
TL-NID: Deep Neural Network with
Transfer Learning for Network Intrusion

Detection

Abstract- Network intrusion detection systems (NIDSs)
play an essential role in the defense of computer
networks by identifying a computer networks’
unauthorized access and investigating potential security
breaches. Traditional NIDSs encounters difficulties to
combat newly created sophisticated and unpredictable
security attacks. Hence, there is an increasing need for
automatic intrusion detection solution that can detect
malicious activities more accurately and prevent high
false alarm rates (FPR). In this paper, we propose a novel
network intrusion detection framework using a deep
neural network based on the pretrained VGG-16
architecture. The framework, TL-NID (Transfer
Learning for Network Intrusion Detection), is a two-step
process where features are extracted in the first step,
using VGG-16 pre-trained on ImageNet dataset and in
the 2nd step a deep neural network is applied to the
extracted features for classification. We applied TL-NID
on NSL-KDD, a benchmark dataset for network
intrusion, to evaluate the performance of the proposed
framework. The experimental results show that our
proposed method can effectively learn from the NSL-
KDD dataset with producing a realistic performance in
terms of accuracy, precision, recall, and false alarm.
This study also aims to motivate security researchers to
exploit different state-of-the-art pre-trained models for
network intrusion detection problems through valuable
knowledge transfer.

Keywords-Transfer learning, Pre-trained model, VGG-
16, Deep neural network, Network intrusion detection

I. INTRODUCTION
Network intrusion detection systems (NIDSs) play

an essential role in the defense of computer networks
by identifying a computer networks’ unauthorized
access and investigating potential security breaches.
Traditional NIDSs encounters difficulties to combat
newly created sophisticated and unpredictable security
attacks. The number of security threats on traffic data

are increasing exponentially and the newly created
attacks has become more sophisticated and variants.
Hence, traditional intrusion detection techniques such
as signature-based detection, heuristic detection or
behavior-based detection are not adequate to combat
malicious activities [1].

 Machine learning (ML) algorithms have been
showing promising results in classifying network
intrusions. The algorithms can overcome the
limitations of traditional detection methods and
provide a rewarding accuracy score. Traditional
machine learning approaches like Support Vector
Machine (SVM), Logistic Regression (LR), Random
Forest (RF), and Decision Tree (DT) were previously
proposed for intrusion detection. However, deep
convolutional neural networks (DCNN), an advanced
ML technique, is gained popularity and widely used for
many applications like computer vision, speech
recognition, and natural language processing.
Extracting automated features, capability of highly
non-linear systems, and flexibility in architecture
design are the highlight of the DCNN. DCNN
essentially follows two distinct approaches to train: 1.
training from scratch-training the model of randomly
initialized weights, and 2. transfer learning-pre-training
a model on a related task and then optimizing the model
for target task [5]. Transfer learning from a pre-trained
model is a popular approach, yet it is unexplored for
network intrusion detection problem. A conventional
DCNN, learning from scratch, that is developed on a
specific train data demonstrate quite different
performance on different test datasets. An example was
demonstrated based on KDD-NSL dataset where a
DCNN, was trained on NSL-KDD training data, poorly
performed on KDDTest-21 dataset since a number of
attacks in KDDTest-21are not covered in the training
set [6]. Moreover, training time increases exponentially
with the increasing/deepening of architecture of

Mohammad Masum
Analytics and Data Science Institute

Kennesaw State University
Kennesaw, USA

mmasum@students.kennesaw.edu

Hossain Shahriar
Department of Information Technology

Kennesaw State University
Marietta, USA

hshahria@kennesaw.edu

mailto:mmasum@students.kennesaw.edu
mailto:hshahria@kennesaw.edu

DCNN. In general, it could take hours/days to train a
3–5 layers DCNN with a large scale dataset.
Consequently, deploying VGG from scratch on a large
scale dataset is a tiresome and computationally
expensive task due to the depth and number of fully
connected layers/nodes in the models’ architecture.
Another challenge is that building VGG from scratch
requires considerably large memory space and
bandwidth since the size of ImageNet trained VGG-16
weights is 528 MB. However, instead of building a
VGG from scratch, we can perform transfer learning
i.e. — utilizing the knowledge like weights of the
previously trained (e.g. pre-trained VGG) models’ to
solve a similar kind of problem.

