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EIGENVALUE DISTRIBUTIONS OF VARIANCE COMPONENTS
ESTIMATORS IN HIGH-DIMENSIONAL
RANDOM EFFECTS MODELS

BY ZHOU FAN! AND IAIN M. JOHNSTONE?
Yale University and Stanford University

We study the spectra of MANOVA estimators for variance component
covariance matrices in multivariate random effects models. When the di-
mensionality of the observations is large and comparable to the number of
realizations of each random effect, we show that the empirical spectra of
such estimators are well approximated by deterministic laws. The Stieltjes
transforms of these laws are characterized by systems of fixed-point equa-
tions, which are numerically solvable by a simple iterative procedure. Our
proof uses operator-valued free probability theory, and we establish a general
asymptotic freeness result for families of rectangular orthogonally invariant
random matrices, which is of independent interest. Our work is motivated in
part by the estimation of components of covariance between multiple pheno-
typic traits in quantitative genetics, and we specialize our results to common
experimental designs that arise in this application.

1. Introduction. High-dimensional data exhibit phenomena unexpected from
experience with a fixed number of variables. A well-studied example arises with n
independent and identically distributed (i.i.d.) samples from a p-variate distribu-
tion with mean p and covariance X. If p increases proportionately with n, then
the eigenvalues of the sample covariance matrix are more dispersed than their
population counterparts. Notably, this extra spreading, described by the celebrated
Marcenko—Pastur equation (Marcenko and Pastur (1967), Silverstein (1995)), does
not disappear in the limit of large p and n. For example, if ¥ =Idand p/n — y <
1, then the limiting Marcenko—Pastur law is supported on [(1 — ﬁ)Z, (1+ ﬁ)z].
This has many implications for statistical inference concerning ¥ in high dimen-
sions, which we discuss below.

The i.i.d. assumption, however, connotes a single level of variation in the data.
In this paper, we begin study of high-dimensional data exhibiting several lev-
els of variation, or random effects. In a simple example with two levels, the p-
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dimensional observations may take the form

(1.1) Yij=n+o; +eé ;.
At the first level, there are i = 1, ..., groups with i.i.d. random effects o; ~
(0,%1). The j =1,..., J; observations within group i have independent second

level effects ¢; ; ~ (0, X2), but as they share a common first level effect «;, they
are (perhaps strongly) correlated. For example, Yang et al. (2002) discusses mul-
tivariate examination response data for n = _ J; ~ 50,000 students in I ~ 2500
schools.

The goal of this paper is to describe analogs of the eigenvalue spreading phe-
nomenon for the traditional (MANOVA) estimators of the covariance matrices X,
Y, and their multilevel extensions, Theorem 1.2. For k = 2 levels, the Marcenko—
Pastur implicit equation is replaced by a system of 2k = 4 equations. We show that
this system can be solved numerically by a natural iterative scheme, Theorem 1.5.
Our proof assumes that each random effect is Gaussian, although this assumption
is likely inessential for the result, as discussed in Remark 1.6 below.

More generally, we study the multivariate mixed effects model

k
(1.2) Y=XB+ Z Uray, oy NN(Ov Idl,. %),

r=1

the analogue of the univariate model studied in Rao (1971). Here, Y € R"*? rep-
resents n observations of p traits, modeled as a sum of fixed effects X8 and k
random effects Uj«y, ..., Urar. (We may incorporate a residual error term & by
allowing Uy = Id and o = €.) The matrices X € R"*™ and U, € R™*Ir are known
design and incidence matrices. Each «, € R/*P is an unobserved random matrix
with i.i.d. rows distributed as N (0, X,), representing I, independent realizations
of the rth effect. The regression coefficients 8 € R™*” and variance components
¥, € RP*P are unknown parameters.

We study estimators of X, that are quadratic in Y and invariant to 8, that is,
estimators of the form

(1.3) . =Y'BY (BX=0)

for symmetric matrices B, € R"*", In particular, model (1.2) encompasses nested
and crossed classification designs, and (1.3) encompasses MANOVA estimators
and MINQUEs. We discuss examples in Section 2 and Appendix A. Our main
result shows that in a high-dimensional asymptotic regime, the spectra of these
estimators are well approximated by deterministic laws, characterized by a certain
generalization of the Marcenko—Pastur equation.
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1.1. Motivation from evolutionary genetics. A primary motivation for our
work comes from genetics, where it is common to decompose the population vari-
ance of phenotypic traits into its constituent components, for example, correspond-
ing to additive effects of genetic alleles, residual nonadditive genetic effects and
environmental effects (Lynch and Walsh (1998)). If natural or artificial selection
acts on a trait, then genetics theory indicates that the response to selection is gov-
erned by this first additive genetic component of variance. More precisely, if an
episode of selection changes the mean trait value by S, then the change in mean
trait value Ap inherited by the next generation is predicted by the “breeders’ equa-
tion”

1

Ap=05(c?)""S,

where o i is the additive genetic component of the total variance o2 (Lush (1937)).

From a multivariate perspective, selection acting on one trait may induce an
evolutionary response in genetically correlated traits (Blows (2007), Lande and
Arnold (1983), Phillips and Arnold (1989)). Most of this correlation is likely due
to pleiotropy, the influence of a single gene on multiple traits, and there is evi-
dence that pleiotropic effects are widespread across the phenome (Barton (1990),
McGuigan et al. (2014), Walsh and Blows (2009)). If selection changes the mean
values of p traits by S € R”, then the changes inherited by the next generation are
predicted by

(1.4) Au=GPls,

where P € RP*? is the total phenotypic trait covariance and G € RP*? is its ad-
ditive genetic component (Lande (1979), Lande and Arnold (1983)).

Microarrays have enabled the measurements of thousands of quantitative phe-
notypes in a single study, providing an opportunity to better understand the extent
of pleiotropy and the effective dimensionality of possible evolutionary response in
the entire phenome of an organism (Blows et al. (2015), McGuigan et al. (2014)).
In these high-dimensional settings, it becomes natural to interpret the breeders’
equation (1.4) from a principal components perspective, where response to selec-
tion is understood via the principal eigenvectors of G and the alignment of the
“selection gradient” P~!S with these eigenvectors (Blows and McGuigan (2015),
Hine, McGuigan and Blows (2014), Kirkpatrick (2009), Walsh and Blows (2009)).

A central question is then how to perform inference on the spectral structure
of G, or of more general components of covariance, in high dimensions from
a limited sample of individuals. Linear mixed models (1.2) are commonly used
to estimate G and other components of variance, ranging from classical studies
where Uy, ..., Uy encode known kinship between samples (Fisher (1918), Wright
(1935)) to modern genome-wide association studies where Uy, ..., Uy encode
genotype information (Loh et al. (2015), Yang et al. (2011)). Recent work has
explored in simulation the behavior of principal components analyses for such
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estimates (Blows and McGuigan (2015)). We initiate here a theoretical study of
these questions, as a step toward developing new inferential procedures for this
application.

1.2. The Marcenko—Pastur equation and applications. As an analogy, we re-
view the Marcenko—Pastur equation describing sample eigenvalue dispersion in the
setting of i.i.d. samples, along with a few of its implications for statistical inference
in high dimensions. We refer the interested reader to Paul and Aue (2014) and the
recent textbook (Yao, Zheng and Bai (2015)) for additional statistical applications.

Given Y € R"*? consisting of n i.i.d. observations with distribution N (0, X),
consider the sample covariance matrix S=n"1YTY. Let W = p! Zf’zl SM)A:)
denote the empirical spectral measure of 3.

THEOREM 1.1 (Marcenko and Pastur (1967), Silverstein (1995)). Suppose
n, p — oosuchthatc < p/n < C and | 2| < C for some constants C, ¢ > 0. Then
for each z € CT, there exists a unique value mo(z) € {m € C: —(1 — p/n)z~' +
(p/n)m € C*} satisfying

(1.5) mo(z) = %Tr[((l -2 %zmo(z))Z - ZIdp)_l],

and mg defines the Stieltjes transform of a (n, p, X-dependent) probability mea-
sure juo on R such that pg — o — 0 weakly almost surely.

