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Jeha Yang and Iain M. Johnstone

Stanford University

Abstract: We study improved approximations to the distribution of the largest
eigenvalue 7 of the sample covariance matrix of n zero-mean Gaussian observations
in dimension p + 1. We assume that one population principal component has
variance ¢ > 1 and the remaining ‘noise’ components have common variance 1.
In the high-dimensional limit p/n — v > 0, we study Edgeworth corrections to
the limiting Gaussian distribution of { in the supercritical case £ > 1 + /7. The
skewness correction involves a quadratic polynomial, as in classical settings, but the
coefficients reflect the high-dimensional structure. The methods involve Edgeworth
expansions for sums of independent non-identically distributed variates obtained
by conditioning on the sample noise eigenvalues, and the limiting bulk properties
and fluctuations of these noise eigenvalues.
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1. Introduction

Models for high-dimensional data with low-dimensional structure are the fo-
cus of much current research. This paper considers the rank one “spiked model”
with Gaussian data, in order to begin the study of Edgeworth expansion approx-
imations for high-dimensional data.

Model (M). Suppose that we observe X = [z1,...,x,) where z1,..., 1, are
iid. from Npt1(0,X), and the population covariance matrix ¥ = I + (¢ — 1)vo/
for some unit vector v. Suppose also that p increases with n so that v, = p/n —
v € (0,00) with £ > 1+ /7.

Thus, one population principal component has variance £ > 1 and the re-
maining p have common variance 1.

*Peter Hall visited Stanford many times, including a month long visit with Jeannie in 1988. The
second author (IMJ) was generously hosted by Peter even more often both at ANU and Melbourne.
Stimulating and enjoyable as those visits predictably were, we never discussed Edgeworth expansions.
Fortunately, the clarity of Peter’s exposition in his Bootstrap and Edgeworth book, and his well-known
fondness for the monograph of Petrov (1975), provided exactly what we needed for this project, begun
after his most untimely passing.
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The Baik, Arous and Péché (2005) phase transition is an important phe-
nomenon that appears in this high-dimensional asymptotic regime. It concerns
the largest eigenvalues in spiked models, which are of primary interest in prin-
cipal components analysis. In the rank one special case, let ? be the largest
eigenvalue of the sample covariance matrix S = n~'X’X. Below the phase tran-
sition, £ < 1+ /7, and after a centering and scaling that does not depend
on ¢, asymptotically n?/3¢ has a Tracy-Widom distribution. Above the phase
transition, the ‘super-critical regime’, the convergence rate is n'/2 and the limit

Gaussian: 12y
n*{t—plt,m)} D

B N(0,1). 1.1
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The centering and scaling functions now depend on ¢:

e 2 2 gl

= — =2 1—— 5. 1.2
p(L,7) €+(£_1), o (l,y) =2t { (6_1)2} (1.2)

Baik, Arous and Péché (2005) proved (1.1) for complex valued data using struc-
ture specific to the complex case. The real case was established using different
methods by Paul (2007), under the additional assumption v, — v = o(n~/?)
and with =, in (1.1) replaced by . We will see below that (1.1) holds as stated
without this assumption. Consequently, we adopt the abbreviations

pn=p(l,m),  on=0(l ). (1.3)

The quality of approximation in asymptotic normality results such as (1.1) is

often studied using Edgeworth expansions, e.g. Hall (1992). However, our high-

dimensional setting appears to lie beyond the standard frameworks for Edgeworth

expansions, such as for example the use of smooth functions of a fized dimensional
vector of means of independent random variables, as in Hall (1992, Sec. 2.4).

2. Main Result

Our main result is a skewness correction for the normal approximation (1.1)
to the largest eigenvalue statistic. The simplest version of the result may be
stated as follows. As usual ® and ¢ denote the standard Gaussian cumulative
and density, respectively.

Theorem 1. Adopt Model (M), and let { be the largest eigenvalue of S =
n~tS0 | iad, and let Ry, = n/2(0— pn)/on, where the centering and scaling are
defined in (1.2) and (1.3). Then we have a first order Edgeworth expansion

P(Ry < ) = B(2) + 0~ 2pi(2)6(x) + o(n~2), (2.1)
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valid uniformly in x, and with

pr@) = VB | L= 1P 47} = ) = o[ {17 =12 (22)

We compare (2.1) with the previously known expression for dimension p
fixed in the next section. The effects of high-dimensionality are seen both in the

2 as well as in the additional constant

coefficient of the “usual” polynomial 1 — x
term proportional to /.

We turn to formulating the version of Theorem 1 that we actually prove,
and in the process sketch some elements of our approach in order to give a
first indication of the role of high-dimensionality in the Edgeworth correction.
Building on the approach of Paul (2007), the n x (p + 1) data matrix may be
partitioned as X = [V//Zy, Z5, with the ‘signal’ in the first column and the
remaining p columns containing pure noise: i.i.d. standard normal variates.
Now consider the eigen decomposition n~!ZyZ5 = UAU’ in which U is n x n
orthogonal and the diagonal matrix A contains the ordered nonzero eigenvalues
Al 2> -0 2> Apgpp of n_lZgZé, supplemented by zeros in the case n > p. It is
a special feature of white Gaussian noise that (U, A) are mutually independent,
with U being uniformly (i.e. Haar) distributed on its respective space. In view
of this, if we set z = U’ Zy, it follows that the eigenvalues of S depend only on z
and A, and that

z=U'Z1 ~N(0,1,), zLA. (2.3)

The vector z provides enough independent randomness for Gaussian limit
behavior of /, conditional on A. In particular, for a function f on [0,00), we
define

S —n*1/2Zf (22 —1). (2.4)

As n grows, we may also use the bulk regularity properties of A. Thus the
empirical distribution F), of the p sample eigenvalues of n~1Z}Z, converges to
the Marchenko-Pastur distribution Fy supported on [a(7),b(v)] if v < 1 and with
an atom (1 —~~1) at 0 if v > 1, where

a(y) = (1=vA)%  b(y) =1+ 7).

The ‘companion’ empirical distribution F,, of the n eigenvalues (A,...,A,) of
n~1ZyZ} converges to the companion MP law F., = (1 =) [0,00) +7Fy. Integrals
against F' indicating one of these types of distributions will be written in the
form
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F(f) = / FOVE(N).