 A limited number of research studies have
investigated transfer learning from pre-trained models’
in the field of network intrusion detection. In this paper,
we present an approach for intrusion detection
leveraging DCNN model based on the VGG-16
architecture with pre-trained convolutional layers. We
converted the intrusion samples into gray-scale image
at first and later transformed into RGB image format to
feed the samples to the deep neural network. Our
proposed framework transfers convolutional layers’
parameters of VGG-16 pre-trained on ImageNet
dataset. Two additional fully connected layers are
added to the framework. The fully connected layers
including the final sigmoid layer are designed to adopt
our problem of network intrusion. In this study, we also
applied conventional machine learning algorithms like
SVM, DT, RF, and LR to compare results with our
proposed TL-NID framework. The experimental
results on NSL-KDD datasets show that our TL-NID
can effectively learn from the train data and provide an
accuracy of 89.3% for test data that outperform other
reference work on this dataset suggesting that detecting
network intrusion using transfer learning technique is
promising.

The rest of the paper is organized as follows: In
Section II, we introduce the related work of network
intrusion detection. Section III describes the
methodology of our proposed framework TL-NID
along with the other three classifiers that are
implemented in this paper. The experimental setting
and results are explained in Section IV. Finally, Section
V concludes the paper.

II. RELATED WORK
 Addressing the constraints of the traditional
methods, researchers have proposed both conventional
machine learning (ML) algorithms and deep learning
for network intrusion detection. A least square SVM
applied to representative samples collected from pre-
determined arbitrary subgroups to detect network
traffic data [13]. The method was applied to

KDDVUP’99 data and achieved a reasonable
performance in terms of accuracy. Different ML
methods like RF, DT, Gaussian naïve bayes, and SVM
were applied to NSL-KDD dataset [4, 15, 16].

 Deep learning neural networks are widely used for
network intrusion detection. A 2- layer convolutional
neural network (CNN) was applied to NSL-KDD data
by converting the raw data into image format [7]. The
authors reported accuracy of 99.46%, 79%, and 60%
on KDDTrain+, KDDTest+, and KDDTest-21
datasets, respectively. Another CNN approach based
on Lenet-5 was applied to the KDDCUP’99 dataset that
only evaluated their proposed method on the
KDDCUP’99 training data and reported 99.9%
accuracy after experimenting with different epoch sizes
and learning rates [8]. A multilevel classifier fusion
approach was proposed for network intrusion
detection, containing two layers wherein the upper
layer, an unsupervised feature extraction method was
applied using a non-symmetric deep autoencoder, and
random forest classifier was then applied with the
extracted features [10]. The method experimented with
two different datasets including the KDDCUP’99 and
the NSL-KDD datasets. For a 5-class classification, the
proposed method achieved 97.85% accuracy with the
KDDCUP’99 data, while 85.42% accuracy was
obtained for the NSL-KDD dataset. A framework
based on CNN was proposed experimenting with
different number of hidden layers for both binary and
multi-class classification of network traffic data [11].
The framework applied to 6 different datasets including
KDDCUP’99 and NSL-KDD datasets. The
experimental results in the study show that the optimal
framework, consists of 5 hidden layers, achieved
reasonably low accuracy for both binary and multi-
class classification. The framework provided 92.7%
and 78.9% on the KDDCUP’99 and NSL-KDD
datasets for binary classification, respectively. It
produced 92.5% and 78.5% accuracy on the
KDDCUP’99 and NSL-KDD datasets, respectively,
with respect to multi-class classification.

