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Abstract- Network intrusion detection systems (NIDSs) 
play an essential role in the defense of computer 
networks by identifying a computer networks’ 
unauthorized access and investigating potential security 
breaches. Traditional NIDSs encounters difficulties to 
combat newly created sophisticated and unpredictable 
security attacks. Hence, there is an increasing need for 
automatic intrusion detection solution that can detect 
malicious activities more accurately and prevent high 
false alarm rates (FPR). In this paper, we propose a novel 
network intrusion detection framework using a deep 
neural network based on the pretrained VGG-16 
architecture. The framework, TL-NID (Transfer 
Learning for Network Intrusion Detection), is a two-step 
process where features are extracted in the first step, 
using VGG-16 pre-trained on ImageNet dataset and in 
the 2nd step a deep neural network is applied to the 
extracted features for classification. We applied TL-NID 
on NSL-KDD, a benchmark dataset for network 
intrusion, to evaluate the performance of the proposed 
framework. The experimental results show that our 
proposed method can effectively learn from the NSL-
KDD dataset with producing a realistic performance in 
terms of accuracy, precision, recall, and false alarm.  
This study also aims to motivate security researchers to 
exploit different state-of-the-art pre-trained models for 
network intrusion detection problems through valuable 
knowledge transfer.   

Keywords-Transfer learning, Pre-trained model, VGG-
16, Deep neural network, Network intrusion detection 

 

I. INTRODUCTION 
Network intrusion detection systems (NIDSs) play 

an essential role in the defense of computer networks 
by identifying a computer networks’ unauthorized 
access and investigating potential security breaches. 
Traditional NIDSs encounters difficulties to combat 
newly created sophisticated and unpredictable security 
attacks. The number of security threats on traffic data 

are increasing exponentially and the newly created 
attacks has become more sophisticated and variants. 
Hence, traditional intrusion detection techniques such 
as signature-based detection, heuristic detection or 
behavior-based detection are not adequate to combat 
malicious activities [1].  

 Machine learning (ML) algorithms have been 
showing promising results in classifying network 
intrusions. The algorithms can overcome the 
limitations of traditional detection methods and 
provide a rewarding accuracy score. Traditional 
machine learning approaches like Support Vector 
Machine (SVM), Logistic Regression (LR), Random 
Forest (RF), and Decision Tree (DT) were previously 
proposed for intrusion detection. However, deep 
convolutional neural networks (DCNN), an advanced 
ML technique, is gained popularity and widely used for 
many applications like computer vision, speech 
recognition, and natural language processing. 
Extracting automated features, capability of highly 
non-linear systems, and flexibility in architecture 
design are the highlight of the DCNN. DCNN 
essentially follows two distinct approaches to train: 1. 
training from scratch-training the model of randomly 
initialized weights, and 2. transfer learning-pre-training 
a model on a related task and then optimizing the model 
for target task [5]. Transfer learning from a pre-trained 
model is a popular approach, yet it is unexplored for 
network intrusion detection problem.  A conventional 
DCNN, learning from scratch, that is developed on a 
specific train data demonstrate quite different 
performance on different test datasets. An example was 
demonstrated based on KDD-NSL dataset where a 
DCNN, was trained on NSL-KDD training data, poorly 
performed on KDDTest-21 dataset since a number of 
attacks in KDDTest-21are not covered in the training 
set [6]. Moreover, training time increases exponentially 
with the increasing/deepening of architecture of 
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DCNN. In general, it could take hours/days to train a 
3–5 layers DCNN with a large scale dataset. 
Consequently, deploying VGG from scratch on a large 
scale dataset is a tiresome and computationally 
expensive task due to the depth and number of fully 
connected layers/nodes in the models’ architecture. 
Another challenge is that building VGG from scratch 
requires considerably large memory space and 
bandwidth since the size of ImageNet trained VGG-16 
weights is 528 MB. However, instead of building a 
VGG from scratch, we can perform transfer learning 
i.e. — utilizing the knowledge like weights of the 
previously trained (e.g. pre-trained VGG) models’ to 
solve a similar kind of problem.    

