Switching dynamics of dark-pulse Kerr comb states in optical microresonators
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Dissipative Kerr solitons are localized structures that exist in nonlinear optical cavities. They lead
to the formation of microcombs — chip-scale frequency combs that could facilitate precision frequency
synthesis and metrology by capitalizing on advances in silicon photonics. Previous demonstrations
have mainly focused on anomalous dispersion cavities. Notwithstanding, localized structures also
exist in the normal dispersion regime in the form of circulating dark pulses, but their physical
dynamics is far from being understood. Here, we explore dark-pulse Kerr combs generated in normal
dispersion optical microresonators and report the discovery of reversible switching between coherent
dark-pulse combs, whereby distinct states can be accessed deterministically. Furthermore, we reveal
that the formation of dark-pulse Kerr combs is associated with the appearance of a new resonance,
a feature that has never been observed for dark-pulses and is ascribed to soliton behavior. These
results contribute to understanding the nonlinear physics in normal dispersion nonlinear cavities
and provide insight into the generation of microcombs with high conversion efficiency.

I. INTRODUCTION

Dissipative solitons are self-enforcing, stationary struc-
tures that exist in diverse nonlinear dissipative systems
subject to an external pump of energy [1]. The recent dis-
covery of temporal dissipative solitons in optical cavities
displaying Kerr nonlinearity [2, 3] (from now on dissipa-
tive Kerr solitons or DKS) has facilitated the investiga-
tion of their rich dynamics [4-15]. DKS rely on balanc-
ing the inherent cavity dispersion with the corresponding
Kerr nonlinear phase shift induced by the soliton, while
the dissipative nature of the cavity is offset by supply-
ing it with the energy from a pump laser. DKS are just
one particular solution of the complex spatio-temporal
landscape in nonlinear Kerr cavities [5, 6]. The same
optical cavities can also display chaos, breathing dynam-
ics [7-10], soliton crystals [11, 12] and transitions between
some of these states [13]. The single soliton regime can
be accessed deterministically by decreasing the number
of cavity solitons, while properly tuning the pump laser
over the resonance [14]. Mapping this complexity is not
only of fundamental interest, but important for the de-
sign and operation of stable, ultra-broadband coherent
Kerr combs [4, 15], which have potential applications in
multiple fields, ranging from optical clocks to coherent
communications [16—-26].
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DKS require the optical cavity to display anomalous
dispersion [27] at the pump wavelength. Interestingly,
other stationary structures such as ultrashort optical
pulses [28] or dark-pulse Kerr combs [29] can be found in
cavities operating in the normal dispersion regime (i.e.
decreasing free spectral range (FSR) with optical fre-
quency). The time-domain waveform of a dark-pulse
Kerr comb corresponds to a localized dark-pulse struc-
ture, where low intensity oscillations are embedded in a
high intensity background. These pulses can be inter-
preted as two stably interlocked switching waves, con-
necting the upper and lower homogeneous steady-state
solutions of the bi-stability curve in Kerr cavities [30].
These localized waveforms also exhibit breathing dynam-
ics [31, 32] and have intriguing connections to sneaker
waves found in hydrodynamics, called flaticons [33] and
platicons [34] in optics. In comparison to DKS, the
physics of dark-pulse Kerr combs is less understood, even
though these combs are more efficient in converting the
pump power into useful comb light [35] — an aspect that
is particularly promising for coherent optical communi-
cations [36, 37]. Some key questions remain unanswered,
such as what the pathway to their generation is, starting
from a continuous-wave (CW) waveform, and whether
this transition is accompanied by similar switching dy-
namics to what has been observed in DKS.

