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Abstract

Stellar winds shape the evolution of stars through the loss of mass. In binary systems, they also shape the stars’
evolution by modifying the orbit. In this paper, we use hydrodynamic simulations to study the emergence of nearly
isothermal winds from identical twin binaries. We vary the degree to which model stars fill their Roche lobes and
the temperature of the wind. Initialized at rest on the stellar surfaces, winds accelerate away from the binary
components through a sonic surface to supersonic outward velocities. In cases where the binary fills its Roche lobe,
a shared subsonic region surrounds both components. We find that mass loss rates from close twin-star binaries are
enhanced relative to the expectation from two single-object winds. This binary enhancement is best modeled as a
function of the ratio of wind velocity to orbital velocity. Similarly, we find that the specific angular momentum
with which winds emerge can vary between that of the binary components and that of the outer Lagrange points
depending on the ratio of wind velocity to orbital velocity. Given that mass and angular momentum loss can be
modeled as simple functions of wind velocity, our results may be broadly applicable to the evolution of close,
equal-mass binaries. One particularly important potential application is to massive, close binaries, which may be
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progenitors of binary black hole mergers through the chemically homogeneous evolution channel.

Unified Astronomy Thesaurus concepts: Binary stars (154); Close binary stars (254); Stellar winds (1636);

Hydrodynamics (1963)
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1. Introduction

Many stars exist in binary or multiple systems (Duchéne &
Kraus 2013). Among these, massive stars are particularly likely
to be found in close pairs of similar mass objects (Sana et al.
2012; de Mink et al. 2014). One such example is the over-
contact pair VFTS352, which is composed of two approxi-
mately 29M,, components that fill their mutual Roche lobes
(Almeida et al. 2015). Sources like these are of significant
interest as potential progenitor systems of binary compact
object remnants that can inspiral and merge through the
emission of gravitational radiation (de Mink & Mandel 2016;
Mandel & de Mink 2016; Marchant et al. 2016; Song et al.
2016). In these systems, rotation assists internal mixing and
leads much of the stellar hydrogen to be burned and
incorporated into the compact core (de Mink et al. 2009),
which later collapses.

Stars ubiquitously lose mass via winds from their surfaces.
Depending on the stellar type, the wind-acceleration mech-
anism and thermal properties can differ, and may depend on
stellar metallicity or magnetic field (Lamers & Cassinelli 1999).
Wind mass loss significantly modifies the evolution of stars and
shapes the distribution of stellar remnant masses (e.g., Spera
et al. 2015). When stars are in binary or multiple systems, wind
mass and angular momentum losses have the further effect of
transforming the binary orbit. The details of how much mass
stars lose, and the specific angular momentum with which it is
expelled from a binary system, are therefore crucial for
understanding the details of how stellar winds affect evolving
binary systems (e.g., Lin 1977; Savonije 1983; Tout &
Hall 1991; Brookshaw & Tavani 1993; Hurley et al. 2002;
Chen et al. 2018).

In close binaries, stellar winds interact with each other and
with the combined gravitational effective potential of the pair.
Although a variety of approaches have been used, some of the

most informative models of this process come from hydro-
dynamic simulations. Much of this work has focused on the
dynamics of stellar wind capture by companion objects (e.g.,
Blondin et al. 1990, 1991; Taam et al. 1991; Theuns &
Jorissen 1993; Blondin 1994; Blondin & Woo 1995; Theuns
et al. 1996; Nagae et al. 2004; Jahanara et al. 2005; Mohamed
& Podsiadlowski 2007; de Val-Borro et al. 2009, 2017; Bosch-
Ramon et al. 2012; Huarte-Espinosa et al. 2013; Cechura &
Hadrava 2015; El Mellah et al. 2018, 2019, 2020; Saladino &
Pols 2019; Tomaru et al. 2019; Xu & Stone 2019; Bermudez-
Bustamante et al. 2020), which is of particular observational
importance for X-ray binaries in which the accretor is a
compact object. Other hydrodynamic modeling, also motivated
by X-ray observations, has focused on the morphology and
dynamics of colliding winds in binaries with pairs of wind-
emitting stars, such as Wolf—Rayet binaries (e.g., Stevens et al.
1992; Owocki & Gayley 1995; Pittard 1998, 2007, 2009;
Walder 1998; Lemaster et al. 2007; Parkin & Pittard 2008;
Lamberts et al. 2011, 2012, 2013; Parkin & Gosset 2011;
Parkin et al. 2011, 2014; van der Helm et al. 2019).

In the following we study the morphology of thermally
driven stellar winds, similar to the Parker (1958) solar wind
model, in close pairs of stars. We focus on equal-mass systems,
with identical surface conditions, and we examine how the
degree of Roche-lobe occupancy (how close the system is to
filling its Roche lobes) and the stellar-surface sound speed
affect the emergent winds. We measure rates of mass and
angular momentum loss from the binary system and compare
these to analytic predictions for single and binary systems.

The paper is organized as follows. In Section 2, we describe
our hydrodynamic simulation method. In Section 4, we
describe our numerical results and discuss their interpretation.
In Section 5, we discuss potential limitations of our results and
their broader applicability to astrophysical binaries with various
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wind-acceleration mechanisms. Finally, in Section 6, we
conclude.

2. Simulation Method and Models

Our simulation model is composed of two identical stellar
components, whose surfaces are in corotation with the binary
orbit. We simulate the interaction of hydrodynamic winds
launched from these surfaces. Our models are developed using
the Athena++ code (Stone et al. 2020),1 which is a Eulerian
(magneto) hydrodynamic code descended from Athena
(Stone et al. 2008).

The total mass of the binary is M, and the mass of each of the
individual components is M; = M, = M/2. The separation of
their circular orbit is a. Our models are performed in units
where G = M = a = 1. This implies that the unit velocity is

JGM /a = 1, and the unit time is \/a®°/GM = 1, such that the

orbital period is Py = 2.

2.1. Computational Method

We solve the equations of inviscid gas dynamics in a frame
of reference centered on the binary center of mass rotating with
the binary orbital frequency Q2 = \/GM/a>. We employ a
Cartesian mesh, with nested levels of static mesh refinement
surrounding the binary components.

The conservation equations that we solve are

op+V-(pv) =0, (la)
A(pv) + V - (pvv + PI) = — plex, (1b)
8,E + V- [(E + P)V] = —Plext * VY, (IC)

expressing mass continuity, the evolution of gas momenta, and
the evolution of gas energies. In the above equations, p is the
mass density, pv is the momentum density, and E = ¢ +
pv - v/2 is the total energy density with € being the internal
energy density. The pressure is P, I is the identity tensor, and
a.x is the acceleration associated with the binary and the
rotating frame of reference. These equations are closed by an
ideal gas equation of state, P = (v — 1)¢, where ~y is the gas
adiabatic index.

The source terms of the binary’s gravity and rotating
reference frame are contained in the acceleration,

GM, GM,

— T - 3r2—ﬂ><ﬂ><r—2fz><v, 2)
|r1] |2l

Aext = —

where r; is the vectorial separation between a zone and the
center of star i, 2 = (0, 0, () is the vectorial orbital frequency,
and r and v are the position and velocity relative to the center of
mass of the rotating reference frame (i.e., the position and
velocity in the computational domain). Thus, the (x, )
coordinates define the binary orbital plane. There is no
gravitational backreaction of the wind distribution on the
binary.

