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Abstract: We study improved approximations to the distribution of the largest

eigenvalue ˆ̀ of the sample covariance matrix of n zero-mean Gaussian observations

in dimension p + 1. We assume that one population principal component has

variance ` > 1 and the remaining ‘noise’ components have common variance 1.

In the high-dimensional limit p/n → γ > 0, we study Edgeworth corrections to

the limiting Gaussian distribution of ˆ̀ in the supercritical case ` > 1 +
√
γ. The

skewness correction involves a quadratic polynomial, as in classical settings, but the

coefficients reflect the high-dimensional structure. The methods involve Edgeworth

expansions for sums of independent non-identically distributed variates obtained

by conditioning on the sample noise eigenvalues, and the limiting bulk properties

and fluctuations of these noise eigenvalues.
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1. Introduction

Models for high-dimensional data with low-dimensional structure are the fo-

cus of much current research. This paper considers the rank one “spiked model”

with Gaussian data, in order to begin the study of Edgeworth expansion approx-

imations for high-dimensional data.

Model (M). Suppose that we observe X = [x1, . . . , xn]′ where x1, . . . , xn are

i.i.d. from Np+1(0,Σ), and the population covariance matrix Σ = I + (`− 1)vv′

for some unit vector v. Suppose also that p increases with n so that γn = p/n→
γ ∈ (0,∞) with ` > 1 +

√
γ.

Thus, one population principal component has variance ` > 1 and the re-

maining p have common variance 1.

∗Peter Hall visited Stanford many times, including a month long visit with Jeannie in 1988. The
second author (IMJ) was generously hosted by Peter even more often both at ANU and Melbourne.
Stimulating and enjoyable as those visits predictably were, we never discussed Edgeworth expansions.
Fortunately, the clarity of Peter’s exposition in his Bootstrap and Edgeworth book, and his well-known
fondness for the monograph of Petrov (1975), provided exactly what we needed for this project, begun
after his most untimely passing.
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The Baik, Arous and Péché (2005) phase transition is an important phe-

nomenon that appears in this high-dimensional asymptotic regime. It concerns

the largest eigenvalues in spiked models, which are of primary interest in prin-

cipal components analysis. In the rank one special case, let ˆ̀ be the largest

eigenvalue of the sample covariance matrix S = n−1X ′X. Below the phase tran-

sition, ` < 1 +
√
γ, and after a centering and scaling that does not depend

on `, asymptotically n2/3 ˆ̀ has a Tracy-Widom distribution. Above the phase

transition, the ‘super-critical regime’, the convergence rate is n1/2 and the limit

Gaussian:
n1/2{ˆ̀− ρ(`, γn)}

σ(`, γn)

D→ N(0, 1). (1.1)

The centering and scaling functions now depend on `:

ρ(`, γ) = `+
γ`

(`− 1)
, σ2(`, γ) = 2`2

{
1− γ

(`− 1)2

}
. (1.2)

Baik, Arous and Péché (2005) proved (1.1) for complex valued data using struc-

ture specific to the complex case. The real case was established using different

methods by Paul (2007), under the additional assumption γn − γ = o(n−1/2)

and with γn in (1.1) replaced by γ. We will see below that (1.1) holds as stated

without this assumption. Consequently, we adopt the abbreviations

ρn = ρ(`, γn), σn = σ(`, γn). (1.3)

The quality of approximation in asymptotic normality results such as (1.1) is

often studied using Edgeworth expansions, e.g. Hall (1992). However, our high-

dimensional setting appears to lie beyond the standard frameworks for Edgeworth

expansions, such as for example the use of smooth functions of a fixed dimensional

vector of means of independent random variables, as in Hall (1992, Sec. 2.4).

2. Main Result

Our main result is a skewness correction for the normal approximation (1.1)

to the largest eigenvalue statistic. The simplest version of the result may be

stated as follows. As usual Φ and φ denote the standard Gaussian cumulative

and density, respectively.

Theorem 1. Adopt Model (M), and let ˆ̀ be the largest eigenvalue of S =

n−1
∑n

i=1 xix
′
i, and let Rn = n1/2(ˆ̀−ρn)/σn, where the centering and scaling are

defined in (1.2) and (1.3). Then we have a first order Edgeworth expansion

P(Rn ≤ x) = Φ(x) + n−1/2p1(x)φ(x) + o(n−1/2), (2.1)
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valid uniformly in x, and with

p1(x) =
√

2

[
1

3
{(`− 1)3 + γ}(1− x2)− 1

2
γ`

]
{(`− 1)2 − γ}−3/2. (2.2)

We compare (2.1) with the previously known expression for dimension p

fixed in the next section. The effects of high-dimensionality are seen both in the

coefficient of the “usual” polynomial 1− x2 as well as in the additional constant

term proportional to γ`.

We turn to formulating the version of Theorem 1 that we actually prove,

and in the process sketch some elements of our approach in order to give a

first indication of the role of high-dimensionality in the Edgeworth correction.

Building on the approach of Paul (2007), the n × (p + 1) data matrix may be

partitioned as X = [
√
`Z1, Z2], with the ‘signal’ in the first column and the

remaining p columns containing pure noise: i.i.d. standard normal variates.

Now consider the eigen decomposition n−1Z2Z
′
2 = UΛU ′ in which U is n × n

orthogonal and the diagonal matrix Λ contains the ordered nonzero eigenvalues

λ1 ≥ · · · ≥ λn∧p of n−1Z2Z
′
2, supplemented by zeros in the case n > p. It is

a special feature of white Gaussian noise that (U,Λ) are mutually independent,

with U being uniformly (i.e. Haar) distributed on its respective space. In view

of this, if we set z = U ′Z1, it follows that the eigenvalues of S depend only on z

and Λ, and that

z = U ′Z1 ∼ N(0, In), z ⊥ Λ. (2.3)

The vector z provides enough independent randomness for Gaussian limit

behavior of ˆ̀, conditional on Λ. In particular, for a function f on [0,∞), we

define

Sn(f) = n−1/2
n∑
i=1

f(λi)(z
2
i − 1). (2.4)

As n grows, we may also use the bulk regularity properties of Λ. Thus the

empirical distribution Fn of the p sample eigenvalues of n−1Z ′2Z2 converges to

the Marchenko-Pastur distribution Fγ supported on [a(γ), b(γ)] if γ ≤ 1 and with

an atom (1− γ−1) at 0 if γ > 1, where

a(γ) = (1−√γ)2, b(γ) = (1 +
√
γ)2.

The ‘companion’ empirical distribution Fn of the n eigenvalues (λ1, . . . , λn) of

n−1Z2Z
′
2 converges to the companion MP law Fγ = (1−γ)I[0,∞) +γFγ . Integrals

against F indicating one of these types of distributions will be written in the

form
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F (f) =

∫
f(λ)F (dλ).

Paul’s Schur complement argument, reviewed in the proof section below,

leads to an equation for the fluctuation of ˆ̀ about its centering ρn:

n1/2(ˆ̀− ρn) =
Sn(gn)

Fγn(g2n)
+Op(n

−1/2), (2.5)

where gn(λ) = (ρn − λ)−1. From (S1.3) (Supplementary Materials), Fγn(g2n) =

2σ−2n . The sum Sn(gn) is asymptotically normal given Λ, with asymptotic vari-

ance Fγ(g2), for example via the Lyapounov CLT, and completing this argument

yields the asymptotic normality result (1.1).