Paul’s Schur complement argument, reviewed in the proof section below,
leads to an equation for the fluctuation of 7 about its centering pp:
Sn(gn)
Fr.(97)
where g,(A\) = (pn, — A)7!. From (S1.3) (Supplementary Materials), F,, (g2) =
202, The sum S,(gy) is asymptotically normal given A, with asymptotic vari-

20— pn) = +0y(n12), (2.5)

ance F, (g?), for example via the Lyapounov CLT, and completing this argument
yields the asymptotic normality result (1.1).

A more accurate version of (2.5) is needed for a first Edgeworth approxima-
tion. Indeed, we later show that

Sn(gn) + n71/2Gn(gn)
Fy.(92) + 712G n(gn) + Op(n=1)’

where g, is defined later. This expression involves the discrepancy between a

n1/2(2 - pn) =

trace and its centering:
Gul) =3 M) —n / FOFs, (d) = n{Fu(f) = o (1)} = pEu(f) — By (D}
=1

This centered linear statistic, though unnormalized, is Op,(1), and indeed, ac-
cording to the CLT of Bai and Silverstein (2004), for suitable f is asymptotically
normal:

Ga(f) S N(u(f), (/). (2:6)

We use a first term Edgeworth approximation to the distribution of S,,(gn)

conditional on A, using results for sums of independent non-identically dis-

tributed variables described in Petrov (1975, Chap. 6). This uses the conditional
cumulants of S, for j = 2, 3, given by

d ; e
Ty logE(e 50 A)|ymo = Kjn " ;gg(&),

where, in turn, x; = 2/71(j — 1)! are the cumulants of 22 — 1 ~ X%1) -1. A
deterministic asymptotic approximation to these conditional cumulants is then
given by

ko = 2Fy,(97)s  Kan = 8F,.(g5)- (2.7)

With these preparations we are ready for the main theorem.

Theorem 2. With the assumptions of Theorem 1, we have the Edgeworth ex-
pansion
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P(Ry < x) = ®(z) + 0~ ?p1n(2)d(x) + o(n~'/?), (2.8)
valid uniformly in x, and with
1 _
PLa(@) = g (1 = a®) =k, lga),

for gn(N) = (pn — N) 7! and k., defined by (2.7), and u(-) the asymptotic mean
in the Bai-Silverstein limit (2.6).

The structure of p; ,,(x) as an even quadratic polynomial is the same as in the
smooth function of means model (Hall (1992, Thm. 2.2)). In our high-dimensional
setting, the first term in p; ,,(x) reflects the Edgeworth approximation to Sy, (gn)
conditional on A, while the second shows the effects of fluctations of A. From
(S1.3), (S1.4) and (S1.5) (Supplementary Materials), we then have more explicit
evaluations

Ko =2(1— {0 = 1) =y} ! =402,
ki =8(1 — £ {(0 = 1)° + yH{(0 = 1)* = w} 2,
11(gn) = = D{(£ = 1) =3} 2,

which lead to an explicit form of the first order correction term

Pra(e) = VB | {0 =1 43} (1 2%) = St {6 = 1) — 7}

3

Since the error term is o(n~/2) and 7, = v + o(1), we may replace -, by 7 in
the previous display and recover Theorem 1.

Remark 1. To emphasize the advantage of using ~,, = p/n rather than v in the
centering and scaling formulas, note that if 4, = v + an~'/2, then the limiting

distribution of )
_ {0 p(t)}

" a(t,)

has a non-zero mean a = «(a,?,7). The situation is yet more delicate for the

skewness correction: if v, =~ + bn~!, then
P(Ry, < x) =~ P(Rn < 2) = n~ (6o + fr) () + o(n™"/?)
for constants (51, By depending on b, ¢, .

Remark 2. A parallel result for rank one perturbations of the Gaussian Orthog-
onal Ensemble is available. Consider a data matrix X = 9616{ + Z where 6 > 1
and Z is p x p symmetric with Z;; ~ N(0,2/p) and Z;; ~ N(0,1/p) for i > j, and
p — 0o. The largest eigenvalue of X, denoted é, converges a.s. to p = 6 4+ 71
and, with o = /2(1 — 6=2), the quantity R, = \/[9(@ — p)/o is asymptotically
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standard Gaussian (Benaych-Georges, Guionnet and Maida (2011, Thm. 5.1)).
As is well known, the empirical spectral distribution of Z[2:-27] converges weakly
to the semicircle law Fy. with density (1/27)v4 — 22 on the interval [—2,2]. Our
method, along with CLT for linear spectral statistics Fs.(f) of Bai and Yao (2005)
leads to a first order Edgeworth correction for R,:
V2 1—-22 1
) = g (5 3)

which has a structure analogous to that of our main result.

Comparison with fixed p. In classical asymptotic theory, when n — oo
with p fixed, asymptotically ¢ ~ N (¢,2¢%). Introduce therefore R, = \/ﬁ(f —
0)/(v/2¢). When specialized to the skewness correction term, Theorem 2.1 of
Muirhead and Chikuse (1975) reads

B, <) = 0(e) + 02 { 20— a%) = oL o)+ 0. 29)

Formally setting v = 0 in (2.2) of Theorem 1, we get only the term p;(x) =
(v/2/3)(1 — 2%). To see that the two results are nevertheless consistent, write
pn = L(1+b,) and o,, = V/2Lc,, where b, = v,,/({—1) and ¢, = {1—,,/(£—1)2}1/2,
so that

0 —0—byt .
Ry, = ==t Ry, —dp),
vn N cn ( )

where d, = \/n/2b, = \/n/2v,/(l — 1) = (2n)~2p/(¢ — 1) is the second term
in (2.9). Applying (2.9) at &, = cpx + dp,, we find

w205 — | 6(a) + O ),

Observe that ®(iy,) — dud(i,) = ®(cuz) + O(d?) with d,, = O(n—1/z)’ and
en = {1 — v/l — 1)2}1/2 = 1+ O(n~1). Therefore, &, = = + O(n—1/2) and
cnr =z + O(n™1), yielding

P(Ry < 0) = (R < ) = 000 + {

2
PR, < ) = (@) + 022 (1 a2)0(a) + O(n ),
and so we do recover agreement with v =0 in (2.2).

Hermite polynomials and numerical comparisons. It is helpful to
view Edgeworth expansions in terms of Hermite polynomials H,(z), defined by
H,(2)¢(x) = (—d/dz)"¢(x). In particular, H,(x) = 1,z,2% — 1 and 23 — 3z for
n =0,1,2 and 3. The Edgeworth approximation of Theorem 2 then becomes
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Fg =& —n"Y?(ayHy + ap)o
with h =¢—1 and
o V2 Pt R S 1
2773 (hZ — 7,372 0= V2 (h2 = ~,)3/2

Since (d/dx)H,(x) = —Hp4+1(z), the Edgeworth corrected density is given by
fe=¢+n"Y(arHs + agHy) .