 Limited numbers of published works are available
that are based on transfer learning for network intrusion
detection. A transfer learning-based method TL-
ConvNet was introduced that learns from a base dataset
and transfers the learned knowledge to the learning of
the target dataset [9]. The TL-ConvNet used UNSW-
NB15, and NSL-KDD as based dataset, and target
dataset, respectively. Experimental results in this study
showed significant performance improves by using
transfer learning instead of conventional CNN. TL-
ConvNet achieved 87.30%, and 81.9% accuracy on
KDDTest+, and KDDTest-21 datasets, respectively.

 Our proposed framework TL-NID, a deep learning-
based framework, was optimized with different
parameters and hyperparameters and experimented
with two different test datasets from a real-world
network intrusion dataset. The experimental results
show the effectiveness of our proposed method.

III. METHODS
 Transfer learning is one of the state-of-the-art
techniques in machine learning that has been widely
used in image classification. VGG is a convolutional
neural network with a specific architecture that was

Table 1: Summary of VGG-16 architecture

proposed by a group of researchers (visual geometry
group) from the University of Oxford [12]. The VGG
model was trained on the ImageNet dataset, a major

computer vision benchmark dataset that includes more
than 14 million images belonging to 1000 classes, for
object localization (detecting objects within an image
coming from 200 classes) and image classification
tasks (1000-class classification). The VGG has two
different architecture: VGG-16 that contains 16 layers
and VGG-19 that contains 19 layers. In this paper, we
applied VGG-16 that mainly contains three different
parts: convolution, pooling, and fully connected
layers— it starts with two convolution layers followed
by pooling, then another two convolutions followed by
pooling, after that repetition of three convolutions
followed by pooling and then finally three fully
connected layers. Table 2 displays the summary of the
VGG-16 model where convolutional, max pooling, and
fully connected layers are mentioned by Conv. MP, and
FC, respectively. The model weights of the VGG-16
are available on different platforms like Keras and can
be used for further analysis — developing models and
applications.

 We leveraged pre-trained VGG-16 weights in the
process of developing the TL-NID framework. Fig. 1
illustrates architecture of the TL-NID framework. At
the initial stage, the framework prepares the given
network intrusion data. Each of the intrusion samples
is then converted into its corresponding grayscale
images which are later transformed into RGB color
images to feed to the pre-trained VGG-16. First 14
layers of the VGG-16 model was utilized for weights
transfer as transfer learning. The TL-NID utilized the
transferred weights to extract features from the input
images. The extracted features are then trained with a
DNN based on the VGG-16 architecture. The DNN
consists of three layers: input layer, two hidden layers
and output layer. The two hidden layers are fully
connected layers that contain 64 and 8 number of
nodes, respectively. The final layer of the DNN is the
sigmoid layer as we considered binary classification for
network intrusion detection.

IV. EXPERIMENT & RESULTS

A. Dataset specification
 NSL-KDD dataset is an updated version of the
KDDCUP’99 dataset which was widely used for
network intrusion detection problems [12]. Many
redundant records in the KDDCUP’99 dataset
generates biases towards the more frequent records.
Therefore, the NSL-KDD dataset was proposed by
addressing the drawbacks and since then it has been
considered the benchmark dataset for the NID problem
[14]. KDDTrain+, KDDTrain+_20 percent (a 20%
subset of the KDDTrain+), KDDTest+, and KDDTest-
21(a subset of KDDTest+) are the four datasets that are

