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Modern practice for training classification deepnets involves a ter-
minal phase of training (TPT), which begins at the epoch where
training error first vanishes. During TPT, the training error stays
effectively zero, while training loss is pushed toward zero. Direct
measurements of TPT, for three prototypical deepnet architec-
tures and across seven canonical classification datasets, expose
a pervasive inductive bias we call neural collapse (NC), involv-
ing four deeply interconnected phenomena. (NC1) Cross-example
within-class variability of last-layer training activations collapses
to zero, as the individual activations themselves collapse to their
class means. (NC2) The class means collapse to the vertices of
a simplex equiangular tight frame (ETF). (NC3) Up to rescaling,
the last-layer classifiers collapse to the class means or in other
words, to the simplex ETF (i.e., to a self-dual configuration). (NC4)
For a given activation, the classifier’s decision collapses to simply
choosing whichever class has the closest train class mean (i.e., the
nearest class center [NCC] decision rule). The symmetric and very
simple geometry induced by the TPT confers important benefits,
including better generalization performance, better robustness,
and better interpretability.

deep learning | inductive bias | adversarial robustness |
simplex equiangular tight frame | nearest class center

1. Introduction
Over the last decade, deep learning systems have steadily
advanced the state of the art in benchmark competitions, culmi-
nating in superhuman performance in tasks ranging from image
classification to language translation to game play. One might
expect the trained networks to exhibit many particularities—
making it impossible to find any empirical regularities across
a wide range of datasets and architectures. On the contrary,
in this article we present extensive measurements across image
classification datasets and architectures, exposing a common
empirical pattern.

Our observations focus on today’s standard training paradigm
in deep learning, an accretion of several fundamental ingredi-
ents that developed over time. Networks are trained beyond zero
misclassification error, approaching negligible cross-entropy loss
and interpolating the in-sample training data; networks are
overparameterized, making such memorization possible; and
these parameters are layered in ever-growing depth, allowing
for sophisticated feature engineering. A series of recent works
(1–5) highlighted the paradigmatic nature of the practice of
training well beyond zero error, seeking zero loss. We call the
postzero-error phase the terminal phase of training (TPT).

A scientist with standard preparation in mathematical statis-
tics might anticipate that the linear classifier resulting from this
paradigm, being a by-product of such training, would be quite
arbitrary and vary wildly—from instance to instance, dataset
to dataset, and architecture to architecture—thereby displaying
no underlying cross-situational invariant structure. The scien-
tist might further expect that the configuration of the fully
trained decision boundaries—and the underlying linear classifier
defining those boundaries—would be quite arbitrary and vary
chaotically from situation to situation. Such expectations might

be supported by appealing to the overparameterized nature of
the model, and to standard arguments whereby any noise in the
data propagates during overparameterized training to generate
disproportionate changes in the parameters being fit.

Defeating such expectations, we show here that TPT fre-
quently induces an underlying mathematical simplicity to the
trained deepnet model—and specifically to the classifier and last-
layer activations—across many situations now considered canon-
ical in deep learning. Moreover, the identified structure naturally
suggests performance benefits. Additionally, indeed, we show
that convergence to this rigid structure tends to occur simul-
taneously with improvements in the network’s generalization
performance as well as adversarial robustness.

We call this process neural collapse (NC) and character-
ize it by four manifestations in the classifier and last-layer
activations:

(NC1) Variability collapse: as training progresses, the within-
class variation of the activations becomes negligible as
these activations collapse to their class means.

(NC2) Convergence to simplex equiangular tight frame (ETF):
the vectors of the class means (after centering by their
global mean) converge to having equal length, forming
equal-sized angles between any given pair, and being the
maximally pairwise-distanced configuration constrained
to the previous two properties. This configuration is
identical to a previously studied configuration in the
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mathematical sciences known as simplex ETF (6). See
Definition (Simplex ETF).

(NC3) Convergence to self-duality: the class means and lin-
ear classifiers—although mathematically quite different
objects, living in dual-vector spaces—converge to each
other, up to rescaling. Combined with (NC2), this implies
a complete symmetry in the network classifiers’ decisions:
each isoclassifier-decision region is isometric to any other
such region by rigid Euclidean motion; moreover the
class means are each centrally located within their own
specific regions, so there is no tendency toward higher
confusion between any two classes than any other two.

(NC4) Simplification to nearest class center (NCC): for a given
deepnet activation, the network classifier converges to
choosing whichever class has the nearest train class mean
(in standard Euclidean distance).

We give a visualization of the phenomena (NC1) to (NC3) in
Fig. 1∗ and define simplex ETFs (NC2) more formally as follows.

Definition (Simplex ETF): A standard simplex ETF is a
collection of points in RC specified by the columns of

M?=

√
C

C − 1

(
I− 1

C
11>

)
, [1]

where I ∈RC×C is the identity matrix, and 1C ∈RC is the ones
vector. In this paper, we allow other poses, as well as rescaling,
so the general simplex ETF consists of the points specified by the
columns of M =αUM? ∈Rp×C , where α∈R+ is a scale factor,
and U∈Rp×C (p≥C ) is a partial orthogonal matrix (U>U = I).

Properties (NC1) to (NC4) show that a highly symmet-
ric and rigid mathematical structure with clear interpretabil-
ity arises spontaneously during deep learning feature engi-
neering, identically across many different datasets and model
architectures.

(NC2) implies that the different feature means are “equally
spaced” around the sphere in their constructed feature space;
(NC3) says the same for the linear classifiers in their own dual
space and moreover, that the linear classifiers are “the same
as” the class means, up to possible rescaling. These mathemat-
ical symmetries and rigidities vastly simplify the behavior and
analysis of trained classifiers, as we show in Section 5 below,
which contrasts the kind of qualitative understanding previously
available from theory against the precise and highly constrained
predictions possible with (NC4).

(NC1) to (NC4) offer theoretically established performance
benefits: stability against random noise and against adversarial
noise. Additionally, indeed, this theory bears fruit. We show that
during TPT, while NC is progressing, the trained models are
improving in generalizability and in adversarial robustness.