 A limited number of research studies have 
investigated transfer learning from pre-trained models’ 
in the field of network intrusion detection. In this paper, 
we present an approach for intrusion detection 
leveraging DCNN model based on the VGG-16 
architecture with pre-trained convolutional layers. We 
converted the intrusion samples into gray-scale image 
at first and later transformed into RGB image format to 
feed the samples to the deep neural network. Our 
proposed framework transfers convolutional layers’ 
parameters of VGG-16 pre-trained on ImageNet 
dataset. Two additional fully connected layers are 
added to the framework. The fully connected layers 
including the final sigmoid layer are designed to adopt 
our problem of network intrusion. In this study, we also 
applied conventional machine learning algorithms like 
SVM, DT, RF, and LR to compare results with our 
proposed TL-NID framework. The experimental 
results on NSL-KDD datasets show that our TL-NID 
can effectively learn from the train data and provide an 
accuracy of 89.3% for test data that outperform other 
reference work on this dataset suggesting that detecting 
network intrusion using transfer learning technique is 
promising. 

The rest of the paper is organized as follows: In 
Section II, we introduce the related work of network 
intrusion detection. Section III describes the 
methodology of our proposed framework TL-NID 
along with the other three classifiers that are 
implemented in this paper. The experimental setting 
and results are explained in Section IV. Finally, Section 
V concludes the paper.    

II. RELATED WORK 
 Addressing the constraints of the traditional 
methods, researchers have proposed both conventional 
machine learning (ML) algorithms and deep learning 
for network intrusion detection.  A least square SVM 
applied to representative samples collected from pre-
determined arbitrary subgroups to detect network 
traffic data [13]. The method was applied to 

KDDVUP’99 data and achieved a reasonable 
performance in terms of accuracy. Different ML 
methods like RF, DT, Gaussian naïve bayes, and SVM 
were applied to NSL-KDD dataset [4, 15, 16].  

 Deep learning neural networks are widely used for 
network intrusion detection. A 2- layer convolutional 
neural network (CNN) was applied to NSL-KDD data 
by converting the raw data into image format [7]. The 
authors reported accuracy of 99.46%, 79%, and 60% 
on KDDTrain+, KDDTest+, and KDDTest-21 
datasets, respectively. Another CNN approach based 
on Lenet-5 was applied to the KDDCUP’99 dataset that 
only evaluated their proposed method on the 
KDDCUP’99 training data and reported 99.9% 
accuracy after experimenting with different epoch sizes 
and learning rates [8]. A multilevel classifier fusion 
approach was proposed for network intrusion 
detection, containing two layers wherein the upper 
layer, an unsupervised feature extraction method was 
applied using a non-symmetric deep autoencoder, and 
random forest classifier was then applied with the 
extracted features [10]. The method experimented with 
two different datasets including the KDDCUP’99 and 
the NSL-KDD datasets. For a 5-class classification, the 
proposed method achieved 97.85% accuracy with the 
KDDCUP’99 data, while 85.42% accuracy was 
obtained for the NSL-KDD dataset.  A framework 
based on CNN was proposed experimenting with 
different number of hidden layers for both binary and 
multi-class classification of network traffic data [11]. 
The framework applied to 6 different datasets including 
KDDCUP’99 and NSL-KDD datasets. The 
experimental results in the study show that the optimal 
framework, consists of 5 hidden layers, achieved 
reasonably low accuracy for both binary and multi-
class classification. The framework provided 92.7% 
and 78.9% on the KDDCUP’99 and NSL-KDD 
datasets for binary classification, respectively. It 
produced 92.5% and 78.5% accuracy on the 
KDDCUP’99 and NSL-KDD datasets, respectively, 
with respect to multi-class classification.    

 Limited numbers of published works are available 
that are based on transfer learning for network intrusion 
detection. A transfer learning-based method TL-
ConvNet was introduced that learns from a base dataset 
and transfers the learned knowledge to the learning of 
the target dataset [9]. The TL-ConvNet used UNSW-
NB15, and NSL-KDD as based dataset, and target 
dataset, respectively. Experimental results in this study 
showed significant performance improves by using 
transfer learning instead of conventional CNN. TL-
ConvNet achieved 87.30%, and 81.9% accuracy on 
KDDTest+, and KDDTest-21 datasets, respectively.  



