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Abstract—To address the von Neumann bottleneck that leads
to both energy and speed degradations, in-memory processing
architectures have been proposed as a promising alternative
for future computing applications. In this paper, we present an
in-memory computing system based on resistive random-access
memory (RRAM) crossbar arrays that is reconfigurable and can
potentially perform parallel and general computing tasks. The
system consists of small look-up tables (LUTs), a memory block,
and two search auxiliary blocks, all implemented in the same
RRAM crossbar array. External data access and data conversions
are eliminated to allow operations fully in-memory. Details of
addition, AND logic and multiplication operations are discussed
on the basis of search and writeback steps. A compact instruction
set consisting of 10 instructions is demonstrated on this architec-
ture through circuit level simulations. Performance evaluations
show that the proposed in-memory computing architecture is
suitable for handling data-intensive problems. The average power
consumption of the crosshar chip is estimated to be 45uW.

Index Terms— In-memory computing, RRAM, crossbhar array,
look-up table (LUT).

I. INTRODUCTION

HE von Neumann architecture has reigned modern com-

puters for a long period. With Moore’s Law leading
the way, sequential data processing with buses connecting
separated processors and memories has been able to meet the
computing needs until recently. However, the “von Neumann
bottleneck,” i.e., the low speed and high energy demand
associated with memory access, has now become the limiting
factor of the system performance, a problem magnified in
today’s big data era [1], [2]. New architectures based on new
computing principles and devices are likely required for future
computation applications [3], [4].

In-memory computing architectures can efficiently address
the von Neumann bottleneck problem and have been exten-
sively studied [5]-[15]. New memory technologies such as
resistive random-access memory (RRAM) offer interesting
opportunities for computing due to properties of non-volatile
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storage, high energy efficiency during write/read, high opera-
tion speed, and high integration density [16]-[19]. In-memory
computing based on RRAM crossbar arrays enables efficient
bitwise logic and arithmetic operations, since the different
resistance levels can be used to both store data and directly
modulate information flow, achieving co-location of memory
and logic at the device level. Several previous studies have
proposed the implementation of logic circuits using RRAM
crossbar arrays with promising performance [5]-[7], [20].
However, significant challenges still remain. For example,
the number of operation steps to complete an arithmetic
process is typically large. Additionally, input and output data
are of different formats, e.g. voltage and resistance values,
respectively, requiring external data access and data conversion
operations. As a result, data migration will still be present,
though the amount of transferred data is reduced.

In this paper, we propose an RRAM-based in-memory
and reconfigurable computing architecture that addresses these
issues. Both the input and the output data are represented by
the devices’ resistance values that can be directly accessed
and processed, without read-out and write-back. With small
look-up tables (LUTSs) implemented in the RRAM crossbar,
we show the system can be used to process general logic
and arithmetic operations. Performance evaluations verify that
the proposed in-memory computing architecture offers high
efficiency.

II. IN-MEMORY COMPUTING ARCHITECTURE

The proposed in-memory computing architecture utilizes
RRAM crossbar to handle the different computing tasks
required for general-purpose computing. Here, we present an
entirely in-memory approach, where the data are processed
in place without the need for external data access. In this
case, the RRAM provides the resources for memory/storage,
arithmetic, logic, and data movement within the physical
crossbar. This is achieved by virtually splitting the crossbar
into four regions: memory/storage region, LUT region, and
two auxiliary block regions (search auxiliaries, SAs), as shown
in Fig. 1a. The memory storage region stores the inputs and
the outputs of the operations. Additionally, it allows dot-
product operation to produce the numbers of ONEs in the
input vector. Here, we rely on binary RRAM devices to allow
the number of ONEs to be counted in a binary fashion.
Each device offers two resistance states: the low resistance
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Fig. 1. (a) The proposed in-memory computing architecture with an RRAM
crossbar virtually split into four regions. The crossbar is interfaced and
controlled using CMOS circuitry. (b) Data flow diagram of the proposed
operations.

state (LRS) representing logic ONE and the high resistance
state (HRS) representing logic ZERO. The crossbar array is
based on the 1R structure. The top electrodes (TE) of the
bipolar RRAM devices are connected to the columns and the
bottom electrodes (BE) are connected to the rows. Even though
selectors may benefit storage functions, they are not required
in the array since all the columns and rows are activated during
the computing operations [3].

The other blocks in the system are implemented in the
same RRAM crossbar, such that the size and the functions
of the blocks are defined by software and can be readily
reconfigured. The LUT blocks provide various arithmetic
and logic functions for our system, where each LUT block
represents a specific arithmetic or logic operation. In general,
the presented in-memory computing architecture follows a
simple processing cycle, as shown in Fig. 1b. First, each new
instruction is decoded by the instruction decoder within the
control unit (CU). Accordingly, the desired memory region is
activated. With the aid of two search auxiliary blocks (also
implemented in the same crossbar), the LUTs are searched
for a match for the data under processing. Finally, the result
of the LUT search that represents the processed data is written
back to the memory portion of the array.