A more accurate version of (2.5) is needed for a first Edgeworth approxima-

tion. Indeed, we later show that

n1/2(ˆ̀− ρn) =
Sn(gn) + n−1/2Gn(gn)

Fγn(g2n) + n−1/2Gn(g̃n) +Op(n−1)
,

where g̃n is defined later. This expression involves the discrepancy between a

trace and its centering:

Gn(f) =

n∑
i=1

f(λi)−n
∫
f(λ)Fγn(dλ) = n{Fn(f)−Fγn(f)} = p{Fn(f)−Fγn(f)}.

This centered linear statistic, though unnormalized, is Op(1), and indeed, ac-

cording to the CLT of Bai and Silverstein (2004), for suitable f is asymptotically

normal:
Gn(f)

D→ N(µ(f), σ2(f)). (2.6)

We use a first term Edgeworth approximation to the distribution of Sn(gn)

conditional on Λ, using results for sums of independent non-identically dis-

tributed variables described in Petrov (1975, Chap. 6). This uses the conditional

cumulants of Sn for j = 2, 3, given by

dj

dtj
logE(eitSn |Λ)|t=0 = κjn

−1
n∑
i=1

gjn(λi),

where, in turn, κj = 2j−1(j − 1)! are the cumulants of z2 − 1 ∼ χ2
(1) − 1. A

deterministic asymptotic approximation to these conditional cumulants is then

given by
κ2,n = 2Fγn(g2n), κ3,n = 8Fγn(g3n). (2.7)

With these preparations we are ready for the main theorem.

Theorem 2. With the assumptions of Theorem 1, we have the Edgeworth ex-

pansion
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P(Rn ≤ x) = Φ(x) + n−1/2p1,n(x)φ(x) + o(n−1/2), (2.8)

valid uniformly in x, and with

p1,n(x) =
1

6
κ
−3/2
2,n κ3,n(1− x2)− κ−1/22,n µ(gn),

for gn(λ) = (ρn − λ)−1 and κj,n defined by (2.7), and µ(·) the asymptotic mean

in the Bai-Silverstein limit (2.6).

The structure of p1,n(x) as an even quadratic polynomial is the same as in the

smooth function of means model (Hall (1992, Thm. 2.2)). In our high-dimensional

setting, the first term in p1,n(x) reflects the Edgeworth approximation to Sn(gn)

conditional on Λ, while the second shows the effects of fluctations of Λ. From

(S1.3), (S1.4) and (S1.5) (Supplementary Materials), we then have more explicit

evaluations

κ2,n = 2(1− `−1)2{(`− 1)2 − γn}−1 = 4σ−2n ,

κ3,n = 8(1− `−1)3{(`− 1)3 + γn}{(`− 1)2 − γn}−3,
µ(gn) = γn(`− 1){(`− 1)2 − γn}−2,

which lead to an explicit form of the first order correction term

p1,n(x) =
√

2

[
1

3
{(`− 1)3 + γn}(1− x2)−

1

2
γn`

]
{(`− 1)2 − γn}−3/2.

Since the error term is o(n−1/2) and γn = γ + o(1), we may replace γn by γ in

the previous display and recover Theorem 1.

Remark 1. To emphasize the advantage of using γn = p/n rather than γ in the

centering and scaling formulas, note that if γn = γ + an−1/2, then the limiting

distribution of

Řn =
n1/2{ˆ̀− ρ(`, γ)}

σ(`, γ)

has a non-zero mean α = α(a, `, γ). The situation is yet more delicate for the

skewness correction: if γn = γ + bn−1, then

P(Řn ≤ x)− P(Rn ≤ x) = n−1/2(β0 + β1x)φ(x) + o(n−1/2)

for constants β1, β0 depending on b, `, γ.

Remark 2. A parallel result for rank one perturbations of the Gaussian Orthog-

onal Ensemble is available. Consider a data matrix X = θe1e
T
1 + Z where θ > 1

and Z is p×p symmetric with Zii ∼ N(0, 2/p) and Zij ∼ N(0, 1/p) for i > j, and

p → ∞. The largest eigenvalue of X, denoted θ̂, converges a.s. to ρ = θ + θ−1

and, with σ =
√

2(1− θ−2), the quantity Rp =
√
p(θ̂ − ρ)/σ is asymptotically
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standard Gaussian (Benaych-Georges, Guionnet and Maida (2011, Thm. 5.1)).

As is well known, the empirical spectral distribution of Z [2:p,2:p] converges weakly

to the semicircle law Fsc with density (1/2π)
√

4− x2 on the interval [−2, 2]. Our

method, along with CLT for linear spectral statistics Fsc(f) of Bai and Yao (2005)

leads to a first order Edgeworth correction for Rp:

p1(x) =

√
2

(θ2 − 1)3/2

(
1− x2

3
− 1

2

)
,

which has a structure analogous to that of our main result.

Comparison with fixed p. In classical asymptotic theory, when n → ∞
with p fixed, asymptotically ˆ̀ ∼ N(`, 2`2). Introduce therefore Řn =

√
n(ˆ̀−

`)/(
√

2`). When specialized to the skewness correction term, Theorem 2.1 of

Muirhead and Chikuse (1975) reads

P(Řn ≤ x) = Φ(x) + n−1/2
{√

2

3
(1− x2)− p√

2(`− 1)

}
φ(x) +O(n−1). (2.9)

Formally setting γ = 0 in (2.2) of Theorem 1, we get only the term p1(x) =

(
√

2/3)(1 − x2). To see that the two results are nevertheless consistent, write

ρn = `(1+bn) and σn =
√

2`cn where bn = γn/(`−1) and cn = {1−γn/(`−1)2}1/2,
so that

Rn =
√
n

ˆ̀− `− bn`√
2`cn

= c−1n (Řn − dn),

where dn =
√
n/2bn =

√
n/2γn/(` − 1) = (2n)−1/2p/(` − 1) is the second term

in (2.9). Applying (2.9) at x̌n = cnx+ dn, we find

P(Rn ≤ x) = P(Řn ≤ x̌n) = Φ(x̌n) +

{
n−1/2

√
2

3
(1− x̌2n)− dn

}
φ(x̌n) +O(n−1).

Observe that Φ(x̌n) − dnφ(x̌n) = Φ(cnx) + O(d2n) with dn = O(n−1/2), and

cn = {1 − γn/(` − 1)2}1/2 = 1 + O(n−1). Therefore, x̌n = x + O(n−1/2) and

cnx = x+O(n−1), yielding

P(Rn ≤ x) = Φ(x) + n−1/2
√

2

3
(1− x2)φ(x) +O(n−1),

and so we do recover agreement with γ = 0 in (2.2).

Hermite polynomials and numerical comparisons. It is helpful to

view Edgeworth expansions in terms of Hermite polynomials Hn(x), defined by

Hn(x)φ(x) = (−d/dx)nφ(x). In particular, Hn(x) = 1, x, x2 − 1 and x3 − 3x for

n = 0, 1, 2 and 3. The Edgeworth approximation of Theorem 2 then becomes
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FE = Φ− n−1/2(α2H2 + α0)φ

with h = `− 1 and

α2 =

√
2

3

h3 + γn

(h2 − γn)3/2
, α0 =

1√
2

γnl

(h2 − γn)3/2
.

Since (d/dx)Hn(x) = −Hn+1(x), the Edgeworth corrected density is given by

fE = φ+ n−1/2(α2H3 + α0H1)φ.