The boundary of the stellar surfaces is chosen by a value, &,
of the gravitational effective potential,

Ty = -0 2B o 3)

' Version 2019, https: / /princetonuniversity.github.io/athena.
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where R = \/x? 4+ y*. In regions close to M, or M, where
Dr < Py, we set the gas velocities to zero and remove any
acceleration terms. The density and pressure are set to fixed
stellar “surface” values of p, and p,. We set the surface density”
to ps = 1M/a3. The pressure is based on the hydrodynamic
escape parameter,

A=-——, @

where cfs = P, / p, is the squared sound speed of the stellar
surface. Thus,

psq)s
= —— 5
Ds Y (%)

We specify the value of ®; by comparison to ®.¢ at the L;
Lagrange point, which, in the case of M;/M, = 1, is located at
the center of mass,

D = f5 Oeir (L) = — 2/, (6)

where the second equality holds with our chosen masses and
code units.

The simulation domain extends to £48a in each direction
from the center of mass, located at the origin. The base mesh is
composed of 256° zones. We nest five additional levels of static
mesh refinement interior to this base mesh, each containing
256° zones, for example, the region within 424 is refined one
level, within 12 two levels, up to £1.5 refined five times. The
smallest zone sizes are cubes with sides of 3/256 = 0.0117.
This mesh is decomposed into meshblocks of 16> zones each.
The outer boundary conditions in each direction are “outflow,”
extending the conditions interior to the domain to the ghost
zones.

2.2. Models

We run a suite of models varying \ and fg. For the adiabatic
index, we adopt the nearly isothermal value v = 1.01. We set
A=25, 5.0, and 10.0 with f3 =1, J2, 2, and 4. In the
following we discuss these 12 parameter combinations of A and

o

3. Analysis Metrics
3.1. Mass and Angular Momentum Loss

We measure the mass loss rate from the binary via a surface
integral,

M=—ﬁMwmx )

surrounding the binary. In practice, we perform this integral by
summing across the outward faces, dA, of zones closest to a
sphere, S, surrounding the center of mass. We adopt a radius of
5a to define S in the following, but have confirmed that our
results would be nearly constant for any choice of radius
between 2a and 6a. The flux of the Z-component of angular

2 Setting p has the effect of normalizing the mass loss rate. Because we do
not include any backreaction on the binary orbit or any density-dependent
heating or cooling physics, this parameter can be defined independently of the
other choices of units.
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momentum through this surface is similarly measured as
L':L~2=—y§p(r><v)~2(v'dA), ®)
s

where quantities are measured in the inertial (nonrotating)
frame. Because of the symmetry defined by the orbital plane,
we find that the £ and § components sum to zero to machine
precision.
Combining these two fluxes, we define the specific angular
momentum with which gas is lost from the binary,
L
loss = — )
0SS M
and its dimensionless counterpart, scaled to the specific angular
momentum of the binary,

VYloss = hos B (]O)
loin
where Ly, = L/M = 1/4. Thus, L = Ml and L = M Ly,

Angular momentum is acquired by the wind through a
combination of the rotational motion of the binary about the
center of mass, hydrodynamic stresses, and gravitational
stresses. To understand this decomposition, it can be useful
to separate these components.

The gravitational stress on the fluid within the volume
enclosed by S implies a rate of change of the binary’s angular
moment that is equal and opposite to the torque on the wind
from the binary,

Lgrav = Lgrav -7 = f Z (ri X grav,i) - Z Pdv, (11)

i=1,2

where r; is the position of binary component i, and

GM;
-f;;rav,i = |ri|3 Ti,

12)

is the gravitational force of the binary on the wind per unit
mass. Without loss of generality, we choose the orientation of
the binary to be along the x-axis, so that the integrand can be
simplified to

Z (ri X grav,i) I=x 3
i=1,2 |7

where x; = —1/2 and x, = 1/2.
We define

GM, GM,
Y+ x2

, 13
e y (13)

Lgrav
M
to describe the specific angular momentum imparted to the

wind by torques from the binary and also define

(14)

lgrav = -

lgrav

Yeray = ——- (15)
lbin

Finally, we distinguish the portion of wind specific angular
momentum not arising from gravitational torques as

lyind = lioss — lgrav (16)

and

l in
Yoind = (17)
Lbin
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such that the total v, is the sum of the hydrodynamic (wind)
and gravitational components, Yi,.c = Vyind + Verav-

3.2. Wind Properties

In addition to typical hydrodynamic properties, we define
two useful characteristics of the wind, the Jacobi and Bernoulli
parameters. Each of these is invariant in certain circumstances
—and analyzing these properties allows us to decompose the
hydrodynamic and gravitational stresses acting on the wind.

The Jacobi parameter is

1
E = Evr%,t + Do, (18)

where v, is the magnitude of the velocity in the frame rotating
with the binary. In the restricted three-body problem (Murray &
Dermott 1999), test particles in the binary potential follow
trajectories of a constant Jacobi parameter. A constant Jacobi
parameter along wind trajectories thus indicates that material is
expanding freely along ballistic trajectories. Variations in the
Jacobi parameter indicate the importance of hydrodynamic
stresses.
The Bernoulli parameter of material in the wind is

B:%vz—i-tiw—h, (19)

where £ is the fluid enthalpy,

h= LE (20)

y—1p

For material at rest in the rotating frame (as is the case for the
surface boundary conditions of our model stars) By = Ej +
h = ®, + h. These values are tabulated in Table 1. The Bernoulli
parameter is constant along fluid streamlines, such as a freely
expanding wind that does not self-intersect (e.g., Thompson 2006).

3.3. Binary Orbital Evolution

We begin with the expression for the orbital angular
momentum of a binary system, L = MM, /M~ GMa. In our
case My = M, = M/2 , so

L:% GM?a. 1)

By differentiating L with respect to time, then dividing by L,
we find
a_2L _3M 22)
a L M

Thus, measuring M and L allows us to estimate the separation
evolution of the circular orbit.

Substituting in the definition of ., the orbit evolution
equation can be rewritten as

- M
% = @70 = 3 (23)

where M < 0, so 7, > 3/2 implies that d < 0, while
Moss < 3/2 implies that @ > 0. This can be rewritten as
dlna
dinM

= 2’71055 -3 (24)
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Model I (A=10.0, fo =1.0)
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Figure 1. Slices of wind density normalized by mass loss rate (upper panels) and with the approximate > scaling removed (lower panels). Note that the upper panels
zoom-in on the region surrounding the binary, while the lower panels show a greater extent of the circumbinary environment. Streamlines in the upper panels are
plotted in the corotating frame, while streamlines in the lower panels are shown in the inertial frame. Winds from the two components join and interact near the binary,
before forming a largely spherical outflow with spiral disturbances on larger scales. The complete figure set (12 images) is available in the online journal and
(MacLeod 2020).

(The complete figure set (12 images) is available.)