Layer Kernel
size

Output Size Acti-
vation

Param-
eters

input - 224 × 224 × 3 - 0

Conv 3 × 3 224 × 224 × 64 relu 1792

Conv 3 × 3 224 × 224 × 64 relu 36928

MP 2 × 2 112 × 112 × 64 relu 0

Conv 3 × 3 112 × 112
× 128

relu 73856

Conv 3 × 3 112 × 112
× 128

relu 14784

MP 2 × 2 56 × 56 × 128 relu 0

Conv 3 × 3 56 × 56 × 256 relu 295168

Conv 3 × 3 56 × 56 × 256 relu 590080

Conv 3 × 3 56 × 56 × 256 relu 590080

MP 2 × 2 28 × 28 × 256 relu 0

Conv 3 × 3 28 × 28 × 512 relu 1180160

Conv 3 × 3 28 × 28 × 512 relu 2359808

Conv 3 × 3 28 × 28 × 512 relu 2359808

MP 2 × 2 14 × 14 × 512 relu 0

Conv 3 × 3 14 × 14 × 512 relu 2359508

Conv 3 × 3 14 × 14 × 512 relu 2359508

Conv 3 × 3 14 × 14 × 512 relu 2359508

MP 2 × 2 7 × 7 × 512 relu 0

FC - 4096 relu 102764544

FC - 4096 relu 16791312

Out-

put

- 1000 Soft-
max

Figure 1: Architecture of TL-NID framework

included in the NSL-KDD. In this paper, we used 10
percent of KDDTrain+, KDDTest+, and KDDTest-21
datasets to develop and validate the TL-NID
framework.

 Each of the network connection records in the NSL-
KDD dataset consists of 41 features, providing
information about the encounter with eh traffic input by
IDS, along with a label attribute indicating the
connection status (normal or attack). Four different
types of attacks are included in the dataset: Denial of
Service (DoS), Probe, User to Root (U2R), and Remote
to Local (R2L). The features in the dataset can be
divided into groups: intrinsic, content, host-, and time-
based features. The intrinsic features contain basic
information about the packet that is derived from the
header of the connection, while the content features
comprise information related to the original packets.
Time-based features contain information about the
traffic input over a two-second window. Host-based
features, on the other hand, contain information over a
series of connections, designed to access attacks that
are longer than a two second window. Table 1 displays
distributions of the three datasets for binary
classification where normal, and attack represent good,
and bad network connections, respectively.

Table 2: Distributions of the NSL-KDD dataset

Type KDDTrain+ KDDTest+ KDDTest-21

Normal 6641 973 199

Attack 5956 1281 986

B. Data Preprocessing
 We applied the NSL-KDD dataset that contains
network connection features to evaluate the DCNN
framework. Thus, data preprocessing is required to
convert the raw data into image format to feed it to the
DCNN. The categorical data in NSL-KDD should be
mapped to numeric data at first and then the overall
data should be normalized. protocol type, flag, and
service are the three categorical features in the NSL-
KDD that are converted into numeric data using one
hot encoder technique. We applied the min-max
normalization technique to NSL-KDD to scale the
original data to a fixed range of 0 and 1. The
normalization ensures consistency of the data
distribution and avoiding the exploding gradients
problem in the training phase [3]. Equation (1)
represents the min-max normalization formula, where
𝑋𝑠𝑐𝑎𝑙𝑒𝑑 , and 𝑋 is the normalized, and original value,
respectively. min(𝑋), and max (𝑋) are the minimum
and maximum values of the data.

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − min(𝑥)

max(𝑥) − min (𝑥)

(1)

 The number of features has been expanded from 41
to 121 after the preprocessing step. To feed to the
DCNN the 1-dimensional data is translated into 2-d
array of size 11 × 11 or grayscale image at first. Fig
shows some network connection samples as grayscale
images where images in the 1st row, and 2nd row are for
normal, and attack connections, respectively. In the
next stage, the grayscale images were converted into 3-
d RGB images and resized to the format of 224 ×
224 × 3 format as required by the pre-trained VGG-16
input shape. Since the grayscale images have only one-
channel, in the process of conversion, a channel
augmentation is performed by duplicating the
grayscale images into three channels RGB images.