The relative error

f]z;(b =n"1g, q = ooH3 + apHy,

is a cubic polynomial with positive leading coefficient. It is easy to verify that
the three roots, namely 0, +(3 — ag/a2)'/? are real when £ > 1+ V/¥n- Hence the
Edgeworth density approximation is necessarily negative for i sufficiently small,
and intersects the normal density three times.

We now show numerical examples in which the Edgeworth corrected ‘density’
provides a better approximation to the distribution of R,, than does the standard
normal. The parameters

n € {50,100}; Y € {0.1,1}; (-factor :=£/(1+ /7m) — 1 € {0.3,0.5},
are chosen so that n is neither too small for asymptotics to be meaningful nor
too large to distinguish fr(x) and ¢(z), 7, is close to either 0 or 1, and ¢ is
moderately separated from the (finite version) critical point 1 + /7.

Figures 1 and 2 in fact show the densities y — \/n/anfE(\/n/an(y — pn))
after shifting and scaling to correspond to ‘. Superimposed are the corresponding

rescaled normal density as well as histograms of 100,000 simulated replicates of
/. The solid vertical lines show the upper bulk edge (1 + \/’%)2 to emphasize
that these settings for ¢ are not too far above the bulk. In the cases shown, the
Edgeworth correction provides a (right) skewness correction that matches the
simulated histograms reasonably well, though unsurprisingly the small n = 50
and large «,, = 1 case has the least good match.

When £ is closer to the phase transition, so that the /-factor is smaller,
the skewness correction becomes unsatisfactory due to the singularity in the
denominator of as and «g as h approaches ,/7;,. Empirically, we have found that
the skewness correction may be reasonable, with a single inflection point visible
above the mode, when

1
—— < 0.2.
n (h2 - ’Vn)g B
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Figure 1. Plots for I-factor = 0.3. Vertical lines denote (1 + /7,)?.
3. Proof

3.1. Outline

We start with deriving the useful expression of R, as introduced in the first
section with more details. Without loss of generality, we may assume that the
population covariance matrix of the distribution of z1, ..., z, isdiag(¢,1,...,1)(by
an appropriate rotation, not changing S). Then, we write X = [V/£Z; Z5] where
Z1,Z9 are n X 1, n X p with i.i.d. standard normal elements, respectively. The

eigenvalue equation S© = 0 becomes

€Z1Z1 \/EZ{ZQ 01 ~ 01
] =nll ),
VIZYZ 757 g (0

where 01, U9 are the first coordinate and the rest of v, respectively. As usual, we
substitute the second equation into the first, then cancel 91 to obtain
nl = 0Z\ {1, + Zo(nlI, — ZhZo) "1 23} 2y = LZ\{0(L1,, — n~ ZoZ5) "} 7,
= (z'{—IR(})} =,
whenever det(nflp—ZéZg) # 0, i.e. almost surely. Note that the second equation

is a particular case of the Woodbury formula, z = U’Z; where U is from the
eigendecomposition n~1Z,Z, = UAU’ as introduced before, and the resolvent
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Figure 2. Plots for [-factor = 0.5.

R(x)

(A — xI,)7 ! is defined for z ¢ {\q,..
identity R(x) = R(y) + (z —y)R(x)R(y) for =,y ¢ {\,..
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(n, v, I-factor) =(50,1,0.5)
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Vertical lines denote (1 + /7).

.y A\n}. Now using the resolvent
.y An}, we obtain

nl = ' {~pnR(pp) — (é - Pn)AR(E)R(pn)}Za

which can be rearranged into a key equation

(0 — p){1 4 tn Y2 AR R(pp)z} = Lon(—n 2 R(py)z — €71

, An} i.e. almost surely; we assume this from now on.

whenever 7, p, ¢ {\1,...

(3.1)

To investigate (3.1) further, we will make frequent use of the stochastic decom-

position

nY  F)ZF = Fa () + 07280 (f) + 07 Gl ),
=1

(3.2)

where F, (), Sy(-) and G,(-) are defined as above, which are of order Op,(1) as

we will see in the proof section. Noting that —R(p,) = diag(gn(A1),. .-

>gn(An))

and F,, (gn) = £71 (S1.2) (Supplementary Materials), we have —n~12'R(p,)z =

n

=t + 07128, (g,) + n  Grlgy) from (3.2). Hence we can rewrite (3.1) as

(6 — po){1 + n Y2 AR(O)R(py)z} = 0200, {Sn(gn) + 1 2Gy(gn)}-

Also, use the resolvent identity to write

(3.3)
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1+ AR R(pn)z = 1+ n" 2 AR (pn)z — Ly, (3.4)

where

Un = —(0 — pp)n 2’ AR(6)R?(pp) 2 (3.5)

will be O,(n~"/2) by (3.3) and tail bounds. One can use (3.2) to write the leading
term as

L+ b~ AR (pn)2 = LonFs, (97) + 0 280 (magp) + 0~ UGn(magy),  (3.6)
where mg(\) := A¥, k € N are monomials, since 1 + (F,, (m1g2) — £pnFy, (g2) =

1 —(¢F, (gn) = 0, again by S1.2 (Supplementary Materials). This allows us to
rewrite (3.3) as
Sn(gn) + Op(nil/z)
Fa.(g2) + Op(n=1/2)
which establishes (2.5). To expand v, further, we insert (2.5) into (3.5), yielding
=2 L5 o ) LR (i) + 0,0071)
Fr. (97) "
= n_l/anSn(gn) + O;D(n_l)v

nl/Q(é — pn) =

(3.7)

where o E 5 . 5
— Pn 'Yn(mlgn) — 'Yn(mlgn)
1 + EF»}/” (mlg’r%) F’Yn (g’l%)
Putting (3.6), (3.7) and F., (¢2) = 20,2 (S1.3) (Supplementary Materials) into

(3.4) gives

14+ n Y2 AR R(py)z = {20002 +n 28, (m1g? — rngn) + 6}, (3.9)

(3.8)

n

where
6n = 0" Gr(mig?) — {vn — 0 Y%1,8,(90)} (3.10)

is Op(n~!) ignorable; a rigorous proof of this fact is postponed to the delta
method section.