Table 1
Simulation Parameters and Results
Model Y A f @ Ps Cs,s EJ ,5 Bs M L Lgmv Voss Vwind A/grav V1o
A 1.01 2.5 1.00 0.79 0.89 —2.00 78.00 —1.17e+00 —3.85e—01 3.99¢e—-02 1.31 1.45 —0.14 2.89
B 1.01 2.5 1.41 1.12 1.06 —2.83 110.31 —5.15e—01 —1.36e—01 1.24e—02 1.05 1.15 —0.10 3.64
C 1.01 2.5 2.00 1.58 1.26 —4.00 156.00 —2.57e—01 —6.56e—02 4.17e—03 1.02 1.09 —-0.07 4.56
D 1.01 2.5 4.00 3.17 1.79 —8.00 312.00 —7.61e—02 —2.09¢e—02 2.90e—04 1.10 1.12 —0.02 7.03
E 1.01 5.0 1.00 0.40 0.63 —2.00 38.00 —5.15e—01 —2.15e—01 1.28e—02 1.67 1.77 —0.10 1.76
F 1.01 5.0 1.41 0.56 0.75 —2.83 53.74 —2.10e—01 —5.34e—02 1.32e—02 1.02 1.27 —0.25 2.22
G 1.01 5.0 2.00 0.79 0.89 —4.00 76.00 —1.07e—01 —2.10e—02 7.56e—03 0.79 1.07 —-0.28 2.82
H 1.01 5.0 4.00 1.58 1.26 —8.00 152.00 —2.78e—02 —6.64¢—03 3.39¢e—04 0.96 1.00 —0.05 4.49
1 1.01 10.0 1.00 0.20 0.45 —2.00 18.00 —7.47e—02 —6.41e—02 —1.69e—02 343 2.53 0.91 1.15
J 1.01 10.0 1.41 0.28 0.53 —2.83 25.46 —9.72e—03 —6.00e—03 —2.75e—03 2.47 1.34 1.13 1.39
K 1.01 10.0 2.00 0.40 0.63 —4.00 36.00 —2.76e—03 —1.14e—03 5.62e—05 1.66 1.74 —0.08 1.71
L 1.01 10.0 4.00 0.79 0.89 —8.00 72.00 —7.87e—04 —1.31e—04 2.51e—05 0.67 0.79 —0.13 2.73

Note. Model parameters include: -, the gas adiabatic index, ), the hydrodynamic escape parameter, f3, the potential of the stellar surfaces relative to ®;,, p,, and ¢, ¢
the pressure and sound speed of the stellar surface boundary condition, Ej s and Bs, the surface Jacobi and Bernoulli parameters. Model results include M, the total
mass flux from the binary, L, the total angular momentum flux away from the binary, Lgrav, the portion of L attributable to gravitational torques on the binary by the
wind distribution. . is the dimensionless specific angular momentum of the wind, while ;.4 and ,,, are the portions of this angular momentum attributable to
hydrodynamic and gravitational stresses, respectively. Finally, v, is the mean wind radial velocity at r = 10a. Model results are best converted to astrophysical units
and applied to astrophysical systems through the dimensionless specific angular momenta 7., Vying> 80d Yray» and through the comparison of M to analytic
predictions, as approximated by Equation (29).
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in terms of the orbital separation change per unit mass change.
Integrated over some change in binary mass, the ratio of final to
initial separation a¢/a; depends on the ratio of final binary mass
to initial mass, My/M;,

27 —3
at Mf Noss
S e . 25
a; (Mi) ®)

Thus, when v, = 1, this takes on the simple form, as/a; =
M;/ M.

4. Results
4.1. Twin Wind Morphology

The thermal winds in our model are accelerated from rest on
the surfaces of the binary components by the pressure gradient
established as the wind expands into the surrounding space.
Figure 1 shows slices of density in the binary equatorial plane
(the figure set online shows each of the models in Table 1). The
upper panels show the density, normalized by the mass loss
rate, in the region in the vicinity of the binary components with
flow streamlines in the corotating frame. In the lower panels,
we plot 47r?p/|M| to visualize deviation from a spherically
expanding constant radial velocity wind. In this panel, velocity
streamlines are shown in the nonrotating inertial reference
frame.

The wind density structures in the vicinity of the binary
depend greatly upon the degree of contact of the binary
components, parameterized by fg and the hydrodynamic escape
parameter A. The influence of these parameters may be
compared in Figure 1. For Model D, in which A = 2.5 and
fo = 4, the relatively high surface sound speed leads to rapidly
expanding, supersonic winds. The separation of the binary
relative to the component sizes leads the winds to establish
separately prior to colliding in an interaction region. The
rotation of the binary system imparts a spiral shape to this
collision sheet (Lemaster et al. 2007). By contrast, Model I, for
which A = 10 and f; = 1, exhibits a dense circulating layer
surrounding the binary. Material trails away from the binary
system along the leading edges of the rotating pair, passing
through the outer L, and L3 Lagrange points (which have
identical potential for our equal-mass case). Other models
exhibit behavior intermediate between these extremes, with
winds superimposing to form spiral structures emanating from
the binaries’ vicinity.

In examining the large-scale density and kinematic struc-
tures, we find that for each of our models the wind expands
nearly radially in all directions (with v4 < v,), and that wind
densities reflect this nearly spherical expansion with an
approximately p oc =2 density structure. Deviations from this
baseline behavior of a spherical wind represent differences
relative to spherical expansion at constant velocity. Figure 1
shows that the binary’s motion imparts spiral waves on the
expanding winds. The winding angle of these waves depends
on the normalization of the expansion velocity relative to
orbital velocity (high-velocity winds will be loosely wound,
expanding further in each orbital cycle). The overall normal-
ization of 47r2p/|M| for each model reflects the inverse of the
wind expansion velocity—higher velocity winds have lower
densities at the same mass loss rate. Spiral waves impart an
approximately order of magnitude variation in local density in
the orbital plane over the spherical mean. These fluctuations are
quickly reduced out of the orbital plane—near the poles the

MacLeod & Loeb

density profile is a smooth 2 pattern. We note that wind
interaction regions lead to changes of wind angular velocity as
angular momentum is redistributed and averaged among the
interacting winds. However, because the velocity is primarily
radial, these appear as only slight deviations in the streamlines
in even the most extreme cases, as seen in the lower panel of
Figure 1.4 for Model D.

4.2. Wind Acceleration and Velocity

This discussion of the interaction and superposition of the
binary components’ winds reveals the critical role of the winds’
emergent velocity. Thermal winds accelerate due to radial
pressure gradients from near rest through a critical point, at
which the expansion velocity equals the sound of speed,
eventually reaching supersonic radial expansion. In Figure 2,
we analyze slices through the binary systems’ orbital planes
(figure set online shows each model). The upper panels show
the Mach number in the corotating frame, and the lower panels
show the Jacobi parameter. Velocity vectors are overplotted
relative to the corotating frame. The Mach number and Jacobi
parameter provide a window into the role that pressure
gradients play in accelerating the wind away from the binary.