The relative error
fE − φ
φ

= n−1/2q, q = α2H3 + α0H1,

is a cubic polynomial with positive leading coefficient. It is easy to verify that

the three roots, namely 0,±(3−α0/α2)
1/2 are real when ` > 1 +

√
γn. Hence the

Edgeworth density approximation is necessarily negative for ˆ̀ sufficiently small,

and intersects the normal density three times.

We now show numerical examples in which the Edgeworth corrected ‘density’

provides a better approximation to the distribution of Rn than does the standard

normal. The parameters

n ∈ {50, 100}; γn ∈ {0.1, 1}; `-factor := `/(1 +
√
γn)− 1 ∈ {0.3, 0.5},

are chosen so that n is neither too small for asymptotics to be meaningful nor

too large to distinguish fE(x) and φ(x), γn is close to either 0 or 1, and ` is

moderately separated from the (finite version) critical point 1 +
√
γn.

Figures 1 and 2 in fact show the densities y →
√
n/σnfE

(√
n/σn(y − ρn)

)
after shifting and scaling to correspond to ˆ̀. Superimposed are the corresponding

rescaled normal density as well as histograms of 100,000 simulated replicates of
ˆ̀. The solid vertical lines show the upper bulk edge (1 +

√
γn)2 to emphasize

that these settings for ˆ̀ are not too far above the bulk. In the cases shown, the

Edgeworth correction provides a (right) skewness correction that matches the

simulated histograms reasonably well, though unsurprisingly the small n = 50

and large γn = 1 case has the least good match.

When ` is closer to the phase transition, so that the `-factor is smaller,

the skewness correction becomes unsatisfactory due to the singularity in the

denominator of α2 and α0 as h approaches
√
γn. Empirically, we have found that

the skewness correction may be reasonable, with a single inflection point visible

above the mode, when

1

n

9

2
α2
2 =

1

n

(h3 + γn)2

(h2 − γn)3
≤ 0.2.
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Figure 1. Plots for l-factor = 0.3. Vertical lines denote (1 +
√
γn)2.

3. Proof

3.1. Outline

We start with deriving the useful expression of Rn as introduced in the first

section with more details. Without loss of generality, we may assume that the

population covariance matrix of the distribution of x1, . . . , xn is diag(`, 1, . . . , 1)(by

an appropriate rotation, not changing S). Then, we write X = [
√
`Z1 Z2] where

Z1, Z2 are n × 1, n × p with i.i.d. standard normal elements, respectively. The

eigenvalue equation Sv̂ = ˆ̀̂v becomes(
`Z ′1Z1

√
`Z ′1Z2√

`Z ′2Z1 Z ′2Z2

)(
v̂1
v̂2

)
= nˆ̀

(
v̂1
v̂2

)
,

where v̂1, v̂2 are the first coordinate and the rest of v̂, respectively. As usual, we

substitute the second equation into the first, then cancel v̂1 to obtain

nˆ̀= `Z ′1{In + Z2(nˆ̀Ip − Z ′2Z2)
−1Z ′2}Z1 = `Z ′1{ˆ̀(ˆ̀In − n−1Z2Z

′
2)
−1}Z1

= `z′{−ˆ̀R(ˆ̀)}z,

whenever det(nˆ̀Ip−Z ′2Z2) 6= 0, i.e. almost surely. Note that the second equation

is a particular case of the Woodbury formula, z = U ′Z1 where U is from the

eigendecomposition n−1Z2Z
′
2 = UΛU ′ as introduced before, and the resolvent
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Figure 2. Plots for l-factor = 0.5. Vertical lines denote (1 +
√
γn)2.

R(x) = (Λ − xIn)−1 is defined for x /∈ {λ1, . . . , λn}. Now using the resolvent

identity R(x) = R(y) + (x− y)R(x)R(y) for x, y /∈ {λ1, . . . , λn}, we obtain

nˆ̀= `z′{−ρnR(ρn)− (ˆ̀− ρn)ΛR(ˆ̀)R(ρn)}z,

which can be rearranged into a key equation

(ˆ̀− ρn){1 + `n−1z′ΛR(ˆ̀)R(ρn)z} = `ρn(−n−1z′R(ρn)z − `−1) (3.1)

whenever ˆ̀, ρn /∈ {λ1, . . . , λn} i.e. almost surely; we assume this from now on.

To investigate (3.1) further, we will make frequent use of the stochastic decom-

position

n−1
n∑
i=1

f(λi)z
2
i = Fγn(f) + n−1/2Sn(f) + n−1Gn(f), (3.2)

where Fn(·), Sn(·) and Gn(·) are defined as above, which are of order Op(1) as

we will see in the proof section. Noting that −R(ρn) = diag(gn(λ1), . . . , gn(λn))

and Fγn(gn) = `−1 (S1.2) (Supplementary Materials), we have −n−1z′R(ρn)z =

`−1 + n−1/2Sn(gn) + n−1Gn(gn) from (3.2). Hence we can rewrite (3.1) as

(ˆ̀− ρn){1 + `n−1z′ΛR(ˆ̀)R(ρn)z} = n−1/2`ρn{Sn(gn) + n−1/2Gn(gn)}. (3.3)

Also, use the resolvent identity to write
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1 + `n−1z′ΛR(ˆ̀)R(ρn)z = 1 + `n−1z′ΛR2(ρn)z − `νn, (3.4)

where

νn = −(ˆ̀− ρn)n−1z′ΛR(ˆ̀)R2(ρn)z (3.5)

will be Op(n
−1/2) by (3.3) and tail bounds. One can use (3.2) to write the leading

term as

1 + `n−1z′ΛR2(ρn)z = `ρnFγn(g2n) + n−1/2`Sn(m1g
2
n) + n−1`Gn(m1g

2
n), (3.6)

where mk(λ) := λk, k ∈ N are monomials, since 1 + `Fγn(m1g
2
n) − `ρnFγn(g2n) =

1 − `Fγn(gn) = 0, again by S1.2 (Supplementary Materials). This allows us to

rewrite (3.3) as

n1/2(ˆ̀− ρn) =
Sn(gn) +Op(n

−1/2)

Fγn(g2n) +Op(n−1/2)

which establishes (2.5). To expand νn further, we insert (2.5) into (3.5), yielding

νn = n−1/2
{
Sn(gn)

Fγn(g2n)
+Op(n

−1/2)

}
{Fγn(m1g

3
n) +Op(n

−1/2)}

= n−1/2rnSn(gn) +Op(n
−1),

(3.7)

where

rn =
`ρnFγn(m1g

3
n)

1 + `Fγn(m1g2n)
=

Fγn(m1g
3
n)

Fγn(g2n)
. (3.8)

Putting (3.6), (3.7) and Fγn(g2n) = 2σ−2n (S1.3) (Supplementary Materials) into

(3.4) gives

1 + `n−1z′ΛR(ˆ̀)R(ρn)z = `{2ρnσ−2n + n−1/2Sn(m1g
2
n − rngn) + δn}, (3.9)

where

δn = n−1Gn(m1g
2
n)− {νn − n−1/2rnSn(gn)} (3.10)

is Op(n
−1) ignorable; a rigorous proof of this fact is postponed to the delta

method section.