Figure 2: Grayscale images of network connection samples

C. Model evaluation metrics
 To evaluate the models’ performance, we
considered accuracy, precision, recall, false alarm, and
F-score metrics. These metrics use properties from
confusion matrix such as true positive (TP), false
positive (FP), false negative (FN), and true negative
(TN). TP is number of attacks that are correctly
classified as attacks, while FN is the attacks that
incorrectly classified. The number of incorrectly
classified normal data is FN, and TN is correctly
classified normal data. Equation 2,3,4,5, and 6 are the
mathematical definition of the performance metrics
accuracy, precision, recall, false alarm, and F-score,
respectively.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

TP + FP + FN + TN
 (2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4)

False Alarm =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (5)

F − score =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(6)

D. Experimental design & Results
We evaluated our model performance by

comparing it with the performance of LR, SVM, and
DT methods. Trained data was used to train each of
the models we experimented with while test data was
used for evaluating the performance of the models.
The SVM, LR, and DT classifiers were applied to the
dataset for comparing results with our proposed
framework. The algorithms were implemented using
Python scikit-learn library with available
hyperparameter options. ‘rbf’ (Radial Basis Kernel)
were chosen for SVM, ‘gini’ index was chosen for DT,
and L2 penalty was chosen for LR classifier.

Our proposed framework is based on pre-trained
VGG-16 model and a DNN. The DNN is trained with
the features that are extracted using pre-trained VGG-
16 model. The DNN consists of four layers: input
layer, two hidden layers, and output layer. We used
‘ReLu’ activation function in the hidden layer and
‘sigmoid’ function in the output layer. ‘Adam’ and
‘binary cross-entropy’ were used for optimizer and
loss function respectively. We implemented an early
stopping method to stop training once the model
performance stops improving on the test data. We
selected validation loss to be monitored for early
stopping and set minimum delta to 1𝑒 − 4 (checks
minimum change in the monitored quantity to qualify
as an improvement) and patience to 10 (checks
number of epochs that produced the monitored
quantity with no improvement after which training
will be stopped). Mini-batch gradient descent was
considered and a batch size of 64 was chosen to train
the model. The initial learning rate was set to 0.001
with a decay of 1𝑒 − 5 in every epoch The 𝐿2
regularization technique was applied to the output of
the hidden layer to prevent the network from
overfitting and the regularization parameter ‘lambda’
was set to 0.001. All the parameters and
hyperparameters used in the model were optimized by
grid search.

E. Results
We applied five different methods on the NSL-

KDD dataset including SVM, DT, LR, RF, and our
proposed TL-NID. Table 3 represents the results of the
methods with two different test datasets KDDTest+,
and KDDTest-21. The experimental results show that
TL-NID achieved highest accuracy 89.30%, and

Table 3: Comparison of results

KDDTest+ KDDTest-21
 Accuracy

(%)
Precision
(%)

Recall
(%)

False
Alarm
(%)

F-score
(%)

Accuracy
(%)

Precision
(%)

Recall
(%)

False
Alarm
(%)

F-score
(%)

SVM 65.08 68.93 71.32 43.33 70.11 55.44 97.63 46.75 5.1 63.23
DT 80.65 95.44 69.62 4.41 80.51 68.10 95.12 64.36 14.95 76.78
LR 80.25 91.49 72.33 9.06 80.79 57.72 89.16 55.09 30.37 68.10
RF 73.91 93.36 58.73 5.60 72.10 65.51 81.39 74.35 77.10 77.71

TL-NID 89.30 93.55 87.19 7.9% 90.26 70.97 82.82 82.15 8.24 82.48

F-score 90.26% for network detection for KDDTest+
while the decision tree achieved second maximum
accuracy 80.65. Highest precision rate, and lowest
false alarm rate were achieved by DT. Highest
accuracy (70.9%), recall (82.15%), and F-score
(82.48) were achieved by the TL-NID, whereas
maximum precision was obtained by SVM for
KDDTest-21 dataset.