In the Mach number panels of Figure 2, we see the transition
from subsonic outflow near the binary components to super-
sonic outflow with increasing radius—we mark the critical
transition at M, = 1 with a contour. For spherical, isothermal
winds, the critical point radius is roc = GM/ 26'52 = (A/2)R;,
where R, is the radius of the stellar surface. This relation
implies that we expect a larger subsonic outflow region for
larger )\, because the shallower pressure gradients in these
cases accelerate the wind more slowly. For some of the model
parameter space, there are individual sonic transitions
surrounding each binary component. This occurs for low A,
when the sonic radius becomes closer to the object radius, and
for larger fp, when the objects fill smaller fractions of their
Roche lobes. However, other cases, such as Model G, in which
A =5 and f = 2, the sonic surface surrounds and encloses
both binary components. For A = 2.5, we observe that the
sonic surface generally lies just outside of our surface boundary
condition, is joined across both binary components only for the
contact case of f = 1. For A =5, when fp < 2 the sonic
surface is joined, while for A = 10, the sonic surface is joined
across the binary components for all f; studied. These findings
are consistent with the simple estimate of joined sonic surfaces
when R,/Rroche = 2/, or in terms of our model parameters,
Jo S A2

The variation of the Jacobi parameter in model slices directly
illustrates the role of pressure gradients in accelerating the
wind. As we tabulate in Table 1, the surface Jacobi parameter,
Equation (18), of the wind is equal to the effective potential of
the surface. Ballistic, collisionless motion in the binary’s
gravity occurs at constant Jacobi parameter. By contrast, the
increasing Jacobi parameter seen in the slices of Figure 2 is the
result of the collisional nature of the fluid and the degree to
which pressure gradients add kinetic energy to the flow. We
mark the surface of zero Jacobi parameter in Figure 2, this
represents the transition at which a collisionless particle is
unbound relative to the binary system, ignoring the gas’
internal energy. Under different model parameter variations,
this £; = 0 surface occurs at varying distances from the binary
components. As for the sonic surface, at low A and high fg this
transition separately surrounds the two binary components,
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Model G (1=5.0, fp =2.0)
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Figure 2. Slices of wind Mach number (upper panels) and Jacobi parameter
(lower panels) at z = 0 in the corotating frame. The black contours shows the
Mot = 1 sonic surface and the E; = 0 surface. The sonic transition occurs
closest to the surfaces of the binary components for A = 2.5 and furthest for
A =10. The initial Jacobi parameter on the surface of the binary is
E;o = —2fp. Because E; is constant for collisionless motion in the binary
potential, increases in E; represent the acceleration of the wind by pressure
gradients. The complete figure set (12 images) is available in the online journal
and (MacLeod 2020).

(The complete figure set (12 images) is available.)

while for higher A and lower f3, this energetic transition surface
surrounds the binary (for some of the parameter variations it
occurs outside the £1.5a box of Figure 2).

The gradients of E; are strongest for the highest sound speed
winds, however, we note that outflowing streamlines trace
increasing E; in all cases. Streamlines along which Jacobi
parameter is relatively constant, such as the circulating flow in the
subsonic region close to the binary (in Model I, for example)
indicate regions where circulation at constant energy is occurring
mostly under the influence of the binary gravitational potential.
By contrast with the increases observed in E;, we note that the
wind Bemnoulli parameter, Equation (19), is observed to be
constant within the winds to with approximately 2% of the
surface Bernoulli parameter tabulated in Table 1. Together with
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our discussion of Ej, this indicates that the acceleration of the
wind away from the binary is due to the energy associated with
the gas enthalpy, &, which results in the increasing velocity of the
wind along outflowing streamlines.

Figure 3 examines the development of radial velocity in the
wind more quantitatively. Within a spherical volume of
r < 18a, we sample each zone and plot its radial velocity, v,,
relative to r. The resulting velocity—radius phase plot is colored
by relative mass per pixel. In each case we see that the wind is
accelerated steeply over r < 3a and then more gently as the
wind continues to expand. A purely isothermal spherical wind
will continue to grow in radial velocity over whatever scale the
isothermal temperature is maintained. Our model winds with
~ = 1.01 have finite, but large, asymptotic velocity. However,
it is worth noting that the radial velocity is close to constant
outside of the primary acceleration region that corresponds to
the subsonic regions close to the binary in Figure 2. In
Figure 3, we compare to the velocity profiles of corresponding
spherical polytropic winds, following the formalism outlined in
Appendix A. We solve the Bernoulli equation to model the
wind with mass flux M equal to that of the binary simulation
from an object with central mass M. These solutions are
marked “Bernoulli wind” in Figure 3. We observe that the
binary imparts some variation in the wind radial velocity at a
given radius, but that the overall trend tracks that of the
spherical wind, especially for A = 5 and A = 2.5. For A = 10,
we observe that the wind radial velocity in the binary
simulations is larger than that predicted by the Bernoulli model.

Across binary parameters, we observe significant trends in the
velocity to which the winds are accelerated. We measure the
wind velocity at » = 10a by taking the mass-weighted mean
wind speed in a spherical shell 9.5 < r/a < 10.5 and denote the
result v, ;0. Beyond this, the velocity of our polytropic winds
continues to expand slowly (and indeed an isothermal wind’s
velocity increases across as large a region as the isothermal
temperature is maintained, see Parker 1958). Figure 4 shows the
dependence of v, ;o on the model parameters A and f3. We see
that the highest velocity winds arise for high f; and low A
Because cs?s = —d / A= -0 / A, clearly there is a trend that
relates the wind velocity to the surface sound speed.

The lower panel of Figure 4 shows the resultant wind
velocity as a function of the surface sound speed. These initial
sound speeds are listed in Table 1. We note that the wind speed
is well described by a power-law dependence,

4/3
Vr,10 ~ E( Cs.s ) , (26)

Vorb 3 Vorb

which we additionally plot in Figure 4. Finally, we compare the
trends in v, ;o as a function of ¢, by solving the Bernoulli
equation for a spherical wind for each of the model parameters.
The Bernoulli wind model accurately predicts the wind
velocities for most of the simulations, except those with the
lowest surface sound speeds. These models with low cg
exhibit higher radial velocities in the simulation, which appear
to asymptote to V. 1o ~ Vorb, implying that the binary’s orbital
motion plays a significant role in imparting radial velocity to
these winds.
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Figure 3. Radial velocity of wind with r < 18a of the binary center of mass. The phase plot is colored by the normalized probability distribution function of wind
mass in the r vs. v, plane. In each case we compare to the velocity profile of polytropic winds from a single object with mass equal to the binary mass, and M equal to

that of the binary simulation, labeled Bernoulli wind.

4.3. Mass Loss Rate

We measure the mass loss rate from the binary via the
surface integral of Equation (7). The resulting mass loss rates
are tabulated in Table 1. In all cases, mass is flowing away
from the binary in a steady-state wind.

In Figure 5, we show the resulting mass loss rates as a
function of wind velocity, labeling groups of f; and A model
parameters (upper panel). At constant f3, we observe that when
the wind velocity (or surface sound speed) is larger (smaller \),
|[M| increases. By contrast, when f; increases at constant )\, the
increased wind velocity implies decreasing |M|, implying that
the deeper potential well implied by larger f3 leads to more
difficult escape for winds of a given velocity.

To some extent, these trends align with our analytic
understanding of hydrodynamic winds. To establish a baseline
for comparison, we define several estimates of the mass loss
rate based on the binary parameters and surface sound speed,
which are derived in Appendix B. We define:

(i) My, twice the estimated isothermal mass loss rate from
two individual objects of mass M /2, which have surface
sound speed ¢, and surface density p,. This estimate
of the mass loss rate is derived by computing 2 x
47l PeonicCs.s- As we will discuss, My; applies in the
regime of high-velocity winds that escape with little
interaction with the binary potential.

(ii) M, the outflow from the vicinity of the outer saddle
points of the gravitational potential, L, and L3, by
estimating 2 X p; Ap,vy,, where vi, ~ ¢, and the
estimation of the other terms is discussed in detail in
Appendix B. This estimate is applicable in the case of
lower velocity winds that interact strongly with the binary
potential.