All in all, combining (3.3) and (3.9), we obtain the master equation

n1/2(ˆ̀− ρn) =
ρn{Sn(gn) + n−1/2Gn(gn)}

2ρnσ
−2
n − n−1/2Sn(gnhn) + δn

, with hn = rn −m1gn. (3.11)

Now we are ready to see the outline of the main proof. For notational

convenience, let η(`, γ) := ρ(`, γ)− b(γ) = (`− 1)−1(`− 1−√γ)2 > 0.

Step 1 From tail bounds, show that for any fixed δ ∈ (0,min(1, η(`, γ)/4, γ/2)),

the event

E0,n =

{
λ1 + δ < min{ρ(`, γ), ρn, ˆ̀},Fn(m2)− Fn(m1)

2 >
γ2

8

}
(3.12)
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is of probability 1−O(exp(−cn1/2)) for a positive c depending only on

γ, `, δ. Therefore, P (Rn ≤ x)− P (E0,n ∩ {Rn ≤ x}) = O(exp(−cn1/2))
uniformly in x ∈ R, i.e. it suffices to do the analysis on E0,n. Then,

for notational convenience, let En [X] := E{I(E0,n)X} and Pn (E) :=

P (E0,n ∩ E) for any random variable X and event E.

Step 2 Using (3.11), linearize the event {Rn ≤ x} as

{Rn ≤ x}
= {ρn(Sn(gn) + n−1/2Gn(gn)) ≤ {2ρnσ−2n − n−1/2Sn(gnhn) + δn}σnx}
= {Mn − δnxn ≤ 2σ−1n x} (3.13)

where xn = ρ−1n σnx and Mn, the main linearized statistic, is defined as

Mn := Sn((1 + n−1/2xnhn)gn) + n−1/2Gn(gn). (3.14)

Step 3 Use the Edgeworth expansion for sums of independent random variables

to expand P
(
Mn ≤ 2σ−1n x | Λ

)
on E0,n up to the accuracy of o(n−1/2)

uniformly in x ∈ R. Then take its expectation over Λ to obtain the

corresponding expansion of Pn
(
Mn ≤ 2σ−1n x

)
.

Step 4 Apply the delta method for Edgeworth expansion to obtain

Pn (Rn ≤ x) = Pn
(
Mn ≤ 2σ−1n x

)
+ o(n−1/2) (3.15)

uniformly on x ∈ R.

3.2. Bai-Silverstein CLT

As a core component of our analysis, a particular case of the CLT for linear

spectral statistics from Bai and Silverstein (2004) is introduced.

Theorem 3. Suppose that Zn := [z1, . . . , zn] with z1, . . . , zn
i.i.d.∼ N(0, Ip) and

γn := p/n → γ ∈ R+ as n → ∞. As defined above, let Fn(x) and Fγn(x) be the

empirical spectral distribution of ZnZ
t
n/p and the Marchenko-Pastur distribution

with the parameter γn, respectively, and Gn(x) := p(Fn(x) − Fγn(x)). Then,

for any real function f analytic on an open interval containing I(γ) := [I(γ ∈
(0, 1))a(γ), b(γ)],

Gn(f)
d→ N(µ(f), σ2(f)),

where µ(f) and σ2(f) are finite values determined by {f(x) | x ∈ I(γ)}. In

particular, µ(f) is given by ((5.13) of Bai and Silverstein (2004))
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µ(f) =
f(a(γ)) + f(b(γ))

4
− 1

2π

∫ b(γ)

a(γ)

f(x)√
4γ − (x− 1− γ)2

dx.

It is clear that Bai-Silverstein CLT is applicable for g(λ) := {ρ(`, γ)− λ}−1,
because ρ(`, γ)− b(γ) = η(`, γ) > 0.

3.3. Tail bounds

We introduce tail bounds in this section in order to establish Step 1, that

is, to separate λ1 from min{ρ(`, γ), ρn, ˆ̀}, and Fn(m2) from Fn(m1)
2, with over-

whelming probability. All proofs are postponed to S2 (Supplementary Materials).

We start with λ1 and min{ρ(`, γ), ρn}. Note that min{ρ(`, γ), ρn} − b(γ) >

δ for some positive δ and all large enough n, so the following proposition is

sufficient.

Proposition 1 (Proposition 1 of Paul (2007)). For each δ ∈ (0, b(γ)/2), the

event E1,n := {λ1 > b(γ) + δ} satisfies

P(E1,n) ≤ exp

(
−3nδ2

64b(γ)

)
for all n > nδ, where nδ ∈ N is determined by δ and {γn}n∈N.

Now assume δ ∈ (0,min(η(`, γ)/3, b(γ)/2)) and choose n0(δ) ∈ N such that

|ρn − ρ(`, γ)| < δ for all n > n0(δ). Then, on Ec1,n

λ1 + δ ≤ b(γ) + 2δ < ρ(`, γ)− δ < min{ρ(`, γ), ρn}

for all n > n0(δ), as desired.

The next two propositions are to restrict |ˆ̀− ρn| on Ec1,n, resulting in sepa-

ration between λ1 and min{ρ(`, γ), ρn, ˆ̀}. Observe that

ˆ̀= sup
v∈Sp−1

‖Sv‖2 > sup
w∈Sp−2

‖S[2:(p+1),2:(p+1)]w‖2 = λ1

whenever v̂1 6= 0, hence z′ΛR(ˆ̀)R(ρn)z ≥ 0 almost surely on Ec1,n. This leads to

|`ρn(Sn(gn) + n−1/2Gn(gn))|
= (1 + n−1`z′ΛR(ˆ̀)R(ρn)z)|n1/2(ˆ̀− ρn)| ≥ |n1/2(ˆ̀− ρn)| (3.16)

almost surely on Ec1,n, from (3.3). Therefore, it suffices to find tail bounds for

Sn(gn) and Gn(gn) on Ec1,n. We introduce propositions for more general settings,

which will be necessary in the delta method for Edgeworth expansion section.

Proposition 2. For M > 0 and a function f absolutely bounded by Uf on

[0, b(γ) + δ], E2,n(f,M) := {|Sn(f)| > M} satisfies
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P(Ec1,n ∩ E2,n(f,M)) ≤ 15 exp

(
−M
Uf

)
.

Proposition 3. For functions {fn}n∈N such that (i) fn(x2), n ∈ N share a Lip-

schitz constant L on [0, (b(γ) + δ)1/2] (as functions of x) and (ii) {Gn(fn)}n∈N
is uniformly tight, then

M({fn}n∈N) := sup
n∈N
|E [Gn(fn)] | with fn(λ) := fn((λ ∨ 0) ∧ (b(γ) + δ)) (3.17)

is finite. Furthermore, for M > 2M({fn}n∈N), E3,n(fn,M) := {|Gn(fn)| > M}
satisfies

P(Ec1,n ∩ E3,n(fn,M)) ≤ 2 exp(−M2/(8L2))).

Proposition 2 immediately follows from the Markov inequality for moment

generating functions, while Proposition 3 is mainly based on Corollary 1.8 (b) of

Guionnet and Zeitouni (2000).

To apply Proposition 3, assumptions (i) and (ii) need to be established for

all sufficiently large n; (i) is true when f ′n exists and is uniformly bounded on

[0, b(γ) + δ] because (fn(x2))′ = 2xf ′n(x2). For (ii), the following lemma provides

a sufficient condition.

Lemma 1. In the setting of Theorem 3, suppose there is an open neighborhood

Ω ⊂ C of I(γ) such that (i) {fn}n∈N is analytic and locally bounded in Ω, and

(ii) fn → f pointwise on I(γ). Then

Gn(fn)−Gn(f)
p→ 0

as n→∞. In particular, Gn(fn) has the same limiting Gaussian distribution as

Gn(f).