All in all, combining (3.3) and (3.9), we obtain the master equation
Pn{Sn(gn) + n_1/2Gn(9n)}
20002 — 1128, (gnhn) + 6,
Now we are ready to see the outline of the main proof. For notational

convenience, let n(¢,7) := p(¢,7) —b(y) = (L —1)"1({ —1—/7)* > 0.

nl/z(é — pn) = with  hy, = ry — mign. (3.11)

Step 1 From tail bounds, show that for any fixed § € (0, min(1,7n(¢,~)/4,7v/2)),
the event

2
EO,n = {)\1 +0 < min{p(£77)7pn7€}7 Fn(mQ) - Fn(m1)2 > ’}/8} (312)
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is of probability 1 — O(exp(—cn'/?)) for a positive ¢ depending only on
v,4,8. Therefore, P (R,, < x) — P (Ep, N {R, < z}) = O(exp(—cn'/?))
uniformly in z € R, i.e. it suffices to do the analysis on Ep,. Then,
for notational convenience, let E,, [X] := E{I(Ey,)X} and P, (E) :=
P (Ey, N E) for any random variable X and event E.

Step 2 Using (3.11), linearize the event {R,, < z} as

{R, <z}
= {pn(Sulgn) + 123G 0(9n)) < {20007,2 — n Y28, (gnhn) + 00 }on}
= (M, — bpx, <20, 'z} (3.13)

where z, = p,, Lo,z and M, the main linearized statistic, is defined as

My = Su((1 40 2aghi)ga) + 07 2Clga).  (3.14)

Step 3 Use the Edgeworth expansion for sums of independent random variables
to expand P (M,, < 20,'z | A) on Ey, up to the accuracy of o(n=1/2)
uniformly in z € R. Then take its expectation over A to obtain the
corresponding expansion of P, (Mn <20, lx).

Step 4 Apply the delta method for Edgeworth expansion to obtain
P, (R, <) =P, (M, < 20,'z) +o(n"/?) (3.15)

uniformly on x € R.

3.2. Bai-Silverstein CLT

As a core component of our analysis, a particular case of the CLT for linear
spectral statistics from Bai and Silverstein (2004) is introduced.

Theorem 3. Suppose that Z,, := [z1,...,2n] with z1,..., 2y i N(0,1,) and

Yo :=p/n =y € RT as n — co. As defined above, let F,(z) and F,, (x) be the
empirical spectral distribution of Z,Z! /p and the Marchenko-Pastur distribution
with the parameter ~,, respectively, and Gp(x) = p(Fp(x) — F,, (x)). Then,
for any real function f analytic on an open interval containing I1(y) = [I(vy €

(0,1))a(v), b(v)],

Gul(f) % N(u(f),o*(f)),

where u(f) and o*(f) are finite values determined by {f(z) | * € I(y)}. In
particular, p(f) is given by ((5.13) of Bai and Silverstein (2004))
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dz.

u(f) = fla) +F0M) 1 /b(”) f(z)
4 21 Ja) Ay — (2 —1—7)?
It is clear that Bai-Silverstein CLT is applicable for g()\) := {p(¢,7) — A} 1,
because p(¢,~) — b(y) = n(¢,~v) > 0.

3.3. Tail bounds

We introduce tail bounds in this section in order to establish Step 1, that
is, to separate A; from min{p(¢,~), pn, ¢}, and F,(ms) from F,(m1)?, with over-
whelming probability. All proofs are postponed to S2 (Supplementary Materials).

We start with A\; and min{p(¢,7), pn}. Note that min{p(¢,~), pn} — b(y) >
0 for some positive § and all large enough n, so the following proposition is
sufficient.

Proposition 1 (Proposition 1 of Paul (2007)). For each 6 € (0,b(y)/2), the
event By :={\1 > b(y) + d} satisfies

—3né?
P(E1n) < —
(B < 0 (50

for all n > ng, where ns € N is determined by § and {yn}nen-

Now assume ¢ € (0, min(n(¢,7)/3,b(v)/2)) and choose ng(d) € N such that
lpn — p(€,7)| < 6 for all n > ng(d). Then, on EY,

AL+ 0 < b(y) +26 < p(l,7) = 6 <min{p(¢,7), pn}

for all n > ng(6), as desired.
The next two propositions are to restrict [¢ — p,| on EY ., resulting in sepa-
ration between A1 and min{p(¢,~), pn,¢}. Observe that
0= sup [[Svz> sup [SEEFDEETI,), =)
veSp—1 weSP—2

~

whenever 91 # 0, hence 2’AR({) R(pn)z > 0 almost surely on EY . This leads to

[€on (Sn(gn) + nil/QGn(gn)”

= (1 +n YL AR(DR(pn)2) |02 (0 — pp)| > 020 — p,,)] (3.16)
almost surely on EY ., from (3.3). Therefore, it suffices to find tail bounds for
Sp(gn) and Gy (gn) on EY . We introduce propositions for more general settings,
which will be necessary in the delta method for Edgeworth expansion section.

Proposition 2. For M > 0 and a function f absolutely bounded by Uy on
[0,b(y) + 0], Eopn(f, M) :={[Su(f)| > M} satisfies
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-M
P(ES,, N Eau(f, M)) < 15exp (Uf) '

Proposition 3. For functions {fn}nen such that (i) fn(x?),n € N share a Lip-
schitz constant L on [0, (b(y) + 0)Y?] (as functions of ) and (ii) {Gpn(fn)}tnen
is uniformly tight, then

M({fn}nEN) = Slelg ’E [Gn(fn)] | with fn(A) = fn(()‘ v 0) A (b(’Y) + 6)) (317)

is finite. Furthermore, for M > 2M ({fn}nen), Esn(fn, M) = {|Gn(fn)| > M}
satisfies

P(E ,, N Es(fn, M)) < 2exp(—M?/(8L%))).