A typical LUT stores a truth table for a given Boolean
function. In this case, the table consists of an operand part
which stores the binary combinations of n-bit inputs, and the
result part which stores their corresponding results. However,
such type of LUTs will grow exponentially in size, where the
table length equals to 2". To address this issue, we note that
for standard logic and arithmetic operations, one only care
about the number of ONESs per operand, not the specific order
of the operand bits. Such approach results in much smaller
LUTSs, where the length of a table equals to n + 1 rather than
2". Fig. 2 shows examples based on this approach, showing
NOT, AND, NOR and XOR as examples of logic function
implementation, and counting operation implementation which
provides the number of ONEs per operand and is an essential
operation of arithmetic multiplication and vector addition.
Typically, the LUTs are programmed beforehand and remain
static during the computing process. However, the LUT area in
the crossbar is assigned through software and can be expanded
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Fig. 2. An example of LUT that implements operations such as count (add),
NOT, AND, NOR and XOR by counting the number of ONEs of the input.

or shrunk as needed. Designers should know what LUTs they
need beforehand and assign specific rows and columns to
different parts of the LUT. For example, the count (add) LUT
area is assigned by declaring that rows 1~7 are assigned to it,
columns Ag ~ As are assigned to the operands and columns
Sp ~ S; are assigned to the count results.

The auxiliary blocks can aid the LUT search operation. All
devices in this region should be initialized to the HRS and
remain unchanged during the operations.

II1. CircuUIT OPERATION

The proposed computing scheme is based on search-
ing the LUTs for an entry with the same number of
ONEs as the input and then write the corresponding
result from the desired LUT to the memory block. Below,
we detail the circuit operation of different processing steps
with the support of HSPICE simulation results, where we
adopted the RRAM device model presented in [21]. In
this model, the device resistance value depends on the
voltage difference across the device. The LRS value is
10® x V(p,n)/sinh(3 x V (p,n)) Ohm and the HRS value is
10" x V(p,n)/sinh(3 x V (p, n)) Ohm. The set/reset voltages
are £2V. Assuming 25% variation of the set/reset voltage,
in all the simulations in this work we assumed write voltage
V, = 2.5V, bias voltage during writeback V, = 1V, and
read voltage V. = 1V and pulse width of 50ns. At the read
voltage, the device has a LRS of 10MQ and a HRS of 10GQ.
We consider a 42 x 41 crossbar where a 32 x 32 sub-array
within it is used as the memory block. In the memory block,
different bits of the same data are stored in the same row,
with the right most RRAM device representing the lowest
bit, and the devices to the left representing higher bits; or
in the same column, with the bottom device representing the
highest bit, and the upper devices representing lower bits.
When processing the bit-wise logic operations, the same bit
of two operands are placed in the same row.

A. LUT Search Stage

The first processing step is to find the entry in the LUT that
matches the number of ONESs in the input data that is stored
in the memory block. Matching the number of ONEs between
the memory and the LUT block is done through the SAs,
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Fig. 3. Demonstration of the LUT search operation. The read voltage is

applied to the input columns in the memory block and the operand columns
in the LUT. The load resistors convert the output currents into voltage signals,
depending on the number of ONEs in the operands. If one row in the LUT
contains the same number of ONEs as the operands, the output voltage of the
amplifier connected to this row will be closest to zero.

based on the resistance-dependent voltage distribution pattern
over the RRAM cells, as shown in Fig. 3. All cells in the SA
block are initialized to the HRS and remain unchanged during
computing. In this example, a 50ns, 1V read voltage pulse is
applied to the input columns By — Bs shared by the memory
block and a SA block. The same voltage pulses are also applied
to the LUT columns Ag — As, shared by the LUT block and
the other SA block, and all the other columns are grounded.
Each row in the array is grounded through a series (load)
resistor and a NMOS switch. The NMOS switch is turned on
with a 2V gate voltage and turned off with a OV gate voltage.
In the example in Fig. 3, row 1~ 7 and the row storing
the data (the data row) will be grounded through the on-
state switches, all other rows are floated through the off-state
switches. The load resistance value is 100K, approximately
100 times lower than the on-state resistance of RRAM device,
so that the voltage divider output between the row resistance
and the load resistance is directly proportional to the number
of ONEs in that row with the switch on. Hence, rows of equal
number of ONEs in the memory block and in the LUT block
will produce the same voltage. In this case, by comparing
the output voltage of the LUT rows with that of the desired
memory row, a match can be detected. This can be achieved
by implementing sub & amp functions through a group of op-
amps, and the LUT row containing the same number of ONEs
as the input data will produce the smallest V, magnitude. Note
that there will be no sneak current between column By ~ Bs
and Ag ~ As since they have the same electrical potential.
Furthermore, as the voltage on the data row is on the order
of 10mV, the current in the main path, for example, column
B1-LRS device-data row-load resistor-ground, will be much
larger than the current that flows from the grounded columns to
the data row. Hence, the sneak current in the search operation
can be safely neglected.