V. CONCLUSION
Computer network attacks are increasingly posing

a serious security threat. It is essential to develop an
automatic network intrusion detection solution to
reduce the risks of malicious activities. Existing
traditional methods and machine learning algorithms
are not sufficiently effective for network intrusion
detection problems. In this paper, we proposed a
transfer learning-based framework, TL-NID, for
network intrusion detection that first extracts higher
level features leveraging VGG-16 pre-trained on
ImageNet dataset by transferring wights. We trained
the TL-NID on KDDTrain+ dataset and evaluated
performance on KDDTest+, and KDDTest-21
datasets, respectively. We also evaluated TL-NID
performance by comparing it with the performance of
LR, SVM, and DT algorithms. The experimental
results show effectiveness of TL-NID with producing
rewarding accuracy, precision, recall, false alarm, and
f1-score.

References
[1] Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D., Wang,

Y., & Iqbal, F. (2018, February). Malware classification with
deep convolutional neural networks. In 2018 9th IFIP
International Conference on New Technologies, Mobility and
Security (NTMS) (pp. 1-5). IEEE.

[2] Mujumdar, A., Masiwal, G., & Meshram, D. B. (2013).
Analysis of signature-based and behavior-based anti-malware
approaches. International Journal of Advanced Research in
Computer Engineering and Technology (IJARCET), 2(6).

[3] Kumar, V., & Sangwan, O. P. (2012). Signature based
intrusion detection system using SNORT. International
Journal of Computer Applications & Information
Technology, 1(3), 35-41.

[4] Buczak, A. L., & Guven, E. (2015). A survey of data mining
and machine learning methods for cyber security intrusion
detection. IEEE Communications surveys & tutorials, 18(2),
1153-1176.

[5] Xie, Y., & Richmond, D. (2018). Pre-training on grayscale
ImageNet improves medical image classification.
In Proceedings of the European Conference on Computer
Vision (ECCV) (pp. 0-0).

[6] Wu, P., Guo, H., & Buckland, R. (2019, March). A transfer
learning approach for network intrusion detection. In 2019
IEEE 4th International Conference on Big Data Analytics
(ICBDA) (pp. 281-285). IEEE.

[7] Wu, K., Chen, Z., & Li, W. (2018). A novel intrusion detection
model for a massive network using convolutional neural
networks. IEEE Access, 6, 50850-50859.

[8] Liu, P. (2019, February). An intrusion detection system based
on convolutional neural network. In Proceedings of the 2019
11th International Conference on Computer and Automation
Engineering (pp. 62-67).

[9] Wu, P., Guo, H., & Buckland, R. (2019, March). A transfer
learning approach for network intrusion detection. In 2019
IEEE 4th International Conference on Big Data Analytics
(ICBDA) (pp. 281-285). IEEE.

[10] Shone, N., Ngoc, T. N., Phai, V. D., & Shi, Q. (2018). A deep
learning approach to network intrusion detection. IEEE
transactions on emerging topics in computational
intelligence, 2(1), 41-50.

[11] Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran,
P., Al-Nemrat, A., & Venkatraman, S. (2019). Deep learning
approach for intelligent intrusion detection system. IEEE
Access, 7, 41525-41550.

[12] Simonyan, K., & Zisserman, A. (2014). Very deep
convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

[13] Kabir, E., Hu, J., Wang, H., & Zhuo, G. (2018). A novel
statistical technique for intrusion detection systems. Future
Generation Computer Systems, 79, 303-318.

[14] Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009,
July). A detailed analysis of the KDD CUP 99 data set. In 2009
IEEE symposium on computational intelligence for security
and defense applications (pp. 1-6). IEEE.

[15] Belavagi, M. C., & Muniyal, B. (2016). Performance
evaluation of supervised machine learning algorithms for
intrusion detection. Procedia Computer Science, 89(2016),
117-123.

[16] Zamani, M., & Movahedi, M. (2013). Machine learning
techniques for intrusion detection. arXiv preprint
arXiv:1312.2177.

	I. Introduction
	II. Related Work
	III. Methods
	IV. Experiment & Results
	A. Dataset specification
	B. Data Preprocessing
	C. Model evaluation metrics
	D. Experimental design & Results
	E. Results

	V. Conclusion
	References