Proposition 2 immediately follows from the Markov inequality for moment
generating functions, while Proposition 3 is mainly based on Corollary 1.8 (b) of
Guionnet and Zeitouni (2000).

To apply Proposition 3, assumptions (i) and (ii) need to be established for
all sufficiently large n; (i) is true when f], exists and is uniformly bounded on
[0,b() + 8] because (fn(2?)) = 2zf (x?). For (ii), the following lemma provides
a sufficient condition.

Lemma 1. In the setting of Theorem 3, suppose there is an open neighborhood
Q C C of I(y) such that (i) {fn}nen is analytic and locally bounded in 2, and
(ii) fn — [ pointwise on I(y). Then

as n — oo. In particular, Gy (fn) has the same limiting Gaussian distribution as

Gn(f)-

The proof relies on and adapts parts of the proof of Bai and Silverstein
(2004) Theorem 1.1, along with the Vitali-Porter and Weierstrass theorems(e.g.
Schiff (2013, Chap. 1.4, 2.4)). This lemma is sufficient for the uniform tightness
required for (ii) of Proposition 3, because of Slutsky’s theorem and Prohorov’s
Theorem(e.g. Van der Vaart (2000) Thm. 2.4). Consequently, we obtain the
following corollary.

Corollary 1. For functions {fn}nen, assume that for n' € N (i) {f] }nsn is
uniformly bounded by L' on [0,b(7y) + 6], (ii) {fu}n>n is analytic and locally
bounded in an open neighborhood Q C C of [a(y), (1 + /7)?], and (iii) fn — f

pointwise on [a(y), (14 /7)?]. Then Gyu(fn) L N(u(f),0%(f)) and

_M2
P(ES ) O Es n(fo, M)) < 2exp ( )

32(b(7) + 0) L2
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for M > 2M ({fn}n>n’) and all n > n'.

Now it is easy to see that {gn }n>n  satisfies sufficient conditions for Propo-
sition 2 and Corollary 1 for Uy = =%, n' = ng(8) and L' = 6§72, from [g,(\)| <
(pn — b(y) —90)~t < 571 for all A € [0,b(7) + 6] and n > no(5). Hence, (3.16)
gives the following.

Corollary 2. For any 6 € (0, min(n(¢,v)/3,b()/2)) and M >0 ,
P(ES,, 0 {n' |0 = pa| > M}) = O(exp(—c(y,¢,6)M))
for a constant c(,¥,d) depending only on v, ¢, 4.

Finally, we verify Step 1 as follows : let § € (0, min(n(¢,~)/3,v/2)) and take
€ > 0 such that € + 3¢ < ~2/8. Then, if max(|G,(m2)|,|Gn(m1)|) < ne for
n > ng(0),

Fu(ma) = Fu(m1)? > Fy (m2) — e = {Fy, (ma) + €}* = 73 — (¢ + 3¢)

2 2

>(7—<5)2—%>’y§

since F., (m1) = 1,F,, (m2) = 1+ 2 from Yao, Zheng and Bai (2015, Propo-
sition. 2.13), and § > |pn — p(¢,7)| = Ly — /(¢ — 1) > |y — 7|. Therefore,
Ef, N {|0 — pn| <6} N ES, (m1,me) N ES, (m2,ne) C Eyyp from (3.12), i.e. Step
1 is established by Proposition 1, Proposition 3 and Corollary 2.

Last but not least, we have the following result for moments for the future
use, from Corollary 1 and Theorem 2.20 of Van der Vaart (2000).

Corollary 3. For functions { fn}nen and f satisfying the conditions for Corollary
1 and any sequence of measurable E,, such that E, C Ein and lim,, o, P (E,) =
L,

lim E{Z(E,)(Gn(f)*} = 7(f), Yk €N,

n—oo

where 7(f) denotes the K moment of N(u(£),0(f). In particular, since
{gn}tnen,g and {Eonlnen satisfy these sufficient conditions, lim, oo
En [{Gn(gn)}k] = 1%(g) holds.

3.4. Edgeworth expansion for sums of independent random variables

A heuristic conversion between characteristic function and Edgeworth ex-
pansion is described in Hall (1992, p.48). Justification for the conversion is the
main subject of Chapter VI of Petrov (1975), and leads to his Theorem 7, which
we state in modified form in Theorem 4 below. For us it yields an expression of
P (M, <z | A) up to the accuracy of o(n=1/?).
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For clarity, we first define relevant notations. Let (Xpi)nen,icq1,..n} b€ a
triangular array of random variables with zero means and finite variances, and

assume that X,1, ..., X,, are independent for all n € N. Furthermore,
o V,:=n"1>"  Var(X,,) is positive for all sufficiently large n.
® Yo is the average v*® cumulant of V;lﬂXm’s, for v € N.

Cn(t) = E{exp(itV, > 01 Xoi)}.

e For v € N,
v 1 X] von o dv—l—?w
f— k v w
Qun(z) = Z w! Z (jr +2)! (=1) dxv-i-Qw(I)(x)’
w=1 (w,v) k=1
where the summation *(w,v) is over {(J1,..-,Jw) ENY | j1+-+-+juw = v}.

One verifies that Quy(z) is a product of ¢(x) and a degree-(3v — 1) polynomial
of x with coefficients being polynomials of X;n,j € {3,...,v + 2}. Further, Q.
is even for odd v and odd for even v.

Theorem 4. For fized k > 3,1 > 0 and for (Xni)nenic{1,...,n}, assume that there
exist r1(k), ra(n; k, 1), r3(n; k, 1, €) satisfying the following reqularity conditions:

R1 For all sufficiently large n € N,
n VR ZIE (]Xm]k> <ri(k) < oo.
i=1

R2 For some T € (0,1/2),

n VRS B IV Xl > 1) Xl < ra(ni b, 7) = (1),

R3 A generalized Cramer’s condition
nkt+i=2)/2 t O (t dt <rs(n;k,l,e) =o(1
n 3\1b vy by
[t|>€

holds for some € € (0,3/(4H3)) and all n > ns(k,l,€), where Hy :=
r1(k)3* < oo is an upper bound of the average third absolute moments(by
power mean inequality).

