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a b s t r a c t 

Neural processing along the ascending auditory pathway is often associated with a progressive reduction in 

characteristic processing rates. For instance, the well-known frequency-following response (FFR) of the auditory 

midbrain, as measured with electroencephalography (EEG), is dominated by frequencies from ~100 Hz to several 

hundred Hz, phase-locking to the acoustic stimulus at those frequencies. In contrast, cortical responses, whether 

measured by EEG or magnetoencephalography (MEG), are typically characterized by frequencies of a few Hz to 

a few tens of Hz, time-locking to acoustic envelope features. In this study we investigated a crossover case, corti- 

cally generated responses time-locked to continuous speech features at FFR-like rates. Using MEG, we analyzed 

responses in the high gamma range of 70–200 Hz to continuous speech using neural source-localized reverse cor- 

relation and the corresponding temporal response functions (TRFs). Continuous speech stimuli were presented to 

40 subjects (17 younger, 23 older adults) with clinically normal hearing and their MEG responses were analyzed 

in the 70–200 Hz band. Consistent with the relative insensitivity of MEG to many subcortical structures, the 

spatiotemporal profile of these response components indicated a cortical origin with ~40 ms peak latency and a 

right hemisphere bias. TRF analysis was performed using two separate aspects of the speech stimuli: a) the 70–

200 Hz carrier of the speech, and b) the 70–200 Hz temporal modulations in the spectral envelope of the speech 

stimulus. The response was dominantly driven by the envelope modulation, with a much weaker contribution 

from the carrier. Age-related differences were also analyzed to investigate a reversal previously seen along the as- 

cending auditory pathway, whereby older listeners show weaker midbrain FFR responses than younger listeners, 

but, paradoxically, have stronger cortical low frequency responses. In contrast to both these earlier results, this 

study did not find clear age-related differences in high gamma cortical responses to continuous speech. Cortical 

responses at FFR-like frequencies shared some properties with midbrain responses at the same frequencies and 

with cortical responses at much lower frequencies. 
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. Introduction 

The human auditory system time-locks to acoustic features of com-

lex sounds, such as speech, as it extracts and encodes relevant infor-

ation. The characteristic frequency of such time-locked activity is gen-

rally thought to decrease along the ascending auditory pathway. For

xample, subcortical activity at ~100 Hz and above may directly en-

ode the temporal pitch information of voiced speech ( Forte et al., 2017 ;

rishnan et al., 2004 ), while cortical activity below ~10 Hz, which

ime-locks to the slowly varying envelope of speech, also time-locks to

igher level features of language such as phoneme and word bound-
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ries ( Brodbeck et al., 2018a ). Prior research has also found differences

n both subcortical and cortical processing for older and younger lis-

eners ( Anderson et al., 2012 ; Presacco et al., 2016a , 2016b ), which

uggest age-related auditory temporal processing deficits. These effects

ave been investigated in human subjects using the complementary non-

nvasive neural recording techniques of electroencephalography (EEG)

nd magnetoencephalography (MEG). 

The well-known frequency following response (FFR) is one such

hase-locked response ( Kraus et al., 2017 ), most commonly measured

sing EEG, and is believed to originate predominantly from the audi-

ory midbrain ( Bidelman, 2015 ; Smith et al., 1975 ). The FFR measures
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s  
he phase-locked response to the fast (~100 Hz and above), steady state

scillation of a stimulus, such as a repeated speech syllable. The FFR pro-

ides insight into the peripheral representation of speech and is a useful

ool for investigating temporal processing deficits ( Basu et al., 2010 ;

ornickel et al., 2012 ; Kraus et al., 2017 ). In addition, the FFR may be

sed to investigate the robustness of speech representations in noise or

 dual stream paradigm ( Yellamsetty and Bidelman, 2019 ). The FFR is

elieved to detect the integrated activity of several nonlinear processing

tages along the auditory pathway, and hence various nonlinear features

f the stimulus can contribute to the FFR ( Lerud et al., 2014 ). Some stud-

es compare and contrast FFRs obtained by averaging or by subtracting

esponses to stimuli of opposite polarity in order to tease apart these

ontributions to some extent ( Aiken and Picton, 2008 ; Hornickel et al.,

012 ). 