In this work, without loss of generality, normal dis-
persion optical microresonators are used to explore the
physical dynamics of dark-pulse Kerr combs. We report
deterministic switching between dark-pulse Kerr comb
states and support our results with numerical simulations
that take into account the linear coupling between the
dominant transverse modes of the microresonator. The
numerical analysis show that each comb state is uniquely
ascribed to a number of low intensity oscillation peri-
ods. This number can be deterministically controlled
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FIG. 1. Linear characterization of the multi-mode silicon nitride microresonator. (a) Microscope image of the silicon nitride
microresonator. (b) Measured transmission scan of the microresonator, where two clear transverse modes appear. (c) Integrated
dispersion, i.e. frequency deviation of the resonance locations of the main mode (black dots), w,, with respect to an ideal grid,
Dint = (w, —wo — 2w D1p) /27, where p is the mode number and D, the free spectral range. The main mode displays normal
dispersion, while at 4 = 0 the dispersion changes locally to anomalous due to the linear coupling between two transverse modes
in the resonator. (d) Linear mode coupling effect. The transmission spectrum is divided into blocks with a spacing difference of
1 FSR (dotted lines in (b)) to plot this diagram and calculate the linear coupling strength. The red and blue dots represent the
resonance frequencies of the two transverse modes in different FSR blocks. The gray solid lines depict the no mode coupling
(k = 0) case, found by linearly fitting u versus the resonance frequencies in the region far from p = 0. Mode coupling shifts
the resonances apart from each other at p = 0, leading to an avoided mode crossing. The measured linear coupling coefficient
between the modes is k = 22.7 m ™!, while the measured group velocity dispersion of the main mode is 82 = 139 psz/km.

and increased or decreased one at a time, unraveling
an overlooked dependence with the pump laser detun-
ing parameter for dark-pulse Kerr combs. This tuning
of the dark-pulse duration and shape is continuous and
not associated with sharp changes, which is attributed to
the interaction between the transverse modes. Strikingly,
we find that the formation of dark-pulse Kerr combs is
also accompanied by the appearance of an extra reso-
nance, in compelling similarity to the behavior reported
for DKS [14] and perfect soliton crystals [13]. In con-
trast, however, our measurements reveal that in dark-
pulse Kerr combs, the pump is effectively blue-detuned
with respect to the cavity resonance that is Kerr shifted
due to the high power CW background of the dark-pulse.
The appearance of an extra resonance is not dependent
on the linear coupling between the transverse modes.
While the observations reported here have been made in
a normal dispersion microresonator, similar results might
be found in nonlinear systems with self-focusing nonlin-
earity and normal dispersion, such as fiber ring cavities,
Bose Einstein condensates or hydrodynamics [33, 38, 39].

II. MICRORESONATOR CHARACTERIZATION

A silicon nitride microresonator with a designed cross-
section of 2-pm-width x 600-nm-height is used in our
experiments. The ring features a radius of 100 pm
(Fig. 1(a)), corresponding to an FSR of around 229 GHz
for the main mode used for comb generation, with a mea-

sured mean intrinsic Q-factor of around 1.6 million. The
particular modes of interest are TE; and TEs, which ex-
hibit normal dispersion within the C-band [40].

A tunable external-cavity pump laser with sub-10 kHz
linewidth is calibrated using a Mach-Zehnder interferom-
eter [28], and scanned over the C-band to find the res-
onance locations of the two linearly coupled transverse
modes. The measured transmission scan is shown in
Fig. 1(b). As observed, around 1540 nm, the resonance
frequencies of the two transverse modes are very close
to each other. Thus, any fabrication imperfections could
lead to linear coupling between the modes [41]. Mode
coupling, in turn, induces a frequency shift on the inter-
acting resonances and pushes them apart, leading to an
avoided mode crossing (Fig. 1(d)) [42, 43]. This effect
locally modifies the dispersion of the modes and results
in a local anomalous dispersion (Fig. 1(c)), where it is
possible to achieve modulational instability and initialize
the dark-pulse Kerr comb [29, 44].

For comb generation, the pump power is amplified in
an erbium-doped fiber amplifier and optically filtered to
remove the amplified spontaneous emission noise far away
from the pump (Fig. 2(a)). This increases the signal qual-
ity of the generated comb lines. The microresonator chip
is placed on a piezo-controlled positioning stage, which
is temperature controlled with a standard laser temper-
ature controller at 18 °C, limiting the variations to less
than 0.01 °C. This allows stable comb operation over sev-
eral hours. The pump is coupled into the microresonator
using a lensed fiber. The off-chip power is 25.6 dBm. At
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FIG. 2. Deterministic switching of dark-pulses. (a) Setup for comb generation and measurement. The setup within the