The proof relies on and adapts parts of the proof of Bai and Silverstein

(2004) Theorem 1.1, along with the Vitali-Porter and Weierstrass theorems(e.g.

Schiff (2013, Chap. 1.4, 2.4)). This lemma is sufficient for the uniform tightness

required for (ii) of Proposition 3, because of Slutsky’s theorem and Prohorov’s

Theorem(e.g. Van der Vaart (2000) Thm. 2.4). Consequently, we obtain the

following corollary.

Corollary 1. For functions {fn}n∈N, assume that for n′ ∈ N (i) {f ′n}n>n′ is

uniformly bounded by L′ on [0, b(γ) + δ], (ii) {fn}n>n′ is analytic and locally

bounded in an open neighborhood Ω ⊂ C of [a(γ), (1 +
√
γ)2], and (iii) fn → f

pointwise on [a(γ), (1 +
√
γ)2]. Then Gn(fn)

d→ N(µ(f), σ2(f)) and

P(Ec1,n ∩ E3,n(fn,M)) ≤ 2 exp

(
−M2

32(b(γ) + δ)L′2

)
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for M > 2M({fn}n>n′) and all n > n′.

Now it is easy to see that {gn}n>n′ satisfies sufficient conditions for Propo-

sition 2 and Corollary 1 for Uf = δ−1, n′ = n0(δ) and L′ = δ−2, from |gn(λ)| ≤
(ρn − b(γ) − δ)−1 < δ−1 for all λ ∈ [0, b(γ) + δ] and n > n0(δ). Hence, (3.16)

gives the following.

Corollary 2. For any δ ∈ (0,min(η(`, γ)/3, b(γ)/2)) and M > 0 ,

P(Ec1,n ∩ {n1/2|ˆ̀− ρn| > M}) = O(exp(−c(γ, `, δ)M))

for a constant c(γ, `, δ) depending only on γ, `, δ.

Finally, we verify Step 1 as follows : let δ ∈ (0,min(η(`, γ)/3, γ/2)) and take

ε > 0 such that ε2 + 3ε < γ2/8. Then, if max(|Gn(m2)|, |Gn(m1)|) ≤ nε for

n > n0(δ),

Fn(m2)− Fn(m1)
2 ≥ Fγn(m2)− ε− {Fγn(m1) + ε}2 = γ2n − (ε2 + 3ε)

> (γ − δ)2 − γ2

8
>
γ2

8

since Fγn(m1) = 1,Fγn(m2) = 1 + γ2n from Yao, Zheng and Bai (2015, Propo-

sition. 2.13), and δ > |ρn − ρ(`, γ)| = `|γn − γ|/(` − 1) ≥ |γn − γ|. Therefore,

Ec1,n ∩ {|ˆ̀− ρn| ≤ δ} ∩ Ec3,n(m1, nε) ∩ Ec3,n(m2, nε) ⊂ E0,n from (3.12), i.e. Step

1 is established by Proposition 1, Proposition 3 and Corollary 2.

Last but not least, we have the following result for moments for the future

use, from Corollary 1 and Theorem 2.20 of Van der Vaart (2000).

Corollary 3. For functions {fn}n∈N and f satisfying the conditions for Corollary

1 and any sequence of measurable En such that En ⊂ Ec1,n and limn→∞ P (En) =

1,

lim
n→∞

E{I(En)(Gn(fn))k} = τk(f), ∀k ∈ N,

where τk(f) denotes the kth moment of N(µ(f), σ2(f)). In particular, since

{gn}n∈N, g and {E0,n}n∈N satisfy these sufficient conditions, limn→∞
En
[
{Gn(gn)}k

]
= τk(g) holds.

3.4. Edgeworth expansion for sums of independent random variables

A heuristic conversion between characteristic function and Edgeworth ex-

pansion is described in Hall (1992, p.48). Justification for the conversion is the

main subject of Chapter VI of Petrov (1975), and leads to his Theorem 7, which

we state in modified form in Theorem 4 below. For us it yields an expression of

P (Mn ≤ x | Λ) up to the accuracy of o(n−1/2).
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For clarity, we first define relevant notations. Let (Xni)n∈N,i∈{1,...,n} be a

triangular array of random variables with zero means and finite variances, and

assume that Xn1, . . . , Xnn are independent for all n ∈ N. Furthermore,

• V n := n−1
∑n

i=1 Var(Xni) is positive for all sufficiently large n.

• χ̄v,n is the average vth cumulant of V
−1/2
n Xni’s, for v ∈ N.

• Cn(t) := E{exp(itV
−1/2
n

∑n
j=1Xni)}.

• For v ∈ N,

Qvn(x) :=

v∑
w=1

1

w!

 ∑
∗(w,v)

w∏
k=1

χ̄jk+2,n

(jk + 2)!

 (−1)v+2w dv+2w

dxv+2w
Φ(x),

where the summation ∗(w, v) is over {(j1, . . . , jw) ∈ Nw | j1 + · · ·+ jw = v}.

One verifies that Qvn(x) is a product of φ(x) and a degree-(3v − 1) polynomial

of x with coefficients being polynomials of χ̄j,n, j ∈ {3, . . . , v + 2}. Further, Qvn
is even for odd v and odd for even v.

Theorem 4. For fixed k ≥ 3, l ≥ 0 and for (Xni)n∈N,i∈{1,...,n}, assume that there

exist r1(k), r2(n; k, τ), r3(n; k, l, ε) satisfying the following regularity conditions:

R1 For all sufficiently large n ∈ N,

n−1V −k/2n

n∑
i=1

E
(
|Xni|k

)
≤ r1(k) <∞.

R2 For some τ ∈ (0, 1/2),

n−1V −k/2n

n∑
i=1

E
{
I(V −1/2n |Xni| > nτ )|Xni|k

}
≤ r2(n; k, τ) = o(1).

R3 A generalized Cramer’s condition

n(k+l−2)/2
∫
|t|>ε
|t|l−1|Cn(t)|dt ≤ r3(n; k, l, ε) = o(1)

holds for some ε ∈ (0, 3/(4H3)) and all n > n3(k, l, ε), where H3 :=

r1(k)3/k < ∞ is an upper bound of the average third absolute moments(by

power mean inequality).

Then, there exists N = N(k, l, τ, ε, n3) such that for n > N , the inequality∣∣∣∣∣ dldxlP(n−1/2V −1/2n

n∑
i=1

Xni ≤ x)− dl

dxl
{Φ(x) +

k−2∑
v=1

n−v/2Qvn(x)}

∣∣∣∣∣ ≤ n−(k−2)/2δ(n)
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holds for all x ∈ R. Here δ(n) = o(1) depends only on n, k, l, τ, ε, r1(k), r2(n; k, τ)

and r3(n; k, l, ε).

Our reason for presenting this theorem along with the explicit dependence of

the constants is that it provides a uniform bound on the (derivatives of) difference

between the distribution function and corresponding Edgeworth expansion for all

sufficiently large n. Also, we briefly comment on the regularity conditions: R1 is

about boundedness of χ̄v,n, v = 3, . . . , k, while R2, R3 are related to tail behavior;

in particular, R2 resembles the Lindeberg condition for the CLT.

Back to our problem, we state a special case of Theorem 4 when k = 3 and

l = 0.

