2021 IEEE International Symposium on Circuits and Systems (ISCAS) | 978-1-7281-9201-7/20/$31.00 ©2021 IEEE | DOI: 10.1109/ISCAS51556.2021.9401307

Device Non-Ideality Effects and Architecture-aware
Training in RRAM In-Memory Computing Modules

Qiwen Wang, Yongmo Park, and Wei D. Lu*
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, Michigan 48109, USA
*Email: wluee@umich.edu

Abstract—We studied factors that could degrade model
performance in analog RRAM in-memory-computing (IMC)
systems, including limited array size, ADC resolution, on/off ratio,
and device conductance variations. Different levels of
architecture-aware training methods were developed to mitigate
these factors and allow the system to achieve accuracy comparable
to floating-point baseline with realistic device parameters.

[. INTRODUCTION

Machine learning algorithms represented by deep neural
networks (DNN) have been employed for a wide range of
applications. At the same time, traditional computing
architectures are ill-suited for the high-memory-access and
highly parallelized nature of DNN workloads. Thus, accelerators
will be important for the further adoption of DNN networks, and
RRAM-crossbar-array-based in-memory computing (IMC)
architectures have gained popularity. RRAM arrays can perform
vector-matrix multiplication in analog domain efficiently by
accumulating the total current or charge at each column, while
its high density, CMOS compatibility, and non-volatile nature
make it possible to store entire networks with millions of
weights on-chip, thus eliminating the memory bottleneck.
However, potential issues when implementing large-scale
models in practical RRAM arrays still need to be carefully
addressed.

The possibility of mapping state-of-art networks on
realistically sized RRAM arrays has been demonstrated using a
tiled architecture [1][2][3]. However, accuracy loss still existed,
and the RRAM device properties and ADC requirements are
challenging to achieve. In this work, we studied the effects of
training by incorporating different levels of architecture details.
We found that through careful architecture-aware training, IMC
systems can achieve accuracies similar to floating-point baseline
with further relaxed requirements for both RRAM devices and
ADC precision, suggesting RRAM-based IMCs can be
applicable in the near term. Furthermore, device variations can
have a significant impact on inference performance, particularly
for more complex models, and require innovative solutions to
address.

II. ANALOG CROSSBAR ARRAY IMPLEMENTATION

A. Mapping DNN Model to RRAM Arrays

In this work, we focus on performance during inference
operations, which is the primary workload in edge computing
use cases. Pre-trained DNN models are programmed on to the
RRAM arrays offline, and during inference, the RRAM cells are
not modified. Even a single layer in today’s DNN models is too

978-1-7281-9201-7/21/$31.00 ©2021 IEEE

(a) (L layeen) [layern¢1 |
; (b) . .
iyl EE
L (; fi’ Array)
fal o Partial
Sum E Lt b sum
I, | iy
JL 37 RRAM
o) BE
(] Partial E Bim | Partial
Input g+ sum . Bt sum
Gcthvation] lae=1, -1
E + 3 Rram +
Tl ~s] Array
] Partial Digital ;'r o : Partial
Apc' " TS, Inter-layer A’ S
H] ; = Processing = j}:)
~ RRAM * Activation function :.;E RRAM
E ’ﬂj : ;mnmllmm :".: i a
Ll Partial LSS | | Partial
Tt Sum s

Fig. 1. (a)Tﬂed RRAM acceleratof architecture. (b) lﬂiplementation of signed

weights.
Row Vector [Number of
Filter Shape Input Size Length IArrays
CNN 1 3x3x3x32 32x32x3 27 1
CNN 2 3x3x32x32 32x32x32 [288 2
MaxPooling |Pool 2 x 2 32x32x32
CNN 3 3x3x32x64 16 x 16 x32 288 2
CNN 4 3 x3 x 64 x64 16 x 16 x64 |576 3
MaxPooling [Pool 2 x 2 16 x 16 x 64
CNN 5 3x3x64x128 [8x8x64 576 6
CNN 6 3x3x128x128 [8x8x 128 1152 10
MaxPooling |Pool 2 x 2 8 x 8x 128
Flatten Flatten 4 x4x128
FC1 2048 x 128 2048 2048 16
FC2 128 x 10 128 128 1
Total 41 Arrays

Fig. 2. The CIFAR-10 VGG Block Model as an example, and the number of
arrays needed for each layer. Array size is 264x64.