Theorem 1.1 is usually stated assuming convergence of p/n to y € (0, oo) and
of the spectrum of ¥ to a weak limit 4*, in which case j4 converges to a limit
o depending on y and p*. The above statement is instead in a “deterministic
equivalent” form Couillet, Debbah and Silverstein (2011), Hachem, Loubaton and
Najim (2007), where g is defined by the finite-sample quantities p/n and X. We
discuss this further in Remark 1.3.

The Marcenko—Pastur equation has many implications for statistical inference
regarding X. One implication is in estimating the principal “signal” eigenvalues
and eigenvectors of X. Sample eigenvalue dispersion leads to an upward bias
in the sample locations of principal eigenvalues, and a quantitative description
of this bias and of the error of the principal eigenvectors is closely connected to
the Marcenko—Pastur equation (Bai and Yao (2012), Baik, Ben Arous and Péché
(2005), Baik and Silverstein (2006), Benaych-Georges and Nadakuditi (2011),
Paul (2007)). These results allow for consistent and debiased estimation of the
principal eigenvalues and of low-dimensional projections of the eigenvectors, even
as n, p — oo proportionately.

A second application is in developing shrinkage estimates for the entire spec-
trum of X (Bai, Chen and Yao (2010), El Karoui (2008), Mestre (2008), Rao et al.
(2008)) and for X itself under various matrix losses (Ledoit and Péché (2011),
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Ledoit and Wolf (2012)). Approaches for the former use various strategies to “in-
vert” the mapping from X to g in the Marcenko—Pastur equation. For the latter,
the Marcenko—Pastur equation plays a role in quantifying the risks of shrinkage
estimates and in deriving the forms of optimal shrinkage procedures.

A third line of work pertains to testing sphericity or other spectral hypothe-
ses regarding ¥ (Dobriban (2017), Johnstone (2001), Onatski, Moreira and Hallin
(2014)). Popular tests have been proposed based on the largest sample eigenvalue
(Johnstone (2001), Soshnikov (2002)) or linear spectral statistics (Bai and Silver-
stein (2004)). The null distributions in such tests are related to the fluctuations
of the empirical spectral measure around the Marcenko—Pastur law in local and
global regimes.

Similar inferential questions are of interest pertaining to individual components
of variance in genetics applications, but inferential procedures are less well de-
veloped in this setting. Developing such procedures is an interesting avenue for
future work, and it will likely require an understanding of the bulk spectral law
which is the focus of our current paper. Some results in this direction in the partic-
ular case of isotropic population variance component matrices are reported in Fan
and Johnstone (2017), Fan, Johnstone and Sun (2018).

1.3. Main result. We consider asymptotics as n, Iy, ..., Iy grow proportion-
ately with p. For classification designs, this means that groups and subgroups of
individuals remain bounded in size. This regime is relevant for experiments that
estimate components of phenotypic covariance for reasons both of experimental
practicality and of optimal design (Robertson (1959a, 1959b)).

Consider 2 = YT BY for symmetric B € R"*" satisfying BX = 0. Define 14 =

Zf:l Ira
U=(1Ui [VRUy |- |VIU) R F=UTBU eR*.

For any F € CH+*I+ et Tr, F denote the trace of its (r, r) block in the k x k block
decomposition corresponding to C'+ =CI @ ... @ C*. Fora = (ay, ..., a) and
b= (by,...,by), define

D(a) =diag(ai 1dy,, ..., aqx1dg) e C+¥H 0 b2 =b1 T + -+ b %y
THEOREM 1.2. Suppose n, p, 1y, ..., [y — 00 such that c < p/n < C, ¢ <

I, /n<C,n|B| <C, ||Z/| <C,and |U;|| < C foreachr =1, ...,k and some
constants C,c > 0. Then for each z € C*, there exist unique z-dependent values

ai,...,ar € CTU{0} and by, ..., by € CT that satisfy, forr =1, ..., k, the equa-
tions
(1.6) ar =—17"Tr((z1d, +b-2)7'S,),

(1.7) by =—17""Tr,([ld;, +FD(@)] "' F).
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The function mg : Ct — C™ given by
(1.8) mo(z) = —p ' Tr((z1dy +b - £)7)

defines the Stieltjes transform of a probability measure 1o on R such that g —
wo — 0 weakly almost surely.

REMARK 1.3. Here, ug is a “deterministic equivalent” law defined directly
by ¥, ..., Xt and the model design for finite n and p. An asymptotic statement
where po is a fixed limit would require not only that the spectral measures of
%1, ..., Xk individually converge, but also that they convergence in a suitable joint
sense, for example, convergence of p~! Tr Q(Z1, ..., &x) for each fixed polyno-
mial Q. A similar requirement would be needed for convergence of polynomials
in (U ,T BUs :r,s=1,...,k), which depends on the sequence of model designs as
n, p — oo. The deterministic equivalent form given above is simpler and arguably
closer to applications in finite samples.

REMARK 1.4. When Y has n i.i.d. rows, the sample covariance S=n"'¥Ty
corresponds to the special case of (1.2) with k =1, Uy =1d, ¥; = X and B =
n~!1d,. In this case, equations (1.6)—(1.8) reduce to

(1.9) aj=-n"'"Tr(zId, +6:2)7'%),  by=—(1+a)™!,
(1.10)  mo(z) = —p ' Tr((z1d, +b1 )7 1),
which imply (by the identity A~ — (A +B) "' =A"'B(A+B)™")

1 Z 1 -1
—1—-——=a=—-"-T Id —(zId, +b1 2
b =Y pys r((z1d,) (zIdp +b1%)7)
__P pzmo@)
nbg nbj

Hence by = —1 4+ (p/n) + (p/n)zmo(z). Together with the above expression for
mo(z), this recovers the Marcenko—Pastur equation (1.5).

In most cases, (1.6)—(1.8) do not admit a closed-form solution in ay, ..., a,
by, ..., b, and mo(z). However, these equations may be solved numerically.

THEOREM 1.5. For each z € C*, the values a, and b, in Theorem 1.2
are the limits, as t — 00, of the iterative procedure which arbitrarily initializes

bgO), el b,(co) e Ct and iteratively computes (fort =0,1,2,...) a,(t) from by) us-
ing (1.6) and b§t+1) from aﬁt) using (1.7).

By the Stieltjes inversion formula, 7 ~'Jmg(x + ie) is the density of the con-
volution pg * Cauchy(0, ¢). This may be computed by the above procedure to
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numerically approximate (q; this is depicted in Figure 1, and a software imple-
mentation is available on the first author’s website. We leave to future work the
development of faster algorithms, such as in Dobriban (2015), for solving these
fixed-point equations.

Theorems 1.2 and 1.5 are inspired by the study of similar models for wireless
communication channels. In particular, Couillet, Debbah and Silverstein (2011)
establishes analogous results for the matrix

k
S+Y =}/2GiB,G, 3},

r=1

where B, € C"*" are positive semidefinite and diagonal. Earlier work of Zhang
((2006), Theorem 1.2.1) considers k = 1, S = 0, and arbitrary Hermitian B;. For
S =0, this model is encompassed by our Theorem 4.1; however, we remark that
these works do not require Gaussian G,. In Dupuy and Loubaton (2011) and the
earlier work of Moustakas and Simon (2007) using the replica method, the authors
study the model

k

r,s=1

where X,, T, are positive semidefinite and G, are complex Gaussian. This model
is similar to ours, and we recover their result in Theorem 4.1 using a different
proof. We note that Dupuy and Loubaton (2011) proves only mean convergence,
whereas we also control the variance and prove convergence a.s. We use a free
probability approach, which may be easier to generalize to other models.

1.4. Overview of proof. We use the tools of operator-valued free probabil-
ity theory, in particular rectangular probability spaces and their connection to
operator-valued freeness developed in Benaych-Georges (2009) and the free de-
terministic equivalents approach of Speicher and Vargas (2012).