Corollary 4. For (Xni)n∈N,i∈{1,...,n} satisfying R1, R2 and R3 for k = 3 and

l = 0,

P

(
n−1/2V −1/2n

n∑
i=1

Xni ≤ x

)
= Φ(x) +

n−1/2χ̄3,n(1− x2)φ(x)

6
+ o(n−1/2),

uniformly in x ∈ R.

Now from (2.3) and (2.4), observe that conditioned on Λ, Sn((1+

n−1/2xnhn)gn) is a sum of independent random variables. That is, Corollary

4 is applicable for Xni = cni(z
2
i − 1) where cni := (1 + n−1/2xnhn(λi))gn(λi),

so long as the corresponding regularity conditions R1, R2 and R3 hold. In the

moments analysis below, we show that this is the case on E0,n with the same

r1(k), r2(n; k, τ), r3(n; k, l, ε), and n3(k, l, ε).

Moments analysis. Note that (z2i − 1) are mean zero i.i.d. with the

characteristic function exp(−iθ)(1 − 2iθ)−1/2, and so the kth cumulant is κk =

2k−1(k − 1)! for k ∈ N. In particular, adopting the notations above, we have

V n = 2n−1
n∑
i=1

c2ni, χ̄k,n=κkV
−k/2
n n−1

n∑
i=1

ckni, |Cn(t)|=
n∏
i=1

(1 + 4V −1n c2nit
2)−1/4.

We will show that there exists a positive C such that

C max
i=1,...,n

c2ni ≤ V n (3.18)

for all x ∈ R on E0,n, for all sufficiently large n. Here cni depends on x. Assume

(3.18) for now and verify that R1, R2 and R3 hold uniformly in x ∈ R on E0,n.

First,

n−1V −k/2n

n∑
j=1

E
(
|Xnj |k

)
= V −k/2n n−1

n∑
i=1

|cni|kE
(
|z21−1|k

)
≤ C−k/2E

(
|z21−1|k

)
,
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hence R1 holds with r1(k) = C−k/2E
(
|z21 − 1|k

)
for all k ∈ N. Now use the

Markov inequalities and then R1 to get

n−1V −k/2n

n∑
i=1

E
{
I(V −1/2n |Xni| > nτ )|Xni|k

}
≤ n−τ−1V −(k+1)/2

n

n∑
i=1

E
(
|Xni|k+1

)
≤ n−τr1(k + 1),

which shows that R2 holds with r2(n; k, τ) = n−τr1(k + 1) for any τ ∈ (0, 1/2)

and k ∈ N.

For any m ∈ {1, . . . , n}, define sm :=
∑

1≤i1<···<im≤n
∏m
j=1 c

2
nij

and nm :=

nm − n!/(n−m)!. We then have

(nV n/2)m =

(
n∑
i=1

c2ni

)m
=

∑
1≤i1,...,im≤n

m∏
j=1

c2nij

≤ nm max
i=1,...,n

c2mni +m!sm ≤ C−mnmV m
n +m!sm,

so that (2V −1n )msm ≥ {nm − (2C−1)mnm}/m!. Hence
n∏
i=1

(1 + 4V −1n c2nit
2) ≥ (4V −1n t2)msm ≥ (2nt2)m

[
1− {(2C−1)mnm}/nm

]
m!

.

Now limn→∞ nm/n
m = 0 for any fixed m ∈ N, so, with m = 4(k + l), it follows

that |Cn(t)| ≤ 2(m!)1/4(2nt2)−(k+l) for all n > n3(k, l, ε). This implies R3 with

r3(n; k, l, ε) = 2−(k+l−2){4(k + l)!}1/4n−(k+l+2)/2ε−(2k+l)/(2k + l) for any ε ∈
(0, 3/(4H3)) and k ≥ 3, l ≥ 0.

Proof of (3.18). Throughout the proof, n > n0(δ) and Λ ∈ E0,n are assumed, so

that λi ∈ [0, ρ), gn(λi) = (ρn−λi)−1 ∈ [ρ−1n , δ−1] and |hn(λi)| = |rn−λign(λi)| ≤
max(rn, ρδ

−1). Consequently,

|cni| = |1 + n−1/2xnhn(λi)|gn(λi) ≤ δ−1(1 + max(rn, ρδ
−1)|n−1/2xn|),

so that maxi=1,...,n c
2
ni ≤ C1(1 +C2|n−1/2xn|)2 for positive constants C1, C2 inde-

pendent of n and x. Therefore, it suffices to show that there exists a positive ε

such that

ε(1 + C2|n−1/2xn|)2 ≤
V n

2
, (3.19)

for all xn ∈ R. Let vk = Fn(g2nh
k
n) for k = 0, 1, 2, and then write V n/2 =

v2(n
−1/2xn)2 + 2v1(n

−1/2xn) + v0. Hence (3.19) is equivalent to

2{C2ε− v1sign(xn)}|n−1/2xn| ≤ (v2 − εC2
2 )(n−1/2xn)2 + (v0 − ε)

for all xn ∈ R. In view of the AM-GM inequality and its equality condition, this
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is equivalent to 0 ≤ (v0− ε), (v2− εC2
2 ) and (v1 +C2ε)

2 ≤ (v2−C2
2ε)(v0− ε). But

then the first and the third inequalities yield the second, so the desired condition

is

ε ∈ (0,min(v0, (v2v0 − v21)(v0C
2
2 + 2v1C2 + v2)

−1)).

This is true when

v2v0 − v21 ≥ C4 (3.20)

for a positive C4, because v0 ≥ 1, v0C
2
2 + 2v1C2 + v2 = v0(C2 + v1/v0)

2 + (v0v2−
v21)/v0 is positive when (3.20) holds, and bounded above on E0,n. Finally, since

(
∑
a2i )(

∑
b2i ) − (

∑
aibi)

2 =
∑

i<j(aibj − ajbi)2 and hn(λ′) − hn(λ) = λgn(λ) −
λ′gn(λ′) = ρngn(λ)gn(λ′)(λ− λ′), we have

v2v0 − v21 = Fn(g2nh
2
n)Fn(g2n)− Fn(g2nhn)2

= n−2
∑

1≤i<j≤n
{gn(λi)gn(λj)}2{hn(λi)− hn(λj)}2

= ρ2nn
−2

∑
1≤i<j≤n

{gn(λi)gn(λj)}4 (λi − λj)2≥ρ−6n n−2
∑

1≤i<j≤n
(λi−λj)2

= ρ−6n (Fn(m2)− Fn(m1)
2) ≥ (ρ+ γ)−6γ2

8
,

so we have shown (3.18), and consequently the claim.

First order Edgeworth expansion for Mn. From Corollary 4 and (3.14),

we have

En

[
P
(
Mn ≤ 2σ−1n x | Λ

)
−

{
Φ(yn) +

n−1/2V
−3/2
n κ̄3,n(1− y2n)φ(yn)

6

}]
=o(n−1/2)

uniformly in x ∈ R, where yn := V
−1/2
n (2σ−1n x − n−1/2Gn(gn)) and κ̄3,n =

8n−1
∑n

i=1 c
3
ni. It then suffices to show that

En

{
Φ(yn) +

n−1/2V
−3/2
n κ̄3,n(1− y2n)φ(yn)

6

}

= Φ(x) + n−1/2

{
κ
−3/2
2,n κ3,n(1− x2)

6
− κ−1/22,n µ(gn)

}
φ(x) + o(n−1/2), (3.21)

uniformly in x ∈ R. To this end, we introduce the following.