Training Loop

\
%

Inference
@ . RRAM @
1 Programming l
* Resolution _.
* A4bits T
© Sblts
m-©& v @
¢ 1.56%
. 1 04%

4

Fig. 3. Variation injection in training and variation during RRAM
programming

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2021 at 22:02:45 UTC from IEEE Xplore. Restrictions apply.

(a)

Float Level 1
Quantization

Quantized

&@ e

Level 2
Device-Aware

quant

Device
leltatlons

More Realistic
Level 3-4

@ |
© oo

D @— :
| I
(b) Init Level 3: Path 1
Level 3: Path 2
| Float [—{ Level1 Level2 [“onfoff:10 | | Level 3: Path 3 —| Levela |

On/off: 100 }—0< On/off: 50 ‘

| on/off: 10 |—— Level3: Path 4] Levela |

Fig. 4. (a) Training topologies corresponding to different levels of architecture-aware training. (b) Different training approaches.

MNIST CIFAR-10 VGG Block CIFAR-10 WRN-16-8
99.13% 99.22%
100.00% 100.00% 43,629 83.72% 100.00% 91.55%
> 77.78% > e e >
& 80.00% & 80.00% & 80.00%
3 3 3
Q Q Q
& 60.00% & 60.00% & 60.00%
c c c
2 40.00% 2 40.00% 2 40.00%
< o o
° © °
= 20.00% = 20.00% 10.00% = 2000% F 10.00% 10.00% 10.00%
> > >
0.00% 0.00% 0.00% . .
Path 1 Path 2 Path 3 Path 1 Path 2 Path 3 Path 1 Path 2 Path 3 Path 4
Fig. 5. Test accuracy of model trained in Level 3 topology, using different training paths described in Fig. 4b.
MNIST CIFAR-10 VGG Block CIFAR-10 WRN-16-8
1250 1250
On/Off 250{99.09% 99.15% 99.15% On/Off 250
Ratio 50/98.91% 98.95% 98.95% 98.93% 98.93%| Ratio 50

4 6 8 10 12

Weight Bits

8
Weight Bits

10

8 10 12

Weight Bits

Fig. 6. IMC inference results by post-quantizing floating-point models, for different weight precision and On/Off. Effects of tiles and mapping variations are
neglected.

large to fit in a single practical RRAM array and must be mapped
onto multiple arrays. ADCs are used to readout currents in each
array to produce partial sums (Psum) that are then added
together in digital domain to produce the final layer outputs (Fig.
la). This process was discussed in detail in [1]. Additionally,
since RRAM cells can only represent positive conductance
values, we store signed weight in two cells (Fig 1b). An example
of a DNN model used in this study and mapping to the tiled
architecture is shown in Fig. 2.

B. Realistic RRAM and Circuit Characteristics

Several RRAM cell non-ideality factors have been
considered, including conductance resolution down to 4bits,
on/off ratio down to 10, and device conductance variation up to
1.56% of the dynamic range, corresponding to only 2o
separation between conductance levels at 4bits. The cell max
read current was assumed to be 3pA during inference. Realistic
circuit parameters were also used. We considered an 8bit ADC,
which is a reasonable compromise between precision, power,
and area. Effects of bit-serial operations where each bit needs to
be quantized in the ADC were also considered during our
analysis.

In RRAM analog computing, the weight is represented by
the analog conductance level thus the programmed weights
inevitably deviate from the targets (Fig. 3). The deviation leads
to a mapped model that is slightly different from the trained

model, and this deviation does not change during the inference
process. This fixed deviation is different from noise sources that
vary between operations. It can have a large effect on IMC
inference accuracy but is uncommon in digital inference
systems, and standard training processes may not be effective in
mitigating it since its effects occur during weight transfer
(instead of weight updates during training) and are not well
captured during training processes.