We find that the following formula interpolates smoothly
between the expected behaviors at high and low sound speed:

-1 -1
. 242 2¢3 a3
Moy ~ — M + i
2CS?S GM

2
P 2
Xp.exp|—A + (— c§2 - %] + (3) . 27
S,S

—1

This estimating formula is plotted over the simulation data in
Figure 5. This comparison shows that M. qualitatively
captures the trends in M with binary parameters as well as
the overall normalization of the mass loss rate.

In the lower panel of Figure 5, we compare the mass loss
rates derived from the binary simulations to that estimated for
two single objects, My, as a function of wind velocity. This
ratio expresses the enhancement in mass loss rate that results
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Figure 4. Wind radial velocity at » = 10a, normalized by the binary’s orbital
speed, Vor. The upper panel shows vy 10/Vor, as a function of A and f;, while
the lower panel shows that the dependence is primarily on the surface sound
speed, ¢, s. We compare to our solution of the Bernoulli equation for a spherical
wind with mass flux M from an object of mass M, labeled Bernoulli wind. We
observe that the spherical wind largely predicts the velocities at 10a, except at
lower ¢, where there is some asymptotic behavior in the simulations with
Vr10 ~ Vorb, due to the orbital motion imparting radial velocity to the wind.

from the binary potential at low wind velocities. Furthermore,
we observe that the results collapse to a single velocity
dependent relationship under this normalization. Through these
comparisons, we observe that M,, captures the low-velocity
behavior, but diverges at high velocity, while M.y provides a
reasonable approximation across the wind velocity range. The
ratio of M.y /M is

2
3 P 1 3)\2
exp| —3 + \/( - 5) +(3)
est o
Mhi L Vor 6
I+ z()

which provides an analytic expression for the enhancement in
the hydrodynamic wind from the binary solely as a function of
its properties and surface sound speed.

Finally, the fact that the binary enhancement is a function of
wind velocity indicates that we may be able to express the
binary enhancement in wind mass loss rate as a function of the

, (28)
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Figure 5. Mass loss rates from simulated twin-star binaries as a function of
wind velocity, v, in units of vor,. In the upper panel, we show simulation M
in code units compared to M., Equation (27). The highest mass loss rates
occur for the combination of low A and fg. In the lower panel, we normalize M
by My, twice the expected single-object mass loss rate. At low wind velocities
relative to the orbital velocity (equivalently for close binaries at fixed wind
velocity), the mass loss rate from the binary is enhanced relative to the
nonbinary equivalent.

general property of wind velocity. Inspired by the functional
form of Equation (28), we fit M/M;; to an exponential
function, and find that

. 4/3
M —®,,
— ~exp|2 — s
My Vi10
8/3
~ exp 4.15[@ (29)
Vr,10

provides a good description of the enhancement in M due to
the fact that the objects are in a close binary. This function is
shown with a dotted—dashed line in Figure 5. For example, for
a pair of stars with fixed wind velocity, Equation (29) describes
how the total mass loss rate changes as the binary separation
(and thus v,) changes.

One of the previously applied predictions for tidal enhancement
of wind mass loss was postulated by Tout & Eggleton (1988, their
Equation (2)). This model predicts an enhancement factor
depending on the degree of Roche-lobe filling, according to

. 6
M R 1
— =14 By|min| —, — || , 30
( | 2]) 60)

where R/Ry, is the ratio of the stellar radius to the radius of the
Roche lobe and B, is a constant with nominal value 10*. In
Figure 6, we display the degree of wind enhancement as a
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Figure 6. Comparison of simulated enhancement in mass loss rates compared
to the single-object prediction, as a function of the ratio of the stellar radius to
the Roche-lobe radius, R /RL = qul. The simulated values are compared to the
prediction of Tout & Eggleton (1988), with three values of the constant B,,.
Unlike the scaling with wind velocity shown in Figure 5, we find that the
binary enhancement in wind mass loss is not single valued with degree of
Roche-lobe occupancy, nor is its approximate magnitude described accurately
by the Tout & Eggleton (1988) formula with the default value of By, = 10,

function of Roche-lobe filling. By comparison to our simulation
results, we see that the enhancement due to the presence of the
binary is less than predicted by Tout & Eggleton (1988), and that
our simulation results are multi-valued at a given degree of Roche-
lobe filling. We therefore argue that wind velocity compared to
orbital velocity, rather than Roche-lobe occupancy, is the most
useful determinant of the rate of mass loss.

4.4. Angular Momentum Loss Rate
4.4.1. Simulated Loss Rates

We analyze angular momentum carried by the wind in terms
of the surface integral of Equation (8). In this section, we refer
to specific angular momenta in their dimensionless form, I/ly;,.
Much like mass loss rates, we argue that important trends
emerge as a function of wind velocity.

Figure 7 shows the dimensionless specific angular momen-
tum of the wind, v, and its dependence on wind velocity. We
show an equivalent right-hand axis of the corotation radius
implied by a given angular momentum,

lloss
9 31
0 (€2))

Tcorot =

where /. is the angular momentum of the wind and 2 is the
orbital frequency. Figure 7 demonstrates that angular momen-
tum losses depend primarily on wind velocity:

(1) At high wind velocities, winds carry the angular momen-
tum of the binary components, thus ~, = =1 and
Feorot = 1 = a/2. This high-velocity limit is a well-known
case of an essentially noninteracting wind that freely
escapes and is sometimes called “Jeans” mass loss.

(i) In the opposite limit of low-velocity winds, material
could be in corotation with the binary all the way out to
the radius of the outer Lagrange point, r;, ~ 1.2a. This
yields 7, = r7,Q/lyin & 5.76. Given the shape of the
effective potential outside of the outer Lagrange points,
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Figure 7. The dimensionless specific angular momentum carried by the wind,

Vioss = loss/Ibin» as a function of wind velocity, v,;o. The right-hand axis
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corot

where () is the orbital frequency. A contour is plotted at the critical value of
Moss = 3/2, which separates orbital evolution in which @ > 0 or & < 0. High-
velocity winds escape with v, . ~ 1. Slower velocity winds lead to vy, . > 1 as
the winds superimpose and interact with the binary effective potential. We
compare to an approximating form, Equation (32), labeled “approx” and to the
results of Brookshaw & Tavani (1993) for collisionless mass loss, labeled
“B.T. (1993).”

there is no mechanism (for a nonmagnetic wind) that
would maintain corotation to larger radii. We therefore
label this upper limit with 7, 7, in Figure 7.

In between these limits lies the critical value of v, = 3/2 that
separates orbital evolution in which the binary widens due to mass
loss (7,4 < 3/2) or tightens due to mass loss (7, > 3/2).

Between the high and low-velocity limits of v, ., we must
consider the effects of the extended surfaces of the binary
components, hydrodynamic stresses from the superposition of
winds, and the binary’s gravitational torques on the outflowing
material. That these overall processes reduce to a nearly one-
dimensional function of wind velocity indicates that the primary
physical effect must be the expansion velocity of the wind relative
to the binary orbital velocity. Through studying our simulation
snapshots, we observe that the wind is maintained in near-
corotation out to approximately the sonic surface, along the
simulation x-axis that connects the binary components. This is
visualized most clearlzy in the snapshots of Figure 2. Thus,
Teorot ~ 1 + Gm; [(2¢5) = 1 + GM /(4c2,) in the intermediate
and high-velocity regimes, with a maximal limit at 7 ,.