After the matched row is identified, the target output can
then be written back by copying the value from the LUT to
the memory block. In the search operation, the number of op-
amps is equal to the number of the LUT rows, and each LUT
row is connected to the negative input node of an op-amp,
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while the data rows are connected to the positive input nodes
of all op-amps. An NMOS switch is used between each row
and the op-amps. When there are n input data in the search
row, the switches (including the ground switches and the op-
amp switches) connected to the data row and the first n + 1
rows in the LUT will be turned on. The remaining switches
will be turned off. It should be noted here that a typical
memory structure may already require an amplifier per bit-line
(BL), so the LUT search amplifiers will not pose an additional
overhead to the system. Fig. 4 shows SPICE simulation results
of the search process, where all cases from six ZEROs to
six ONEs were tested. The crossbar array, the series resistors,
the NMOS switches and the amplifiers were included in the
simulation. The sneak paths were found to be negligible due
to the high ON/OFF ratio and the low load resistance.

B. Results Writeback Stage

Through the search operation, the row matching the input
data stored in the memory block is identified. The next
step is then to write the LUT results to the memory block.
Since the LUT stores elementary functions, they correspond
to intermediate results. These results are stored in a region
of the memory block that is initialized to HRS (e.g. the
intermediate block in Fig. 6). As a result, the writeback of
ZEROs will not change any cell status. It will thus improve
the computing efficiency by just considering ONEs. As the
LUTs are pre-designed, the result values stored in the LUT are
associated with their positions. To achieve selective writeback,
a ‘false’ label is attached to each address of ZERO in the
LUT. During writeback, the controller would skip this address
and perform the next operation when encountering a ‘false’
label. The writeback of ONEs can be implemented by applying
a write voltage pulse to the column and grounding the row
corresponding to the target cell (cell T) and applying a bias
voltage pulse to the other columns, as shown in Fig. 5(a). The
bias voltages can protect the other cells in the array from being
programmed in the writeback step when the other rows are
left floating. Applying VDD/2 or VDD/3 to the other rows
can also achieve this objective. The power consumptions of
the VDD/2 scheme is 40.965nW, close to the floating scheme,
42.05nW, while the power consumption of the VDD/3 scheme
is 86.094nW, about twice of the floating scheme. Considering
these factors, the floating scheme was used to minimize
the overhead in the peripheral circuit. Fig. 5(b) plots the
voltage signals used in this operation, and Fig. 5(c) shows the
writeback results, with cell T set to LRS. The bias voltage can
protect other devices in the array from being updated, so the
sneak paths during writeback can be mitigated as long as the
array size is not too large where the line resistance becomes
significant.

Note that in the proposed in-memory computing approach,
the input and output data are both resistance values and there
is no data movement between the “memory” and the “com-
puting” units. The conversion from the input data to an output
corresponding to the number of ONEs (based on different
output voltage levels) is effectively a dot-product operation on
the RRAM devices, which is common in RRAM/memristor-
based neural network implementations [3].
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curves V1 ~ V7 represent the output voltage signals of the amplifiers for LUT row 1 to row 7.
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Fig. 5. (a) Example of writeback ONE to cell T in the intermediate block.

(b) Input voltage signals applied during the writeback process. (c) Result of
the writeback process.

IV. ARITHMETIC AND LOGIC FUNCTIONS
A. In-Memory Vector Operations

One of the major strengths of in-memory computing is the
native ability to process large batches of data in a fully parallel
manner, commonly in vector form. Here, we demonstrate how
the presented architecture can perform tree reduction, which
is a core operation for multiplication and vector addition [20].
In this case, the result of the tree reduction is a function of the
number of ONEs for a given vector. Hence, we adopted the
LUT to produce the number of ONEs, as discussed earlier.
The desired results obtained from the LUT is subsequently
stored back in the intermediate block and used to produce the
final output in the memory.