The neural origins of the FFR have historically been thought to be

ainly subcortical areas such as the inferior colliculus ( Smith et al.,

975 ). But recent studies with MEG and EEG have shown that the FFR

t ~100 Hz is not purely generated by subcortical areas, but has contri-

utions from the auditory cortex as well ( Bidelman, 2018 ; Coffey et al.,

017b , 2017a , 2016 ; Hartmann and Weisz, 2019 ; Puschmann et al.,

019 ). Some studies have shown that this cortical contribution is

tronger in the right hemisphere ( Coffey et al., 2016 ; Hartmann and

eisz, 2019 ). The dominantly cortical role in the MEG FFR follows from

he reduced sensitivity of gradiometer-based MEG to deep structures

uch as the auditory midbrain ( Baillet, 2017 ). 

However, the repeated speech syllables commonly used to generate

he FFR cannot capture the complexities of natural continuous speech.

o understand how the brain represents speech in naturalistic environ-

ents, cortical low frequency (below ~10 Hz) responses to continuous

peech have been widely studied ( Peelle et al., 2013 ). The MEG and

EG response to continuous speech can be represented using Temporal

esponse Functions (TRFs) ( Ding and Simon, 2012 ; Lalor et al., 2009 )

hich are linear estimates of time-locked responses to time varying

eatures of the auditory stimulus. The conventional low-frequency TRF

ime-locks to the slow (below ~10 Hz) envelope of continuous speech,

hough the spectrotemporal fine structure of speech can also modulate

hese cortical low frequency responses ( Ding et al., 2014 ; Ding and Si-

on, 2012 ). 

Recently, short latency subcortical EEG responses to continuous

peech have been found using TRF analysis ( Maddox and Lee, 2018 ),

emonstrating that it is possible to detect fast midbrain responses to

ontinuous speech. Early latency responses that phase lock to the fun-

amental frequency of speech have also been found to be modulated

y attention ( Forte et al., 2017 ). One study has also found cortical high

amma MEG responses to speech stimuli, with latencies near 30 ms,

hat are time-locked to the ~100 Hz temporal modulation in the en-

elope of the speech spectrum (up to 2 kHz) ( Hertrich et al., 2012 ).

hether auditory cortex time-locks in the high gamma range to the car-

ier as well as to the envelope modulation of continuous speech remains

nclear. 

Further complicating our understanding of the contributions of

ubcortical and cortical sources to the MEG response is the impact

f age-related changes in the auditory pathway ( Peelle and Wing-

eld, 2016 ). The temporal processing of speech can degrade with age,

specially in noisy conditions ( Gordon-Salant et al., 2006 ; He et al.,

008 ; Hopkins and Moore, 2011 ). Age-related differences have been

ound in both the EEG FFR and the MEG low frequency TRF to

peech. Older adults have weaker, delayed FFRs with lower phase co-

erence when compared with younger adults ( Anderson et al., 2012 ;

resacco et al., 2015 ; Zan et al., 2019 ). Possible causes include age-

elated inhibition-excitation imbalance ( Caspary et al., 2008 ) result-

ng in a loss of temporal precision ( Anderson et al., 2012 ). In a sur-

rising reversal, older adults’ cortex exhibits exaggerated low frequency

esponses ( Bidelman et al., 2014 ; Brodbeck et al., 2018b ), even to

he point of allowing better stimulus reconstruction via these low

requency cortical responses than in younger adults ( Presacco et al.,
016a , 2016b ). Several possible explanations, not necessarily exclusive,

ave been advanced to account for this surprising result, including de-

rease in inhibition, recruitment of additional brain regions and cen-

ral compensatory mechanisms ( Chambers et al., 2016 ; Peelle et al.,

010 ). The fact that fast midbrain responses are reduced with age while

low cortical responses are enhanced might indeed be due to anatom-

cal and physiological differences between midbrain and cortex, but

 fair comparison is complicated by the fact that the responses occur

t vastly different frequencies. Hence it is entirely unknown whether

igh gamma cortical responses would show age-related reduction or

nhancement. 

