Huang,

Tianyin Xu, Yuanyuan Zhou, Cindy Moore, Xinxin Jin, and Tianwei Sheng.

2019. Towards Continuous Access Control Validation and Forensics. In CCS.

https://doi.org/10.1145/3319535.3363191

Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and

Rukma Talwadker. 2015. Hey, You Have Given Me Too Many Knobs! Under-

standing and Dealing with Over-Designed Configuration in System Software. In

ESEC/FSE. https://doi.org/10.1145/2786805.2786852

Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and

Shankar Pasupathy. 2016. Early Detection of Configuration Errors to Reduce

Failure Damage. In OSDL

[60

[63

[64

[68

[69

465

[70

[71

[72

[73

<
=t

(75

[76]

(77

[78

=
2,

[80

[81

(82

[83

(84

Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu

Tianyin Xu and Owolabi Legunsen. 2019. Configuration Testing: Testing Config-
uration Values as Code and with Code. arXiv:1905.12195 (2019).

Tianyin Xu and Darko Marinov. 2018. Mining Container Image Repositories for
Software Configurations and Beyond. In ICSE. https://doi.org/10.1145/3183399.
3183403

Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do Not Blame Users for Miscon-
figurations. In SOSP. https://doi.org/10.1145/2517349.2522727

Tianyin Xu and Yuanyuan Zhou. 2015. Systems Approaches to Tackling
Configuration Errors: A Survey. ACM Comput. Surv. 47, 4 (2015). https:
//doi.org/10.1145/2791577

Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasundaram,
and Shankar Pasupathy. 2011. An Empirical Study on Configuration Errors in
Commercial and Open Source Systems. In SOSP.

Shin Yoo and Mark Harman. 2012. Regression Testing Minimisation, Selection
and Prioritisation: A Survey. STVR 22, 2 (2012). https://doi.org/10.1002/stvr.430
Ding Yuan, Yinglian Xie, Rina Panigrahy, Junfeng Yang, Chad Verbowski, and
Arunvijay Kumar. 2011. Context-based Online Configuration Error Detection. In
USENIX ATC.

Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why?.
In ESEC/FSE. https://doi.org/10.1145/318774.318946

Jiaqi Zhang, Lakshmi Renganarayana, Xiaolan Zhang, Niyu Ge, Vasanth Bala,
Tianyin Xu, and Yuanyuan Zhou. 2014. EnCore: Exploiting System Environment
and Correlation Information for Misconfiguration Detection. In ASPLOS. https:
//doi.org/10.1145/2644865.2541983

Lingming Zhang, Dan Hao, Lu Zhang, Gregg Rothermel, and Hong Mei. 2013.
Bridging the Gap between the Total and Additional Test-Case Prioritization
Strategies. In ICSE. https://doi.org/10.1109/ICSE.2013.6606565

Lu Zhang, Shan-Shan Hou, Chao Guo, Tao Xie, and Hong Mei. 2009. Time-
Aware Test-Case Prioritization using Integer Linear Programming. In ISSTA.
https://doi.org/10.1145/1572272.1572297

Lingming Zhang, Darko Marinov, and Sarfraz Khurshid. 2013. Faster Mutation
Testing Inspired by Test Prioritization and Reduction. In ISSTA. https://doi.org/
10.1145/2483760.2483782

Sai Zhang and Michael D. Ernst. 2013. Automated Diagnosis of Software Config-
uration Errors. In ICSE. https://doi.org/10.1109/ICSE.2013.6606577

Sai Zhang and Michael D. Ernst. 2014. Which Configuration Option Should I

Change?. In ICSE. https://doi.org/10.1145/2568225.2568251
Yuanliang Zhang, Haochen He, Owolabi Legunsen, Shanshan Li, Wei Dong,

and Tianyin Xu. 2021. An Evolutionary Study of Configuration Design and
Implementation in Cloud Systems. In ICSE. https://doi.org/10.1109/ICSE43902.
2021.00029

	Abstract
	1 Introduction
	2 Background
	3 TCP Techniques
	3.1 Non-peer-Based TCP
	3.2 Peer-Based TCP
	3.3 Hybrid TCP

	4 experimental setup
	4.1 Research Questions
	4.2 Metrics
	4.3 Dataset Collection
	4.4 Implementation
	4.5 Experimental Procedure

	5 Results and Analysis
	5.1 RQ1: Basic Non-peer-Based TCP
	5.2 RQ2: Hybrid Non-peer-Based TCP
	5.3 RQ3: Peer-Based TCP
	5.4 Summary
	5.5 Threats to Validity

	6 Discussion and Future Work
	7 Related Work
	8 Conclusion
	References