B. Addition

An example of vector addition operation is shown in Fig. 6.
In this example, we compute the sum of a four-operand vector,
where each element is made of four bits. As the vector length
is four, there are at most six input operands in each bit, and
therefore the LUT in the array contains seven rows. At the
very beginning, a small block (the intermediate block) is
allocated and initialized to HRS to facilitate the writeback
of intermediate results. The addition is performed by counting
the number of ONEs through each row that represents a single
bit precision. For instance, the first row (Ag, Bp, Co, Dg)
is counted through the LUT and the result is stored in cells
S00. So1, and Spz. New counts are performed after this update
for the other rows (bits) including previous results, until full
addition process is completed. If the result should be stored in
the search row, it is directly written into the cell in the final
result column, otherwise the result is always written into the
left cell adjacent to the previous intermediate data. Note that
the results always contain more bits than the operands, so the
steps mentioned above should be repeated more than 4 times.
For example, the steps are repeated six times for the addition
of four 4-bit numbers.

C. Logic Gates

By utilizing LUTs, different logic operations can be
implemented in the presented in-memory computing
approach. Here, we consider standard logic gates with
symmetrical inputs. In this case, the LUTs can be simply
searched with the number of ONEs per input, as discussed
before. As an example, Fig. 7 shows a demonstration for an
AND gate operation supported by SPICE simulation results.
In Fig. 7(a), columns A; and Ay correspond to the operand
part and column S, represents the result part of the LUT
block. Fig. 7(b)~(d) show results from the read operation of
three different input combinations: 00, 01 and 11. Other logic
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operations can be implemented with the assistance of different
LUTs.

D. Multiplication

Typically, multiplication is done by adding the different
partial products together in a multi-operand addition operation
[20]. In these approaches, the addition is performed sequen-
tially elementwise. In contrast, our proposed approach can
achieve an in-memory multiplication through vector addition
combined with bitwise AND, which can reduce the number of
operation steps required. An example of the multiplication of
two 4-bit numbers (1101 x 1011) is demonstrated in Fig. 8.
At the very beginning, the two input numbers are stored in
eight different cells in the same row. A 9 x 6 block within the
memory block is allocated to store the intermediate results
and the final result. The first part of the multiplication is
four 4-bit AND operations. Fig. 8 exhibits an example of
the first operation, B4BsBgB7 AND BpBgBpBg (1101 AND
1111) which is executed between 0~700ns and the result
1101 is writeback to the first four cells in column Bg. The next
three 4-bit AND operations are performed in the following
1800ns. The time consumed varies with different number of
writeback steps. The second part is the addition. The search
and writeback operations are performed bit by bit. An example
of the write back of intermediate values and the updated

results can be found in Fig. 8, from 2500ns to 2900ns. For
the arithmetic operations, the execution is terminated at the
bit which contains only one input number, at 4400ns.

E. Parallel Computing

Parallel arithmetic and logic processing on this proposed
architecture can be achieved in a single instruction, multiple
data (SIMD) manner. Fig. 9(a) shows the circuit implemen-
tation for parallel searching. N groups of input data should
be stored on the same columns and n different rows. There
are n groups of op-amps and each group contains the same
number of op-amps as the LUTs rows. For every entry in the
LUT, the negative input nodes of n op-amps are connected
to the corresponding row in the LUT, and the positive input
nodes are connected to the n different data rows. These op-
amps produce the comparison results of the input data to the
LUT data in parallel. For each parallel writeback operation,
the target cells of different groups of data should be on the
same column. As Fig. 9(b) shows, the parallel writing of cell
Tp and T, is similar to the writing of a single device as
discussed in section III, the only difference is that multiple
rows, rather than a single one, are grounded. Using the par-
allel approach can greatly speed up computing. For example,
4-bit logic gates will consume one initiate, four search and
on average two writeback steps in bit-by-bit computing, but
will only consume three steps: one initiate, one search and one
writeback in parallel computing.

V. PERFORMANCE ESTIMATE

In this section we discuss the performance evaluation results
of the proposed system. The average power consumption,
energy consumption and number of operation steps for vector
addition were analyzed through simulation, including effects
from the crossbar array, the load resistors, the NMOS that
works as switches and the op-amps that perform comparisons.
The average power of the system based on a 42 x 41 crossbar
array as a 4-bit processor was also estimated. Since in-memory
processing approaches in general target vector operations,
we use the vector addition function as our reference oper-
ation. The performance evaluation results of vector addition
are shown in Fig. 10. As the memory block has 32 rows,
the vector length ranges from 2 to 28 in this analysis so
that the number of ONEs in each row will not exceed 32.
The average number of operation steps is obtained by directly
counting the average number of search steps and writeback
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An example for multiplication (1101 x 1011), showing the voltage signals applied to the rows and columns and the device resistance states at

different operation stage. At the beginning of the execution, an intermediate block and the region to store the final results are allocated and initialized to HRS.
During the execution, the AND operation is performed first and the results are stored in the green triangle region of the intermediate block. In this example,
B4BsBgB7 AND BpB(BoB( takes 700ns and the total AND operation takes 2500ns. In the following ADD operation, the search and write operation are
performed row by row, starting from row Dy. For the first two rows, there are two search and two writeback operations, consuming 400ns. The total execution

is terminated at the row which only contains one input data, at 4400ns.
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Fig. 9. Circuit implementation for (a) parallel searching and (b) parallel writing.

steps, shown in Fig. 10(a). The change of total number of
cycles with the vector length is nearly a step function. With
longer vector there could be more ONEs under the worst
case, leading to wider bit width for the sum of each bit and
therefore more read and write steps for the desired function.
The growth rate is however sublinear since the number of bits
in the addition result increases sublinearly with vector length.