Let us write «, in (1.2) as o, = G, Erl/z, where G, € RI"*? has i.i.d. N(0, 1)
entries. Then 3 = Y7 BY takes the form

k
2= > x*6Iu! BUG,z !

r,s=1

We observe the following: If Og, Oy, ..., Oy € RP*? and Oy, € RI*!" for each
r =1, ...,k are real orthogonal matrices, then by rotational invariance of G, u
remains invariant in law under the transformations

22 H, =020y,  UI'BU;+ Fry:= O}, U" BU;Opys.
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Hence we may equivalently consider the matrix

k
(1.11) W= Y H'G!F.GH

r,s=1

for Oy, ..., Oy independent and Haar-distributed. The families {F,s}, {G,}, {H,}
are independent of each other, with each family satisfying a certain joint orthogo-
nal invariance in law (formalized in Section 3).

Following Benaych-Georges (2009), we embed the matrices {F;s}, {G,}, {H;}
into a square matrix space CV*V . We then consider deterministic elements { f},
{gr}, {h,} in a von Neumann algebra .4 with tracial state 7, such that these ele-
ments model the embedded matrices, and { f;5}, {g,} and {h,} are free with amal-
gamation over a diagonal subalgebra of projections in .4. We follow the determin-
istic equivalents approach of Speicher and Vargas (2012) and allow (A, t) and
{frs}, {gr}, {h,} to also depend on n and p.

Our proof of Theorem 1.2 consists of two steps:

1. For independent, jointly orthogonally invariant families of random matrices,
we formalize the notion of a free deterministic equivalent and prove an asymptotic
freeness result establishing validity of this approximation.

2. For our specific model of interest, we show that the Stieltjes transform of
w =),  hyg’ frsgshs in the free model satisfies equations (1.6)—(1.8).

We establish separately the existence and uniqueness of the fixed point to (1.6)—
(1.7) using a contractive mapping argument. Then the Stieltjes transform of w in
step 2 is uniquely determined by (1.6)—(1.8), which implies by step 1 that (1.6)—
(1.8) asymptotically determine the Stieltjes transform of W.

An advantage of this approach is that the approximation is separated from the
computation of the approximating measure wg. The approximation in step 1 is
general—it may be applied to other matrix models such as the above, and it fol-
lows a line of work establishing asymptotic freeness of random matrices (Benaych-
Georges (2009), Collins (2003), Collins and Sniady (2006), Dykema (1993), Hiai
and Petz (2000), Speicher and Vargas (2012), Voiculescu (1991, 1998)). In the
computation in step 2, the Stieltjes transform of w is exactly (rather than approxi-
mately) described by (1.6)—(1.8). The computation is thus entirely algebraic, using
free cumulant tools of Nica, Shlyakhtenko and Speicher (2002), Speicher and Var-
gas (2012), and it does not require analytic approximation arguments or bounds.

REMARK 1.6. Our proof uses rotational invariance of {G,}, which follows
from our Gaussian assumption on {«,}. Rotational invariance is a natural set-
ting that leads to asymptotic freeness (Collins (2003), Collins and gniady (20006),
Hiai and Petz (2000)), but freeness may arise in other contexts; see, for example,
Dykema (1993) for an early example in non-Gaussian—Wigner models. We believe
that with additional work, our main result may be extended to general distributions
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of entries of {G,} under mild moment assumptions, but we will not pursue this in
the current paper.

1.5. Outline of paper. Section 2 specializes Theorem 1.2 to the one-way de-
sign; other specializations are discussed in Appendix A. Section 3 reviews free
probability theory and states the asymptotic freeness result. Section 4 performs the
computation in the free model. The remainder of the proof and other details are
deferred to the supplementary Appendices (Fan and Johnstone (2019)).

Notation. || - || denotes the I, norm for vectors and the I, — [, opera-
tor norm for matrices. M1, M* and TrM = > M;; denote the transpose,
conjugate-transpose and trace of M. Id, denotes the identity matrix of size n.
diag(Ay, ..., Ax) denotes the block-diagonal matrix with blocks Ay, ..., Ag.
CT={zeC:3z>0}and Ct = {z € C: Iz > 0} denote the open and closed
half-planes.

For a x-algebra A and elements (a;);cz of A, (a; : i € Z) denotes the sub-x-
algebra generated by (a;);cz. We write ({a;}) if the index set Z is clear from con-
text. If A is a von Neumann algebra, ({g;})w~* denotes the generated von Neumann
subalgebra, that is, the ultraweak closure of ({a;}), and ||a; || denotes the C*-norm.

2. Specialization to one-way classification. The form (1.3) encompasses
MANOVA estimators, which solve for i, ..., ¥; in the system of equations
YTM,Y =E[YT M, Y] for a certain choice of symmetric matrices M1, ..., My €
R"*" (Searle, Casella and McCulloch (2006), Chapter 5.2). From (1.2), the iden-
tity IE[ozST Moag] = (Tr M) X for any matrix M, and independence of o, we get

k k
E[Y"M.Y]=> E[e] Ul M, Usa;] = Tr(U] M, Us) 2.

s=1 s=1

Hence each MANOVA estimate EAJr takes the form (1.3), where B, is a linear
combination of My, ..., My.

In classification designs, standard choices for My, ..., My project onto sub-
spaces of R” such that each Y7 M, Y corresponds to a “sum-of-squares.” We may
simplify (1.7) in such settings by analytically computing the matrix inverse and
block trace. We discuss here the one-way (balanced) design as an example. Ap-
pendix A provides details in the context of a more general discussion, first of the
unbalanced one-way design, and second of balanced crossed and nested designs.
As specific examples of the second class, formulas are given for nested models,
Section A.2.1 and for the replicated crossed two-way layout, Section A.2.2.

For more general designs and models, My, ..., My may be ad hoc, although
Theorem 1.2 still applies to such estimators. The theorem also applies to MIN-
QUEs (LaMotte (1973), Rao (1972)) in these settings, which prescribe a specific
form for B € R"*" based on a variance minimization criterion.
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In the one-way design, {Y; ; e RP : 1 <i < I,1 < j < J;} represent obser-
vations of p traits across n = 21'121 Ji samples, belonging to /I groups of sizes
J1, ..., Jr. The balanced case corresponds to J; = --- = J; = J. The data are
modeled as (1.1) where u € R” is a vector of population mean values, «; ~
N (0, 1) are i.i.d. random group effects, and &ij ~ N(0, ,) are i.i.d. residual
errors. In quantitative genetics, this is the model for the half-sib experimental de-
sign and also for the standard twin study, where groups correspond to half-siblings
or twin pairs (Lynch and Walsh (1998)).

Define the sums-of-squares

1 1 J
Q1SS =JY ;=T =T, SS=) Y (v, - Yo — 1),
i=l1 i=1j=1

where ¥; € R” and Y € R? denote the mean in the ith group and of all samples,
respectively. The standard MANOVA estimators are given (Searle, Casella and
McCulloch (2006), Chapter 3.6) by

A 1 1 1 A 1
(2.2) Y= —(—SSl — SSQ), Y = SS».

n —

Theorem 1.2 yields the following corollary.

COROLLARY 2.1. Assume p,n, I — o0 such thatc < p/n <C,c < J <C,
|1Z1]] < C and || 22| < C for some C, c > 0. Denote Iy = I and I, = n. Then:

(a) For 21’ Mg, — Ho = 0 weakly a.s. where g has Stieltjes transform mqo(z)
determined by

ag=—I7"Tr((zld+b1 2 + b2 20)7'%)  fors=1,2,
bi=—(+4ai+a)”", b=J'U=-DU-1—a) "' +J b,
mo(z) = —p ' Tr((zId4+b1 Ty + by T2) 7).

(b) For o, Mg, — Ho —> 0 weakly a.s. where g has Stieltjes transform mg(z)
determined by

ay=—n""Tr(zld+b22) 7 '%3),  ba=—(J -1 =1+ Ja)7 ",
mo(z) = —p ' Tr((zId+byZp) 7).

For each z € C", these equations have a unique solution with a; € CT U {0},
bs € Ct and mo(z) € C*, which may be computed as in Theorem 1.5. Figure 1
displays the simulated spectrum of 1 and the result of this computation (for the
density of pg x Cauchy(0, 10™%)) in various settings.

