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Abstract

We study theoretically the resonance scattering of positronium (Ps) atoms by nitrogen molecules

and compare it with resonance e−N2 scattering in the Πg symmetry. The velocity positions of the

Ps−N2 resonances in Σu, Πu, and ∆g symmetries are very close to the velocity position of the

e−N2 resonance which leads to the total Ps−N2 cross section being very similar to the e−N2 cross

section when both are plotted as functions of the projectile velocity. However, in the Ps−N2 case

the resonances are much wider and their positions vary much slower with increasing internuclear

separation than in the e−N2 case. This makes the Ps-impact vibrational excitation cross section

much smaller than the electron-impact vibrational excitation cross section, and no boomerang

oscillations are observed in Ps−N2 scattering. We analyze the role of the static potential in the

e−N2 case and compare exchange potentials for e−N2 and Ps−N2 interactions. This analysis allows

us to explain the difference in the vibrational dynamics in these two cases.

PACS numbers:
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I. INTRODUCTION

Theoretical treatment of positronium (Ps) collisions with neutral targets is very chal-

lenging, therefore until recently most efforts have been mostly exclusively directed towards

studies of Ps collisions with atoms [1]. A few theoretical studies of Ps collisions with the

H2 molecule are available [2–5], and, to the best of our knowledge, only one theoretical

calculation of Ps−N2 collisions [6] exists. Interest in Ps collisions with neutral targets is in

much extent due to an intriguing similarity between electron and Ps scattering [7–9] which

was recently extended to resonant scattering in Ps−N2 [9, 10] and Ps−CO2 [8] collisions. In

particular the very well-known resonance in e−N2 scattering of the Πg symmetry [11] looks

very similar to the observed resonance in the Ps−N2 scattering if cross sections for both

processes are plotted as functions of the projectile velocity.

Resonances in electron-molecule collisions drive many inelastic processes, particularly

vibrational excitation and dissociative electron attachment [12, 13]. Therefore, if similar

resonances exist in Ps-molecule collisions, they can drive similar processes, particularly Ps-

impact vibrational excitation and dissociative Ps attachment.

The Πg resonance in e−N2 scattering has been studied in many theoretical and experi-

mental papers [11]. Theoretical papers on e−N2 resonant scattering can be separated into

two categories: calculations performed in the fixed-nuclei approximations [14–19] and cal-

culations which account for vibrational motion [20–26]. In the second class of calculations

a single resonance is split into series of peaks, so-called boomerang oscillations [21], which

appear because the resonance lifetime is comparable with the vibrational period in N2.

On the other hand, positron-nitrogen collisions were studied both experimentally [27] and

theoretically [28]. Whereas no resonances are observed in this process, the total cross section

becomes very large at low energies due to virtual Ps formation which is directly related to

experiments on positron annihilation in positron collisions with neutral targets [29].

In our recent paper [6] we investigated Ps−N2 collisions by employing model exchange

and correlation potentials [30]. Interaction of Ps with electrons in the molecular target

was described on the basis of the free-electron-gas (FEG) model with both electron and

positron in the projectile Ps treated on equal footing. The interaction consists of two com-

ponents, an exchange and correlation potential. Because of the presence of the positron in

Ps, the exchange potential for the Ps-molecule interaction is quite different from that for the
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electron-molecule interaction, as will be explicitly demonstrated in the present paper. The

correlation potential turns asymptotically into the van der Waals interaction which is also

very different from the polarization potential dominating the electron-molecule interaction.

Resonances in three partial waves, Σu, Πu, and ∆g, have been found in [6]. They lead to

two peaks in the scattering cross section as a function of energy whose positions are close

to each other and close to the position of the experimentally observed peak [10]. Whereas

there cannot be a direct connection between resonance symmetries in e − N2 and Ps−N2

collisions, a close similarity in the shape and the magnitude of the cross section is interesting

and suggests a possible similarity in inelastic collisions.