Definition 1. For α > 0 and a polynomial pn(t) =
∑k

i=0 cnit
i with random

coefficients cni’s, pn is PO(n−α;E0,n) if En [|cni|] = O(n−α), i = 0, . . . , k.

With this definition, we will show that

V n − κ2,n = PO(n−1;E0,n), κ̄3,n − κ3,n = PO(n−1/2;E0,n), (3.22)
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when both are treated as polynomials of xn = ρ−1n σnx. To prove the first part,

observe that

V n − κ2,n = 2{v2(n−1/2xn)2 + 2v1(n
−1/2xn) + v0 − Fγn(g2n)}

= 2n−1{v2x2n + 2n−1/2Gn(g2nhn)xn +Gn(g2n)},

where the second equality uses v1 − n−1Gn(g2nhn) = Fγn(g2nhn) = rnFγn(g2n) −
Fγn(m1g

3
n) = 0, from (3.8). Also, it is clear that g2nhn and g2n satisfy the suf-

ficient conditions for Corollary 1, hence Corollary 3 implies that (V n − κ2,n) is

PO(n−1;E0,n). The second part of (3.22) can be proved in a similar yet simpler

way; namely,

κ̄3,n − κ3,n = 8n−1/2{n−1u3x3n + 3n−1/2u2x
2
n + 3u1xn + n−1/2Gn(g3n)},

where uk = Fn(g3nh
k
n), k = 1, 2, 3. These are also absolutely bounded on E0,n.

To exploit (3.22), we introduce a trivial inequality and its consequence as

follows.

Proposition 4. For any univariate polynomial p (with deterministic coefficients)

and a positive s, there exists a constant C(p, s) such that |p(t) exp(−st2)| ≤
C(p, s) for all t ∈ R.

Corollary 5. If pn is PO(n−α;E0,n) for some α > 0, then for any positive s,

sup
t∈R
|En

{
pn(t) exp(−st2)

}
| = O(n−α).

Now we show

En
{

Φ(yn)− Φ(x) + n−1/2κ
−1/2
2,n µ(gn)φ(x)

}
= o(n−1/2), (3.23)

En
{
V −3/2n κ̄3,n(1− y2n)φ(yn)− κ−3/22,n κ3,n(1− x2)φ(x)

}
= O(n−1/2) (3.24)

uniformly in x ∈ R, which implies (3.21) along with Proposition 4 and the tail

bound on E0,n. These are fairly easy to prove on any compact subset of R, but

for uniform convergence, the proof is more delicate, due to the dependence of V n

and κ̄3,n on x. Although a wide interval of x would be practically meaningful,

we prove uniform convergence here.

Proof of (3.23) and (3.24). Observe that on E0,n, V n and κ2,n are bounded be-

low by a positive constant uniformly in x ∈ R, in view of V n ≥ v−12 (v0v2 − v21)

and (3.20). On the other hand, by the AM-GM inequality and (3.20), we have

the upper bound

V n ≤ 4(n−1v2x
2
n + v0). (3.25)



2560 YANG AND JOHNSTONE

Now we can prove (3.23) as follows : let αn = V
−1/2
n κ

1/2
2,n , then it suffices to show

that

En
{

Φ(yn)− Φ(αnx) + n−1/2V −1/2n Gn(gn)φ(αnx)
}
, (3.26)

En{Φ(αnx)− Φ(x)}, (3.27)

En
[
n−1/2V −1/2n Gn(gn){φ(αnx)− φ(x)}

]
, and (3.28)

En
{
n−1/2κ

−1/2
2,n (αn − 1)Gn(gn)φ(x)

}
(3.29)

are O(n−1) uniformly in x ∈ R, because En [Gn(gn)− µ(gn)] = o(1) from Corol-

lary 3. From the second order Taylor expansion of Φ(yn) centered at αnx and

using Proposition 4, (3.26) is O(n−1En{Gn(gn)2}), and hence O(n−1) uniformly

in x ∈ R, by Corollary 3. Next, for (3.27) and (3.28), we consider two cases :

(case 1) x2 ≤ n. This assumption implies that V n is bounded above by a

positive constant on E0,n, by (3.25). Therefore, on E0,n, αn is bounded below by

a positive α0, and thus exp(−st2) ≤ exp(−sβ20x2) for all t between x and αnx

and for all positive s, where β0 = min(α0, 1). Using this fact, |t| exp(−t2/2) ≤
exp(−t2/4), and the first order Taylor expansions of Φ(αnx) and φ(αnx) centered

at x, it follows that (3.27), (3.28) are

O

(
En
{
|(αn − 1)x| exp

(
−β20x2

2

)})
,

O

(
n−1/2En

{
|Gn(gn)(αn − 1)x| exp

(
−β20x2

4

)})
,

respectively. These are O(n−1) uniformly in x ∈ [−
√
n,
√
n], because of

αn − 1 = V −1/2n (κ2,n − V n)(V 1/2
n + κ

1/2
2,n )−1 = PO(n−1;E0,n), (3.30)

Corollary 5 and the Cauchy-Schwarz inequality(for the second case).

(case 2) x2 > n. In this case we have V n = O(n−1x2) on E0,n from (3.25).

Then |αnx|−1 = O(n−1/2) on E0,n uniformly in x ∈ [−
√
n,
√
n]c, and hence from

0 < 1− Φ(|t|) ≤ φ(|t|)/|t| = O(|t|−2), we conclude that 1− Φ(|x|), 1− Φ(|αnx|),
φ(x), φ(αnx) are all O(n−1) uniformly in x ∈ [−

√
n,
√
n]c, and so the same is

true for (3.27), (3.28).

Combining these cases gives the desired result for (3.27) and (3.28). Fur-

thermore, (3.29) immediately follows from (3.30), Corollary 5 and the Cauchy-

Schwarz inequality.

In a similar manner to the proof of (3.23) just given, we can decompose the

RHS of (3.24) into
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En
(
V −3/2n κ̄3,n[(1− z2n)φ(zn)− {1− (αnx)2}φ(αnx)]

)
, (3.31)

En
(
V −3/2n κ̄3,n[{1− (αnx)2}φ(αnx)− (1− x2)φ(x)]

)
, (3.32)

En
{
V −3/2n (κ̄3,n − κ3,n)(1− x2)φ(x)

}
, (3.33)

En
{
κ
−3/2
2,n (α3

n − 1)κ3,n(1− x2)φ(x)
}
, (3.34)

which are to be shown to be O(n−1/2) uniformly in x ∈ R. From (3.19),

V
−3/2
n |κ̄3,n| is bounded above uniformly on E0,n, which leads to the desired result

for (3.31) and (3.32) by the same methods as for (3.26) and (3.28), with small

changes in details; the first order Taylor expansion suffices for (3.31), and case 2

for (3.32) requires 0 < (t2 − 1)φ(t) ≤ 8t−2 if t2 > 1. Finally, (3.22) and (3.30)

give the desired properties for (3.33) and (3.34), respectively.

3.5. Delta method for Edgeworth expansion

In this section, we prove that δnxn is ignorable in the sense of Step 4.