In this study, we investigated high gamma cortical responses to con-

inuous natural speech using MEG. Unfortunately, MEG responses are

nown to have relatively poor signal-to-noise ratio (SNR) and decreased

ower at high gamma frequencies because the cortical sources that dom-

nate MEG responses rarely phase lock in this range at a population level

 Lu et al., 2001 ). In addition, environmental noise and artifacts such as

uscular movement can obscure the signal at these higher frequencies

 Muthukumaraswamy, 2013 ). Hence detecting high gamma responses

sing MEG may require averaging over many trials (as for the FFR), or

uch longer speech stimuli, to boost SNR. Similarly, detecting subcor-

ical responses to speech may also require high SNR or longer speech

timuli ( Maddox and Lee, 2018 ). 

This work investigates whether such high gamma responses can be

etected using MEG with a simple experimental paradigm of short du-

ation. MEG recordings of younger and older subjects listening to only

ix minutes of continuous speech (narration by a male speaker) were

nvestigated using TRF analysis, and such high gamma time-locked re-

ponses are indeed found to be present. Just as the low frequency TRF

ay be compared to a low frequency evoked response, the high gamma

RF may be compared to the FFR in that they both reflect time-locked

ctivity at the stimulus frequency. 70–200 Hz was chosen as the high

amma range because 70 Hz is near the lower end of typical male voice

itch (and well above the 60 Hz of line noise) while 200 Hz is far above

ost known auditory responses measured by MEG. In addition, source

ocalization was performed to investigate the cortical and subcortical

ontributions to these high gamma MEG responses. Only six minutes, as

pposed to, e.g., 30 min, were chosen for the stimulus duration as being

ypical for an auditory speech experiment that employs multiple stimu-

us conditions (e.g., several levels of speech in noise). TRF analysis can

hen be used to investigate time-locked neural processing of a wide va-

iety of stimulus features, from acoustics to semantics ( Brodbeck et al.,

018a ) simultaneously in the same, short experimental paradigm. 

We focused on the following specific research questions. Firstly, are

0–200 Hz MEG responses to continuous speech time-locked to the car-

ier or to the envelope modulation of the speech spectrum? Unlike FFR

nalysis, TRF analysis is able to explicitly and simultaneously capture

istinct response contributions arising from different stimulus features,

n this case from envelope modulation and the carrier, allowing di-

ect comparison of the separate contributions of these features to the

esponse. Secondly, are there any age-related differences in these re-

ponses, and if so, do they show age-related decrease, like the EEG FFR,

r the opposite, like the cortical low frequency TRFs? Additionally, we

nvestigated if these responses were right lateralized as found in the

EG FFR ( Coffey et al., 2016 ). Such right lateralization would also agree

ith studies showing right hemispheric dominance for pitch processing

n core auditory cortex ( Hyde et al., 2008 ). Finally, we investigated if

he responses were influenced by the instantaneous pitch of the speech

timulus. 

. Methods 

.1. Experiment dataset 

The experimental dataset used for this study has been previously de-

cribed in detail by Presacco et al. (2016a , 2016b ), but is here supple-
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Fig. 1. Stimulus Representations. The stimulus waveform for a representative 

500 ms speech segment is shown along with its auditory spectrogram and the 

two predictors: carrier and envelope modulation. The predictors are correlated 

(Pearson’s r = –0.42) but have noticeably distinct waveforms. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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A  
ented with eight additional older adults with clinically normal hearing