For f]z (but not f)l), as in Remark 1.4, the three equations of Corollary 2.1(b)
may be simplified to the single Marcenko—Pastur equation for population covari-
ance ;. This also follows directly from the observation that ﬁ]z is equal in law
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FI1G. 1. Simulated spectrum of f)l for the balanced one-way classification model, p = 500, with
theoretical predictions of Corollary 2.1 overlaid in black. Left: 400 groups of size 4. Right: 100
groups of size 8. Top: ¥1 =0, o = Id. Bottom: X1 with equally spaced eigenvalues in [0, 0.3],
¥, =1d.

to e we where & € R"*? is the matrix of residual errors and 7 is a normalized
projection onto a space of dimensionality » — I. This phenomenon holds generally
for the MANOVA estimate of the residual error covariance in usual classification
designs.

3. Operator-valued free probability.

3.1. Background. We review definitions from operator-valued free probability
theory and its application to rectangular random matrices, drawn from Benaych-
Georges (2009), Voiculescu (1995), Voiculescu, Dykema and Nica (1992).

DEFINITION. A noncommutative probability space (A, t) is a unital -
algebra A over C and a x-linear functional 7 : A — C called the trace that satisfies,
for all a, b € A and for 1 4 € A the multiplicative unit

t(ly) =1, t(ab) = t(ba).
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In this paper, .4 will always be a von Neumann algebra having norm || - ||, and 7 a
positive, faithful and normal trace. (These definitions are reviewed in Appendix D.)
In particular, t will be norm-continuous with |t(a)| < ||a].

Following Benaych-Georges (2009), we embed rectangular matrices into a
larger square space according to the following structure.

DEFINITION. Let (A, t) be a noncommutative probability space andd > 1 a
positive integer. For py,..., pg € A, (A, T, p1, ..., pa) is a rectangular probabil-
ity space if p1, ..., pg are nonzero pairwise-orthogonal projections summing to 1,
thatis, forallr #s € {1, ..., d},

pr#0,  pr=pf=pi  pps=0, pi+-+pi=1

An element a € A is simple, or (r,s)-simple, if p,ap; = a for some r,s €
{1,...,d} (possibly r = s).

EXAMPLE 3.1. Let Ny,..., Ng > 1 be positive integers and denote N = N +
-+ Ny. Consider the x-algebra A = CV*" with the involution * given by the
conjugate transpose map A > A*. For A € CN*V let T(A) = N~ TrA. Then
(A, 1) = (CV*N  N~1'Tr) is a noncommutative probability space. Any A € CNV*V
may be written in block form as

An A - Aw

A2l Axm - A

Agt Aax - Aad
where Ay, € CNs*Nt For each r = 1, ..., d, denote by P, the matrix with (r, r)
block equal to Idy, and (s, ) block equal to O for all other s, . Then P, is a
projection, and (CN*N N~ITr, Py, ..., P;) is a rectangular probability space.

A € CN*N s simple if A, # 0 for at most one block (s, 7).

In a rectangular probability space, the projections p1, ..., pg generate a sub-x-
algebra
d
(3.1 D:=(p1,...,pd):!erpr:zre(C}.
r=1

We may define a s-linear map F” : A — D by

d
3.2) FP(@) =) pr(@, 1@ =t(pap)/t(ps),

r=1

which is a projection onto D in the sense FP (d) = d for all d € D. In Example 3.1,
D consists of matrices A € CV*V for which A,, is a multiple of the identity for
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each r and A,; = 0 for each r # 5. In this example, 7,(A) = Nr_1 Tr, A where
Tr, A=TrA,,, so FP encodes the trace of each diagonal block.

The tuple (A, D, FP) is an example of the following definition for an operator-
valued probability space.

DEFINITION. A B-valued probability space (A, B,FP) is a x-algebra A, a
sub-x-algebra B C A containing 14 and a %-linear map F? : A — B called the
conditional expectation satisfying, for all b, b’ € Band a € A,

FB(bab') = bF5(a)b',  FB(b) =b.

We identify C C A as a subalgebra via the inclusion map z — z1 4, and we
write 1 for 1 4 and z for z1 4. Then a noncommutative probability space (A, ) is
also a C-valued probability space with B = C and F& = .

DEFINITION. Let (A, 7) be a noncommutative probability space and F? :
A — B a conditional expectation onto a subalgebra B C A. FB is t-invariant if
toFB =1,

It is verified that FP : A — D defined by (3.2) is r-invariant. When B is a
von Neumann subalgebra of (a von Neumann algebra) A, there exists a unique
T-invariant conditional expectation F5 : A — B, which is norm-continuous and
satisfies |FZ(a)| < |la||. If D € B C A are nested von Neumann subalgebras with
t-invariant conditional expectations F? : A — D, F® : A — B, then we have the
analogue of the classical tower property,

(3.3) FP =FP o F5.

We note that D in (3.1) is a von Neumann subalgebra of A, as it is finite-
dimensional.

In the space (A, 1), a € A may be thought of as an analogue of a bounded
random variable, 7 (a) its expectation, and FB(a) its conditional expectation with
respect to a sub-sigma-field. The following definitions then provide an analogue
of the conditional distribution of a, and more generally of the conditional joint
distribution of a collection (a;);cz.

DEFINITION. Let B be a x-algebra and Z be any set. A x-monomial in
the variables {x; : i € Z} with coefficients in B is an expression of the form
biyibayy...bj—1yi—1b; where [ > 1, by, ..., by € B, and y1, ..., yi—1 € {x;,x]:
i € T}. A *-polynomial in {x; : i € I} with coefficients in B is any finite sum of
such monomials.

We write Q(a; :i € Z) as the evaluation of a x-polynomial Q at x; = q;.
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DEFINITION 3.2. Let (A, B, FB) be a B-valued probability space, let (a;);ez
be elements of A and let Q denote the set of all x-polynomials in variables {x; : i €
T} with coefficients in B. The (joint) B-law of (a;);c7 is the collection of values

in B
(3.4) {FP[0(@ai :i € D]} peo-

In the scalar setting where B = C and FZ = r, a x-monomial takes the sim-
pler form zy;yz...y,—1 forz € C and yi, ..., y—1 € {x;,x] : i € Z} (because C
commutes with A). Then the collection of values (3.4) is determined by the scalar-
valued moments 7(w) for all words w in the letters {x;, x/ : i € Z}. This is the
analogue of the unconditional joint distribution of a family of bounded random
variables, as specified by the joint moments.

Finally, the following definition of operator-valued freeness, introduced in
Voiculescu (1995), has similarities to the notion of conditional independence of
sub-sigma-fields in the classical setting.

DEFINITION. Let (A, B, FB) be a B-valued probability space and (A;);er a
collection of sub-x-algebras of .4 which contain B. (A;);cz are B-free, or free

with amalgamation over B, if forall m > 1, for all iy, ..., i, € Z with i #i2, i2 #
i3,...,0im—1 #ip and for all a; € A;,...,an € A;,, the following implication
holds:

FPa) =FP@a)=--=F%@a, =0 = Flar...an)=0.

Subsets (S;);cz of A are B-free if the sub-x-algebras ({S;, B));c7 are.

In the classical setting, the joint law of (conditionally) independent random vari-
ables is determined by their marginal (conditional) laws. A similar statement holds
for freeness.

PROPOSITION 3.3.  Suppose (A, B, FP) is a B-valued probability space, and
subsets (S;)iez of A are B-free. Then the B-law of U;cz Si is determined by the
individual B-laws of the S;’s.

PROOF. See Voiculescu (1995), Proposition 1.3. [

3.2. Free deterministic equivalents and asymptotic freeness. Free determinis-
tic equivalents were introduced in Speicher and Vargas (2012). Here, we formalize
a bit this definition for independent jointly orthogonally invariant families of matri-
ces, and we establish closeness of the random matrices and the free approximation
in a general setting.



EIGENVALUES OF MANOVA ESTIMATORS 2869

DEFINITION 3.4. For fixed d > 1, consider two sequences of N-dependent
rectangular probability spaces (A, 7, p1,..., pqs) and (A, 7, p, ..., p)) such
that foreachr € {1,...,d},as N — oo,

[z(pr) = 7'(p;)| = 0.