The previous calculations [6] of Ps−N2 scattering were done in the fixed-nuclei approxi-

mation. To calculate Ps-impact vibrational excitation cross sections we need to investigate

first the dependence of the scattering matrices on the internuclear separation R. These

calculations are discussed in Sec. II of the present paper. We find that for all three res-

onances their widths are large compared to the vibrational quantum h̄ω in N2. Therefore

the boomerang oscillations found in e − N2 collisions are not possible in Ps−N2 collisions,

and we proceed with calculation of Ps-impact vibrational excitation using the vibrationally-

adiabatic approximations in Sec. III. We discuss the results in Sec. IV, and then turn to

the Conclusion.

II. FIXED-NUCLEI SCATTERING CALCULATIONS

In order to calculate the scattering potentials for both e−N2 and Ps−N2 scattering we

need the target electron probability density n(r). In the present paper we calculate this

quantity from the ground state wavefunctions of Cade et al. [31] at the equilibrium separa-

tion Re = 2.068 a.u. as well as at R =1.85, 1.95, 2.15 and 2.45 a.u.

For e−N2 scattering we use the static-exchange plus polarization (SEP) approximation as

described in [11], using the Hara free electron gas exchange model (HFEGE) [32] and semi-

empirical correlation-polarization potential with cutoff of [18]. For Ps−N2 scattering the

static potential averages to zero and we use the FEG model of [30] to calculate the exchange

and correlation potentials. In both cases we expand the potentials in Legendre polynomials

and use the integral equation method of [33] to solve the resulting coupled equations. The

calculation at the equilibrium internuclear separation is described in more detail in [6].
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FIG. 1: Eigenphase sums (modulo π) as functions of electron velocity for e−N2 scattering in Πg

symmetry. Curves from bottom to top correspond to increasing internuclear separation R with the

exception of the bottom (red) curve corresponding to R = 2.45.

In Fig. 1 we present Πg eigenphase sums for e−N2 scattering as functions of the electron

velocity for several internuclear separations with the equilibrium value Re = 2.068 a.u.

With the increase of the internuclear separation the resonance width is decreasing and the

resonance position moves towards lower energies. In fact in our calculations at R = 2.45 a.u.

the resonance disappears and becomes a bound state. This is due to an overestimation of

the interaction potential since even in the limit R→∞, corresponding to free N atoms, the

actual resonance does not turn into a bound state, but becomes a low-energy 3P e resonance

in e−N scattering [34]. However, the distances about 2.45 a.u. and beyond are too large

to affect e−N2 scattering from the ground vibrational state, therefore this inaccuracy is not

significant for our purposes. Note that appearance of a bound state increases the absolute

value of the eigenphase sum by π at zero energy. However, for plotting convenience the

values of eigenphase sums in Fig. 1 are presented modulo π.

In Fig. 2 we present Σu eigenphase sums for Ps−N2 scattering as functions of Ps ve-

locity for the same internuclear separations as in the e−N2 case. The eigenphases clearly
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FIG. 2: Eigenphase sums (modulo π) as functions of Ps velocity for Ps-N2 scattering in Σu sym-

metry. Curves from bottom to top correspond to increasing internuclear separation R.
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FIG. 3: Eigenphase sums as functions of Ps velocity for Ps-N2 scattering in Πu and ∆g symmetries.
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demonstrate the resonance behavior. However, comparison with e−N2 scattering shows two

substantial differences. First, there is a substantial background in the Ps case. As a result

the eigenphases increase in the resonance region is substantially smaller than in the case of

a pure resonance when the phase shift jumps by π, like in the case of electron scattering.

Second, the eigenphase sums vary with R much slower in the Ps−N2 case. A similar trend

is observed in the Πu and ∆g eigenphases shown in Fig. 3. The position of the resonances

varies even slower in these symmetries than in the Σu case. Moreover, in the ∆g symmetry

the position slightly increases with R.

This is confirmed by calculations of resonance positions and widths for different inter-

nuclear distances. The standard procedure [35] was used to obtain these parameters: the

eigenphase sum was fitted to the Breit-Wigner formula with a slowly varying background,

and the fitting generated the resonance position Er and the width Γ. In Table I we present

resonance parameters for the three resonances found in our calculations. With growing R

the positions of Σu and Πu resonances move towards lower energies, but for ∆g the position

is almost independent of R, and in fact is increasing slightly. The physical significance of

this will be discussed in section IV.