 Our proposed framework TL-NID, a deep learning-
based framework, was optimized with different 
parameters and hyperparameters and experimented 
with two different test datasets from a real-world 
network intrusion dataset. The experimental results 
show the effectiveness of our proposed method.   

III. METHODS 
 Transfer learning is one of the state-of-the-art 
techniques in machine learning that has been widely 
used in image classification. VGG is a convolutional 
neural network with a specific architecture that was 

Table 1: Summary of VGG-16 architecture 

 

proposed by a group of researchers (visual geometry 
group) from the University of Oxford [12]. The VGG 
model was trained on the ImageNet dataset, a major 

computer vision benchmark dataset that includes more 
than 14 million images belonging to 1000 classes, for 
object localization (detecting objects within an image 
coming from 200 classes) and image classification 
tasks (1000-class classification). The VGG has two 
different architecture: VGG-16 that contains 16 layers 
and VGG-19 that contains 19 layers. In this paper, we 
applied VGG-16 that mainly contains three different 
parts: convolution, pooling, and fully connected 
layers— it starts with two convolution layers followed 
by pooling, then another two convolutions followed by 
pooling, after that repetition of three convolutions 
followed by pooling and then finally three fully 
connected layers. Table 2 displays the summary of the 
VGG-16 model where convolutional, max pooling, and 
fully connected layers are mentioned by Conv. MP, and 
FC, respectively. The model weights of the VGG-16 
are available on different platforms like Keras and can 
be used for further analysis — developing models and 
applications.  

 We leveraged pre-trained VGG-16 weights in the 
process of developing the TL-NID framework. Fig. 1 
illustrates architecture of the TL-NID framework. At 
the initial stage, the framework prepares the given 
network intrusion data. Each of the intrusion samples 
is then converted into its corresponding grayscale 
images which are later transformed into RGB color 
images to feed to the pre-trained VGG-16. First 14 
layers of the VGG-16 model was utilized for weights 
transfer as transfer learning. The TL-NID utilized the 
transferred weights to extract features from the input 
images. The extracted features are then trained with a 
DNN based on the VGG-16 architecture. The DNN 
consists of three layers: input layer, two hidden layers 
and output layer. The two hidden layers are fully 
connected layers that contain 64 and 8 number of 
nodes, respectively. The final layer of the DNN is the 
sigmoid layer as we considered binary classification for 
network intrusion detection.  

IV. EXPERIMENT & RESULTS 

A. Dataset specification 
 NSL-KDD dataset is an updated version of the 
KDDCUP’99 dataset which was widely used for 
network intrusion detection problems [12]. Many 
redundant records in the KDDCUP’99 dataset 
generates biases towards the more frequent records. 
Therefore, the NSL-KDD dataset was proposed by 
addressing the drawbacks and since then it has been 
considered the benchmark dataset for the NID problem 
[14]. KDDTrain+, KDDTrain+_20 percent (a 20% 
subset of the KDDTrain+), KDDTest+, and KDDTest-
21(a subset of KDDTest+) are the four datasets that are 

 

Layer Kernel 
size 

Output Size Acti-
vation 

Param-
eters 

input - 224 × 224 × 3 - 0 

Conv 3 × 3 224 × 224 × 64 relu 1792 

Conv 3 × 3 224 × 224 × 64 relu 36928 

MP 2 × 2 112 × 112 × 64 relu 0 

Conv 3 × 3 112 × 112 
×  128 

relu 73856 

Conv 3 × 3 112 × 112 
×  128 

relu 14784 

MP 2 × 2 56 ×  56 × 128 relu 0 

Conv 3 × 3 56 ×  56 × 256 relu 295168 

Conv 3 × 3 56 ×  56 × 256 relu 590080 

Conv 3 × 3 56 ×  56 ×  256 relu 590080 

MP 2 × 2 28 ×  28 × 256 relu 0 

Conv 3 × 3 28 ×  28 × 512 relu 1180160 

Conv 3 × 3 28 ×  28 × 512 relu 2359808 

Conv 3 × 3 28 ×  28 × 512 relu 2359808 

MP 2 × 2 14 ×  14 × 512 relu 0 

Conv 3 × 3 14 ×  14 × 512 relu 2359508 

Conv 3 × 3 14 ×  14 × 512 relu 2359508 

Conv 3 × 3 14 ×  14 × 512 relu 2359508 

MP 2 × 2 7 ×  7 × 512 relu 0 

FC - 4096 relu 102764544 

FC - 4096 relu 16791312 

Out- 

put  

- 1000 Soft-
max 

 



 
Figure 1: Architecture of TL-NID framework 

 

included in the NSL-KDD. In this paper, we used 10 
percent of KDDTrain+, KDDTest+, and KDDTest-21 
datasets to develop and validate the TL-NID 
framework.   