For a common index set Z, consider elements (a;);ez of A and (alf )ier of A'.
Then (a;);c7 and (alf )ieT are asymptotically equal in D-law if the following holds:

For any r € {1, ...,d} and any *-polynomial Q in the variables {x; : i € Z} with
coefficients in D = (py, ..., pq), denoting by Q’ the corresponding x-polynomial
with coefficients in D' = (py, ..., pq), as N — o0,

(3.5) |t-[Q(ai:i € )] — /[0 (a} :i € T)]| — 0.

If (a;); ez and/or (alf )iz are random elements of A and/or A’, then they are asymp-
totically equal in D-law a.s. if the above holds almost surely for each individual
x-polynomial Q.

In the above, 7, and 7, are defined by (3.2). “Corresponding” means that Q' is
obtained by expressing each coefficient d € D of Q in the form (3.1) and replacing
Pls--.,Pabdy pl..... Py

We will apply Definition 3.4 by taking one of the two rectangular spaces to be
((CN xN -1 Tr) as in Example 3.1, containing random elements, and the other
to be an approximating deterministic model. (We will use “distribution” for ran-
dom matrices to mean their distribution as random elements of CV*¥ in the usual
sense, reserving the term “3-law” for Definition 3.2.) Freeness relations in the de-
terministic model will emerge from the following notion of rotational invariance
of the random matrices.

DEFINITION 3.5. Consider (CN*N N=ITr, Pi,..., P;) as in Example 3.1.
A family of random matrices (H;)jez in CN*N is block-orthogonally invari-
ant if, for any orthogonal matrices O, € RN"*Nr for r = 1,...,d, denoting
O =diag(0y, ..., 04) € R¥N*N the joint distribution of (H;);e7 is equal to that
of (OTH; 0)jez.

Let us provide several examples. We discuss the constructions of the spaces
(A, t, p1, ..., pa) for these examples in Appendix D.

EXAMPLE 3.6. Fix r € {l1,...,d} and let G € CV*N be a simple random
matrix such that the diagonal block G, € CNrxNr g distributed as the GUE or
GOE, scaled to have entries of variance 1/N,. (Simple means Gy = 0 for all
other blocks (s,t).) Let (A, t, p1,..., pq) be a rectangular space with t(ps) =
N;/N foreach s =1,...,d, such that A contains a self-adjoint simple element g
satisfying g = ¢* and p,gp, = g, with moments given by the semicircle law:

2 1
rr(gl)=/_2;—n 4 —x2dx forall/ > 0.
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For any corresponding *-polynomials Q and ¢ as in Definition 3.4, we may ver-
ify N~ 'Tr, 0(G) — 1,(¢(g)) — 0 a.s. by the classical Wigner semicircle theorem
(Wigner (1955)). Then G and g are asymptotically equal in D-law a.s. Further-
more, G is block-orthogonally invariant.

EXAMPLE 3.7. Fixri #r e{l,...,d} andlet G € CN*N be a simple ran-
dom matrix such that the block G, has i.i.d. Gaussian or complex Gaussian
entries with variance 1/N,,. Let (A, 7, p1,..., pq) satisfy t(ps) = Ns/N for each
s, such that A contains a simple element g satisfying p, gp,, = g, where g*g has
moments given by the Marcenko—Pastur law:

Trz((g*g)l) = /lezv,z/zv,1 (x)dx foralll >0,
where v, is the standard Marcenko—Pastur density

1 Ay — — A
(3.6) vk<x>=§¢( * ii(x g @, de=( ViR

By definition of t, and the cyclic property of t, we also have

l l
7, ((887)") = (V1o /Nr )71, ((878))-
For any corresponding *x-polynomials Q and g as in Definition 3.4, we may verify
N Try, Q(G) — 11,(q(g)) — 0 and N, ' Tr,; Q(G) — 7, (q(g)) — 0 as. by the
classical Marcenko—Pastur theorem (Marcenko and Pastur (1967)). Then G and g
are asymptotically equal in D-law a.s., and G is block-orthogonally invariant.

EXAMPLE 3.8. Let Bj,..., By € CN*N be deterministic simple matri-
ces, say with P, B;P;, = B; for each i =1,...,k and r;,s; € {I,...,d}. Let
0y € RVN>Ni 0, € RNe*Na be independent Haar-distributed orthogonal
matrices, define O = diag(0y,..., 0y) € RNXN and let éi = OTB;0. Let
(A, 1, p1,..., pa) satisfy t(ps) = Ng/N for each s, such that A contains sim-
ple elements by, ..., by satisfying p,,b; ps, = b; foreachi =1, ...,k and

(3.7) N7'Tr, Q(By,.... Bv) = (q(b1, ..., b))

for any corresponding *-polynomials Q and g with coefficients in (P, ..., Py)
and (p1,..., pa). As Tr, Q(B1, ..., Bi) is invariant under B; — o"B;0, (3.7
holds also with B; in place of B;. Then (B;)ie(1,...k} and (b;)ie1,... k) are ex-

.....

.....

orthogonally invariant by construction.

To study the interaction of several independent and block-orthogonally invariant
matrix families, we will take a deterministic model for each family, as in Exam-
ples 3.6, 3.7 and 3.8 above, and consider a combined model in which these families
are D-free.
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DEFINITION 3.9. Consider (CN*N N=ITr, Py, ..., P;) as in Example 3.1.
Suppose (H;)iez;, .- -, (H;)icz, are finite families of random matrices in CN*N
such that:

e These families are independent from each other, and
e Foreach j=1,...,J, (H)iez; is block-orthogonally invariant.
Then a free deterministic equivalent for (H;)iez,,...,(H;)iez, 18 any (N-

dependent) rectangular probability space (A, T, p1, ..., pq) and families (h;);cz,,
..., (hj)jez, of deterministic elements in A such that, as N — oo:

e Foreachr=1,...,d, |N_1TrP,—r(pr)| — 0,

e Foreach j=1,...,J, (Hi)ite and (hi)ite are asymptotically equal in D-law
a.s., and
o (hi)iez,,--., (hj)iez, are free with amalgamation over D = (p1, ..., pq).

The main result of this section is the following asymptotic freeness theorem,
which establishes the validity of this approximation.

THEOREM 3.10. In the space (CNXN | N—'Tr, P, ..., Py) of Example 3.1,
suppose (H;)iez,, ..., (H;)iez, are independent, block-orthogonally invariant
families of random matrices, and let (h;)iez,, ..., (hi)iez, be any free determinis-
tic equivalent in (A, T, p1, ..., pa). If there exist constants C, ¢ > 0 (independent
of N) such that c < N, /N forallr and |H;|| < C a.s.foralli € Z;,all I;, and all
large N, then (Hi)ite,je{l ,,,,, Jy and (h,-)l-ezj,je{l ,,,,, Jy are asymptotically equal in
D-law a.s.

More informally, if (hi),-ezj asymptotically models the family (H;) iez; for each
J» and these matrix families are independent and block-orthogonally invariant, then
a system in which (h;);ez; are D-free asymptotically models the matrices jointly
over j.

Theorem 3.10 is analogous to Benaych-Georges ((2009), Theorem 1.6) and
Speicher and Vargas ((2012), Theorem 2.7), which establish similar results for
complex unitary invariance. It permits multiple matrix families (where matrices
within each family are not independent), uses the almost-sure trace N ~! Tr rather
than E o N~! Tr, and imposes boundedness rather than joint convergence assump-
tions. This last point fully embraces the deterministic equivalents approach.

We will apply Theorem 3.10 in the form of the following corollary. Suppose that
w € A satisfies |t (w!)| < C* for a constant C > 0 and all [ > 1. We may define its
Stieltjes transform by the convergent series

(3.8) my@) =t(w-2"" ==Y 7D
>0

for z € CT with |z| > C, where we use the convention w® = 1 for all w € A.
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COROLLARY 3.11. Under the assumptions of Theorem 3.10, let Q be a self-
adjoint x-polynomial (with C-valued coefficients) in (xi)ite, je(l,...,J}> and let

,,,,,

W=0Q(H:ieZjjell,...,J})eCV*VN,
w:Q(hi:lEIj,]e{l,...,J})eA.