The decomposition given in (3.13) is inspired by the discussion in Hall (1992,

Chap. 2.7). The delta method is briefly introduced there as follows. For two

statistics Un and U ′n whose limiting distributions are N(0, 1), if ∆n := Un − U ′n
is of order Op(n

−j/2) for j ∈ N, then “generally”, P (Un ≤ x) − P (U ′n ≤ x) is of

order O(n−j/2). Therefore, if the (j − 1)th order Edgeworth expansion for Un is

easy to calculate, so is that for U ′n. However, neither sufficient conditions nor a

rigorous proof for this method is given there. Furthermore, ∆n is linear in x in

our case. Hence, we prove a version of the delta method for Edgeworth expansion

in our context.

Proposition 5. Suppose that Un admits the first order Edgeworth expansion

Pn (Un ≤ x) = Φ(x) + n−1/2p1(x)φ(x) + o(n−1/2)

uniformly in x ∈ R, for a polynomial p1. Also, assume that random variables Jn
do not depend on x, and satisfy Pn(|Jn| > n−1/2εn) = o(n−1/2) for a non-random

sequence {εn} converging to 0. Then

Pn (Un + xJn ≤ x)− Pn (Un ≤ x) = o(n−1/2)

uniformly in x ∈ R.

Proof. Note that

|Pn (Un+xJn≤x)−Pn (Un≤x) |≤Pn(|Jn|>n−1/2εn) + Pn(|Un−x|≤|x|n−1/2εn),
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hence from the assumption Pn(|Jn| > n−1/2εn) = o(n−1/2) it suffices to show

that

Pn(|Un − x| ≤ |x|n−1/2εn) = o(n−1/2)

uniformly in x ∈ R. This follows from the uniform convergence assumption on

the first order Edgeworth expansion of Un, and the following inequalities : for

y ∈ [−1/2, 1/2], by Proposition 4,

|Φ(x(1 + y))− Φ(x)| ≤ |xy| max
z∈[−1/2,1/2]

φ(x(1 + z)) ≤ |xy|φ
(x

2

)
= O(|y|),

|p1(x(1 + y))φ(x(1 + y))− p1(x)φ(x)| ≤ |xy| max
z∈[−1/2,1/2]

|p2(x(1 + z))|φ(x(1 + z))

≤ |xy||p2|
(∣∣∣∣3x2

∣∣∣∣)φ(x2) = O(|y|).

Here p2 is the polynomial satisfying (d/dx)(p1(x)φ(x)) = p2(x)φ(x), and |p2| is

the polynomial with coefficients being the absolute values of coefficients of p2.

Finally, we prove (3.15) using this proposition with Un = σnMn/2, Jn =

ρ−1n σ2nδn/2 and εn � n−ζ for any ζ ∈ (0, 1/2). Recall the definition of δn from

(3.10) : δn = n−1Gn(λg2n) − {νn − n−1/2rnSn(gn)}. As Pn(|n−1Gn(m1g
2
n)| >

n−1/2−ζ) = o(n−1/2) by Proposition 3, we only need to consider (νn − n−1/2rn
Sn(gn)). Observe that from (3.3) and (3.4),

(ˆ̀− ρn)(1 + `n−1z′ΛR2(ρn)z) = n−1/2`ρn{Sn(gn) + n−1/2Gn(gn)}+ (ˆ̀− ρn)νn.

Multiply both sides by −n−1z′ΛR(ˆ̀)R2(ρn)z to yield

(1 + `n−1z′ΛR2(ρn)z)νn

= −n−1/2`ρn{Sn(gn) + n−1/2Gn(gn)} · n−1z′ΛR(ˆ̀)R2(ρn)z + ν2n,

because of (3.5). Consequently, on E0,n we have

|νn − n−1/2rnSn(gn)|
≤ {1 + `n−1z′ΛR2(ρn)z}|νn − n−1/2rnSn(gn)|

≤ n−1/2`ρn|Sn(gn)| ·
∣∣∣∣n−1z′ΛR(ˆ̀)R2(ρn)z + {1 + `n−1z′ΛR2(ρn)z} rn

`ρn

∣∣∣∣
+ n−1`ρn|Gn(gn)| · |n−1z′ΛR(ˆ̀)R2(ρn)z|+ ν2n.

Furthermore, the following holds from (3.8), the resolvent identity and (3.2),

n−1z′ΛR(ˆ̀)R2(ρn)z + {1 + `n−1z′ΛR2(ρn)z} rn
`ρn

= n−1z′ΛR(ˆ̀)R2(ρn)z +
{1 + `n−1z′ΛR2(ρn)z}Fγn(m1g

3
n)

{1 + `Fγn(m1g2n)}
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= (ˆ̀− ρn)n−1z′ΛR(ˆ̀)R3(ρn)z + n−1z′ΛR3(ρn)z + Fγn(m1g
3
n)

+ {n−1z′ΛR2(ρn)z − Fγn(m1g
2
n)} rn

ρn

= (ˆ̀− ρn)n−1z′ΛR(ˆ̀)R3(ρn)z + n−1/2Sn

(
m1g

2
n

(
rn
ρn
− gn

))
+ n−1Gn

(
m1g

2
n

(
rn
ρn
− gn

))
.

Now considering that `, ρn, rn, ‖Λ‖∞, ‖R(ˆ̀)‖∞, ‖R(ρn)‖∞ are absolutely bounded

on E0,n for n > n0(δ), and νn = −(ˆ̀− ρn)n−1z′ΛR(ˆ̀)R2(ρn)z (3.5), it suffices to

show that

Pn(|Sn(gn)| > n1/4−ζ/2), Pn(|ˆ̀− ρn| > n−1/4−ζ/2), Pn(n−1z′z > 2),

Pn(|Gn(gn)| > n1/2−ζ)

are of probability o(n−1/2) for any ζ ∈ (0, 1/2). Each such bound can be easily

deduced from Proposition 2, Proposition 3 and Corollary 2.

4. Discussion

This study clearly leaves some natural questions for further research. We

considered a single supercritical spike; extension to a finite number of separated

simple supercritical eigenvalues is presumably straightforward. Less immediately

clear is the situation with a supercritical eigenvalue of multiplicity K > 1, as the

limiting distribution for the associated K eigenvalues is GOE(K) rather than

ordinary Gaussian.

A common use of Edgeworth approximations is to improve the coverage

properties of confidence intervals based on Gaussian limit theory. In ongoing

work, we are exploring such improvements for one- and two-sided intervals for `.

Development of a second order Edgeworth approximation (kurtosis correc-

tion) would appear to require a first order or skewness correction for certain linear

statistics in the Bai-Silverstein central limit theorem, which is not yet available.

We assumed that the observations xj were Gaussian and that assumption is

used in an important way to create the i.i.d. variates z = (zi) = U ′Z1, indepen-

dent of the noise eigenvalues Λ, as input to the conditional Edgeworth expansion.

Thus extension of the results to non Gaussian xj is an open issue for future work.

Supplementary Materials

The supplementary materials consist of proofs of certain identities used in
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throughout, and of tail bound propositions stated in Section 3.3.

Acknowledgment

We thank Zhou Fan for providing the main idea of the proofs of Proposition

3 and Corollary 4, and referees for helpful comments. Supported by NIH R01

EB001988, NSF DMS 1407813 and a Samsung scholarship.

References

Bai, Z. D. and Silverstein, J. W. (2004). CLT for linear spectral statistics of large-dimensional

sample covariance matrices. Ann. Probab. 32(1A), 553–605.

Bai, Z. D. and Yao, J. (2005). On the convergence of the spectral empirical process of Wigner

matrices. Bernoulli 11(6), 1059–1092.
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