III. ARCHITECTURE-AWARE TRAINING

A. Training Topologies

We propose that the architecture-aware training approach
can be generally considered in 4 levels (Fig. 4a). Quantization-
aware training (Level 1) has already been used by many to
deploy DNN models with integer operations [4]. In quantized
inference, weights are stored in low precision (e.g. 4-8bits), but
multiplication and accumulation are carried out in high precision
(e.g. 32bits) then quantized to low precision activation afterward
(e.g. 8bits). This is similar to computation in analog crossbar
arrays where weights represented by RRAM devices are low
precision, but multiplication and accumulation are completed in
analog domain without quantization loss to preserve higher
precision. This is the first level we implement to train the IMC
system. Built on top of this, we propose three more levels that
incrementally add more hardware architecture details to improve
inference accuracy in analog crossbar arrays.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2021 at 22:02:45 UTC from IEEE Xplore. Restrictions apply.

CIFAR-10 VGG Block

CIFAR-10 WRN-16-8

100.00% @ - - . 100.00% 100.00% é ~
90.00% 90.00% 90.00% F -
.. 80.00% L. 80.00% / > < o .. 80.00% [
@ 70.00% 8 70.00% g 70.00% F
3 60.00% 3 60.00% 3 60.00% f
< 50.00% < s0.00% < s000% f
'% 40.00% Baseline '% 40.00% Baseline '% 40.00% F Baseline
2 3000% —@— Post-Training Quantization Model 2 30.00% —@— Post-Training Quantization Model 2 3000% E —@— Post-Training Quantization Model
> 20.00% Level-1 Model (Quantization Aware) > 20.00% Level-1 Model (Quantization Aware) > 20.00% F Level-1 Model (Quantization Aware)
10.00% F —@— Level-2 Model (Device Aware) 10.00% —®— Level-2 Model (Device Aware) 10.00% ‘:E —e— Level-2 Model (Device Aware)
0.00% . . 0.00% . . 0.00% . .
10 100 1000 10 100 1000 10 100 1000

RRAM Cell On/Off Ratio

RRAM Cell On/Off Ratio

RRAM Cell On/Off Ratio

Fig. 7. Effects of device-aware training, for different On/Off ratios and weight precision of 4bit during inference. Effects of tiles and mapping variations are
neglected.

100.00% 100.00% ¢

90.00% 90.00% F

CIFAR-10 VGG Block

CIFAR-10 WRN-16-8

100.00%

90.00% F 91.52%

80.00% 80.00% F

70.00% 70.00% F

60.00% 60.00% F

50.00% 50.00% F

40.00% 40.00% F 34.31%

33.47%

30.00% 30.00% F

)
20.00% 17.12% 20.00% £
10.00%

10.00% . E
0.00% 0.00%

82.52%

34.14%

83.58% 80.00% F

70.00%

60.00%

50.00%

40.00%

30.00%

% b
2000% F oo 9.80% 11.09%

ot BN BN
0.00%

Floating Point Quantization Device Aware Tiled

Floating Point ~ Quantization

Device Aware Tiled Floating Point Quantization Device Aware Tiled

Fig. 8. IMC inference performance when realistic tile sizes are considered. Orange line: floating point baseline. Mapping variations are neglected.

100.00% 100.00% ¢
90.00% 90.00%
80.00% 80.00% F
70.00% 70.00% F
60.00% 60.00% F
50.00% F 50.00% F
40.00% [40.00% F
30.00% F 30.00% F
20.00% F 20.00% F
10.00% [10.00% F

0.00% 0.00%

RS B

S CemanT

0, 1.56% 0, 1.56%

1.56%, 1.56% 3.12%, 1.56% 6.24%, 1.56%

0, 1.04% 1.56%, 1.04% 3.12%, 1.04% 6.24%, 1.04%

Fig. 9. Effects of different device variations for (a) MNIST and (b) CIFAR-10 VGG Block models, trained using Level 4, approach A. The first number represents
noise injected during training and the 2"¢ number represents actual device variation during weight mapping. Orange line: floating point baseline

First, we consider realistic device properties such as the
limited device on/off ratio and the effect of implementing signed
weights in two cells . At this “device-aware” level (Level 2) we
neglect the finite array size effects and note the limited weight
precision is already addressed in Level 1 during quantization
aware training.