 Each of the network connection records in the NSL-
KDD dataset consists of 41 features, providing 
information about the encounter with eh traffic input by 
IDS, along with a label attribute indicating the 
connection status (normal or attack). Four different 
types of attacks are included in the dataset: Denial of 
Service (DoS), Probe, User to Root (U2R), and Remote 
to Local (R2L). The features in the dataset can be 
divided into groups: intrinsic, content, host-, and time-
based features. The intrinsic features contain basic 
information about the packet that is derived from the 
header of the connection, while the content features 
comprise information related to the original packets.  
Time-based features contain information about the 
traffic input over a two-second window. Host-based 
features, on the other hand, contain information over a 
series of connections, designed to access attacks that 
are longer than a two second window. Table 1 displays 
distributions of the three datasets for binary 
classification where normal, and attack represent good, 
and bad network connections, respectively.  

Table 2: Distributions of the NSL-KDD dataset 

Type KDDTrain+ KDDTest+ KDDTest-21 

Normal  6641 973 199 

Attack  5956 1281 986 

B. Data Preprocessing  
 We applied the NSL-KDD dataset that contains 
network connection features to evaluate the DCNN 
framework. Thus, data preprocessing is required to 
convert the raw data into image format to feed it to the 
DCNN. The categorical data in NSL-KDD should be 
mapped to numeric data at first and then the overall 
data should be normalized.  protocol type, flag, and 
service are the three categorical features in the NSL-
KDD that are converted into numeric data using one 
hot encoder technique.  We applied the min-max 
normalization technique to NSL-KDD to scale the 
original data to a fixed range of 0 and 1. The 
normalization ensures consistency of the data 
distribution and avoiding the exploding gradients 
problem in the training phase [3]. Equation (1) 
represents the min-max normalization formula, where 
𝑋𝑠𝑐𝑎𝑙𝑒𝑑 , and 𝑋 is the normalized, and original value, 
respectively. min(𝑋), and max (𝑋) are the minimum 
and maximum values of the data.  



𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − min(𝑥)

max(𝑥) − min (𝑥)
 

 

 
(1) 

 The number of features has been expanded from 41 
to 121 after the preprocessing step. To feed to the 
DCNN the 1-dimensional data is translated into 2-d 
array of size 11 × 11 or grayscale image at first. Fig 
shows some network connection samples as grayscale 
images where images in the 1st row, and 2nd row are for 
normal, and attack connections, respectively. In the 
next stage, the grayscale images were converted into 3-
d RGB images and resized to the format of  224 ×
224 × 3 format as required by the pre-trained VGG-16 
input shape. Since the grayscale images have only one-
channel, in the process of conversion, a channel 
augmentation is performed by duplicating the 
grayscale images into three channels RGB images.  

 
Figure 2: Grayscale images of network connection samples 

C. Model evaluation metrics 
 To evaluate the models’ performance, we 
considered accuracy, precision, recall, false alarm, and 
F-score metrics. These metrics use properties from 
confusion matrix such as true positive (TP), false 
positive (FP), false negative (FN), and true negative 
(TN). TP is number of attacks that are correctly 
classified as attacks, while FN is the attacks that 
incorrectly classified. The number of incorrectly 
classified normal data is FN, and TN is correctly 
classified normal data. Equation 2,3,4,5, and 6 are the 
mathematical definition of the performance metrics 
accuracy, precision, recall, false alarm, and F-score, 
respectively.   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

TP + FP + FN + TN
 (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

False Alarm =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (5) 

F − score =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
 

(6) 

D. Experimental design & Results 
We evaluated our model performance by 

comparing it with the performance of LR, SVM, and 
DT methods. Trained data was used to train each of 
the models we experimented with while test data was 
used for evaluating the performance of the models. 
The SVM, LR, and DT classifiers were applied to the 
dataset for comparing results with our proposed 
framework. The algorithms were implemented using 
Python scikit-learn library with available 
hyperparameter options.  ‘rbf’ (Radial Basis Kernel) 
were chosen for SVM, ‘gini’ index was chosen for DT, 
and L2 penalty was chosen for LR classifier.  