TABLE I: Resonance position (the first number) and width (the second number) in a.u. for three

resonances in Ps-N2 scattering for five internuclear distances R

R (a.u.) Σu Πu ∆g

1.85 0.2080/0.1008 0.2217/0.1578 0.09833/0.05605

1.95 0.2018/0.07935 0.2091/0.1380 0.09933/0.05822

2.07 0.1788/0.06892 0.1942/0.1151 0.1006/0.06070

2.15 0.1667/0.06042 0.1879/0.1005 0.1019/0.06325

2.45 0.1500/0.04982 0.1741/0.08366 0.1036/0.07134

The energy position of all three resonances is substantially higher than the energy position

of the Πg resonance in e−N2 scattering, Er = 0.0820 a.u. at equilibrium [24]. However, the

velocity positions, vr = 0.423, 0.441, and 0.317 a.u. at R = Re for Σu, Πu and ∆g resonances

respectively, match pretty well the velocity position, vr = 0.42 a.u. in our calculation

(vr = 0.405 according to [24]), of the e−N2 resonance confirming earlier experimental [10] and

theoretical [6] data. The energy widths of all resonances are substantially higher than that of
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the e−N2 resonance, Γ = 0.0147 a.u., and of the vibrational quantum of N2, h̄ω = 0.010745

a.u. The velocity widths, in contrast to the velocity position, are also substantially higher

than in the e−N2 case. Therefore we rule out boomerang oscillations and proceed with

vibrationally adiabatic calculations of vibrational excitation cross sections.

III. VIBRATIONALLY-ADIABATIC APPROXIMATION

In the vibrationally adiabatic approximation [11] the transition matrix T in the body

frame is calculated as

T vv
′

LL′ =
∫
χv(R)TLL′(R)χv′(R)dr

where L′ and L are initial and final projectile angular momenta, v′ and v are initial and

final vibrational quantum numbers of the target, χv(R) is the vibrational wavefunction, and

TLL′(R) is the transition matrix calculated at the fixed internuclear separation R. Assuming

fixed orientation of the molecule during the collision, we can calculate then the vibrational

excitation cross section as

σvv′ =
π

k2

∑
LL′
|T vv′LL′|2

where k is the relative momentum.

In Fig. 4 we present three contributions to vibrational excitation cross sections. The

Σu contribution is dominant, apparently due to the fastest dependence of the resonance

parameters on R. For the ∆g resonance this dependence is the weakest, and the cross

section is very small. But even for the dominant Σu contribution this dependence is weak

as compared to the e−N2 case when the vibrational excitation cross section for the v = 1

state reaches almost 7×10−16 cm2 and for the v = 2 state 4.5×10−16 cm2 [24]. Note that in

contrast to e−N2 collisions, in all symmetries for Ps−N2 collisions the vibrational excitation

drops very fast with v which is another consequence of relatively large resonance widths.

Application of vibrationally adiabatic approximation to elastic Ps−N2 scattering shows

that inclusion of vibrational motion affects the cross section very little: it is very close to

that calculated in the fixed-nuclei approximation at the equilibrium internuclear separation.

This is again in contrast to e−N2 elastic scattering which exhibits boomerang oscillations

in the resonance region.
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FIG. 4: Vibrational excitation of N2 by Ps impact, three resonance contributions

IV. DISCUSSION

The major difference between fixed-nuclei e−N2 resonance scattering and Ps−N2 reso-

nance scattering is in the dependence of the resonance position and width on R. In the

former case it is much stronger resulting in much higher vibrational excitation cross sec-

tions. To understand this difference we have investigated the dependence of the interaction

potentials on R taking into account the monopole and quadrupole terms in the expansion

of the potential in Legendre polynomials

V (r, R) =
∑
λ

Vλ(r, R)Pλ(cos θ)

where θ is the angle between the electron position vector r and internuclear axis. Averaging

this potential over the angular distribution for the resonance of symmetry Λg,u, we obtain

for the effective projectile-target interaction

Veff(r, R) = 〈LrΛ|V (r, R)|LrΛ〉+
Lr(Lr + 1)

2mr2

where Lr is the dominant orbital angular momentum for the resonant state of a given Λ and

parity, and m is the mass of the projectile (m = 1 a.u. for electron and 2 a.u. for Ps). We
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FIG. 5: Effective potentials for e−N2 interaction in Πg symmetry for several internuclear distances

R.

have included the centrifugal term in Veff(r, R).