Then, there exists N = N(k,l,T,¢, n3) such that for n > N, the inequality

l
%IP’( —1/277- UQZXM <) +Z D200 (2)}] < n=E=D/25(n)
€T

=1
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holds for all x € R. Here §(n) = o(1) depends only on n,k,l,,€,1m1(k),ra(n; k, T)
and r3(n; k, 1, €).

Our reason for presenting this theorem along with the explicit dependence of
the constants is that it provides a uniform bound on the (derivatives of) difference
between the distribution function and corresponding Edgeworth expansion for all
sufficiently large n. Also, we briefly comment on the regularity conditions: R1 is
about boundedness of X, »,v = 3, ..., k, while R2, R3 are related to tail behavior;
in particular, R2 resembles the Lindeberg condition for the CLT.

Back to our problem, we state a special case of Theorem 4 when k£ = 3 and
l=0.

Corollary 4. For (Xui)nen,ie{1,..ny Satisfying R1, R2 and RS for k = 3 and
[=0,

B n —1/2 .2
’ (n_1/2VE VY Xui < x) = (o) 1= o),
i=1

uniformly in x € R.

Now from (2.3) and (2.4), observe that conditioned on A, S,((1+
n~Y2x,h,)gn) is a sum of independent random variables. That is, Corollary
4 is applicable for X,; = cm(zi2 — 1) where ¢; == (1 + n_1/2:z:nhn(/\i))gn()\i),
so long as the corresponding regularity conditions R1, R2 and R3 hold. In the
moments analysis below, we show that this is the case on Ep, with the same
ri(k),ro(n; k,7),r3(n; k, 1, €), and ng(k, [, €).

Moments analysis. Note that (22 — 1) are mean zero ii.d. with the

—-1/2

characteristic function exp(—if)(1 — 2i0) , and so the k' cumulant is k), =

2F=1(k — 1)! for k € N. In particular, adopting the notations above, we have
n n n
Vo=2n""! Z c, )Zkyn:/fkv;kﬂn*l Z . 1Cu () :H(l + 4V 22T
i=1 i=1 i=1
We will show that there exists a positive C such that

C max ¢, <V, (3.18)

i=1,...,n
for all z € R on Ej,, for all sufficiently large n. Here c,; depends on x. Assume
(3.18) for now and verify that R1, R2 and R3 hold uniformly in z € R on Ey,,.
First,

1V, anﬂ-z (1%0sl") = V420 Zn: e “E (122 - 1F) < C7H2E (|22 -1)F),

j=1 i=1
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hence R1 holds with ri(k) = C7*/2E (|22 — 1|¥) for all k¥ € N. Now use the
Markov inequalities and then R1 to get

n_IV;k/Q ZE {I(V;I/QIXml > nr)|Xm,‘k} < n—T—lV;(k‘-i—l)/Q ZE <|Xm,|k:+1)
i=1 =1
<n Tri(k+1),
which shows that R2 holds with ra(n;k,7) = n~"ri(k + 1) for any 7 € (0,1/2)
and k € N.
m 2

For any m € {1,...,n}, define s, := 371, . i <, [} ey, and ny, =
n™ —nl/(n —m)!. We then have

<nvn/z>m:(;czi) _ Y ]

1<iy,.im<n j=1

< Ny max ciT + sy, < CT" VI 4 mlspy,

i=1,...,n
so that (2V,1)s,, > {n™ — (2C~1)™n,,}/m!. Hence
n _ _ 1— 2071 m " m
[ +aViee®) > @V, ) s, > (QntQ)m[ i m), /"]

i=1
Now limy,—y00 Ny, /0™ = 0 for any fixed m € N, so, with m = 4(k + [), it follows
that |Cp(t)| < 2(m!)V/4(2nt?)~+D for all n > ng(k,1,€). This implies R3 with
r3(nyk,le) = 2-RH=20y(f 4 )1}V A4~ (BH+2)/2e=Ck+D) /(9 + 1) for any e €
(0,3/(4Hs)) and k > 3,1 > 0.

Proof of (3.18). Throughout the proof, n > ny(d) and A € Ey,, are assumed, so
that A; € [0, ), gn(Xi) = (pn =) 7" € [p ", 07 and [hn(Ni)] = [rn — Aign(No)| <
max(ry, pd~1). Consequently,

lenil = |14+ 127220, (M) |gn(N) < 6711 + max(ry, pd~ 1) 0" 22,)),

so that max;—1 072“» < Ci(1+ Cg|n_1/2;rn|)2 for positive constants Cy, Cy inde-
pendent of n and x. Therefore, it suffices to show that there exists a positive ¢
such that

e(1+ Coln~Y22,])2 < % (3.19)

for all z, € R. Let vy = F,(g2hF) for k = 0,1,2, and then write V, /2 =
va(n~Y2x,)? + 201 (n~Y2x,) + v. Hence (3.19) is equivalent to
2{Coe — visign(zn) Hn " 2a,| < (v — €C2) (™ 22,)% + (vo — €)

for all z,, € R. In view of the AM-GM inequality and its equality condition, this
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is equivalent to 0 < (vg —¢€), (v2 — €C3) and (vy + Cae)? < (vg — C3€)(vo —€). But
then the first and the third inequalities yield the second, so the desired condition
is

€ € (0, min(vg, (vavg — v3)(v9C3 + 2v1Cy + v2)™1)).
This is true when

V2V — U% Z C4 (3.20)

for a positive Cy, because vy > 1, v9C5 + 2v1C + va = vo(C2 + v1/v9)? + (vov2 —
v?) /v is positive when (3.20) holds, and bounded above on Ey . Finally, since

(X af)(b7) — (X aibi)? = 3o, (aiby — ajbi)? and hn(X) — hn(X) = Agn(A) —
Ngn(N) = pngn(N)gn(N) (A — ), we have

V2V0 — U% = Fn(g'?Lh?’L)FTL(g?L) - Fn(gr%hn)2
=n7? Y {gaP)gnN) P (N) — (N}

1<i<j<n
=2 D g M)ga ) i =27 = 57 Y (=)
1<i<j<n 1<i<j<n
- +7)%
= PO (Fulma) — Fufm)?) > LT

so we have shown (3.18), and consequently the claim.
First order Edgeworth expansion for M,,. From Corollary 4 and (3.14),

we have

—1/277—3/2 1— 2
E, |P (Mn < 20’;15[,‘ | A)—{(I)(yn) i n Va /13,(7;( yn)¢(yn) }] :O(n_1/2)
uniformly in z € R, where y, := Vﬁl/2(2051x —n~2G,(gn)) and Rz, =

8n~t "% | 3. It then suffices to show that
=2V R (1 = 42)6(yn) }

E, {q)(yn) + 5

—3/2 2
:<1>(a:)+n_1/2{ﬂ2’n rall 2 ) —m;,i”mgn)}as(x)+o<n—1/2>, (3:21)

uniformly in « € R. To this end, we introduce the following.