In contrast, in previous approaches this parameter usually
grows linearly with the number of operands, resulting in low
operation speed [8].

The power and energy consumption for 4-bit vector addi-
tion were also analyzed, as shown in Fig. 10(b) and (c),
respectively. The power consumption is calculated as the
arithmetic average of each step, including initiation, search and
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TABLE I
PERFORMANCE ESTIMATION OF THE PROPOSED ARCHITECTURE AND COMPARISON WITH OTHER LITERATURE RESULTS

Fesbrnian Average cycles Average power Average Energy Area (numb.er of RRAM Throughput
Initiate | Search | Writeback (HW) () devices) (MOPS)
1 5 B 37 18 18
e 1[7] 0[7] 40 [7] 707 14[7] 311} ‘
40 [28]
1 1 1 55 8 12
dot/and 11 | o 1[7] 247 24 7] 12 [7] 26.66
1321 | o323 1[32] 23[32] 23 [32] 12 [32]
1 25 18 41 90 62
- 1[7] 0[7] 116 [7] 8[7] 45[7] AL -
4109 [29]
i 1 5 5 45 25 26 545
11 | orm 447 6[7] 14[7) 37 (7]
shift 1 1 1 54 8 8 26.66
mask 1 1 1 54 8 8 26.66
mov 1 1 1 54 8 8 26.66
1 1 1 54 8 8
not 1[7] 0[7] 1[7] 23 [7] 237 8[7] 26.66
1[32] | 0[32] 1[32] 23 [32] 23[32] 8[32]
e 1 1 1_ 63_ 9_ 12 -
1[71 | o[7 5171 38[7] 11[7] 28[7]
1 1 1 63 9 12
nor 11 | om 3[7) 34 [7] 700 20 [7] 26.66
11321 | o323 1[32] 24 [32] 24[32] 12 [32]
30 @ 80 b) operations are performed in a parallel fashion. The average
25 e 70 f power consumption of initiation, search and writeback oper-
50 «£ %'30 ations were simulated respectively. The number of operation
T;‘ P E ﬁ steps for different instructions were counted. Then the average
O 15 no g 50 9 power and energy of each instruction were calculated, assum-
10}, « 40}, ing 50ns pulse width during each step. The areas required for
' executions are represented by the number of RRAM devices
B o, 56 & g 0 20 3o includedin the computing. Finally, the throughput of this small
Vector length Vector length crossbar chip is stated in units of mega operations per second
(MOPS), assuming parallel operation of the inputs. The results
100§(c) @ﬂﬁﬁnﬂ :‘!; (d) are shown in Table 1. Comparison with recently reported
3 80 o 3-.10 in-memory computing architectures is also provided in the
<. 60 =+ = table, in which the average power of [7] is obtained using
> EFF'TH] 8 sh s the reported architecture and the device model used in this
2 40r g study. The approaches discussed in [7] and [32] can offer very
Y] g:'-' good power and energy performance, but these functions are
- 9 implemented by programming output RRAM devices based

30 0 10 20 30
Vector length

0 10 20
Vector length
Fig. 10. Benchmarking results of 4-bit vector addition. (a) Average number

of cycles demanded for the addition. (b) Power consumption and (c) energy
consumption of the array and amplifiers. (d) Tolerance of LRS variation.

writeback operations. The results show that the array consumes
more power and energy with longer vector length, while the
growth rates are also sublinear.

In a more general approach, we analyzed the in-memory
architecture performance for a simple instruction set architec-
ture (ISA), including add, dot (and), mul, sub, shift, mask,
mov, not, xor and nor. In this analysis, all instructions are
based on 4-bit numbers, and the logic, shift, mask and move

on the voltage divider effect and are sensitive to sneak paths
which can severely limit the system’s capabilities to deliver the
required programming voltage and current during write [37].
In the proposed approach, the voltage divider effect is only
used during the search operation (i.e. read operation). As dis-
cussed in III.A, the sneak current problem can be effectively
mitigated with proper biasing schemes during read. In general,
the proposed approach is more efficient for executing complex
logic and arithmetic operations and can effectively circumvent
the sneak path problem which constraints previous implemen-
tations of RRAM-based ALU in large arrays. Furthermore,
by assuming that chances of executing the 10 instructions
in Table 1 are equal, we can calculate the average energy cost
for a single instruction (19.1pJ) by dividing the sum of the
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average energy cost with the number of instructions. We note
the energy cost in CMOS based technologies is dominated by
memory access. For example, Ref. [38] shows that the energy
cost of a DRAM access in 40nm CMOS-based computing
architecture is 10pJ/bit, suggesting CMOS microprocessors at
this technology node will consume more than 40pJ for 4-bit
operations even without considering energy consumption of
the arithmetic logical unit (ALU). Similarly, we can estimate
the average power of the proposed architecture to be 45uW,
by dividing the sum of the average energy by the sum of the
average number of cycles to perform the instructions.