In Section 7 below, we discuss the broader significance of
(NC1) to (NC4) and their relation to recent advances across
several rapidly developing “research fronts.”

To support our conclusions, we conduct empirical studies
that range over seven canonical classification datasets (7–9),
including ImageNet (10), and three prototypical, contest-winning
architectures (11–13). These datasets and networks were cho-
sen for their prevalence in the literature as benchmarks (14–16),
reaffirmed by their easy availability as part of the popular deep
learning framework PyTorch (17). As explained below, these
observations have important implications for our understand-

*Fig. 1 is, in fact, generated using real measurements collected while training the VGG13
deepnet on CIFAR10. For three randomly selected classes, we extract the linear classi-
fiers, class means, and a subsample of 20 last-layer features at epochs 2, 16, 65, and 350.
These entities are then rotated, rescaled, and represented in three dimensions by lever-
aging the singular-value decomposition of the class means. We omit further details as
Fig. 1 serves only to illustrate NC on an abstract level.

Fig. 1. Visualization of NC. The figure depicts, in three dimensions, NC as
training proceeds from top to bottom. Green spheres represent the ver-
tices of the standard simplex, see Definition (Simplex ETF), red ball and
sticks represent linear classifiers, blue ball and sticks represent class means,
and small blue spheres represent last-layer features. For all objects, we dis-
tinguish different classes via the shade of the color. As training proceeds,
last-layer features collapse onto their class means (NC1), class means con-
verge to the vertices of the simplex ETF (NC2), and the linear classifiers
approach their corresponding class means (NC3). An animation can be found
at https://purl.stanford.edu/br193mh4244.
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ing of numerous theoretical and empirical observations in deep
learning.

2. Setting and Methodology
All subsequent experiments are built upon the general setting
and methodology described below.

A. Image Classification. In the image classification problem, we
are given a training dataset of d -dimensional images; the goal
is to train a predictor to identify the class—of C total classes—to
which any input image x∈Rd belongs.

B. Deep Learning for Classification. In this work, we consider the
predictor to be a deep neural network, which typically consists
of numerous layers followed by a linear classifier. We view the
layers before the classifier as computing a function, x→ h(x),
where h :Rd→Rp outputs a p-dimensional feature vector. We
refer to h(x) as the last-layer activations or last-layer features.
The linear classifier takes as inputs the last-layer activations and
outputs the class label. In detail, the linear classifier is specified
by weights W ∈RC×p and biases b∈RC , and the label the net-
work attaches to image x is a simple function of Wh(x)+ b. In
fact, it is argmaxc′ 〈wc′ , h〉+ bc′ [i.e., the label is the index of
the largest element in the vector Wh(x)+ b].

C. Network Architecture and Feature Engineering. The network is
generally specified in two stages. First, an architecture is pre-
scribed, and then, for a given architecture, there is a large
number of parameters that determine the deep network’s fea-
ture engineering, h(x). Collecting these parameters in a vector θ,
we may also write h= hθ(x).

When the architecture specifies a truly deep network—and not
merely a shallow one—the variety of behaviors that the differ-
ent choices of θ can produce is quite broad. To evoke, in quite
concrete terms, the process of specifying the nonlinear transfor-
mation x 7→ hθ(x), we speak of feature engineering. In contrast,
traditional machine learning often dealt with a fixed collection of
feature vectors that were not data adaptive.

D. Training. Viewing the induced class labels as the network out-
puts and the architecture and problem size as fixed in advance,
the underlying class labeling algorithm depends on the parame-
ter vector (θ,W , b). We think of θ as determining the features
to be used and (W , b) as determining the linear classifier that
operates on the features to produce the labels. The number of
parameters that must be determined is quite large. In practice,
these parameters must be learned from data, by the process
commonly known as training.

More concretely, consider a balanced dataset, having exactly
N training examples in each class,

⋃C
c=1{xi,c}

N
i=1, where xi,c

denotes the i th example in the cth class. The parameters
(θ,W , b) are fit by minimizing, usually using stochastic gradient
descent (SGD), the objective function:

min
θ,W,b

C∑
c=1

N∑
i=1

L (Whθ(xi,c)+ b, yc). [2]

Above, we denote by L :RC×RC →R+ the cross-entropy loss
function and by yc ∈R

C one-hot vectors (i.e., vectors contain-
ing one in the cth entry and zero elsewhere). We refer to this
quantity as the training loss and the number of incorrect class
predictions made by the network as the training error. Notice
that, in TPT, the loss is nonzero even if the classification error
is zero.

E. Datasets. We consider the MNIST, FashionMNIST,
CIFAR10, CIFAR100, SVHN, STL10, and ImageNet datasets

(7–10). MNIST was subsampled to N =5,000 examples per
class, SVHN to N =4,600 examples per class, and ImageNet
to N =600 examples per class. The remaining datasets are
already balanced. The images were preprocessed, pixel-wise,
by subtracting the mean and dividing by the SD. No data
augmentation was used.

F. Networks. We train the VGG, ResNet, and DenseNet archi-
tectures (11–13). For each of the three architecture types,
we chose the network depth through trial and error in a
series of preparatory experiments in order to adapt to the
varying difficulties of the datasets. The final chosen net-
works were VGG19, ResNet152, and DenseNet201 for Ima-
geNet; VGG13, ResNet50, and DenseNet250 for STL10;
VGG13, ResNet50, and DenseNet250 for CIFAR100; VGG13,
ResNet18, and DenseNet40 for CIFAR10; VGG11, ResNet18,
and DenseNet250 for FashionMNIST; and VGG11, ResNet18,
and DenseNet40 for MNIST and SVHN. DenseNet201 and
DenseNet250 were trained using the memory-efficient imple-
mentation proposed in ref. 18. We replaced the dropout layers
in VGG with batch normalization and set the dropout rate in
DenseNet to zero.