dashed lines is used in Section IV. PC: Polarization controller, EDFA: Erbium-doped fiber amplifier, PM: Power meter, ATT:
Attenuator, PD: Photodiode, IM: Intensity modulator, OSA: Optical spectrum analyzer, OSC: Oscilloscope, VNA: Vector
network analyzer. (b) Measured comb power when the pump is forward (blue) and backward (yellow) tuned. The frequency
axis indicates the pump location with respect to its initial frequency. The frequency scan is calibrated by means of an auxiliary
interferometer. (c¢) Zoomed-in view of (b), where smoothed step-like patterns are observed as the pump is tuned, indicating
switching between dark-pulse comb states. The inset shows the radio-frequency spectrum (red) and noise floor (blue) of the
generated comb. (d) The blue frequency lines are the comb spectra measured at different pump detunings, corresponding to
the comb states marked in (b). The simulated comb envelope of each state is shown in red, with the corresponding simulated
time-domain waveforms underneath. The arrows point the number of low intensity oscillations. For state F, the phase of the

pulse is also shown.

high pump powers, the coupling losses between the fiber
and chip are estimated to be 4-5 dB per facet. Our sim-
ulations, explained in section III, have a good agreement
with the experimental measurements when the coupled
pump power is assumed 150 mW (21.8 dBm). The set of
two hybridized resonances that experience the strongest
linear coupling, indicated by the red arrow in Fig. 1(c),
are pumped from the blue side. The same microres-
onator, pumped in the same way, has been previously
used to generate a mode-locked Kerr frequency comb,
with evidence of dark-pulses circulating in the cavity [36].

III. SWITCHING DYNAMICS OF
DARK-PULSE COMB STATES

As the pump is tuned over the resonance from the ther-
mally stable blue side towards the red [3, 45] (forward
tuning), a coherent dark-pulse Kerr comb is generated.
The comb state is monitored using an optical spectrum

analyzer, while the power in the generated comb lines
is measured with an oscilloscope, after suppressing the
pump line with an optical notch filter (Fig. 2(a)). As
the laser is tuned further into resonance, an increased
comb power is observed. The comb power increases in
a gradual manner while displaying continuous steps, as
shown in the top-most parts of Figs. 2(b),(c) (positions
A— B — C). Each step corresponds to a coherent comb
state, indicated by a low amplitude noise as shown in
the inset of Fig. 2(c), that can be accessed sequentially.
Keeping the pump power fixed, the comb power mea-
surements in the forward pump tuning are repeated 100
times and smoothed step-like patterns, almost identical
to those shown in Fig. 2(b), are measured. The dynam-
ics reveal that at the used power level, the comb does
not go over a chaotic state, making the comb generation
process repeatable and deterministic. The comb found in
state A achieves a conversion efficiency of around 25%,
where the conversion efficiency is defined as the output
power in the comb lines (excluding the pump) divided by



the input pump power.

To get a better insight into the physics of comb gen-
eration in the normal dispersion regime, we simulate our
experimental findings using an Tkeda map [46—48], mod-
ified such that the linear mode coupling is taken into ac-
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count. Each round trip has two steps, one is the coupling
between the pump in the bus waveguide and the ring and
the other is the light propagation in the microresonator.
The coupling between the pump to the modes in the res-
onator is found through coupled mode theory [49, 50],
assuming a 3x3 lossless coupler. It can be expressed as
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where A;, and A, are the input pump and throughput
field of the microresonator. Ag,]f) is the intracavity field
of mode m at roundtrip k£ in the cavity and 6, is the
coupling coefficient between the bus and the microring
for mode m. The evolution of the fields in the resonator
is modeled using the nonlinear Schrodinger equation in
multimode waveguides [51, 52]. The propagation of mode
m in every round-trip of the microresonator is given by
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where «,, is the propagation loss, Bgm) is the inverse
group velocity, ﬁém) is the group velocity dispersion, and
Ym is the nonlinear coefficient of mode m, while Kp,,
is the mode coupling strength between modes m and n.
The resonator length is L and the linear phase shift of the
field is Bém)L = 76(()7"), where 5(()m) is the pump detuning
from the cold-cavity resonance of each transverse mode
closest to the pump frequency wy,. It can be expressed as
6(()m) = —[B) (wp) — B (wo,m)] L, where B(™)(w) is the
propagation constant of mode m at frequency w and wq
denotes the pumped cold-cavity resonance frequency of
mode m. Note that nonlinear inter-modal coupling [53]
is not included in our simulations, assuming that it is
negligible.