In terms of the area, the op-amps and control circuit can
both add overhead to the system. The op-amp consists of 11
MOSFETs. The area of one op-amp is approximately 0.08 zm?
in 65nm technology. Assuming the area of an RRAM device
is 4F2, the area of the crossbar array is 29.1 um?. The op-amp
area overhead is 11.5% if there is one op-amp connected to
each row. The control circuit is a key part of the in-memory
computing system. The controller may be complex and can
introduce a large area overhead when many concurrent data
need to be read/write simultaneously on the memory array.
However, the proposed architecture only requires one read or
write operation per cycle. Following [10], the controller can
be limited to a simple finite state machine (FSM) and a few
registers in this case.

To make the results more realistic, we need to consider the
impact of non-ideal effects, such as conductance variations and
line resistance. We first evaluated the demand of conductance
uniformity in the LUT search stage. HRS resistance variation
has negligible impact on the read current. However, large
LRS resistance variation can lead to incorrect results of
counting ONEs. To ensure the validity of the search results,
LRS variation should be reduced as the vector length grows,
as Fig. 10(d) shows. Typically, to perform addition of four
4-bit numbers, the LRS variation should be no larger than 5%.
The line resistance effect was also analyzed and was found
to have a minimal effect. As stated in [7], the BL and WL
resistance of a 16 x 8 array is smaller than 50Q2. Thus, for the
proposed 42 x 41 array the line resistance is expected to be
smaller than 260€2, much lower than the load resistance value
of 100KQ.

Notably, the proposed architecture also has limitations.
The LUTs do not support all functions. When it comes to
instructions in which the sequence of inputs can affect the
results, such as implication, or complex instructions such
as divide and floating-point operations, computing should
be performed as the combination of a series of simple
instructions.

VI. CoNCLUSION

In this paper, we proposed an in-memory parallel processing
architecture and presented the detailed array implementation
and process flow. As examples of arithmetic and logic oper-
ations, vector addition, vector multiplication and AND logic
are performed using the system. The architecture is reconfig-
urable since different LUTs can be integrated in the RRAM
array, while the different blocks can be freely changed since
their functions are solely defined in software. Data migration
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outside the crossbar is eliminated, as there is no need to know
any resistance value during the complete operation process.
The operation of a simple ISA on the proposed architecture
has been verified through circuit-level simulations with high
speed and efficiency.

REFERENCES

[1] P. Kogge et al., “ExaScale computing study: Technology challenges in
achieving ExaScale systems,” Defense Adv. Res. Projects Agency Inf.,
Arlington County, VI, USA, Tech. Rep., 2008, vol. 15.

[2] R. Nair, “Evolution of memory architecture,” Proc. IEEE, vol. 103, no. 8,
pp. 1331-1345, Aug. 2015.

[3] M. A. Zidan, A. Chen, G. Indiveri, and W. D. Lu, “Memristive
computing devices and applications,” J. Electroceram., vol. 39, nos. 1-4,
pp. 4-20, Dec. 2017.

[4] M. M. Shulaker ef al., “Three-dimensional integration of nanotechnolo-
gies for computing and data storage on a single chip,” Nature, vol. 547,
no. 7661, pp. 74-78, Jul. 2017.

[5] B. Chen, F. Cai, J. Zhou, W. Ma, P. Sheridan, and W. D. Lu, “Efficient
in-memory computing architecture based on crossbar arrays,” in JEDM
Tech. Dig., Dec. 2015, p. 17.5.

[6] H. Li ef al., “A learnable parallel processing architecture towards
unity of memory and computing,” Sci. Rep., vol. 5, no. 1, Oct. 2015,
Art. no. 13330.

[7] P. Huang et al., “Reconfigurable nonvolatile logic operations in resis-
tance switching crossbar array for large-scale circuits,” Adv. Mater.,
vol. 28, no. 44, pp. 9758-9764, Nov. 2016.

[8] A. Morad, L. Yavits, S. Kvatinsky, and R. Ginosar, “Resistive GP-SIMD
processing-in-memory,” ACM Trans. Archit. Code Optim., vol. 12, no. 4,
p. 57, 2016.