G. Optimization Methodology. Following common practice, we
minimize the cross-entropy loss using SGD with momentum 0.9.
The weight decay is set to 1×10−4 for ImageNet and 5×10−4

for the other datasets. ImageNet is trained with a batch size
of 256, across eight graphical processing units (GPUs), and
the other datasets are trained on a single GPU with a batch
size of 128. We train ImageNet for 300 epochs and the other
datasets for 350 epochs. The initial learning is annealed by a
factor of 10 at 1/2 and 3/4 for ImageNet and 1/3 and 2/3 for
the other datasets. We sweep over 10 logarithmically spaced
learning rates for ImageNet between 0.01 and 0.25 and 25
learning rates for the remaining datasets between 0.0001 and
0.25—picking the model resulting in the best test error in the
last epoch.

H. Large-Scale Experimentation. The total number of models fully
trained for this paper is tallied below:

ImageNet: 1 dataset× 3 nets× 10 lrs= 30 models.
Remainder: 6 datasets× 3 nets× 25 lrs= 450 models.

Total: 480 models.

The massive computational experiments reported here were run
painlessly using ClusterJob and ElastiCluster (19–21) on the
Stanford Sherlock HPC (high performance computing) cluster
and Google Compute Engine virtual machines.

I. Moments of Activations. During training, we snapshot the net-
work parameters at certain epochs. For each snapshotted epoch,
we pass the train images through the network, extract their last-
layer activations [using PyTorch hooks (22)], and calculate these
activations’ first and second moment statistics.

For a given dataset–network combination, we calculate the
train global mean µG ∈Rp :

µG ,Ave
i,c
{hi,c},

and the train class means µc ∈Rp :

µc ,Ave
i
{hi,c}, c=1, . . . ,C ,

where Ave is the averaging operator.

24654 | www.pnas.org/cgi/doi/10.1073/pnas.2015509117 Papyan et al.
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Fig. 2. Train class means become equinorm. The formatting and technical details are as described in Section 3. In each array cell, the vertical axis
shows the coefficient of variation of the centered class-mean norms as well as the network classifiers norms. In particular, the blue lines show
Stdc(‖µc −µG‖2)/Avgc(‖µc −µG‖2) where {µc} are the class means of the last-layer activations of the training data and µG is the corresponding train
global mean; the orange lines show Stdc(‖wc‖2)/Avgc(‖wc‖2) where wc is the last-layer classifier of the cth class. As training progresses, the coefficients of
variation of both class means and classifiers decrease.

Unless otherwise specified, for brevity, we refer in the text
to the globally centered class means, {µc −µG}Cc=1, as just
class means since the globally centered class means are of more
interest.

Given the train class means, we calculate the train total
covariance ΣT ∈Rp×p ,

ΣT ,Ave
i,c

{
(hi,c −µG)(hi,c −µG)>

}
,

the between-class covariance, ΣB ∈Rp×p ,

ΣB ,Ave
c
{(µc −µG)(µc −µG)>}, [3]

and the within-class covariance, ΣW ∈Rp×p ,

ΣW ,Ave
i,c
{(hi,c −µc)(hi,c −µc)

>}. [4]

Recall from multivariate statistics that

ΣT =ΣB +ΣW .

J. Formalization of NC. With the above notation, we now present
a more mathematical description of NC, where → indicates
convergence as training progresses:
(NC1) Variability collapse: ΣW → 0.
(NC2) Convergence to simplex ETF:

|‖µc −µG‖2−‖µc′ −µG‖2|→ 0 ∀ c, c′

〈µ̃c , µ̃c′〉→
C

C − 1
δc,c′ −

1

C − 1
∀ c, c′.

(NC3) Convergence to self-duality:∥∥∥∥∥ W>

‖W‖F
− Ṁ
‖Ṁ‖F

∥∥∥∥∥
F

→ 0. [5]

(NC4) Simplification to NCC:

argmax
c′
〈wc′ , h〉+ bc′→ arg min

c′
‖h−µc′‖2,

where µ̃c =(µc −µG)/‖µc −µG‖2 are the renormalized the
class means, Ṁ = [µc −µG , c=1, . . . ,C ]∈Rp×C is the matrix

Fig. 3. Classifiers and train class means approach equiangularity. The formatting and technical details are as described in Section 3. In each array cell, the
vertical axis shows the SD of the cosines between pairs of centered class means and classifiers across all distinct pairs of classes c and c′. Mathematically,
denote cosµ(c, c′) = 〈µc −µG, µc′ −µG〉/(‖µc −µG‖2‖µc′ −µG‖2 and cosw (c, c′) = 〈wc, wc′ 〉/(‖wc‖2‖wc′‖2) where {wc}C

c=1, {µc}
C
c=1, and µG are as in

Fig. 2. We measure Stdc,c′ 6= c(cosµ(c, c′)) (blue) and Stdc,c′ 6= c(cosw (c, c′)) (orange). As training progresses, the SDs of the cosines approach zero, indicating
equiangularity.

Papyan et al. PNAS | October 6, 2020 | vol. 117 | no. 40 | 24655
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Fig. 4. Classifiers and train class means approach maximal-angle equiangularity. The formatting and technical details are as described in Section 3. We
plot in the vertical axis of each cell the quantities Avgc,c′ | cosµ(c, c′) + 1/(C− 1)| (blue) and Avgc,c′ | cosw (c, c′) + 1/(C− 1)| (orange), where cosµ(c, c′) and
cosw (c, c′) are as in Fig. 3. As training progresses, the convergence of these values to zero implies that all cosines converge to −1/(C− 1). This corresponds
to the maximum separation possible for globally centered, equiangular vectors.

obtained by stacking the class means into the columns of a
matrix, and δc,c′ is the Kronecker delta symbol.

3. Results
To document the observations we make in Section 1, we pro-
vide a series of figures and a table below. We briefly list here our
claims and identify the source of our evidence.