Suppose |t(w')| < C! for all N,1 > 1 and some C > 0. Then for a sufficiently
large constant Co > 0, letting D = {z € CT : |z| > Co} and defining my (z) =
N=YTr(W = zIdy) ' and my(2) = t((w — 2) 1),

my(z) —my(z) > 0

pointwise almost surely over z € D.
Proofs of Theorem 3.10 and Corollary 3.11 are contained in Appendix B.

3.3. Computational tools. Our computations in the free model will use the
tools of free cumulants, R-transforms, and Cauchy transforms discussed in Nica,
Shlyakhtenko and Speicher (2002), Speicher (1998), Speicher and Vargas (2012).
We review some relevant concepts here.

Let (A, B, FB) be a B-valued probability space and FZ : A — B a conditional
expectation. For [ > 1, the [th order free cumulant of FB is a map KlB : A — B de-
fined by FZ and certain moment-cumulant relations over the noncrossing partition
lattice; we refer the reader to Speicher and Vargas (2012) and Speicher ((1998),
Chapters 2 and 3) for details. We will use the properties that /clB is linear in each
argument and satisfy the relations

(3.9) kP (bai,ay, ..., ai—1,aqib') =biF(ar, ..., a)b,
(3.10) KIB(al,...,aj_l,ajb,aj+1,...,al) :KZB(al,...,aj,baj+1,...,a1)

forany b, b’ € Band ay, ...,q; € A.
For a € A, the B-valued R-transform of a is defined, for b € B, as

(3.11) RE®) =Y kf(ab,...,ab,a).
>1

The B-valued Cauchy transform of a is defined, for invertible b € B, as

(3.12) GB(b) :=F5((b — =Y "F5(b- nh,
>0

with the convention ¢ = 1 for all a € .A. The moment-cumulant relations imply
that Gf(b} and Rf (b) + b~ are inverses with respect to composition.
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PROPOSITION 3.12.  Let (A, B, FB) be a B-valued probability space. For a €
A and invertible b € B,

(3.13) GB(b~' + REb)) =b,
(3.14) GEb) = (b —REGEw))) ™.

PROOF. See Voiculescu ((1995), Theorem 4.9) and also Speicher ((1998),
Theorem 4.1.12). [

REMARK. When A is a von Neumann algebra, the right-hand sides of (3.11)
and (3.12) may be understood as convergent series in .4 with respect to the norm
I - |l, for sufficiently small ||b| and 6=, respectively. Indeed, (3.12) defines a
convergent series in B when 16~ < 1/||all, with

15~

3.15 GEw| <3S ol = —— "
(3.15) [G2@1 =2 167 el =

>0
Also, explicit inversion of the moment-cumulant relations for the noncrossing par-
tition lattice yields the cumulant bound

l
(3.16) |«P@i.....ap| <16 T llal
i=1
(see Nica and Speicher (2006), Proposition 13.15), so (3.11) defines a convergent
series in B when 16]|b|| < 1/||a||, with

16]jal|

RE®)| < 16 al'|b]" ™ = —————.
EBAGIEDS 1 16]ja ][]

[>1

The identities (3.13) and (3.14) hold as equalities of elements in B when ||b| and
|6~ are sufficiently small, respectively.

Our computation will pass between R-transforms and Cauchy transforms with
respect to nested subalgebras of .A. Central to this approach is the following re-
sult from Nica, Shlyakhtenko and Speicher (2002) (see also Speicher and Vargas
(2012)).

PROPOSITION 3.13. Let (A, D,FP) be a D-valued probability space, let
B, H C A be sub-x-algebras containing D and let FB : A — B be a conditional
expectation such that FP o FB = FP. Let I([B and KID denote the free cumulants
for FB and FP. If B and H are D-free, then for all | > 1, hy,...,h; € H and
bi,...,bj—1 e B,

kP(hiby, ... hi—ibi—1, b)) = kP (M FP (b)), ..., i FP (by—1), hy).
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PROOF. See Nica, Shlyakhtenko and Speicher (2002), Theorem 3.6. [J

For subalgebras D C B € A and conditional expectations F? : A — D and
FB : A — B satisfying (3.3), we also have for any a € A and invertible d € D
(with sufficiently small ||d~"|]), by (3.12),

(3.17) GP(d) =FP o GE(a).

Finally, note that for B = C and FB = 1, the scalar-valued Cauchy transform
GS (z) is simply —m (z) from (3.8). (The minus sign is a difference in sign con-
vention for the Cauchy-Stieltjes transform.)

4. Computation in the free model. We will prove analogues of Theo-
rems 1.2 and 1.5 for a slightly more general matrix model: Fix k& > 1, let
p,ni,...,ng,mi,...,mg € Nand denote ny = Z]r‘:lnr. Let F € C"+*"+ be de-
terministic with F* = F, and denote by F,; € C"*" its (r,s) submatrix. For
r=1,...,k, let H. € C"*P be deterministic, and let G, be independent random
matrices such that either G, € R with (G,);; B N0, nr_l) or G, € C'r>mr
with I(G,)ij, R(G,)ij tid N(0, 2n,)~"). Define

k
W:= Y H}G}FGsH,€CI*?,

r,s=1

with empirical spectral measure py. Denote b - H*H = ZI;ZI bsH} Hy, and let
D(a) and Tr, be as in Theorem 1.2.

THEOREM 4.1. Suppose p,niy,...,ng,mi,...,mg — 00, such that ¢ <
n/p<C,c<m,/p<C,|H| <C,and | Fs|l <C forallr,s=1,...,k and
some constants C,c > 0. Then:

(a) For each 7 € C™, there exist unique values ay,...,a; € C* U {0} and

by, ..., by € Ct that satisfy, forr =1, ..., k, the equations

1 _
4.1) a = ——Tr((z1d, +b - H*H) " H*H,),

ny

1 _
(4.2) by ==~ Tiy([1d,, +FD(@)] 'F).

r

(b) uw — mo — 0 weakly a.s. for a probability measure 1o on R with Stieltjes
transform

43) mo(2) = —%Tr((z Id, +b- H*H)™).

(c) Foreach z € Ct, the values a,, b, in (a) are the limits, as t — 00, ofar(t),

ﬁt) computed by iterating (4.1)—(4.2) in the manner of Theorem 1.5.
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Theorems 1.2 and 1.5 follow by specializing this result to F = U7 BU and
m, =p,n, =1, and H, = Erl/z foreachr=1,...,k.
In this section, we carry out the bulk of the proof of Theorem 4.1 by:

1. Defining a free deterministic equivalent for this matrix model, and
2. Showing that the Stieltjes transform of the element w (modeling W) satisfies
4.1)-(4.3).

These steps correspond to the separation of approximation and computation dis-
cussed in Section 1.4.

For the reader’s convenience, in Appendix E we provide a simplified version of
these steps for the special case of Theorem 4.1 corresponding to Theorem 1.1 for
sample covariance matrices, which illustrates the main ideas.

4.1. Defining a free deterministic equivalent. Consider the transformations
Hy— O'H,00,  Frgt> OL,, FrsOpyy

for independent Haar-distributed orthogonal matrices Oy, ..., Oy of the appro-
priate sizes. As in Section 1.4, puw remains invariant in law under these transfor-
mations. Hence it suffices to prove Theorem 4.1 with H, and F;; replaced by these
randomly rotated matrices, which (with a slight abuse of notation) we continue to
denote by H, and F;.

Let N =p+YX_, m, + Y*_, n,, and embed the matrices W, H,, G,, Fy as
simple elements of CV*V in the following regions of the block-matrix decompo-
sition correspondingto CN =C? @ C™" @ --- @ C™* @ C" @ --- & C*:

WIH[- - [Hf
H; GT
H; Z
G Fii| - |Fik
Gi|Fri| -~ |Fk
Denote by Py, ..., Py the diagonal projections corresponding to the above de-

composition, and by W Frs, Gr, H, € CN*N the embedded matrices (i.e., Py =
diag(Id,,0,...,0), Py = diag(0,1d;,,, ..., 0), etc. W has upper-left block equal
to W and remaining blocks 0, etc.). Then W, FH, G,, H, are simple elements of
the rectangular space (CN*N N=ITr, Py, ..., Py), and the k + 2 families {F, shs
{H}, Gy, ..., Gy are 1ndependent of each other and are block-orthogonally invari-
ant.