Building on the device-aware topology, the tiled topology is
introduced at Level 3 (tile-aware). During training, a single layer
is sliced into multiple tiles corresponding to the size of RRAM
arrays used, then quantization functions are applied after each
tile to reflect the limited resolution and dynamic range of the
ADC:s. Different ADC implementations were also analyzed at
this level.

Finally, we studied two approaches to address RRAM cell
conductance variation during weight mapping (Level 4). In
Approach A, during training, weights are quantized to the same
number of bits the RRAM cell can represent (e.g. 4bits), then

variation is injected. This is the common approach. In
Approach B, we allow higher target resolution than the cells can
achieve. During training and mapping, weights are quantized to
a higher number of bits than the cells can represent (e.g. 8bits),
with the same injected variations as Approach A. This is
somewhat counterintuitive since the higher precision model
cannot be reliably programmed due to the large variation (larger
than the level spacing between the levels), but this approach
was found to lead to better results.

IV. RESULTS

A. Inference Evaluation Setup

We consider an RRAM-based IMC system with array size
of 256x64 with properties described in Section 2b. We used
three networks as examples. The first is a simple MNIST toy
model: CNN1 3x3x1x22, MaxPool 2x2, CNN2 3x3x22x27,
MaxPool 2x2, CNN3 3x3x27x64 Stride 2x2, MaxPool 4x4,

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2021 at 22:02:45 UTC from IEEE Xplore. Restrictions apply.

100.00% ¢

100.00% ¢

90.00% -(a
80.00% F
70.00% F
60.00%
50.00% F
40.00% £
30.00% F
20.00% £

10.00%

? 80.00% : o

. 70.00% F
. 60.00% F

L]
50.00% F
40.00% F
30.00%
20.00% F

L]

90.00% F (b)

10.00%

0.00%

0.00%
4bit, 1.56%, 1.56%
4bit, 6.24%, 1.56%

4bit, 0, 0.78%

4bit, 0, 1.56% 4bit, 1.56%, 0.78%

4bit, 6.24%, 0.78%

8bit, 1.56%, 1.56% 8bit, 6.24%, 1.56% 8bit, 1.56%, 0.78% 8bit, 6.24%, 0.78%

Fig. 10. WRN-16-8 performance for (a) Training and inference with 4bit target at different variations (Approach A), and (b) Training and inference with 8bit
target at the same level of variations (Approach B). Orange line: floating point baseline

Dense 64x10. In this model, all layers are small enough to fit
onto a single array. The 2" is a VGG-block-based [5] network
trained on the CIFAR-10 dataset (shown in Fig. 2). The 3"
model is Wide ResNet WRN-16-8 [6], which is a more complex
and well-established benchmark network. Both simple 8bit
ADC and bit-serial ADC were examined. All results shown are
based on simple 8bit ADC, although we found the added per-bit
quantization in bit-serial operation does not have significant
effects.

B. Training Process

We first train each of the models in floating point. For
MNIST and the VGG block model, we use SGD optimizer with
learning rate of 0.0001, momentum of 0.9. For the WRN model,
we follow parameters described in [6]. The Level 1 model is
fine-tuned from the floating-point model, and each new level is
fine-tuned from the model in the previous level. We found this
approach leads to better results while training Level 3 or 4
directly from random initialization fails to converge in many
cases or leads to degraded accuracy (Fig. 5).

C. Device-Aware Training Results (Level 1-2)

Effects of device properties such as the device conductance
precision, on/off ratio, and signed weight representation are first
examined, neglecting tile effects and mapping variations. As
shown in Figs. 6,7, at high on/off ratios, floating-point models
and Level 1 models can achieve good accuracy even at 4bit
weights. This is consistent with earlier results, where many
models can retain accuracy with simple post-training
quantization. However, when the device on/off ratio decreases
even moderately, the model accuracies drop to unacceptable
levels even for the MNIST toy model. After taking into account
the device factors in the training topology (Level 2), inference
accuracy of all three models recovered to levels similar to that
of the floating-point baselines, even at on/off ratio of 10 and
weight precision of 4bits (Fig. 7).