Definition 1. For a« > 0 and a polynomial py(t) = Zf:o cnitt with random
coefficients cpi’s, pn is PO(n™% Ey,) if By [|cnil]l = O(n™%),i =0, ..., k.

With this definition, we will show that
Vn — Kop = PO(TL_I; Eo7n), K3n — K3n = PO(n_l/Q; EO,n), (3.22)
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when both are treated as polynomials of x,, = p, lo,x. To prove the first part,
observe that

Vi — kon = 2{vg(n_1/2xn)2 + 2v1 (n_I/an) +wvo —F,, (gg)}
= 271_1{“235721 + Qn_l/an(gZhn)xn =+ Gn(gg)}a

where the second equality uses vi — n 1 Gy (92hn) = Fr, (92hn) = TnFy,(g2) —
F,.(migs) = 0, from (3.8). Also, it is clear that g2h, and g2 satisfy the suf-
ficient conditions for Corollary 1, hence Corollary 3 implies that (V,, — ka,,) is
PO(n™Y; Ey,). The second part of (3.22) can be proved in a similar yet simpler

way; namely,
R3n — K3n = 8n’1/2{n*1U3xf’L + 3n71/2u2:c721 + 3urxy, + nil/QGn(gf;)},

where uy, = F,(g3h%), k = 1,2,3. These are also absolutely bounded on Ej .
To exploit (3.22), we introduce a trivial inequality and its consequence as
follows.

Proposition 4. For any univariate polynomial p (with deterministic coefficients)
and a positive s, there exists a constant C(p,s) such that |p(t)exp(—st?)| <
C(p,s) for allt € R.

Corollary 5. If p, is PO(n™%; Ey,) for some a > 0, then for any positive s,
sup [E, {pn(t) exp(—st2)} | =0(n"%).
teR

Now we show
By {®(ya) — @(x) + 020y )P p(ga) (@)} = o(n™12), (3.23)

En { V201 = y2)0(n) — Kyl “gn(1 = 2%)6(2) } = O(™2)  (3.24)
uniformly in z € R, which implies (3.21) along with Proposition 4 and the tail
bound on FEjy,. These are fairly easy to prove on any compact subset of R, but
for uniform convergence, the proof is more delicate, due to the dependence of V,
and K3, on z. Although a wide interval of  would be practically meaningful,
we prove uniform convergence here.

Proof of (3.23) and (3.24). Observe that on Ey,, V,, and kg, are bounded be-
low by a positive constant uniformly in x € R, in view of V,, > vy 1(Uov2 —v3)
and (3.20). On the other hand, by the AM-GM inequality and (3.20), we have
the upper bound

Vo < 4(ntugz? + wp). (3.25)
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Now we can prove (3.23) as follows : let a;, =V, Y 2,%;/5 , then it suffices to show

that
En {0(y) = ®(anr) + 02V 2Gulgn) plona) | (3.26)
E {®(anx) — ®(2)}, (3.27)
E, |02V, 2 (ga) {(an) — 6(2)}], and (3.28)
En {n7215,)/” (0 = 1) Gulgn) () } (3.29)

are O(n~1) uniformly in = € R, because E,, [Gy,(gn) — pt(gn)] = o(1) from Corol-
lary 3. From the second order Taylor expansion of ®(y,) centered at o,z and
using Proposition 4, (3.26) is O(n™'E,{Gn(gn)?}), and hence O(n~!) uniformly
in z € R, by Corollary 3. Next, for (3.27) and (3.28), we consider two cases :

(case 1) 22 < n. This assumption implies that V,, is bounded above by a
positive constant on Ey ,, by (3.25). Therefore, on Ej ,, o, is bounded below by
a positive ap, and thus exp(—st?) < exp(—sB3z?) for all t between z and o,z
and for all positive s, where 3y = min(ap,1). Using this fact, |t|exp(—t2/2) <
exp(—t2/4), and the first order Taylor expansions of ®(a,z) and ¢(a,z) centered
at x, it follows that (3.27), (3.28) are

o) <1En {I(an — 1)z|exp (-55#) }) ’
0 <n1/2zen {|Gn<gn><an ~ Dafexp ( fﬁ) }) |

respectively. These are O(n~!) uniformly in z € [—\/n, \/n], because of
an — 1=V ko — Vi) (V2 + 6y 5) ™1 = PO(n ™Y By ), (3.30)

Corollary 5 and the Cauchy-Schwarz inequality(for the second case).

(case 2) 2% > n. In this case we have V,, = O(n"1z?) on Ey,, from (3.25).
Then |a,z|~t = O(n~Y/2) on Ey,, uniformly in = € [—/n, /n]°, and hence from
0<1—a(t]) < o(|t)/|t] = O(|t|~2), we conclude that 1 — ®(|z|), 1 — ®(|ay,x|),
(), ¢(anr) are all O(n~1) uniformly in € [—y/n,/n]¢, and so the same is
true for (3.27), (3.28).

Combining these cases gives the desired result for (3.27) and (3.28). Fur-
thermore, (3.29) immediately follows from (3.30), Corollary 5 and the Cauchy-
Schwarz inequality.

In a similar manner to the proof of (3.23) just given, we can decompose the
RHS of (3.24) into
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En (ViR al(l = 22)6(20) = {1 = (a2 bé(ana)] ), (3:31)
En (V¥ 2Rsal{1 = (an)*}o(ana) — (1= a2)o(@)]),  (3.32)
En { V(g0 — k3n) (1 = 2%)6() } (3.33)
En {0} = Drga(l = a?)o(x) } (3.34)

which are to be shown to be O(n~'/2) uniformly in z € R. From (3.19),
Vn 8/ 2|E37n] is bounded above uniformly on Ej ,,, which leads to the desired result
for (3.31) and (3.32) by the same methods as for (3.26) and (3.28), with small
changes in details; the first order Taylor expansion suffices for (3.31), and case 2
for (3.32) requires 0 < (t2 — 1)p(t) < 8t~2 if t* > 1. Finally, (3.22) and (3.30)
give the desired properties for (3.33) and (3.34), respectively.