• Means and classifiers become equinorm: Fig. 2
• Means and classifiers become maximally equiangular: Figs. 3

and 4
• Means and classifiers become self-dual: Fig. 5
• Train within-class covariance collapses: Fig. 6
• Classifier approaches NCC: Fig. 7
• TPT improves robustness: Fig. 8
• TPT improves test error: Table 1

All figures in this article are formatted as follows. Each of
the seven array columns is a canonical dataset for benchmark-
ing classification performance—ordered left to right roughly
by ascending difficulty. Each of the three array rows is a pro-
totypical deep classifying network. On the horizontal axis of
each cell is the epoch of training. For each dataset–network

combination, the red vertical line marks the beginning of the
effective beginning of TPT (i.e., the epoch when the training
accuracy reaches 99.6% for ImageNet and 99.9% for the remain-
ing datasets); we do not use 100% as it has been reported
(24–26) that several of these datasets contain inconsistencies
and mislabels, which sometimes prevent absolute memorization.
Additionally, orange lines denote measurements on the net-
work classifier, while blue lines denote measurements on the
activation class means.

4. Discussion
Taken together, Figs. 2–7 give evidence for NC. First, Fig. 2
shows how, as training progresses, the variation in the norms of
the class means (and classifiers) decreases—indicating that the
class means (and classifiers) are converging to an equinormed
state.

Then, Fig. 3 indicates that all pairs of class means (or classi-
fiers) tend toward forming equal-sized angles. Fig. 4 additionally
reveals that the cosines of these angles converge to − 1

C−1
—the

maximum possible given the constraints. This maximal equiangu-
larity, combined with equinormness, implies that the class means
and classifiers converge to simplex ETFs.

Fig. 5. Classifier converges to train class means. The formatting and technical details are as described in Section 3. In the vertical axis of each cell, we
measure the distance between the classifiers and the centered class means, both rescaled to unit norm. Mathematically, denote M̃ = Ṁ/‖Ṁ‖F where
Ṁ = [µc −µG : c = 1, . . . , C]∈Rp×C is the matrix whose columns consist of the centered train class means; denote W̃ = W/‖W‖F where W ∈RC×p is the

last-layer classifier of the network. We plot the quantity ‖W̃>− M̃‖2
F on the vertical axis. This value decreases as a function of training, indicating that the

network classifier and the centered-means matrices become proportional to each other (self-duality).

24656 | www.pnas.org/cgi/doi/10.1073/pnas.2015509117 Papyan et al.
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Fig. 6. Training within-class variation collapses. The formatting and technical details are as described in Section 3. In each array cell, the vertical axis (log
scaled) shows the magnitude of the between-class covariance compared with the within-class covariance of the train activations. Mathematically, this is
represented by Tr(ΣWΣ†B/C) where Tr(·) is the trace operator, ΣW is the within-class covariance of the last-layer activations of the training data, ΣB is the
corresponding between-class covariance, C is the total number of classes, and [·]† is Moore–Penrose pseudoinverse. This value decreases as a function of
training—indicating collapse of within-class variation.

The above experiments by themselves do not indicate any rela-
tionship between the final converged states of the class means
and classifiers, even though both converge to some simplex ETF.
Such a relationship is revealed by Fig. 5—showing how they
converge to the same simplex ETF, up to rescaling.

Moreover, the above concerns solely the class means. Yet,
we can make a stronger claim about the activations themselves
by looking at Tr(ΣWΣ†B ). This quantity, canonical in multi-
variate statistics, measures the inverse signal-to-noise ratio for
classification problems and can be used to predict misclassifi-
cation (27). The intraclass covariance matrix ΣW (the noise)
is best interpreted after scaled and rotated by pseudoinverse
of the interclass covariance matrix ΣB (the signal) since such
transformation maps the noise into a common frame of refer-
ence across epochs. According to Fig. 6, the normalized varia-
tion of the activations becomes negligible as training proceeds,
indicating that the activations collapse to their corresponding
class means. This collapse continues well after the beginning
of TPT.

A recurring theme across Figs. 2–7 is the continuing process
of NC after zero error has been achieved. This explains TPT’s

paradigmatic nature: while continuing training after zero error
has already been achieved seems counterintuitive, it induces
significant changes in the underlying structure of the trained
network.

This motivates Fig. 8 and Table 1, which explore two of the
benefits of TPT. Table 1 shows how the test accuracy continues
improving steadily, and Fig. 8 shows how adversarial robustness
continues improving as well. In fact, most of the improvement in
robustness happens during TPT.

5. NC Sharpens Previous Insights
Two notable prior works (28, 29) were able to significantly con-
strain the form of the structure of trained classifiers. However, in
the presence of NC, it is possible to say dramatically more about
the structure of trained classifiers. Moreover, the structure that
emerges is extremely simple and symmetric.

In particular, the prior work assumed fixed features, not sub-
ject to data-adaptive feature engineering, which is so character-
istic of deep learning training. In the modern context where deep
learning features are trained and employing the assumption that
the resulting last-layer entities undergo NC, the mathematical

Fig. 7. Classifier behavior approaches that of NCC. The formatting and technical details are as described in Section 3. In each array cell, we plot the
proportion of examples (vertical axis) in the testing set where network classifier disagrees with the result that would have been obtained by choosing
arg minc ‖h−µc‖2 where h is a last-layer test activation, and {µc}

C
c=1 are the class means of the last-layer train activations. As training progresses, the

disagreement tends to zero, showing the classifier’s behavioral simplification to the nearest train class-mean decision rule.
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constraints on the structure of trained classifiers tighten drasti-
cally.

As a preliminary step, we first formalize four possible
properties of the end state toward which NC is tending:

−−−→
(NC1) Variability collapse: ΣW = 0.
−−−→
(NC2) Simplex ETF structure:

‖µc −µG‖2=‖µc′ −µG‖2 ∀ c, c′

〈µ̃c , µ̃c′〉=
C

C − 1
δc,c′ −

1

C − 1
.

−−−→
(NC3) Self-duality: W>

‖W‖F
= Ṁ
‖Ṁ‖F

.
−−−→
(NC4) Behavioral equivalence to NCC:

argmax
c′

〈wc′ , h〉+ bc′ =argmin
c′

‖h−µc′‖2.

where µ̃c =(µc −µG)/‖µc −µG‖2 are the renormalized and
centered class means, Ṁ = [µc −µG : c=1, . . . ,C ]∈Rp×C is
the matrix obtained by stacking the centered class means into
the columns of a matrix, and δc,c′ is the Kronecker delta symbol.