[9] G. Papandroulidakis, I. Vourkas, A. Abusleme, G. C. Sirakoulis, and

A. Rubio, “Crossbar-based memristive logic-in-memory architecture,”

IEEE Trans. Nanotechnol., vol. 16, no. 3, pp. 491-501, May 2017.

P-E. Gaillardon et al., *“The Programmable Logic-in-Memory (PLiM)

computer,” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2016,

pp. 427-432.

Y. Yang, J. Mathew, S. Pontarelli, M. Ottavi, and D. K. Pradhan,

“Complementary resistive switch-based arithmetic logic implementa-

tions using material implication,” IEEE Trans. Nanotechnol., vol. 15,

no. 1, pp. 94-108, Jan. 2016.

H. A. D. Nguyen, L. Xie, M. Taouil, R. Nane, S. Hamdioui, and

K. Bertels, “Computation-in-memory based parallel adder,” in Proc.

IEEE/ACM Int. Symp. Nanosc. Archit. (NANOARCH), Jul. 2015,

pp. 57-62.

H. Jarollahi et al., “A nonvolatile associative memory-based context-

driven search engine using 90 nm CMOS/MTJ-hybrid logic-in-memory

architecture,” JEEE J. Emerg. Sel. Topics Circuits Syst., vol. 4, no. 4,

pp. 460474, Dec. 2014

[14] L. Xie, H. A. D. Nguyen, M. Taouil, and K. B. S. Hamdioui, “Fast
Boolean logic mapped on memristor crossbar,” in Proc. 33rd IEEE Int.
Conf. Comput. Design (ICCD), Oct. 2015, pp. 335-342.

[15] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-enabled instructions:
A low-overhead, locality-aware processing-in-memory architecture,” in
Proc. 42nd Annu. Int. Symp. Comput. Archit. (ISCA), 2015, pp. 336-348.

[16] M. A. Zidan, J. P. Strachan, and W. D. Lu, “The future of electronics

based on memristive systems,” Nature Electron., vol. 1, no. 1, pp. 22-29,

Jan. 2018.

P. Sheridan and W. Lu, “Memristors and memristive devices for neu-

romorphic computing,” in Memristor Networks. Cham, Switzerland:

Springer, 2014, pp. 129-149.

H.-S. P. Wong et al, “Metal-oxide RRAM.” Proc. IEEE, vol. 100, no. 6,

pp. 1951-1970, Jun. 2012.

[19] 1. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nature Nanotechnol., vol. 8, no. 1, pp. 13-24, Jan. 2013.

[20] M. A. Zidan, Y. Jeong, J. H. Shin, C. Du, Z. Zhang, and W. D. Lu,

“Field-programmable crossbar array (FPCA) for reconfigurable comput-

ing,” JEEE Trans. Multi-Scale Comput. Syst., vol. 4, no. 4, pp. 698-710,

Oct. 2018.

P. O. Vontobel, W. Robinett, P. J. Kuekes, D. R. Stewart, J. Straznicky,

and R. S. Williams, “Writing to and reading from a nano-scale cross-

bar memory based on memristors,” Nanotechnology, vol. 20, no. 42,

Oct. 2009, Art. no. 425204.

S. H. Jo and W. Lu, “CMOS compatible nanoscale nonvolatile resistance

switching memory,” Nano Lett., vol. 8, no. 2, pp. 392-397, Feb. 2008.

[10]

1]

[12]

[13]

(7

[18]

[21]

[22]

Authonized licensed use limited to: University of Michigan Library. Downloaded on July 07,2021 at 21:54:38 UTC from IEEE Xplore. Restrictions apply.



4232

[23]

[24]

[25]

[26]

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 67, NO. 12, DECEMBER 2020

H. Li et al, “Statistical assessment methodology for the design and
optimization of cross-point RRAM arrays,” in Proc. IEEE 6th Int.
Memory Workshop (IMW), May 2014, pp. 1-4.

R. Liu ef al., “Impact of pulse rise time on programming of cross-point
RRAM arrays,” in Proc. Tech. Program Int. Symp. VLSI Technol., Syst.
Appl. (VLSI-TSA), Apr. 2014, pp. 1-2.

L. Magnelli F. A. Amoroso, F Crupi, G. Cappuccino, and
G. Iannaccone, “Design of a 75-nW, 0.5-V subthreshold complementary
metal-oxide-semiconductor operational amplifier,” Int. J. Circuit Theory
Appl., vol. 42, no. 9, pp. 967-977, Sep. 2014.

D. Chakraborty and S. K. Jha, “Automated synthesis of compact
crossbars for sneak-path based in-memory computing,” in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2017, pp. 770-775.