D. Tiled Architecture Results (Level 3)

Effects of the tiled architecture with realistic RRAM array
size and ADC characteristics were then analyzed. As shown in
Fig. 8, both the floating-point model and the Level 1
quantization-aware trained models produce very poor accuracy
for all 3 models during inference when implemented in the tiled
architecture. For the MNIST model, because every layer can fit
in a single array, the device-aware topology (Level 2) is

sufficient to recover the baseline accuracy (Fig. 8). For the
relatively simple CIFAR-10 VGG block model, the device-
aware topology trained model also produces reasonable
accuracy with a 1.21% drop. This drop is reduced to only 0.15%
with the tiled topology trained model (Level 3). For the WRN
model, the device-aware trained models produced accuracy
barely better than chance, highlighting the effects of ADC
limitation on Psums in the tiled implementation. By considering
the Psum quantization effect (Level 3), accuracies of all modes
can recover to the baseline during inference.

E. Effect of RRAM Programming Variations (Level 4)

Effects of RRAM cell programming variations are then
added. Due to the stochastic nature of conductance variations,
the mapping was run 20 times to characterize the distribution of
the inference performance. For the MNIST model, even with a
large standard deviation of 1.56% (20 separation between 4bit
levels), most of the runs are within 1% of the baseline (Fig 9a).
However, the two more complex models exhibited a large
spread in accuracy. By using Approach A described in Section
3b, with 1.56% RRAM variation the CIFAR-10 VGG Block
model accuracy is improved to acceptable levels, and larger
noise injected during training helps to reduce the spread of the
model performance (Fig. 9b). However, injecting higher levels
of noise during training does not improve the WRN model
performance and often leads to larger spread during inference
instead (Fig. 10a). Better results can be obtained with tighter
control of precision to 0.78%, but overall accuracy is still
significantly lower than the baseline.

Since programming variations lead to weights slightly
different from the target, inference on the RRAM arrays is thus
performed on essentially slightly different models than the
trained one, so injecting noise during training may not fully
account for this effect. Device variation during weight mapping
can thus pose a serious challenge for inference applications,
particularly for more complex models.

By using Approach B, improved performance can be
obtained at the same training and inference variations. Tighter
distributions are observed, and accuracy can approach the
baseline at 0.78% variation (Fig. 10b). We hypothesize that the
higher target RRAM resolution during training produces more
stable models with a wider local minimum, which can then
better tolerate mapping variations.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2021 at 22:02:45 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT

This work was supported in part by SRC and DARPA
through the Applications Driving Architectures (ADA)
Research Center, and by Applied Materials.

REFERENCES

[1] Q. Wang, X. Wang, S. H. Lee, F.-H. Meng, and W. D. Lu, “A Deep
Neural Network Accelerator Based on Tiled RRAM Architecture,”
IEEE International Electron Devices Meeting (IEDM), pp. 14.4.1-
14.4.4,2019.

[2] V. Joshi et al., “Accurate deep neural network inference using

computational phase-change memory,” Nature Communications, vol.
11, no. 1, pp. 1-13, 2020.

[3] X. Peng, S. Huang, Y. Luo, X. Sun, and S. Yu, “DNN+NeuroSim: An
End-to-End Benchmarking Framework for Compute-in-Memory
Accelerators with Versatile Device Technologies,” IEEE International
Electron Devices Meeting (IEDM), pp. 32.5.1-32.5.4, 2019.

[4] B.Jacob et al., “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference,” IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2704-2713, 2018.

[5] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” Proceeding of International
Conference on Learning Representations, pp. 1-14, 2014.

[6] S. Zagoruyko and N. Komodakis, “Wide Residual Networks,”
Proceding of the British Machine Vision Conference, pp. 87.1-87.12,
2016.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 07,2021 at 22:02:45 UTC from IEEE Xplore. Restrictions apply.