A. Webb and Lowe (28). In ref. 28, Webb and Lowe proved the
following important result, which reformulated for the modern
setting, could be written as follows.

Proposition 1 (Section 3 in ref. 28). Fix the deepnet architec-
ture and the underlying tuning parameters θ, so that the activations
hθ(x) involve no training and so that only the classifier weights W
and biases b need to be trained. Maintain the same definitions—ΣT ,
µc , µG , etc.—as in Section 2. Adopting the mean squared error loss
in place of the cross-entropy loss, the optimal classifier weights and
biases are given by

W =
1

C
Ṁ
>
Σ†T

b=
1

C
1C −

1

C
Ṁ
>
Σ†TµG , [6]

where † denotes the Moore–Penrose pseudoinverse, Ṁ = [µc −µG :
c=1, . . . ,C ]∈Rp×C is the matrix obtained by stacking the cen-
tered class means into the columns of a matrix, and 1C ∈RC is a
vector of ones.

The form in [6] is similar to the one first developed by
R. A. Fisher in 1936 (30)—commonly referred to as linear
discriminant analysis (LDA)—although Fisher’s version uses
ΣW in lieu of ΣT . In other words, the above theorem states
that a modified LDA is the optimal solution for the last-layer
classifier.

The result of Webb and Lowe (28) admirably elucidates the
structure of the optimal classifier; however, it also leaves a
great deal unspecified about possible properties of the classifier.
In our Theorem 1, immediately following, we supplement the
assumptions of Webb and Lowe (28) by adding the variability
collapse and simplex ETF properties; the result significantly nar-
rows the possible structure of optimal classifiers, obtaining both
self-duality and behavioral agreement with NCC.

Theorem 1 [Proposition 1 +
−−−−−→
(NC1-2) Imply

−−−−−→
(NC3-4)]. Adopt

the framework and assumptions of Proposition 1, as well as the
end state implied by (NC1) and (NC2) [i.e.,

−−−−→
(NC1) and

−−−−→
(NC2)].

The Webb–Lowe classifier [6], in this setting, has the additional
properties

−−−−→
(NC3) and

−−−−→
(NC4).

Proof : By
−−−−→
(NC1), ΣW = 0, and we have ΣT =ΣB . Using now

Proposition 1, we obtain

W =
1

C
Ṁ
>
Σ†B

b=
1

C
1C −

1

C
Ṁ
>
Σ†BµG .

[3] implies that ΣB = 1
C

ṀṀ
>

. Thus,

W = Ṁ
>
(

ṀṀ
>
)
†= Ṁ

†

b=
1

C
1C − Ṁ

>
(

ṀṀ
>
)
†µG =

1

C
1C − Ṁ

†
µG .

−−−−→
(NC2) implies that Ṁ has exactly C − 1 nonzero and equal sin-
gular values, so Ṁ

†
=αṀ

>
for some constant α. Combining the

previous pair of displays, we obtain

W =αṀ
>

[7a]

b=
1

C
1C −αṀ

>
µG ; [7b]

[7a] demonstrates the asserted self-duality
−−−−→
(NC3), up to rescal-

ing. The class predicted by the above classifier is given by

argmax
c′

〈wc′ , h〉+ bc′

=argmax
c′

α 〈µc′ −µG , h〉+ 1

C
−α 〈µc′ −µG ,µG〉

=argmax
c′

〈µc′ −µG , h−µG〉 .

Using the equal norm property of
−−−−→
(NC2), this display becomes

argmax
c′

〈µc′ −µG , h−µG〉

=argmin
c′

‖h−µG‖
2
2− 2 〈µc′ −µG , h−µG〉+ ‖µc′ −µG‖

2
2

=argmin
c′

‖(h−µG)− (µc′ −µG)‖2

=argmin
c′

‖h−µc′‖2. [8]

In words, the decision of the linear classifier based on (W , b) is
identical to that made by NCC

−−−−→
(NC4).

Our theorem predicts that evidence of (NC1) and (NC2) as
shown in Figs. 2–4 and 6 should deterministically accompany
both (NC3) and (NC4)—exactly as observed in Figs. 5 and 7.

B. Soudry et al. (29). The authors of ref. 29 consider C -class clas-
sification, again in a setting where the parameter vector θ is not
trained, so that the last-layer activations hi,c = h(xi,c) are fixed
and not subject to feature engineering.

They proved an important result, which explicitly addresses
our paper’s focus on cross-entropy classifier loss minimization in
the zero-error regime.

Proposition 2 (Theorem 7 in ref. 29). Let RNC×p denote the
vector space spanning all last-layer activation datasets, H =(hi,c :
1≤ i ≤N , 1≤ c≤C ), and let H denote the measurable subset of
RNC×p consisting of linearly separable datasets: that is, consisting
of datasets H where, for some linear classifiers {wc}Cc=1 (possibly
depending on dataset H), separability holds:

〈wc −w′c , hi,c〉≥ 1, hi,c ∈H.

For (Lebesgue) almost every dataset H ∈H, gradient descent mini-
mizing the cross-entropy loss, as a function of the classifier weights,
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Fig. 8. Training beyond zero error improves adversarial robustness. The formatting and technical details are as described in Section 3. For each dataset
and network, we sample without replacement 100 test images—constructing for each an adversarial example using the DeepFool method proposed in
ref. 23. In each array cell, we plot on the vertical axis the robustness measure, Avei‖r(xi)‖2/‖xi‖2, from the same paper—where r(xi) is the minimal
perturbation required to change the class predicted by the classifier, for a given input image xi . As training progresses, larger xi . As training progresses,
larger perturbations are required to fool the deepnet. Across all array cells, the median improvement in the robustness measure in the last epoch over the
first epoch achieving zero training error is 0.0252; the mean improvement is 0.2452.

tends to a limit. This limit is identical to the solution of the
max-margin classifier problem:

min
{wc}Cc=1

C∑
c=1

‖wc‖22 s.t. ∀i , c, c′ 6= c : 〈wc −wc′ , hi,c〉≥ 1. [9]

This inspiring result significantly constrains the form of the
trained classifier in precisely the cross-entropy loss setting rel-
evant to deep learning. However, because feature activations are
here fixed, not learned, this result is only able to give indirect,
implicit information about a deepnet trained model involving
feature engineering and about the classification decisions that it
makes.