3.5. Delta method for Edgeworth expansion

In this section, we prove that d,x, is ignorable in the sense of Step 4.
The decomposition given in (3.13) is inspired by the discussion in Hall (1992,
Chap. 2.7). The delta method is briefly introduced there as follows. For two
statistics U, and U], whose limiting distributions are N(0,1), if A, := U, — U},
is of order O,(n=7/2) for j € N, then “generally”, P (U, < z) — P (U!, < ) is of
order O(n~7/2). Therefore, if the (j — 1)* order Edgeworth expansion for U, is
easy to calculate, so is that for U/. However, neither sufficient conditions nor a
rigorous proof for this method is given there. Furthermore, A,, is linear in x in
our case. Hence, we prove a version of the delta method for Edgeworth expansion
in our context.

Proposition 5. Suppose that U,, admits the first order Edgeworth expansion
P, (Un < z) = ®(x) + 1 pi(2)d(z) + o(n~/?)
uniformly in x € R, for a polynomial p1. Also, assume that random variables J,

do not depend on x, and satisfy Pn (|| > n~12€,) = o(n=?) for a non-random
sequence {€,} converging to 0. Then

P, (Up + zJp, < x) — P, (Up < ) = o(n~'/?)
uniformly in x € R.
Proof. Note that
P, (Up+aJy <x) =P, (Up<z) | <Pu(|Jn] >n"2e,) + Po(|Up — | < |z|n " 3€,),
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hence from the assumption P, (|.J,| > n~/2¢,) = o(n~'/?) it suffices to show
that

Po(|Un — 2| < |2|n~%e,) = o(n~1/?)
uniformly in « € R. This follows from the uniform convergence assumption on
the first order Edgeworth expansion of U,, and the following inequalities : for
y € [-1/2,1/2], by Proposition 4,

(14 ) = ()] < foyl _max o1 +2)) < faylo () = Oy,

@1+ )01+ 1)) = P (@)0(@)| < [ry]__max | Ipa(a(1+ 2)) 61+ )

< faallal (|5 | ) (5) = 011

Here py is the polynomial satisfying (d/dz)(pi(x)¢(x)) = pa(x)é(x), and |ps| is
the polynomial with coeflicients being the absolute values of coefficients of ps.

3z
2

Finally, we prove (3.15) using this proposition with U, = o,M,/2, J, =
pnto26,/2 and €, < n=¢ for any ¢ € (0,1/2). Recall the definition of §, from
(3.10) : 6, = n'Gr(Mg2) — {vn — n V21, S0(gn)}. As Pu(In G, (mig?)| >
n~1/2=¢) = o(n=/2) by Proposition 3, we only need to consider (v, — n~"/?r,
Sn(gn)). Observe that from (3.3) and (3.4),

(E —pn)(1+ En_IZ,ARQ(Pn)Z) = n_l/prn{Sn(gn) + n_l/QGn(gn)} + (Z — Pn)Vn.
Multiply both sides by —n~*2’AR(¢)R2(py)z to yield

(14 AR (pp)2)vn

= —n"Y200,{Sn(gn) + 1 2Gn(gn)} - n T AR R (pn)z + 12,
because of (3.5). Consequently, on Ejy,, we have

[Un — n_l/anSn(gn”

< {1+ AR (pp) 2} v — n_l/QTnSn(gn)’

Tn

< n_l/prn|Sn(9n)| . n—lz’AR(@)R2(pn)z +{1+ Kn_lz'ARQ(Pn)Z}Ep

0 0| Galgn)| - [0~ AR R2(pr) 2| + 2.
Furthermore, the following holds from (3.8), the resolvent identity and (3.2),
n 2 AR(OR? (pn)z + {1 + En_lz’ARQ(pn)z}%

{1+ "' AR?(pn) 2}y, (magy)

— -1 /A g 2 n
n 2 AR(()R*(pn)z + {1+ ¢F,, (mig2)}
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= (0= pu)n™ "I AR(O)R? (pn)z + n~ ' AR (p,)2 + F,y, (magy)
+{n"'ZAR(p)z — F,, <mlgi>}f7"

n

= (I — pn)n "' AR() R (pn)z + n /%8, (mlgi (;" - gn>>

n
tala (m 2(7“”_ ))
n 1gn gn .
Pn

Now considering that £, p,, 7, [|Allsos [|R(€)]|s0s | R(pn)]se are absolutely bounded
on Ey,, for n > ng(0), and v, = —({ — p,)n" 2’ AR(£)R%(p,)z (3.5), it suffices to
show that

P (|Sn(gn)| > n1/4_</2)7 Pn(w_ Pl > n_1/4_C/2)a Pn(n_lzlz > 2),
Py (|Gr(gn)| > nl/Z_C)

are of probability o(n~'/2) for any ¢ € (0,1/2). Each such bound can be easily
deduced from Proposition 2, Proposition 3 and Corollary 2.

4. Discussion

This study clearly leaves some natural questions for further research. We
considered a single supercritical spike; extension to a finite number of separated
simple supercritical eigenvalues is presumably straightforward. Less immediately
clear is the situation with a supercritical eigenvalue of multiplicity K > 1, as the
limiting distribution for the associated K eigenvalues is GOFE(K) rather than
ordinary Gaussian.

A common use of Edgeworth approximations is to improve the coverage
properties of confidence intervals based on Gaussian limit theory. In ongoing
work, we are exploring such improvements for one- and two-sided intervals for /.

Development of a second order Edgeworth approximation (kurtosis correc-
tion) would appear to require a first order or skewness correction for certain linear
statistics in the Bai-Silverstein central limit theorem, which is not yet available.

We assumed that the observations x; were Gaussian and that assumption is
used in an important way to create the i.i.d. variates z = (z;) = U’'Z1, indepen-
dent of the noise eigenvalues A, as input to the conditional Edgeworth expansion.
Thus extension of the results to non Gaussian x; is an open issue for future work.

Supplementary Materials

The supplementary materials consist of proofs of certain identities used in
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throughout, and of tail bound propositions stated in Section 3.3.
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