For the approximating free model, consider a second (/N -dependent) rectangular
space (A, 1, po, ..., pax) with deterministic elements fys, g,, i, € A, such that the
following hold:
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1. po, ..., pax have traces
T(po) = p/N, t(pr) =m/N,
T(Pr+r) =0y /N forallr =1, ...,k.
2. frs, &r, hy are simple elements such that for all r, s € {1, ..., k},

Dk+r frs Phts = frs Pk+r8rPr = 8r» prhrpo=h,.

3. {frs : 1 <r,s <k} has the same joint D—law as {I:}S 1 <rs <k}, and
{h; : 1 <r <k} has the same joint D-law as {H, : 1 <r < k}. That is, for any

r €{0,..., 2k} and any noncommutative *-polynomials Q, O, with coefficients
in (Py, ..., Py), letting g1, g2 denote the corresponding *-polynomials with coef-
ficients in (po, ..., P2k),

@4 g (fu:s.tell, .. k)] =N"Te, Qi(Fop:s, €1, ... kY,
4.5 tlqhg:se{l, ... k)] =N""Tr, Qa(H; :s €{1,....k}).

4. For each r, g* g, has Marcenko—Pastur law with parameter A = m, /n,. That
is, for v, asin (3.6),

(4.6) 7 ((g*g)) = / Xy, n, () dx  foralll >0.

5. The k + 2 families { f;s}, {h,}, g1, ..., gk are free with amalgamation over
D =(po,---, p2k)-

The right-hand sides of (4.4) and (4.5) are deterministic, as they are invariant
to the random rotations of F,; and H,. Also, (4.6) completely specifies t(g(g;))
for any *-polynomial g with coefficients in D. Then these conditions 1-5 fully
specify the joint D-law of all elements f,s, g, i, € A. These elements are a free
deterministic equivalent for F, S G,, H, € CN*N in the sense of Definition 3.9.

The following lemma establishes existence of this model as a von Neumann
algebra; its proof is deferred to Appendix D.

LEMMA 4.2. Under the conditions of Theorem 4.1, there exists a (N-
dependent) rectangular probability space (A, T, po, ..., pak) such that:

(a) A is a von Neumann algebra and t is a positive, faithful, normal trace.

(b) A contains elements frs, g, hy for r,s € {1,...,k} that satisfy the
above conditions. Furthermore, the von Neumann subalgebras (D, {f;s})w
(D, {h, Hw=, (D, g1)w*, ..., (D, gk)w+ are free over D.

(c) There exists a constant C > 0 such that || frs|l, A, llg-ll < C for all N
andallr, s.
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4.2. Computing the Stieltjes transform of w. We will use twice the following
intermediary lemma, whose proof follows ideas of Speicher and Vargas (2012) and
which we defer to Appendix D.

LEMMA 4.3. Let (A, 1,q0,91,---,q9k) be a rectangular probability space,
where A is von Neumann and t is positive, faithful and normal. Let D =
(q0, .-, qx), let B,C C A be von Neumann subalgebras containing D that are
free over D and let FP : A — D and ¢ : A — C be the t-invariant conditional
expectations.

Let by € B and ¢, €C for 1 <r,s <k be such that q,b,5qs = bys, qrcy = Cr,
1brs]l < C,and ||c|| < C for some constant C > 0. Define a = Zk ctbrscs and

r,s=1
b=Y* _ b.. Then, for e € C with |e|| sufficiently small,

r,s=1
k k
Rg(e) = Z crerty (RE (Z T (csecf)qs)> ,

r=1 s=1

where RS and RbD are the C-valued and D-valued R-transforms of a and b.
We now perform the desired computation of the Stieltjes transform of w.

LEMMA 4.4. Under the conditions of Theorem 4.1, let (A, t, po, ..., p2k)
and frg, gr, hy be as in Lemma 4.2, and let w = Zf’szlhfg:‘f”gshs. Then for
a constant Cy > 0, defining D := {z € C* : |z| > Co}, there exist analytic func-
tions ay,...,ar : D — CT U {0} and by, ..., by : D — C that satisfy, for every
z € D and for mo(z) = to((w — 2)7h, equations (4.1)—(4.3).

PRrROOF. If H, =0 for some r, then we may set a, = 0, define b, by (4.2) and
reduce to the case k — 1. Hence, it suffices to consider H, # 0 for all r.

Define the von Neumann subalgebras D = (p, : 0 <r <2k), F = (D, { frs ) w*,
G = (D, {g-})w+, and H = (D, {h,})w+. Denote by FP, R?, and GP the -
invariant conditional expectation onto D and the D-valued R-transform and
Cauchy transform, and similarly for F, G and H.

We first work algebraically (Steps 1-3), assuming that arguments b to Cauchy
transforms are invertible with ||b~!| sufficiently small, arguments b to R-
transforms have ||b|| sufficiently small, and applying series expansions for (b —
a)~'. We will check that these assumptions hold and also establish the desired
analyticity properties in Step 4.

Step 1: We first relate the D-valued Cauchy transform of w to that of v :=

Zf’szl 8 frs&s. We apply Lemma 4.3 with g0 = po + Zfl;kﬂ Drs qr = py for
r=1,...,k,C=Hand B=(F,G). Then for c € H,

k k
4.7 RE() =" hih (RZ? (Z PsTs (hsch;‘))> .

r=1 s=1
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To rewrite this using Cauchy transforms, for invertible d € D and each r =
1,...,k, define

(4.8) a,(d) == 7, (h, GH(d)h?),

k
(4.9) Br(d) =1, (R?? (Z pscts (d))) :

s=1

Then (3.14) and (4.7) with ¢ = G?j (d) imply

k —1
(4.10) Gil(d)=(d —R¥(GH@)) ™" = (d = hihe (d)) .

r=1

Projecting down to D using (3.17) yields

k -1
(4.11) G}U’(d):FD(<d— thh,ﬂ,(d)) )

r=1

Applying (4.10) to (4.8),

k —1
(4.12) o d) =1 (hr (d = DI (d)) hf)-

s=1

Noting that (p1 +--- 4+ pr)v(p1 +-- -+ px) = v, (3.11) and (3.9) imply RUD(d) €
(p1,..., px) forany d € D, so we may write (4.9) as

k k
Ry (Z prarw)) =Y pBr(d).

r=1 r=1

Forr=0andr e {k+1,..., 2k}, set B,(d) =0 and define «,(d) arbitrarily, say
by a,(d) = |d~'||. Since vp, = p,v=0if r=0o0rr € {k+1,...,2k}, applying
(3.11) and multilinearity of KID , we may rewrite the above as

2k 2k
RZ,’(Z prar<d>> => pBr@).

r=0 r=0

Applying (3.13) with b = Y2 | p,a, (d), we get

> 2k 1 2k
4.13 G , (D)) =S pra, ).
(4.13) ”(Z;)p(ar(d)—'_'g())) > praa)

The relation between GB and G? is given by (4.11), (4.12) and (4.13).