Some authors of ref. 29 have, in a series of highly influential
talks and papers, laid great emphasis on the notion of an emer-
gent, not superficially evident, “inductive bias” as a reason for
the surprising success of deep learning training and have pointed
to Proposition 2 as a foundational result indicating that induc-
tive bias can be implicit in the behavior of a training procedure
that superficially shows no behavioral tendencies in the indicated
direction.

We agree wholeheartedly with the philosophy underlying ref.
29; our results support the further observation that inductive
bias is far more constraining on the outcome of modern deepnet
training than was previously known.

In effect, out of all possible max-margin classifiers that could
be consistent with Proposition 2, the modern deepnet training
paradigm is producing linear classifiers approximately belong-
ing to the very tiny subset with the additional property of being
simplex ETFs. Moreover, such classifiers exhibit very striking
behavioral simplicity in decision making.

Theorem 2 (Proposition 2 +
−−−−−→
(NC1-2) Imply

−−−−−→
(NC3-4)). Adopt

the framework and assumptions of Proposition 2, as well as the end
state implied by (NC1) and (NC2) [i.e.,

−−−−→
(NC1) and

−−−−→
(NC2)]. The

Soudry et al. (29) classifier [9], in this setting, has the additional
properties

−−−−→
(NC3) and

−−−−→
(NC4).

Proof: Since Ṁ is the matrix of a simplex ETF, it has C − 1
equal-sized singular values with the remaining singular value
being zero. Without loss of generality, we assume here that those
singular values are 1 (i.e., ‖Ṁ‖2 =1). Notice the singular value
assumption implies that the columns are of norm ‖µc −µG‖2 =√

(C − 1)/C (not unity) for all c. At the assumed end state of

variability collapse
−−−−→
(NC1), the activations all collapse to their

respective class means, and the max-margin classifier problem
reduces to

min
{wc}Cc=1

C∑
c=1

1

2
‖wc‖22 s.t. ∀c, c′ 6= c : 〈wc −wc′ ,µc −µG〉≥ 1.

Table 1. Training beyond zero error improves test performance

Test accuracy at Test accuracy at
Dataset and network zero error last epoch

MNIST
VGG 99.40 99.56
ResNet 99.32 99.71
DenseNet 99.65 99.70

FashionMNIST
VGG 92.92 93.31
ResNet 93.29 93.64
DenseNet 94.18 94.35

SVHN
VGG 93.82 94.53
ResNet 94.64 95.70
DenseNet 95.87 95.93

CIFAR10
VGG 87.85 88.65
ResNet 88.72 89.44
DenseNet 91.14 91.19

CIFAR100
VGG 63.03 63.85
ResNet 66.19 66.21
DenseNet 77.19 76.56

STL10
VGG 65.15 68.00
ResNet 69.99 70.24
DenseNet 67.79 70.81

ImageNet
VGG 47.26 50.12
ResNet 65.41 64.45
DenseNet 65.04 62.38

The median improvement of test accuracy at the last epoch over that
at the first epoch achieving zero training error is 0.3495%; the mean
improvement is 0.4984%.
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Rewriting with matrix notation and using a Pythagorean decom-
position of the objective, the above becomes

min
W

1

2
‖WṀṀ

†‖
2

F +
1

2
‖W(I− ṀṀ

†
)‖

2

F

s.t. ∀c, c′ 6= c : (ec − ec′)
>WṀec ≥ 1,

where † denotes the Moore–Penrose pseudoinverse of a matrix.
Property

−−−−→
(NC2) fully specifies the Gram matrix of Ṁ, from

which we know that Ṁ has C − 1 singular values all equal
to one, WLOG (without loss of generality), and a right null
space spanned by the vector of ones, 1, since its columns
have zero mean. Thus, its singular value decomposition is given
by Ṁ =UV>, where U∈Rp×C−1 and V ∈RC×C−1 are partial
orthogonal matrices. Hence,

min
W

1

2
‖WUU>‖2F +

1

2
‖W(I−UU>)‖2F

s.t. ∀c, c′ 6= c : (ec − ec′)
>WUV>ec ≥ 1.

Observe that 1) the second term of the objective penalizes devi-
ations of wc from the column space of U and that 2) such
deviations do not affect the constraints. Conclude that the opti-
mal solution for the above optimization problem has the form
W =AU>, where A∈RC×C−1. This simplification, as well as the
fact that

‖WUU>‖2F = ‖AU>UU>‖2F
=Tr(AU>UU>UU>UA)= ‖A‖2F

and WU =AU>U =A, transforms the optimization problem into
the equivalent form

min
A

1

2
‖A‖2F s.t. ∀c, c′ 6= c : (ec − ec′)

>AV>ec ≥ 1. [10]

Averaging the constraints of [10] over c and summing over c′ 6= c,
we obtain

C − 1≤ 1

C

∑
c

((C − 1)ec − (1− ec))>AV>ec

=
1

C

∑
c

(C ec −1)>AV>ec

=
∑
c

e>c

(
I− 1

C
11>

)
AV>ec

=Tr
((

I− 1

C
11>

)
AV>

)
=Tr

(
AV>

(
I− 1

C
11>

))
=Tr

(
AV>

)
,

where the last equality follows from V> 1=0. This leads to the
following relaxation of [10]:

min
A

1

2
‖A‖2F s.t. Tr

(
AV>

)
≥C − 1. [11]

Checking first-order conditions, the optimum occurs at A=

V . Recalling that Ṁ is a simplex ETF with singular values
1, VV>=VU>UV>= Ṁ

>
Ṁ = I− 1

C
11>. Because A=V , and

Vec =
(
ec − 1

C
1
)

for c=1, . . . ,C ,

(ec − ec′)
>AV>ec =(ec − ec′)

>VV>ec =1. [12]

Since A=V optimizes [11], which involves the same objective
as [10] but over a possibly enlarged feasible set, feasibility of
A=V implies that A=V optimizes [10] as well. The solution to
[10] is unique since the problem minimizes a positive definite
quadratic subject to a single nondegenerate linear constraint. In
the optimization problem for W that we started with, recall that
W =AU>. Hence, the optimality of A=V implies W =AU>=

VU>= Ṁ
>

, showing self-duality is achieved
−−−−→
(NC3). This equal-

ity becomes a proportionality in the more general case where the
equal singular values of Ṁ are not unity.