dataset available online ( Kulasingham, 2019a )). The combined dataset

onsisted of MEG responses recorded from 17 younger adults (age 18–

7, mean 22.3, 3 male) and 23 older adults (age 61–78, mean 67.2,

 male), with clinically normal hearing, while they listened to 60 sec-

nd portions of an audiobook recording of “The Legend of Sleepy Hol-

ow ” by Washington Irving ( https://librivox.org/the-legend-of-sleepy-

ollow-by-washington-irving ). All participants gave informed consent

nd were paid for their time. Experimental procedures were reviewed

nd approved by the Institutional Review Board of the University of

aryland. The audio was delivered diotically through 50 Ω sound tub-

ng (E-A-RTONE 3A) attached to E-A-RLINK foam earphones inserted

nto the ear canal at ~70 dB sound pressure level via a sound system

ith flat transfer function from 40 to 3000 Hz. The conditions ana-

yzed in this study consist of two passages of 60 s duration presented

n quiet (i.e., solo speaker), each of which was repeated three times,

or a total of six minutes of MEG data per subject. Subjects were asked

eforehand to silently count the number of occurrences of a particular

ord and report it to the experimenter at the conclusion of each trial,

n order to encourage attention to the auditory stimuli. Handedness

f the participants was assessed with the Edinburgh handedness scale

 Oldfield, 1971 ), which can range from –1 (complete left-dominance)

o 1 (complete right-dominance). To exclude lateralization bias due to

andedness, all analyses were performed again excluding the 9 subjects

coring below 0.5. The only qualitative change in the results was a loss

f right hemispheric dominance in younger subjects (discussed below). 

.2. MEG data collection and preprocessing 

MEG data was recorded from a 157 axial gradiometer whole head

IT MEG system while subjects were resting in the supine position in a

agnetically shielded room. The data was recorded at a sampling rate

f 1 kHz with an online 200 Hz low pass filter with a wide transition

and above 200 Hz, and a 60 Hz notch filter. Data was preprocessed in

ATLAB by first automatically excluding saturating channels and then

pplying time-shift principal component analysis ( de Cheveigné and

imon, 2007 ) to remove external noise, and sensor noise suppression

 de Cheveigné and Simon, 2008 ) to suppress channel artifacts. On av-

rage, two MEG channels were excluded during these stages. All subse-

uent analyses were performed in mne-python 0.17.0 ( Gramfort, 2013 ;

ramfort et al., 2014 ) and eelbrain 0.30 ( Brodbeck et al., 2019 ); code

vailable online ( Kulasingham, 2019b ). The MEG data was filtered in the

and 70–200 Hz (high gamma band) using an FIR filter described be-

ow, and six 60 second epochs during which the stimulus was presented

ere extracted for analysis. The band 70–200 Hz was chosen since the

itch of the male speaker typically falls in this range, and 200 Hz is

bove most known auditory cortical responses. The data was resampled

o 500 Hz for all further analysis. 

.3. Stimulus representation 

As discussed above, prior work on the FFR has shown that time-

ocked neural responses are sensitive to both the carrier and the enve-

ope of an auditory stimulus. Similarly, time-locked responses to speech

n the high gamma range may be driven either by the high gamma car-

ier, or by high gamma modulation in the envelope of even higher fre-

uencies. Accordingly, two distinct representations of the speech stim-

lus were used as predictors for the TRF model (see Fig. 1 ). For the

ormer case, the carrier predictor was constructed by resampling the

peech waveform to 1 kHz (using the mne-python function ‘resample’)

nd bandpass filtering from 70 to 200 Hz using the same filter as above.

his carrier predictor captures the high gamma rate modulation in the

peech waveform itself. For the latter case, the envelope modulation

redictor was constructed from the high gamma modulation in the en-

elope of the highpassed stimulus waveform (envelopes are only well-

efined when they modulate carriers of higher frequencies than those of
he modulations themselves; Rosen, 1992 ). Specifically, first the speech

as transformed into an auditory spectrogram representation by com-

uting the acoustic energy in the speech waveform for each frequency

in in the range 300–4000 Hz at millisecond resolution using a model of

he auditory periphery ( Yang et al., 1992 ). The range 300–4000 Hz was

hosen in order to have a clear separation between the upper end of the

igh gamma range (200 Hz) and because the auditory stimulus was pre-

ented through air tubes which attenuate frequencies above 4000 Hz.

his auditory spectrogram is a 2-dimensional matrix representation of

he acoustic envelope over time for different frequency bins. Each fre-

uency bin component of this spectrogram was then filtered using the

ame 70–200 Hz bandpass filter as above, producing a 70–200 Hz band

imited envelope for each bin. Finally, the resulting 2-dimensional ma-

rix was averaged across frequency bins to provide a single signal, result-

ng in the envelope modulation predictor. Thus, this predictor captures

he 70–200 Hz temporal modulation in the 300–4000 Hz envelope of

he speech waveform. These two predictors were resampled to 500 Hz

nd used for all further TRF analysis. Even though the two predictors

re correlated at r = − 0.42, the TRF analysis is able to separate the neu-

al response to each of them (negative correlations are common for a

arrier and the corresponding non-linearly related envelope of another

requency band with different cochlear delays). 