In Fig. 5 we present the effective potential for e−N2 interaction in the Πg symmetry for

three values of the internuclear distance. Similar graphs for Ps−N2 interactions in Σu and

∆g symmetries are presented in Fig. 6. The most important range of distances between the

projectile and the target, determining positions and widths of low-energy shape resonances,

corresponds to that beyond the minima of the potentials. It is apparent that in this range

the R dependence of Veff is strongest for the e−N2 interaction. In contrast, the Ps−N2

interaction in the ∆g symmetry is almost independent of R in the outer range. The R-

dependence of the Ps−N2 interaction in the Σu symmetry is more noticeable than in the ∆g

case, but still much weaker than that for e−N2. The Πu case can be placed between Σu and

∆g.

Further analysis shows that such an important difference in R dependence between the

e−N2 case and Ps−N2 case is due to the presence of the static potential in the former. Static

potential dependence on R is substantially stronger than the R dependence of the exchange

and correlation potentials. To understand this, we note that change of R leads to change

9



  -2.5

  -2.0

  -1.5

  -1.0

  -0.5

   0.0

   0.5

   0.0    1.0    2.0    3.0    4.0    5.0

Σu

po
te

nt
ia

l (
a.

u.
)

distance (a.u.)

1.85
Re

2.45

  -0.4

  -0.2

   0.0

   0.2

   0.4

   0.0    1.0    2.0    3.0    4.0    5.0

Δg

po
te

nt
ia

l (
a.

u.
)

distance (a.u.)

1.85
Re

2.45

FIG. 6: Effective potentials for Ps-N2 interaction in Σu and ∆g symmetries.

of target electron probability density n(r), therefore we have to consider the dependence of

potentials on n(r). The static potential as a functional of n(r) varies linearly with n. In

contrast, the dependence of the exchange potential on n is much weaker. Indeed, in the free-

electron-gas model [30, 32] the exchange energy varies with the Fermi momentum kF as a

linear function, or even slower at low kF [30]. The Fermi momentum is proportional to n1/3,

therefore the exchange potential varies as n1/3 or even slower. The same argument can be

put forward for the correlation-polarization potential for Ps−N2 scattering. Moreover, in our

model for e−N2 scattering taken from Morrison and Collins [18] the correlation-polarization

potential does not depend on R at all.

In spite of the absence of the static contribution to the Ps−N2 interaction, it is strong

enough to support resonance states in three symmetries. Comparisons of the e−N2 and

Ps−N2 interactions shows that this is due to a relatively large strength of the Ps−N2 ex-

change potential at small projectile-target distances. To understand this, we compare first

the exchange energy of free electron and Ps interactions with a Fermi gas. For the same

momentum of projectile the exchange energy in the former case is substantially higher (in

absolute magnitude) than the latter because of the positive contribution of positron-electron
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FIG. 7: Free-electron gas exchange energy as a function of the Fermi momentum for two projetile

electron momenta without and with account of the Hara modification, Eq. (1).

interaction to the exchange energy in the Ps−N2 case [30]. However, the effective electron

momentum in the case of e−N2 interaction is substantially higher due to acceleration of the

projectile electron when it is penetrating the electron cloud of the target where the nuclear

charges are not completely screened. Hara [32] assumed that the kinetic energy E∗ of the

projectile electron in this region is the same as the target electron energy on the surface of

the Fermi sphere, that is

E∗ = E + EF + I (1)

where E is the electron energy at infinity, EF is the Fermi energy, and I is the ionization

potential. In particular this modification works very well for e−N2 scattering [18]: the cross

sections agree with calculations where the exchange is included more accurately [19]. This

makes the projectile momentum substantially higher than (2E)1/2.