In each round trip a CW pump together with quan-
tum noise consisting of one photon per spectral bin with
random phase [47] is coupled to the ring. Unlike pre-
viously reported models that start the simulations with
an initial intracavity square dark-pulse, the initial intra-
cavity field here is just the quantum noise in the res-
onator. The closest resonance to the avoided crossing
is pumped from the blue side and the detuning is dy-
namically changed to emulate the tuning of the pump
laser. The propagation in the ring is carried out us-
ing the split-step Fourier method. The parameters used
in the simulations are extracted from the transmission
scan measurements (Fig 1). For the main mode, o
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corresponds to 0.1 dB/cm, #; = 0.004, the initial pump
detuning is 5(()1) = —0.001 rad, Bél) =139 ps?/km and
FSR; = 229.08 GHz. For the auxiliary mode, as cor-
responds to 0.3 dB/cm, 6y =0.01, 65 = —0.0033 rad,

52) =1.8 ps?/km and FSR, = 221.45 GHz.  Accord-
ingly, in the short 3x3 coupling region described by
Eq. 1, the cross-coupling terms between the two mi-
croresonator transverse modes are orders of magnitude
smaller than the corresponding self-coupling terms (sim-
ilar to earlier reports [50]). The nonlinear coefficients
are y1 = 0.89 (m.W)~! and 75 = 0.44 (m.W)~!, and the
ring length is L = 27 x 100 pgm. The linear coupling be-
tween the two modes is k13 = 22.7 m™!, calculated from
the measurements in Fig. 1(d). The pump detuning is
varied linearly in a dynamic manner, such that the final

detuning of the main mode is (5(()1) = 0.02 rad after 750 ns.
After the field inside the cavity has stabilized and con-
verged to a steady state, the results are analyzed.

The simulated comb spectra for various pump detun-
ings and their corresponding simulated intracavity wave-
forms are shown in red in Fig. 2(d). The simulated
waveforms reveal that in the forward pump tuning, with
each step in the comb power, one additional low inten-
sity oscillation appears at the center of the dark-pulse
structure. The observed states correspond to different
snaking branch solutions reported in the bifurcation anal-
ysis of switching waves [30]. In cavities with a single
transverse mode, where there is no linear mode coupling
(k = 0), the snaking branch of solutions are disconnected
and have discrete steps, as shown in the simulations of
Fig. 3 (red curve) [30]. However, as seen in Figs. 2(b),(c),
in our experiments we observe a continuous curve as the
pump is tuned. The continuity is due to the linear cou-
pling between the transverse modes, which merges the
discrete steps into a continuous curve and enables grad-
ual switching between dark-pulse comb states (blue and
green curves in Fig. 3), as opposed to the abrupt jumps
observed in DKS [14]. In the time domain, this translates
into continuous tuning of the shape and number of the
low intensity oscillations in the dark-pulse. Thus, as the
pump is tuned across one step, the shape of the oscilla-
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FIG. 3. (a) Simulation of average intracavity power for dif-
ferent linear coupling coefficients k, as the pump is forward
tuned. (b) Zoomed-in view of the dashed region in (a), clearly
showing smooth steps similar to those observed in our exper-
iments (Fig. 2(c)).

tions gradually changes until the switching point, where
finally an additional oscillation appears. For higher x,
the shape of the oscillations vary slower and thus sharp
changes are not observed in the pulse power (green curve
in Fig. 3). This feature, which has been previously pre-
dicted [34], is observed here for the first time.