Drawing on this functional form for inspiration, we develop
the following approximating formula in terms of the more
general property of wind velocity:

1
G a\—5 |
~ —b a M
Teorot &~ | I, + |+ 5 s (32)
Vr,lO

where the associated dimensionless specific angular momen-
tum is

Vioss = Tanrot 2/ Ibin- (33)

This expression provides a reasonable description of our
simulation results across the various wind velocity regimes. We
find that @ = 1.5 and b = 5 fit the simulation data reasonably
well. This curve is reproduced with a dotted—dashed line in
Figure 7, where it is labeled “approx.”
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4.4.2. Comparison to Collisionless Mass Loss

In Figure 7 we compare our results for v, to those derived by
Brookshaw & Tavani (1993) under a fairly different set of model
assumptions. Brookshaw & Tavani (1993) model a collisionless
wind by integrating the ballistic trajectories of particles in the
binary potential. This is conceptually similar to but more
comprehensive in parameter coverage than earlier work by Lin
(1977). The wind emerges from one component of the binary
system, and Brookshaw & Tavani (1993) inject their wind with a
radial velocity, which in their notation is written V and is
normalized to the orbital velocity of the star losing mass. Thus, in
our units the injection velocity is v, gr = V/2 for g = 1. They
denote the dimensionless specific angular momentum of particles
in the wind as Ay, which can be converted to our notation (for
g=1) by ¥,.s = 2hcm. Finally, for comparison to our results
measuring the wind velocity at » = 10, we compute what the
ballistic wind velocity would be, assuming expansion from the
single, wind-losing binary component

1 1
V10.BT ~ \/viﬁ’BT — 2GM*(— — —) =~ vi%l’BT — 1.9, (34

R* r

where the numerical result comes from r = 10, GM, = 0.5,
and R,. = 0.5. Because neither of these velocities is completely
comparable to those in our hydrodynamic simulations (the
velocity profile of decelerating ballistic particles is quite
different from that of our accelerating wind), we show both
vip.gT With stars, and v;o gr with plus symbols in Figure 7.

Despite the differences in model, we observe a largely similar
trend in the results of Brookshaw & Tavani (1993) and our
hydrodynamic simulations. For v, 10 < 2, we find 7, > 1,
while for v, 10 2 2, 7, asymptotes (in the case of Brookshaw &
Tavani 1993 to v, = 1.39 versus 7, = 1 in our simulations).
The physical origin of these similar results is somewhat different.
In the case of Brookshaw & Tavani (1993), the particles acquire
angular momentum (beyond that with which they are injected)
through gravitational stresses alone, while in our simulations,
hydrodynamic stresses play a role in imparting angular
momentum to escaping wind. Brookshaw & Tavani (1993) do
note, however, that in the cases of low-velocity wind only the
particles injected on the outer edges of the binary are lost. In our
simulations, pressure gradients play a similar regulatory role in
allowing material to circulate toward the outer Lagrange points L,
and L; before it is carried away.

4.4.3. Origin of Angular Momentum in Interacting Winds

In Figure 8, we decompose <, . into the contributing
components resulting from gravitational stress (”ygrav) or from
hydrodynamic stress (7,;,4)» Equations (15) and (17), respec-
tively. This decomposition allows us to trace the origin of angular
momentum acquired by the wind as it flows away from the
binary. Hydrodynamic stresses include surface forces from the
imposition of constant pressure and density along the equipo-
tential surface defined by fp, Equation (6), and the subsequent
collisional nature of the gas as it expands away from the binary
components and the two, initial separate, winds superimpose.
Gravitational stresses arise from net torques on the wind from
the binary’s gravity and the resulting exchange between wind
and orbital angular momentum. For example, leading edge
overdensities in the flow torque the binary forward in its orbit,
while trailing overdensities torque the binary backward.
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Figure 8. Dimensionless angular momenta of the wind resulting from
hydrodynamic stresses (7,;,q) OF gravitational stresses (7). Together these
components comprise the total dimensionless angular momentum, 7, . All
plotted in terms of wind velocity, approximated by v, 10. We find that y,; , > 0
in all cases, and is largest for low fg and high A, which lead to low wind
velocities. The gravitational addition to / can be either positive or negative, but
has smaller magnitude that ~,; ;.

Figure 8 reveals that v, ,; is always greater than zero. It is near
unity at high wind velocities, where winds establish separately
around each binary component before superimposing. At lower
wind velocities, 7,,;,q takes on values significantly larger than
unity, driving the bulk of the increase in 7, that we have noted
with decreasing velocity in Figure 7. The expanded subsonic region
surrounding the pairs at lower wind velocities contributes to an
extended region in which pressure forces act to redistribute flow
away from the overconcentration near the binary center of mass,
imparting it with additional angular momentum. The extended
surface area of the binary components at lower fg also contributes
to this addition of angular momentum in the these cases, as the
wind can be seen to “slide” off of the leading edges of the orbiting
stars.

Gravitational stresses as measured by ~,,, in Figure 8
approach zero at high wind velocities—the wind is essentially
spherical and noninteracting. At intermediate velocities 7, is
negative, implying that gravitational stresses remove angular
momentum from the wind, adding it to the binary. At low
velocities, 7,,, > 0, and the binary potential imparts angular
momentum to the slowly expanding wind. At intermediate wind
velocities, 2.5 < v, 10/Vorb < 3, we observe the widest range of
Vioss At similar velocity values. The decomposition by component
is useful in disentangling this feature. The highest value of v
in this regime comes from Model A, for which fs = 1. The
Roche-lobe filling surfaces of this binary contributes to a high
Vwing> Which is slightly reduced by the negative 7,,,,. The lowest
value in this range comes from Model L, with f; = 4. Here
Yoind = 0-79, but the eventual value of v, is significantly
lower, 7, = 0.67 due to the negative contribution of 7. A
similar circumstance occurs with Model G, in which ~,; ;> 1
but 7, < 1 due to a negative ~,,,. Thus, while the high-
velocity asymptote of the wind specific angular momentum is
Voss — L, in the intermediate wind velocity regime, there
appears to be some variation at fixed wind velocity depending on
other binary parameters, and values of 7, < 1 are possible in
this regime.



THE ASTROPHYSICAL JOURNAL, 902:85 (14pp), 2020 October 10

5. Discussion
5.1. Limitations and Astrophysical Applicability

We have studied a highly idealized numerical problem, in
which, among other assumptions, a perfectly symmetric pair of
stars, synchronously rotating with their orbit, develop equal winds
from high-temperature surfaces. We adopt a nearly isothermal
equation of state for the wind thermodynamics. The resulting
hydrodynamic winds accelerate through a sonic point as they
expand away from the binary. This model is an extension of one
of the simplest models of the solar wind, the Parker (1958) wind
model, though the details are slightly different for v = 1.01, as
described in Appendix A.