An argument similar to the one for Theorem 1 is that the
classifier is behaviorally equivalent to the NCC decision rule
−−−−→
(NC4).

Much like Theorem 1, but now for cross-entropy loss, the
above result again indicates that evidence of (NC1) and (NC2)
as shown in Figs. 2–4 and 6 should accompany both (NC3) and
(NC4), as shown in Figs. 5 and 7. In short, our results indicate an
inductive bias toward NCC, which is far more total and limiting
than the max-margin bias proposed by ref. 29.

6. Theoretical Derivation of Simplex ETF Emergence
We are unaware of suggestions, prior to this work, that sim-
plex ETFs emerge as the solution of an interesting and rel-
evant optimization problem. Prompted by the seemingly sur-
prising nature of the above empirical results, we developed
theoretical results that show that the observed end state of
NC can be derived directly using standard ideas from infor-
mation theory and probability theory. Roughly speaking, the
simplex ETF property

−−−−→
(NC2), self-duality

−−−−→
(NC3), and behavioral

simplification
−−−−→
(NC4) are derivable consequences of variability

collapse
−−−−→
(NC1).

In our derivation, we consider an abstraction of feature engi-
neering, in which an ideal feature designer chooses activations
that minimize the classification error in the presence of nearly
vanishing within-class variability. Our derivation shows that the
ideal feature designer should choose activations whose class
means form a simplex ETF.

A. Model Assumptions. Assume we are given an observation h=
µγ + z∈RC , where z∼N (0,σ2I) and γ∼Unif{1, . . . ,C} is an
unknown class index, distributed independently from z. Our goal
is to recover γ from h, with as small an error rate as possible.
We constrain ourselves to use a linear classifier, Wh+ b, with
weights W = [wc : c=1, . . . , c]∈RC×C and biases b=(bc)∈RC ;
our decision rule is

γ̂(h)= γ̂(h;W , b)= argmax
c
〈wc , h〉+ bc .

Our task is to design the classifier W and bias b, as well as a matrix
M = [µc : c=1, . . . ,C ]∈RC×C , subject to the norm constraints
‖µc‖2≤ 1 for all c.

B. Information Theory Perspective. The above can be recast as
an optimal coding problem in the spirit of Shannon (31). The
class means µc are code words, and the matrix M represents
a codebook, containing C code words. A transmitter transmits
a code word over a noisy channel, contaminated by white addi-
tive Gaussian noise, and then, a receiver obtains the noisy signal
h=µc + z, which it then decodes using a linear decoder γ̂ in an
attempt to recover the transmitted γ. The norm constraint on the
means captures limits imposed on signal strength due to the dis-
tance between the transmitter and receiver. Our task is to design
a codebook and decoder that would allow optimal retrieval of the
class identity γ from the noisy information h.
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C. Large Deviations Perspective. To measure success in this task,
we consider the large deviations error exponent:

β(M,W , b)=− lim
σ→0

σ2 logPσ{γ̂(h) 6= γ}.

This is the right limit, as we are considering the situation where
the noise is approaching zero due to variability collapse (NC1).
Tools for deriving large deviations error exponents have been
extensively developed in probability theory (32).

D. Theoretical Result. As a preliminary reduction, we can assume
without loss of generality that the ambient vector space, in which
the code words and observations lie, is simply RC (SI Appendix).

Theorem 3. Under the model assumptions just given in subsec-
tions A, B, and C, the optimal error exponent is

β?=max
M,W,b

β(M,W , b) s.t. ‖µc‖2≤ 1 ∀c

=
C

C − 1
· 1
4
,

where the maximum is over C ×C matrices M with at most unit-
norm columns, and over C ×C matrices W and C × 1 vectors b.

Moreover, denote M?=
√

C
C−1

(
I− 1

C
11>

)
(i.e., M? is the

standard simplex ETF). The optimal error exponent is precisely
achieved by M?:

β(M?,M?, 0)=β?.

All matrices M achieving β? are also simplex ETFs—possibly
in an isometric pose—deriving from M? via M =UM? with U a
C ×C orthogonal matrix. For such matrices, an optimal linear
decoder is W =M?U>, b= 0:

β(M,W , b)=β(M,M>, 0)=β?.

Proof: The proof is given in SI Appendix.
In words, if we engineer a collection of code words to optimize

the (vanishingly small) theoretical misclassification probability,
we obtain as our solution the standard simplex ETF, or a rotation
of it.

We stress that the maximal equiangularity property of M? is
crucial to this result: that is,

〈µ?c ,µ
?
c′〉=

−1
C − 1

, c′ 6= c;

this property is enjoyed by every collection of class means
optimizing the error exponent and is unique to simplex ETFs.

The results of this section show that simplex ETFs are the
unique solution to an abstract optimal feature design prob-
lem. The fact that modern deepnet training practice has found
this same simplex ETF solution suggests to us that the training
paradigm—SGD, TPT, and so on—is finding the same solu-
tion as would an ideal feature engineer! Future research should
seek to understand the ability of training dynamics to succeed in
obtaining this solution.

7. Related Works
The prevalence of NC makes us view a number of previous
empirical and theoretical observations in a new fresh perspective.