After accessing a comb state in the forward tuning, the
switching transition can be reversed by tuning the pump
backwards (yellow curve in Fig. 2(b)). The comb power
drops and shows a smoothed step-like pattern similar to
the forward tuning, but in the reverse direction. Thus,
the low intensity oscillations in the dark-pulse vanish one
by one, until what appears to be a single gray soliton
state [54-56] is accessed (state F in Fig. 2(d)). However,
strictly speaking it is not a gray soliton in the sense of
the dissipationless nonlinear Schrodinger equation, as the
temporal phase is not an odd function of time due to the
periodic boundary conditions of the cavity. Switching oc-
curs over a broader detuning range in the backward pump
tuning (state C to F) compared to forward tuning (state
A to C), giving access to more comb states. The comb
power in the forward and backward pump tuning shows
a hysteresis behavior, similar to what has been observed
for DKS in the anomalous dispersion regime [14].

We find an excellent agreement between the measured
and simulated comb spectra, indicating that by just mea-
suring the transmission spectrum and retrieving the pa-
rameters of the interacting modes, one can predict the
comb dynamics starting from a CW pump by using
two linearly coupled equations. Moreover, the excellent
agreement between the experimental and simulated comb
spectra confirms that linear mode coupling is the dom-
inant cause leading to the generation of the dark-pulse
comb. The discrepancy between simulations and experi-
ments for longer wavelengths in Fig. 2(d) might be due to
a second mode coupling around 1590 nm. The measure-
ments display an asymmetry in the comb spectra, which
had also been observed in previously reported dark-pulse
Kerr combs [36]. Our simulations naturally capture this
comb asymmetry even though the third-order dispersion
has not been included, clearly indicating that the asym-
metry is caused by the linear coupling between the two
transverse modes.

IV. HOT-CAVITY SPECTROSCOPY OF
DARK-PULSE KERR COMBS

To get a better understanding of the dynamics of
dark-pulse Kerr combs, we look into the system’s re-
sponse upon the dark-pulse formation. The formation
of a dark-pulse breaks the time invariance of the sys-
tem, making it impossible to describe the resonator in
terms of a linear transfer function. Instead, we mea-
sure the system’s response with the aid of an external
(probe) laser, as sketched in Fig. 4(a). A red-detuned
probe laser with a fixed frequency, far detuned from the
cavity resonances, is weakly modulated with an external
dual-sideband electro-optic intensity modulator, driven
by a tunable radio-frequency (RF) signal, allowing to re-
trieve the system’s response as the pump laser is tuned
into resonance (setup shown in Fig. 2(a)). The benefit of
using this scheme instead of modulating the pump itself
is that it solves the ambiguity in the pump location with
respect to the resonances of the coupled modes. One
of the two generated probe sidebands is scanned across
the cavity resonances of the two interacting modes, by
sweeping the RF source from 10 MHz to 24 GHz in 10
MHz steps. The sideband will be affected by the pres-
ence of resonances in the cavity and nonlinear distortions
caused by the pump and the dark-pulse. A vector net-
work analyzer (VNA) measures the magnitude of the RF
beat between the sideband and probe laser as the side-
band is swept in frequency. This process is repeated as
the pump laser is tuned across the hybridized cavity res-
onances (resonances of the two linearly coupled modes
labeled as “1” and “2” in Fig. 4(a)) from the blue side in
81 steps. The recorded system’s responses are displayed
in Fig. 4(b). The parameter Afp,y,p determines the lo-
cation of the pump laser, while Afyn, is the detuning of
the sideband, both measured relative to the probe laser.
As the laser is tuned closer to the resonances, Afymp de-
creases and varies from 23.94 GHz down to 1.053 GHz.
The two lasers are not locked to each other, so the mea-
surement of the system’s response has a frequency reso-
lution in the order of a few MHz, given by the relative
drift between the probe and pump lasers. Since the pump
frequency varies in every step, the beat note between the
pump and sideband is used to find the location of the
pump.