Depending on stellar surface properties, one of several different
wind-acceleration mechanisms is more likely to contribute to the
phases when stars lose the most mass. In low-temperature stellar
surfaces, radiation pressure on dust that forms within the cooling
and expanding wind is a significant wind driving mechanism.
Because the radiative flux scales with 2, in its simplest form this
sort of wind driving mechanism has the effect of reducing the
gravitational attraction of the stars by a factor (which in general is
not spatially constant because the formation of dust highly effects
the opacity and thus the Eddington ratio as a function of radius).
In higher-temperature stellar surfaces, the primary wind driving
mechanism is radiation coupling to Doppler-broadened metal
absorption lines. A similarity is that these massive stars can have
luminosities approaching the Eddington luminosity for electron
scattering, and thus have reduced effective gravity as well. In the
case of a line-driven wind, the resulting wind-acceleration profile
differs somewhat from that of a hydrodynamic or dust-driven
wind (Lamers & Cassinelli 1999).

What each wind model shares is the acceleration of wind from
near rest at the stellar surface to some asymptotic velocity at large
radii. When the binary system has separation comparable to the
characteristic radius of acceleration, interaction with the binary
potential is especially important (e.g., Chen et al. 2017; El Mellah
et al. 2020). In the case of multiple, radiation driven winds, the
superposition of radiative forces and the winds themselves are
also important (Canto et al. 1996; Pittard 2009; Lamberts et al.
2012; Pittard & Dawson 2018). Future work could expand on the
simplest-case scenario that we have adopted in this paper to
explore how significant these various wind-acceleration mechan-
isms are in determining the morphology of angular momentum
carried by the wind from twin-star binaries.

Although a final conclusion awaits these further studies, we
hypothesize that the velocity—mass-loss and velocity—angular-
momentum connections established in Figures 5 and 7 will be
relatively robust regardless of the particulars of the wind-
acceleration process, given that they can be expressed in terms of
the relatively general property of wind velocity. At a minimum,
these models are likely more appropriate than assuming that the
fast-wind approximation of unmodified mass loss rate at v, .. ~ 1
holds regardless of binary properties. Finally, we note that
Equations (29) and (32) provide convenient approximations of
our simulation results that can be applied on the basis of the ratio
of the wind velocity to the orbital velocity, a property that is
simple to estimate in binary population models to aid the
application of our simulation results to real systems.

5.2. Orbital Evolution of Close Twin Binaries

To illustrate the implications of our findings for close twin
binaries, we compute the orbital evolution of a stellar pair of
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Figure 9. Binary mass and separation as a function of time, given different
initial ratios of wind velocity to orbital velocity. In each case we consider the
range of times during which mass decreases to 90% of its original value. For
lower wind velocities, the mass loss rate is enhanced and the orbit tightens in
response.

mass M and separation a, with initial mass M; and separation a;.
We assume a constant wind speed, vy, and we associate this
wind speed with our measured wind speeds at r = 10a, v, 1.
We then apply the approximating forms of Equations (29) and
(32) to compute the resulting orbital evolution as a function of
Vioss» f0llowing Equation (23). The result is shown in Figure 9.
Binaries with high-velocity winds expand, as expected with
Jeans mass loss of high-velocity winds. Binaries with lower
velocity winds lose mass more rapidly and also contract, in the
most extreme cases quite severely.

A key application of these results may be to the chemically
homogeneous evolutionary model for the formation of merging
binary black holes (de Mink & Mandel 2016; Mandel & de
Mink 2016; Marchant et al. 2016; Song et al. 2016). In this
model, a near-contact massive binary evolves under the
influence of tidal stresses to acquire additional rotational
mixing such that all or nearly all of each star eventually
collapses to a black hole (de Mink et al. 2009). One such
massive contact binary has been observed in 30 Doradus,
VFTS352, which is a near-twin binary with total mass of
approximately 59M., (Almeida et al. 2015). In many cases, the
resulting black hole pairs are close enough to merge in less than
the age of the universe (for one example, see Figure 4 of
Marchant et al. 2016).

Throughout their evolution, binaries undergoing chemically
homogeneous evolution lose a portion of their mass to winds.
To give a specific example, the exemplary system evolved in
Figure 2 of Marchant et al. (2016) loses 10% of its mass on the
main sequence and 20% prior to the collapse at metallicity of
Z-/50. Because winds are largely metal-line driven, this
fraction is thought to be metallicity dependent (e.g., Puls et al.
2008). The impact of this wind mass loss on the binary orbits
may have important implications for the separation of the
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binary system. If the separation widens too far, a pair might
separate far enough that their remnant black holes would not
merge under the influence of gravitational radiation. On the
other hand, if the separation tightens too dramatically, a pair of
stars might merge and produce a single, more massive black
hole remnant.

Mandel & de Mink (2016) and de Mink & Mandel (2016)
consider a number of variations of the wind mass loss model,
and demonstrate that this is a central parameter in determining
the number of merging systems that are observable by LIGO.
In one of their model variations, winds are assumed to carry the
angular momentum predicted by the model of Brookshaw &
Tavani (1993). The assumption of ~y, . > 1 yields their highest
predicted observable merger rates at LIGO design sensitivity
(see Table 1 of de Mink & Mandel 2016). In a simple sense,
this is because any changes in binary separation are amplified
by the gravitational-wave merger time that scales as a*. By
contrast, most population models, such as BSE (Hurley et al.
2002), the chemically homogenous models of Marchant et al.
(2016), MOBSE (Giacobbo et al. 2018), and SEVN (Spera
et al. 2019), currently adopt the fast-wind approximation of
Moss = 1 for lack of a complete and more sophisticated
prescription.

Our results suggest that the relative magnitude of the wind
speed to the orbital velocity may be a simple representative
parameter that determines the binary enhancement in mass loss
rate as well as the angular momentum carried away from the
binary with the wind (see also Brookshaw & Tavani 1993;
Jahanara et al. 2005; Chen et al. 2017, 2018). Population
models incorporating these approximations may be useful step
toward understanding how initial properties of close binaries
map through their main sequence evolution and toward the
formation of binary black holes that may eventually merge.
Indeed, the similarity between our model results and those of
Brookshaw & Tavani (1993) are suggestive of the high
predicted black hole merger rates observable by the LIGO-
Virgo network (1200yr~! detections at design sensitivity)
under this model variation of Mandel & de Mink (2016) and de
Mink & Mandel (2016).

6. Summary and Conclusion

We have created and analyzed models of thermal winds from
twin-star close binaries in circular orbits. Each of our models
adopts ¢ = 1, and we set the binary components surface based
on a factor times the potential at the L, Lagrange point, f3. The
wind initial sound speed is set based on a hydrodynamic escape
parameter, \. We examine the emergent wind distributions in
each model, as well as the fluxes of mass and angular
momentum carried away from the binary by the wind.

Some key findings of our study are:

1. The acceleration of winds from about the binary
components leads to a symmetric outflow traced by
spiral density waves in the plane of the orbit (Figure 1).
The subsonic acceleration region can surround either the
individual binary components, or the entire binary, when
fo < A\/2 (Figure 2). The resulting outflow is largely
similar to that of a spherical wind, with the addition of
density and velocity waves in the equatorial plane due to
the binary’s motion (Figure 1).

2. Eventual wind radial velocities are related to the surface
sound speeds. At low sound speeds, radial velocities
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exceed that of a single-object wind model, implying that
orbital motion imparts additional kinetic energy to the
wind (Figures 3 and 4).

3. Mass loss rates from the binary are enhanced relative
to the estimated superposition of two single-object
winds. This effect is best modeled as a function of wind
velocity, as shown in Figure 5, and approximated by
Equation (29).