A. Theoretical Feature Engineering. Immediately prior to the mod-
ern era of purely empirical deep learning, ref. 33 proposed a
theory-derived machinery building on the scattering transform
that promised an understandable approach for handwritten digit
recognition. The theory was particularly natural for problems

involving within-class variability caused by “small” morphings
of class-specific templates; in fact, the scattering transform was
shown in ref. 34 to tightly limit the variability caused by template
morphings. Later, refs. 35–37 complemented ref. 33 with addi-
tional theory covering a larger range of mathematically derived
features, nonlinearities, and pooling operations—again designed
to suppress within-class variability.

Our finding of NC, specifically (NC1), shows that feature
engineering by standard empirical deepnet training achieves sim-
ilar suppression of within-class variability—both on the original
dataset considered by ref. 33 as well as six more challenging
benchmarks. Thus, the original goal of refs. 33–37, which can
be phrased as the limiting of within-class variability of acti-
vations, turns out to be possible for a range of datasets and
perhaps more surprisingly, to be learnable by SGD on cross-
entropy loss. Recently, Mallat and collaborators (38) were able
to deliver results with scattering-transform features (combined
with dictionary learning) that rival the foundational empirical
results produced by AlexNet. So apparently, controlling within-
class activation variability, whether this is achieved analytically
or empirical, is quite powerful.

B. Observed Structure of Spectral Hessians. More recently, empir-
ical studies of the Hessian of the deepnet training loss of image
classification networks observed surprising and initially baffling
deterministic structure. First observed by refs. 39 and 40, on
toy models, the spectrum exhibits C outlier eigenvalues sepa-
rated from a bulk, where C is the number of classes of the
image classification task. Refs. 41–43 corroborated these find-
ings at scale on modern deep networks and large datasets.
Refs. 41 and 42 explained how the spectral outliers could be
attributed to low-rank structure associated with class means, and
the bulk could be induced by within-class variations (of logit
derivatives). It was essential that the class means have greater
norm than the within-class SD in order for these spectral outliers
to emerge.

Under (NC1), the full matrix of last-layer activations con-
verges to a rank-(C−1) matrix, associated with class means.
So under (NC1), eventually the within-class SD will be much
smaller, and the outliers will emerge from the bulk. In short, the
collapse of activation variability (NC1), combined with conver-
gence of class means (NC2) to the simplex ETF limit, explains
these important and highly visible observations about deepnet
Hessians.

C. Stability against Random and Adversarial Noise. It is well under-
stood classically that when solving linear systems y=Mx by
standard methods, some matrices M are prone to solution insta-
bility, blowing up small noise in y to produce large noise in x;
other matrices are less prone. Stability problems arise if the
nonzero singular values of M are vastly different and do not arise
if the nonzero singular values are all identical. The simplex ETF
offers equal nonzero singular values and so, a certain resistance
to noise amplification. This is a less well-known path to equal
singular values, partial orthogonal matrices being of course the
more well known.

In the deepnet literature, the authors of refs. 44–48 studied
the stability of deepnets to adversarial examples. They proposed
that stability can be obtained by making the matrices defined by
the network weights close to orthogonal. However, no suggestion
was offered for why trained weights, under the current standard
training paradigm, would tend to become orthogonal.

In ref. 49, the authors modified the standard training
paradigm, forcing linear and convolutional layers to be approx-
imate tight frames; they showed that this leads both to better
robustness to adversarial examples, as well as improved accu-
racy and faster training. To get these benefits, they imposed
orthogonality explicitly during training.
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In refs. 44, 45, and 49, the authors showed how concerns about
stability can be addressed by explicit interventions in the stan-
dard training paradigm. By demonstrating a pervasive simplex
ETF structure, this paper has shown that, under today’s standard
training paradigm, deepnets naturally achieve an implicit form of
stability in the last layer. In light of the previous discussions of the
benefits of equal singular values, we of course expected that the
trained deep network would become more robust to adversaries,
as the training progresses toward the simplex ETF. The measure-
ments we reported here support this prediction, and evidence in
ref. 50 gives further credence to this hypothesis.

8. Conclusion
This paper studied the TPT of today’s canonical deepnet train-
ing protocol. It documented that during TPT a process called
NC takes place, involving four fundamental and interconnected
phenomena: (NC1) to (NC4).

Prior to this work, it was becoming apparent, due to ref.
29 and related work, that the last-layer classifier of a trained
deepnet exhibits appreciable mathematical structure—a phe-
nomenon called inductive bias, which was gaining ever-wider
visibility. Our work exposes considerable additional fundamen-
tal and we think, surprising structure: 1) the last-layer fea-
tures are not only linearly separable but actually collapsed
to a C -dimensional simplex ETF, and 2) the last-layer clas-
sifier is behaviorally equivalent to the NCC decision rule.
Through our thorough experimentation on seven canonical
datasets and three prototypical networks, we show that these
phenomena persist across the range of canonical deepnet clas-
sification problems. Furthermore, we document that conver-
gence to this simple structure aids in the improvement of out-

of-sample network performance and robustness to adversarial
examples. We hypothesize that the benefits of the interpola-
tory regime of overparametrized networks are directly related
to NC.

From a broader perspective, the standard workflow of empir-
ical deep learning can be viewed as a series of arbitrary steps
that happened to help win prediction challenge contests, which
were then proliferated by their popularity among contest practi-
tioners. Careful analysis, providing a full understanding of the
effects and benefits of each workflow component, was never
the point. One of the standard workflow practices is training
beyond zero error to zero loss (i.e., TPT). In this work, we
give a clear understanding that TPT benefits today’s standard
deep learning training paradigm by showing how it leads to
the pervasive phenomenon of NC. Moreover, this work puts
older results on a different footing, expanding our understanding
of their contributions. Finally, because of the precise math-
ematics and geometry, the doors are open for new formal
insights.

Data Availability. Experimental measurements have been deposited in
the Stanford Digital Repository, https://purl.stanford.edu/ng812mz4543. An
animation can be found at https://purl.stanford.edu/br193mh4244.
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