At the initial stages prior to the formation of the dark-
pulse Kerr comb, the system’s response is affected by
thermal dynamics. Consequently, the hybridized reso-
nances are strongly red shifted, which decreases their
Afyna (states T and ITin Figs. 4(b),(d)). By further tun-
ing the pump, a mode-locked dark-pulse comb emerges
suddenly (state III) as soon as the pump crosses the
first hybridized resonance, labeled “2” (see Supplemen-
tary Movie). The generation of a dark-pulse Kerr comb
is associated with the emergence of a third resonance (la-
beled “3” in Fig. 4(a) and visible in states III and IV in
Figs. 4(b),(d)). This feature has a striking similarity to
observations made for DKS [14]. In this stage, the pump
frequency is effectively red-detuned with respect to this
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FIG. 4. (a) Schematic diagram of the method used for the measurement of the system response. The pump approaches the
hybridized resonances “1” and “2” from the blue side. Once the pump crosses resonance “2”, a dark-pulse comb is generated
and a new resonance, labeled “3”, emerges. (b) System response as the pump is tuned into resonance. (c¢) Zoomed-in view of
(b), where the existence of dark-pulses is highlighted. The appearance of an extra resonance can be clearly observed in this
regime. (d) VNA traces and corresponding measured comb spectra and simulated time-domain waveforms (inset) for various
pump detunings indicated by dashed lines in (b). Note that the origin of the frequency axis here is the pump laser, providing a
direct indication of the location of the resonances and effective pump-laser detuning. (e) Measured and simulated VNA traces
associated with the main mode for pump detunings IIT and IV in (b). The experimental traces are the zoomed-in view of states
III and IV in (d).

resonance. Once the pump crosses the hybridized reso- level induces a smaller shift on the cavity resonance and
nance “2”, this resonance moves towards higher frequen- creates a resonance on the blue side of the pump. This
cies. Our simulations, explained in the following (see behavior is analogous to the appearance of the soliton
Fig. 4(e)), confirm that the newly generated resonance  resonance in the system response of anomalous disper-
“3” is the resonance located closer to the pump, while sion microresonators [14]. In dark-pulse Kerr combs, a
the resonance further away from the pump is the hy- subtle yet important difference is that the CW back-
bridized resonance “2”. Further moving the pump to the ground corresponds to the high-power level, so its Kerr

red side causes the laser to cross the two hybridized reso- shifted resonance appears on the red side of the pump.
nances, associated with a loss of the comb and a cooling Meanwhile, the low intensity oscillations at the center
down of the system (see Fig. 4(b)). The system’s re- of the pulse, which are associated with the generation
sponse in this case is similar to that of the first stage, of the dark-pulse, generate a new resonance on the blue
with two Lorentzian shape resonances associated with  side of the pump labeled as “dark resonance” (Fig. 4(a)).
the hybridized modes (state I in Fig. 4(d)). Hence, in contrast to DKS, where the CW background

We explain the appearance of the third resonance as is weak and the soliton has a high-power level, for dark-
follows. Dark-pulses are intermediate solutions between pulse Kerr combs the pump laser remains on the effec-
the upper and lower CW steady state solutions of the tively blue-detuned side with respect to the CW back-
Lugiato-Lefever equation [5, 57-59]. Given the intensity =~ ground resonance (labeled “1” in Fig. 4(a)). The ob-
dependence of the Kerr effect, the high intensity CW  servations made here are consistent with previous stud-

background and the low intensity oscillations in the dark- ies based on modulation of the resonator using a micro-
pulse induce different nonlinear Kerr phase shifts on the heater [29]. The emergence of an extra resonance is a
cavity resonances, but most notably on the main mode. unique property of stationary solitonic states in Kerr mi-
In particular, the high-power level shifts the cavity reso- croresonators that had not been previously demonstrated

nance to the red side of the pump, while the low-power for dark-pulse Kerr combs.