4. The specific angular momentum carried by the wind
depends primarily on the wind velocity as well (Figure 7).
It is enhanced well beyond the binary’s specific angular
momentum for the slower winds, which circulate around
the binary before escaping near the outer Lagrange points
(Figure 8), and we provide an approximating formula in
Equation (32).

The dependence of wind mass loss rate and specific angular
momentum on wind velocity, as modeled by Equations (29)
and (32) may have implications for models of massive, near-
contact twin binaries undergoing chemically homogeneous
evolution due to rotationally enhanced mixing. In particular,
Mandel & de Mink (2016) and de Mink & Mandel (2016)
argue that the model is sensitive to both the mass and angular
momentum carried by winds. Our results suggest that for
contact systems with low-velocity winds, mass loss rates and
angular momentum loss rates will both be enhanced.
Comparison to the model variations of Mandel & de Mink
(2016) and de Mink & Mandel (2016) suggest that the high
angular momentum loss rates may indicate an enhancement in
the portion of binaries that undergo chemically homogeneous
evolution that leave binary black hole remnants that can
merge in a Hubble time. Productive avenues for future study
include modeling twin-star winds that are radiatively, rather
than thermally, accelerated, and applying findings of mass
and angular momentum loss rates in population studies of
detectable binary black hole mergers with the LIGO-Virgo
network.

Software and data to reproduce the results in this paper are
made public in parallel to this publication via the Zenodo data
set(doi:10.5281/zen0d0.3939284) and associated software
repository hosted on github® and Zenodo (MacLeod 2020).
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This work used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by
National Science Foundation Grant No. ACI-1548562. In
particular, use of XSEDE resource Stampede2 at TACC
through allocation TG-AST190046 enabled this work.

Software: IPython (Pérez & Granger 2007); SciPy (Virtanen
et al. 2020); NumPy (van der Walt et al. 2011); matplotlib
(Hunter 2007); Astropy (Astropy Collaboration et al. 2013);
Athena++ (Stone et al. 2020); XSEDE (Towns et al. 2014);
TwinWinds (MacLeod 2020).
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Appendix A
Spherical Polytropic Winds

Spherically symmetric polytropic winds serve as a useful
benchmark against which to compare the binary wind. We
consider a wind that satisfies the mass continuity equation

M= 4mr?pv, (A1)
and has a polytropic equation of state
P =Kp'. (A2)

The Bernoulli parameter is preserved along a streamline

> GM 4 P

B="2
2 r

, (A3)
y—1p

where the potential is —GM /r. From the surface condition at
the launching of the wind, we can solve for K = R /p!. Solving
the continuity equation for p, we can rewrite the Bernoulli
equation as

2 7 V!
V_ — G_M + LK M ,
2 r v—1 47rly

with known initial conditions, the constants B, K are known. If
we select a value for M, we can numerically solve for the full
solution for the velocity profile v(r).

B= (A4)

Appendix B
Estimates of Mass Loss Rate

B.1. Single-object Regime

We begin with the derivation of the wind mass loss rate from
a single object of mass m. We assume an isothermal wind,
which is similar to, but not identical to, the v, = 1.01 model
applied in our hydrodynamic simulations. In this case, we use
the sonic point, at which the wind radial Mach number is unity,
to anchor our solution. Thus, i ~ —7r2;. Psonic Vsonic-  The
velocity is equal to the isothermal sound speed, vyonic = ¢ of
the isothermal gas. We can estimate the sonic radius as

Gm

Fsonic = 3.
S

(BI)

Then, we need to estimate the density at the sonic point. In
the subsonic, quasi-hydrostatic region, the density follows
exponential decay, so we use that solution to relate the sonic-
point density to the surface density as

LN X 1
Psonic = Ps€XP|—5 — — — S|

Cs

(B2)

The first two terms in the exponential express the potential
difference between the surface () and the sonic point (Py),
dividing by the sound speed squared yields the number of
scale heights in the quasi-hydrostatic solution. The exp(—1/2)
factor comes from solving the Bernoulli equation for the
nonzero velocities in the subsonic region and accounts for the
lower density realized with vyonic = ¢s (page 68 Lamers &
Cassinelli 1999). We note that &;/c2 = —\, and following
Equation (B1), —&./ cs2 = 2. Thus, the expression above can
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be simplified to

3
Psonic = Ps eXp(E - /\) (B3)
Thus, the estimated mass loss rate is
2
m s 77T(Gn31) Ps exp(i — /\). (B4)
C 2

B.2. Binary Regime

Here we estimate a mass loss rate from an equal-mass binary
of mass M, assuming that a subsonic region encloses the binary
components (thus, wind escapes from the binary, rather than
single components). Under these conditions, we need to take
into account the binaries effective potential, including the
gravity of the two components and the rotating frame in which
the wind is launched. This implies that the wind’s subsonic
quasi-hydrostatic region cannot expand beyond the outer
saddle points of the effective potential, L, and L;. We will,
therefore, derive a mass loss rate considering the flow through
these outer Lagrange points as M ~ Ay, p; vr,. Much like flow
through the L; Lagrange point, we assume that material has a
velocity equal to its sound speed as it crosses the saddle point,
thus, v;, = ¢, (Lubow & Shu 1975; Jackson et al. 2017). The
area at the outer Lagrange point is estimated by similar analogy
to work considering the L, Lagrange point. The degree to
which gas can spread from the precise saddle point is
determined by the scale height, thus, to order of magnitude,

el

2’
where Q* = GM/a’ is the binary orbital frequency.

The density at the outer Lagrange point is estimated by
analogy to the single-object case, as

Ap, ~ BS5)

(I)s (I'L 1
PL, = Py exp[? Sl 5]’ (B6)
o, 1
=p.exp| -\ — =2 — —|, B7
Ps p( 2 2) (B7)

where ®;, is the effective potential evaluated at the outer
Lagrange point. For an equal-mass binary, ®,, ~ 0.86424®, =
—1.72848GM /a.

Combining these terms yields

3
M~ 727;20; psexp()\ — @32 — %], (B8)
CS
3.3
. ,TCa __CIDLZ_l
~ =2 Gl psexp[ A 22 2), (B9)

where the additional factor of 2 accounts for symmetric loss
through two equal outer Lagrange points. This derivation could
be generalized to an unequal binary by providing separate
estimates of p, and p, .

B.3. Application to Simulation Models

To apply these estimates to our simulation models, we begin
by acknowledging that our simulation is not strictly isothermal.
For the purpose of comparison, however, we associate the
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surface sound speed, ¢, with the isothermal sound speed of
the previous subsections.

Next, we identify the single-object regime as applicable
when winds are sufficiently high velocity as to be relatively
unaffected by the binary’s orbital motion and potential. In this
regime, ryonic << a (or similarly c¢ss>> Vorp), and the wind
escapes from an effectively single object prior to interacting
with the binary. The binary regime applies under opposite
conditions, when ronic 2 a (Or ¢55 S Vo). In the effectively
single regime, we need to account for mass loss from two
objects, each of mass m = M /2. With these associations, we

define
7 (GM)? 3
_5 3 PseXP(E — )\),

Cs

Mhi ~

(B10)

which approximates the binary mass loss rate in the high wind-
velocity regime, and

(B11)

S

3.3
. g a P, 1
My, ~ —2—="—p exp| -\ - =& — —|,
° M " p( 2 2)

which approximates the binary mass-loss rate in the low wind-
velocity regime.
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