Our proposed framework is based on pre-trained 
VGG-16 model and a DNN. The DNN is trained with 
the features that are extracted using pre-trained VGG-
16 model. The DNN consists of four layers: input 
layer, two hidden layers, and output layer. We used 
‘ReLu’ activation function in the hidden layer and 
‘sigmoid’ function in the output layer. ‘Adam’ and 
‘binary cross-entropy’ were used for optimizer and 
loss function respectively.  We implemented an early 
stopping method to stop training once the model 
performance stops improving on the test data. We 
selected validation loss to be monitored for early 
stopping and set minimum delta to 1𝑒 − 4 (checks 
minimum change in the monitored quantity to qualify 
as an improvement) and patience to 10 (checks 
number of epochs that produced the monitored 
quantity with no improvement after which training 
will be stopped). Mini-batch gradient descent was 
considered and a batch size of 64 was chosen to train 
the model. The initial learning rate was set to 0.001 
with a decay of 1𝑒 − 5 in every epoch The 𝐿2 
regularization technique was applied to the output of 
the hidden layer to prevent the network from 
overfitting and the regularization parameter ‘lambda’ 
was set to 0.001. All the parameters and 
hyperparameters used in the model were optimized by 
grid search. 

E. Results 
We applied five different methods on the NSL-

KDD dataset including SVM, DT, LR, RF, and our 
proposed TL-NID. Table 3 represents the results of the 
methods with two different test datasets KDDTest+, 
and KDDTest-21. The experimental results show that 
TL-NID achieved highest accuracy 89.30%, and 

 

 



Table 3: Comparison of results 

KDDTest+ KDDTest-21 
 Accuracy 

(%) 
Precision 
(%) 

Recall  
(%) 

False 
Alarm 
(%) 

F-score 
(%) 

Accuracy 
(%) 

Precision 
(%) 

Recall  
(%) 

False 
Alarm 
(%) 

F-score 
(%) 

SVM 65.08 68.93 71.32 43.33 70.11 55.44 97.63 46.75 5.1 63.23 
DT 80.65 95.44 69.62 4.41 80.51 68.10 95.12 64.36 14.95 76.78 
LR 80.25 91.49 72.33 9.06 80.79 57.72 89.16 55.09 30.37 68.10 
RF 73.91 93.36 58.73 5.60 72.10 65.51 81.39 74.35 77.10 77.71 

TL-NID 89.30 93.55 87.19 7.9% 90.26 70.97 82.82 82.15 8.24 82.48 

F-score 90.26% for network detection for KDDTest+ 
while the decision tree achieved second maximum 
accuracy 80.65. Highest precision rate, and lowest 
false alarm rate were achieved by DT. Highest 
accuracy (70.9%), recall (82.15%), and F-score 
(82.48) were achieved by the TL-NID, whereas   
maximum precision was obtained by SVM for 
KDDTest-21 dataset.  

V. CONCLUSION 
Computer network attacks are increasingly posing 

a serious security threat. It is essential to develop an 
automatic network intrusion detection solution to 
reduce the risks of malicious activities. Existing 
traditional methods and machine learning algorithms 
are not sufficiently effective for network intrusion 
detection problems. In this paper, we proposed a 
transfer learning-based framework, TL-NID, for 
network intrusion detection that first extracts higher 
level features leveraging VGG-16 pre-trained on 
ImageNet dataset by transferring wights. We trained 
the TL-NID on KDDTrain+ dataset and evaluated 
performance on KDDTest+, and KDDTest-21 
datasets, respectively. We also evaluated TL-NID 
performance by comparing it with the performance of 
LR, SVM, and DT algorithms. The experimental 
results show effectiveness of TL-NID with producing 
rewarding accuracy, precision, recall, false alarm, and 
f1-score.  
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