Step 2: Next, we relate the D-valued Cauchy transforms of v and u :=
er"ml frs. We apply Lemma 4.3 with g9 = Zf:o Proqr = pryk forr=1,... k,
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C=Gand B=F.Thenforceg,
k k
(4.14) RI(C) =) 8 8rtrik (RZ? (Z Ps+kTstk (8s cgf))) :
r=1 s=1

To rewrite this using Cauchy transforms, for invertible d € D and all r =
., k, define

(4.15) Vrik(d) = Tk (8- GY () gY),

k
(4.16) Srri(d) = Trak (sz (Z PstkVs+k (d))) :

s=1

As in Step 1, for r =0, ..., k let us also define §,(d) =0 and y,(d) = ||d_1||.
Then, noting (pxy1 + - + pau)u(pr+1 + - - - + pak) = u, the same arguments as
in Step 1 yield the analogous identities

k —1
4.17) GPd) = FD<(d -> g;‘gsas+k<d>) )

s=1

k -1
(4.18) Yotk (d) = Trik (gr (d — 3 gt gtk (d)) g:‘),

s=1
2k
(4.19) GD<Z pr( T (d))) =3 pn(@).
r=0 Vr r=0

As g g, has moments given by (4.6), we may write (4.17) and (4.18) explicitly:
Denote d = dypo + - - - + dox par for dy, . .., drr € C. As d is invertible, we have
d-! = do_lpo 4+ 4 dz_kl pak. For any x € A that commutes with D,

d—x)""=>"a Y xa™ =D xla™"1

>0 >0

Soforr=1,...,k, noting that p, = pr2 and that D commutes with itself,

(@ =07 =~ Y e(pala p,)

1>0

I 7 (x)
— Z prx Pr prd pr) +l) = Z ;IJFI .
mr >0 =0 “r
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Noting that g7gs commutes with D, applying the above to (4.17) with x =
ZIS‘ZI 85 8s85+k(d), and recalling (4.6),

3 7 ((g78)D)8r+1(d)’

d£+l

5 (GP(d)) =
>0

x84 ()
_/Z ﬁl Vm, /n, (x) dx

>0 r

l)mr/”r (X) dx

1
B / dy — x8r1k(d)

_ 1 C
(4.20) = 5 O, (/@)

where G‘vcmr /n, 18 the Cauchy transform of the Marcenko—Pastur law vy, /», .
Similarly, we may write (4.18) as

k —1
my .
Vrk(d) = » Tr(<d_ E g;(gsgs—l—k(d)) grgr)
r

s=1

[ — (x)d
=— | ————— V. /n
n ) d = x8 (@) "

my 1 dr C
o\ G5 (dr/8r1k(d
ny ( Sr+k(d) - 8r4x(d)? vy oy (A /8141 ( ))>

m 1 d
421 =—"(- d ,GDd>,
2D (. @) @) @)

where the first equality applies the cyclic property of t and the definitions of 7,4
and t,, the second applies (4.6) upon passing to a power series and back as above,
the third applies the definition of the Cauchy transform and the last applies (4.20).
The relation between G? and GE is given by (4.20), (4.21) and (4.19).

Step 3: We compute mq(z) for z € C* using (4.11), (4.12), (4.13), (4.20), (4.21)
and (4.19). Fixing z € C™, let us write

1
ar = o, (2), Br = Br(2), dr:a_+/3r’ d:Zdrpra
r —

1
Yr =¥r(d), 8, =6,(d), er:y_+5r, e=Zerpr.
r

Applying (4.11) and projecting down to C,

k -1
mo(z) = —m((z - Zh;khr,gr) )
r=I1
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Note that i} h, commutes with D and poh}h,po = h}h, foreach r =1, ... k.

Then, passing to a power series as in Step 2, and then applying (4.5) and the spec-
tral calculus,

k l
mo(z) = — Zz_(l“)ro((Z h:‘hrﬂr> )
r=I1

=0

k I
_ ZZ_(HD%Tr((Z ﬂrH,*Hr> )

>0 r=1
1 k !
(4.22) =—— Tr(z Id, = > ,B,H,*H,> .
p r=1
Similarly, (4.12) implies foreachr =1, ...,k
1 k !
(4.23) o= Tr((z Id, — ; Bs HS*HS> Hr*Hr).

Now applying (4.20) and recalling (4.13) and the definition of d,, for each r =
1,...,k,

1 1 Br
@ =7 (GP(d)) = —GF ( + )
' r( Y ) Or+k Ymr fnr ardr+k  Orvk
Applying (3.14) and the Marcenko—Pastur R-transform RS (z) = (1 —xrz)~ !, this
is rewritten as

(4.24) P R (@84 =
8r+k r/nr

By (4.21) and (4.13),

ny

Ny — Mp0yOp 4k

(4.25) Vrak =

We derive two consequences of (4.24) and (4.25). First, substituting for 8, in (4.25)
using (4.24) and recalling the definition of e, yields

ny

(4.26) erik =

meo,
Second, rearranging (4.24), we get B, /8;+x = 1 +m,a; B, /n,. Inserting into (4.25)
yields this time

ny

(4.27) Br= ) (N Vr+k — Mpoy).

m2a?
By (4.19), foreachr =1, ...k,

Vrtk = Tk (GE (@) = Tk ((e —u) 7).
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Passing to a power series for (e — u)~!, applying (4.4) and passing back,

1 . ~
Veak = n—Trr+k(d1ag(e()Idp, cooseldy) — F) !
r

1 : _
= — Ty (diag(exs11dn,. ... ex¢1dy) = F) :

1
(4.28) =—Tr, (D' = F)7",
ny

where the last line applies (4.26) and sets D = diag(D11d,,, ..., Dy 1d,,) for D, =
myo/n,. Noting Tr, D = m,«,, (4.27) yields

_ 1 —1_
B, = D2 Tr,[(D~' = F)™' = D]
(4.29) L Tr,[(F' = D) ']= L Tr, ((Id,, —FD)"'F),
ny ny

where we used the Woodbury identity and Tr, DAD = Dr2 Tr A. (These equal-
ities hold when F is invertible, and hence for all F by continuity.) Setting
ar = —m,o,/n, and b, = —B,, we obtain (4.1), (4.2) and (4.3) from (4.22), (4.23)
and (4.29).

Step 4: Finally, we verify the validity of the preceding calculations when
z€D:={zeC":|z] > Co} and Cp > 0 is sufficiently large. Call a scalar quantity
u = u(N, z) “uniformly bounded” if |u| < C for all z € D, all N and some con-
stants Co, C > 0. Call u “uniformly small” if for any constant ¢ > O there exists
Co > 0O such that |u| < ¢ forall z €D and all N.

As ||lw| < C by Lemma 4.2(c), c = GZU{ (z) is well defined by the convergent
series (3.12) for z € D. Furthermore, by (3.15), ||c|| is uniformly small, so we may
apply (4.7). o, (z) as defined by (4.8) satisfies

o () =1 (h, Y F(! (wz_l)l)hf>

=0

o0 0 N
= Zz_(l“)r(p,)_lr(h,FH(wl)h:‘) = Zz_(lﬂ)—t(wlhfh,)
1=0 1=0 My

for z € D. Since |r(wlh;"hr)| < |lw||lA-||%, « defines an analytic function on
D such that «,(z) ~ (zm,)~! Tr(H}H,) as |z] — oo. In particular, since H, is
nonzero by our initial assumption, «,(z) #% 0 and I, (z) < 0 for z € D. This ver-
ifies that a,(z) = —m,a,(z)/n, € CT and q, is analytic on D. Furthermore, o, is
uniformly small for each r. Then applying (3.11), multilinearity of x; and (3.16),
it is verified that 8,(z) defined by (4.9) is uniformly bounded and analytic on D.
So b, (z) = —B(z) is analytic on .
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As B, is uniformly bounded, the formal series leading to (4.22) and (4.23) are
convergent for z € D. Furthermore, d, = 1 /o, + B, is well defined as o, # 0, and
41| is uniformly small. Then ¢ = Gg(d) is well defined by (3.12) and also uni-
formly small, so we may apply (4.14). By the same arguments as above, ;41 (d)
as defined by (4.15) is nonzero and uniformly small and 6,44 (d) as defined by
(4.16) is uniformly bounded. Then the formal series leading to (4.20) and (4.21)
are convergent for z € . Furthermore, e, = 1/y; + §, is well defined and lle 1|
is uniformly small, so the formal series leading to (4.28) is convergent for z € .
This verifies the validity of the preceding calculations and concludes the proof.

O

To complete the proof of Theorem 4.1, we show using a contractive mapping
argument similar to Couillet, Debbah and Silverstein (2011), Dupuy and Loubaton
(2011) that (4.1)—(4.2) have a unique solution in the stated domains, which is the
limit of the procedure in Theorem 1.5. The result then follows from Lemma 4.4
and Corollary 3.11. These arguments are contained in Appendix C.
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SUPPLEMENTARY MATERIAL

Supplementary Appendices (DOI: 10.1214/18-AOS1767SUPP; .pdf). The
Appendices contain a discussion of more general classification designs, proofs of
Theorem 3.10 and Corollary 3.11, the proof of Lemma 4.3 and the conclusion of
the proof of Theorem 4.1 and a separate exposition of the proof in Section 4 for
the simpler setting of Theorem 1.1.
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