We support the explanation of the VNA response
above with numerical simulations. For a complete numer-
ical analysis, as explained in section III, the comb gener-
ation can be simulated based on the linear coupling be-
tween the two transverse modes, while considering quan-
tum noise as the initial intracavity field. The auxiliary
mode and the linear coupling between the modes are
essential, as they play an important role in initiating
the comb generation. However, to simplify the simu-
lations, if we assume that the comb has already been
initiated, or in other words if instead of the quantum
noise, a field is already circulating in the cavity, then
it is no longer necessary to include the auxiliary mode
and linear mode coupling in the comb generation simu-
lations. Therefore, here, for simplicity we assume only
a single transverse mode in the cavity. Meanwhile, the
initial intracavity field is considered as a square dark-
pulse, where the amplitude and phase of the top (bot-
tom) of the pulse are equal to the upper branch (lower
branch) steady-state values [29]. This is a reasonable
assumption, given that the appearance of the new reso-
nance in the system’s response arises from the two power
levels (high intensity CW background and low intensity
oscillations of the dark-pulse) present in the intracavity
waveform of the main mode and does not directly depend
on the auxiliary mode nor the linear coupling between
the modes. The considered ring parameters and pump
power are similar to the main mode values mentioned in
section ITI. The pump is fixed in frequency and a weak
(-40 dBm) probe is swept across the resonance in 10 MHz
steps. In each step, after simulating the output spectrum
of the microresonator, the power of the probe frequency
component is calculated. The comparison between this
power and the probe power at the input is the system’s
response. It corresponds to the beat note between the
sideband and the probe, measured with the VNA in
the experiment. The considered cold-cavity detunings

are 5(()1) = 0.0242 rad and (5(()1) = 0.0248 rad, which cor-
respond to the comb states IIT and IV in Fig. 4, respec-
tively. The measured and simulated system responses at
two different pump detunings in the dark-pulse regime
are shown in Fig. 4(e). The appearance of an extra res-
onance is evident in the simulations too. Both measured
and simulated results indicate that the depth of the CW
resonance increases with the red tuning of the pump.
Moreover, the frequency of the CW resonance remains
almost fixed, while that of the dark resonance shifts with
the pump detuning. This shift is related to changes in
the lower level of the dark pulse structure, which corre-
spond to dark-pulses with different number of oscillations
(shown in the inset of Fig. 4(d)). The power variations
of the VNA traces around the pump frequency, observed
in both experiments and simulations, are related to the
nonlinear effects induced on the sideband; an aspect that
has also been observed in other experiments using other
microresonator platforms [60]. Note that the switching
between dark-pulse comb states is not associated with
sharp changes in the system’s response. The reason is
that switching in dark-pulses changes the number of os-
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FIG. 5. Hot-cavity spectroscopy of a dark-pulse Kerr comb
in a different silicon nitride microresonator with similar char-
acteristics, in terms of dispersion, Q and avoided mode cross-
ing. (a) System response as the pump is tuned into resonance
from the blue side. The appearance of a third resonance can
be clearly observed in the dark-pulse regime (highlighted re-
gion). (b) Dark-pulse Kerr comb spectrum measured at the
pump detuning indicated by a dashed line in (a).

cillations, which have a low intensity and do not intro-
duce a significant energy change in the cavity.

To show the generality of our observations, we also
measured the system’s response in a second silicon ni-
tride microresonator chip. The microresonator has nom-
inally the same dimensions as the chip used in our main
experiments, except for the gap between the ring and
the drop-port. The measured results are shown in Fig. 5.
The formation of a dark-pulse Kerr comb in this microres-
onator is also clearly accompanied by the emergence of a
new resonance.

V. CONCLUSIONS

The physics of dark-pulse Kerr comb generation and
its switching dynamics are investigated, both experimen-
tally and numerically. Deterministic switching between
dark-pulse comb states is observed. Numerical simula-
tions, which give rise to frequency combs that are in
excellent agreement with the measured spectra, suggest
that as the pump tuning varies, the number of low in-
tensity oscillations at the center of the corresponding
dark-pulses can either increase or decrease, one at a
time. Moreover, we measure the system’s response as
the pump laser is tuned into resonance and discover that
the formation of a dark-pulse Kerr comb is associated
with the emergence of an extra resonance. This is due
to the combination of nonlinearity and bi-stability in the
cavity. The revealed multi-resonance dynamics is a dis-
tinctive property of soliton states in Kerr cavities and
confirms the switching behavior of the dark-pulse combs
in a new way. Furthermore, by using an external probe
to measure the system’s response, we could disentangle
the different resonances present in the system, clearly in-
dicating that for dark-pulse states, the pump laser lies
in the effectively blue-detuned region with respect to the
CW background resonance, in sharp contrast to DKS
in anomalous dispersion microresonators. These results
shed light into the formation of Kerr combs in normal
dispersion microresonators and pave the way for the gen-
eration of reproducible chip-scale comb sources with high



power conversion efficiency.
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