Xinxin Wang (Graduate Student Member, IEEE)
received the B.S. degree in microelectronics science
and engineering from Peking University in 2018.
She is currently pursuing the Ph.D. degree with Elec-
trical Engineering and Computer Science Depart-
ment, University of Michigan. Her research interest
includes hardware neural network accelerator design
based on resistive random access memory (RRAM)
crossbar arrays.

[27] D. Chakraborty, S. Raj, and S. K. Jha, “A compact 8-bit adder design
using in-memory memristive computing: Towards solving the Feynman
grand prize challenge.,” in Proc. IEEE/ACM Int. Symp. Nanosc. Archi-
tectures (NANOARCH), Jul. 2017, pp. 67-72.
[28] D. Chakraborty and S. K. Jha, “Design of compact memristive in-
memory computing systems using model counting,” in Proc. IEEE Int. Mohammed A. Zidan (Member, IEEE) received
Symp. Circuits Syst. (ISCAS), May 2017, pp. 1-4. the B.Sc. degree (Homs.) in electronics and
[29] A. Ul Hassen, D. Chakraborty, and S. K. Jha, “Free binary decision communications engineering from the Institute
diagram-based synthesis of compact crossbars for in-memory com- of Aviation Engineering and Technology (IAET)
puting,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 5, in 2006, the M.Sc. degree (Hons.) in electronics and
pp. 622-626, May 2018. communications engineering from Cairo University
[30] A. Ul Hassen, S. A. Khokhar, H. A. Butt, and S. K. Jha, “Free BDD in 2010, and the Ph.D. degree in electrical engineer-
based CAD of compact memristor crossbars for in-memory computing,” ing from the King Abdullah University of Science
in Proc. 14th IEEE/ACM Int. Symp. Nanosc. Archit. (NANOARCH), and Technology (KAUST), Saudi Arabia, in 2015,
Jul. 2018, pp. 1-7. with a GPA of 4.0. He is currently a Post-Doctoral
[31] L. Xie, H. A. D. Nguyen, M. Taouil, S. Hamdioui, and K. Bertels, Fellow with the University of Michigan, Ann Arbor.

“Interconnect networks for memristor crossbar,” in Proc. IEEE/ACM Int.  His research interests include neuromorphic/in-memory computing, RRAM
Symp. Nanosc. Architectures (NANOARCH), Jul. 2015, pp. 124-129. circuits and systems, and computer arithmetic. He was a recipient of the
[32] S. Kvatinsky ef al., “MAGIC—Memristor-aided logic,” IEEE Trans.  IEEE Circuits and Systems (CAS) Society Pre-Doctoral Scholarship Award.

Circuits Syst. II, Exp. Briefs, vol. 61, no. 11, pp. 895-899, Nov. 2014.

[33] S. Hamdioui et al., “Memristor based computation-in-memory architec-
ture for data-intensive applications,” in Proc. Design, Autom. Test Eur.
Conf. Exhibit., 2015, pp. 1718-1725.
[34] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic design within
memristive memories using memristor-aided 10GIC (MAGIC),” IEEE
Trans. Nanotechnol., vol. 15, no. 4, pp. 635-650, Jul. 2016.
[35] A. Flocke and T. G. Noll, “Fundamental analysis of resistive nano-
crossbars for the use in hybrid nano/CMOS-memory,” in Proc. 33rd Wei D. Lu (Fellow, IEEE) received the B.S. degree
Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2007, pp. 328-331. in physics from Tsinghua University in 1996 and
[36] A. Flocke, T. G. Noll, C. Kugeler, C. Nauenheim, and R. Waser, the Ph.D. degree in physics from Rice Univer-
“A fundamental analysis of nano-crossbars with non-linear switching sity in 2003. He was a Post-Doctoral Research
materials and its impact on TiO; as a resistive layer,” in Proc. 8th IEEE Fellow with Harvard University from 2003 to 2005.
Conf. Nanotechnol., Aug. 2008, pp. 319-322. He joined the faculty of the University of Michigan
[37] S. Kim, H.-D. Kim, and S.-J. Choi, “Numerical study of read scheme in in 2005. He is a Professor with Electrical Engineer-
one-selector one-resistor crossbar array,” Solid-State Electron., vol. 114, ing and Computer Science Department, University
pp. 80-86, Dec. 2015. of Michigan. His research interests include resistive-
[38] M. Horowitz, “1.1 Computing’s energy problem (and what we can do random access memory (RRAM)/memristor devices,

about it),” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers
(ISSCC), Feb. 2014, pp. 10-14.

neuromorphic systems, aggressively scaled transistor
devices, and low-dimensional systems.

Authonized licensed use limited to: University of Michigan Library. Downloaded on July 07,2021 at 21:54:38 UTC from IEEE Xplore. Restrictions apply.