To demonstrate this effect, in Fig. 7 we plot the electron exchange energy with and

without modifications of the electron momentum. The modification of the electron momen-

tum substantially reduces (in absolute magnitude) the exchange energy. In contrast, in the

case of Ps scattering its momentum changes very little, and the original exchange energy
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FIG. 8: Exchange potentials for e−N2 and Ps-N2 scattering for three internuclear separations,

projectile velocity v = 0.42 a.u.

is not modified substantially [30]. In Fig. 8 we compare the exchange potentials for e−N2

and Ps−N2 interactions. At large projectile-target separations the effect of modification of

electron momentum is small, and the e−N2 exchange energy is substantially higher (in ab-

solute magnitude) than the Ps−N2 exchange energy. Moreover, the Ps−N2 exchange energy

becomes even positive at large distances due to the positron contribution [30]. However,

at smaller distances below about 2.5 a.u., the effect of modification of the electron momen-

tum is substantial, and the Ps-N2 exchange potential becomes larger in absolute magnitude.

Physically this means that the electron in Ps remains relatively slow as compared to a free

electron, therefore the exchange energy in the Ps case is higher.

V. CONCLUSION

Ps−N2 collisions at the relative velocity about 0.43 a.u. are strongly affected by reso-

nance scattering in Σu, Πu and ∆g symmetries with the ∆g resonance producing the largest

contribution to the elastic scattering cross section [6]. As a result the calculated total cross
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section for Ps−N2 collisions [6], plotted as a function of the projectile velocity, looks very

similar to the total e−N2 cross section which is dominated by the Πg resonance at the relative

collision velocity 0.42 a.u. This confirms experimental observations [9, 10]. However, Ps−N2

resonances contribute mostly to the elastic scattering. In the present paper we have shown

that the contribution of the vibrational excitation cross section to the total is rather small.

This contrasts with e−N2 scattering where the peak value of the vibrational excitation cross

section is about 7×10−16 cm2, more than an order of magnitude higher than the peak value

of the cross section for excitation by Ps impact. Moreover, the width of the resonance in

e−N2 collisions is substantially lower than in Ps−N2 collisions. In the former case the cor-

responding resonance lifetime is about the same as the vibrational period which leads to the

boomerang oscillations in elastic scattering and vibrational excitation [20, 21, 23]. In con-

trast, in Ps−N2 scattering we obtain no oscillations: elastic and vibrational excitation cross

sections exhibit just one peak corresponding to the resonance position in the fixed-nuclei

approximation.

Our analysis has shown that this difference can be attributed to the difference in potentials

for e−N2 and Ps−N2 interactions. A substantial part of the former is the static interaction

which varies relatively fast with the internuclear separation. The static potential is zero for

Ps−N2 interaction, therefore only exchange and correlation potentials contribute to it. These

vary relatively slowly with R because of their weak dependence on the electron probability

density. Moreover, because of a relatively large resonance width in Ps−N2 scattering, no

boomerang oscillations are observed in Ps−N2 collision cross sections. This conclusion is

relevant also to elastic scattering. The difference in the long-range part of the correlation

interaction (polarization for e−N2 scattering versus van der Waals for Ps−N2 scattering),

might be also responsible for the difference between e−N2 and Ps−N2 resonance scattering.

The calculations performed in the present paper can be improved by a more complete

inclusion of the Pauli exclusion principle which can be done either by employing pseudopo-

tentials with repulsive cores [36, 37] or by using the orthogonalizing pseudopotential method

[38, 39] which has been successfully employed for treatment of Ps collisions with rare gas

atoms [40]. Nevertheless we believe that our conclusions are quite general, and allow us to

expect that generally vibrational dynamics in Ps−M collisions is not as pronounced as in

corresponding e−M collisions for a general molecular target M. Indeed, no vibrational struc-

ture in Ps collisions with molecules has been observed so far, and no dissociative positronium
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attachment channels have been detected. However, experiments on Ps scattering are much

more challenging than those on electron scattering, and we do not exclude a possibility of

detection of interesting vibrational dynamics for some particular targets in the future.
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