The 70–200 Hz bandpass filter was formed using the default FIR filter

n mne-python with an upper and lower transition bandwidth of 5 Hz,

t 1 kHz sampling frequency, but applied twice in a forward fashion

o the data. This resulted in a combined filter of length 1322 with a

hase delay of 660 ms. Other bandpass filters were also employed as

lternatives, including IIR minimum-phase-delay Bessel filters (results

ot shown); no results depended critically on the filters used. 

.4. Neural source localization 

Before each MEG recording, the head shape of each subject was

igitized using a Polhemus 3SPACE FASTRAK system, after which five

arker coils were attached. The marker coil locations were measured

hile the subject’s head was positioned in the MEG scanner before and

fter the experiment, in order to determine the position of the head with

espect to the MEG sensors. Source localization was performed using the

ne-python software package. The marker coil locations and the digi-

ized head shape were used to coregister the template Freesurfer ‘fsaver-

ge’ brain ( Fischl, 2012 ) using rotation, translation and uniform scaling.

 volume source space was formed by dividing the brain volume into a

https://librivox.org/the-legend-of-sleepy-hollow-by-washington-irving
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i  

a  
rid of 7 mm sized voxels. This source space was used to compute an in-

erse operator using minimum norm estimation (MNE) ( Gramfort et al.,

014 ) and dynamical statistical parametric mapping (dSPM) ( Dale et al.,

000 ) with a depth weighting parameter of 0.8, and a noise covariance

atrix estimated from empty room data. This method results in a 3-

imensional current dipole vector with magnitude and direction at each

oxel. The Freesurfer ‘aparc + aseg’ parcellation was used to define corti-

al and subcortical regions of interest (ROIs). The cortical ROI consisted

f voxels in the gray and white matter of the brain that were closest to

he temporal lobe Freesurfer ‘aparc’ parcellations (‘aparc’ labels: ‘trans-

ersetemporal’, ‘superiortemporal’, ‘inferiortemporal’, ‘bankssts’). A few

dditional voxels surrounding auditory cortex (within 20 mm) were in-

luded in the ROI solely to ensure that the source localized responses

ot be misleadingly focal (distributed source localization with MNE has

 large spatial spread). The subcortical ROI was selected to consist of

oxels that were in the Freesurfer ‘aseg’ ‘Brain-Stem’ segmentation. All

rain plots show the maximum intensity projection of the voxels onto a

-dimensional plane, with an overlaid ‘fsaverage’ brain schematic (im-

lemented in eelbrain). Minimum norm estimation in volume source

pace may lead to spatial leakage from the true neural source to neigh-

oring voxels. In order to characterize this artifactual spatial leakage, a

ingle current dipole in Heschl’s gyrus was simulated, projected into sen-

or space, and then projected into volume source space (see Appendix).

dditionally, a separate cortical surface source space model was also

sed; results obtained using this method were not qualitatively differ-

nt than those of the volume space model (see Appendix). 

.5. Temporal response functions 

The simplest linear model used to estimate the TRF is given by 

 𝑡 = 

∑

𝑑 

( 𝜏𝑑 𝑥 𝑡 − 𝑑 ) + 𝑛 𝑡 (1)

here y t is the response at a neural source for time t , x t-d is the time

hifted predictor with a time lag of d, 𝜏d is the TRF value at lag d and

 t is the residual noise. The TRF is the set of time-dependent weights, of a

inear combination of current and past samples of the predictor, that best

redicts the current neural response at that neural source ( Lalor et al.,

009 ). Hence the TRF can also be interpreted as the average time-locked

esponse to a predictor impulse. In this investigation, a TRF model with

wo predictors, envelope modulation and carrier, was used. 

 𝑡 = 

∑

𝑑 

( 𝜏𝑒,𝑑 𝑒 𝑡 − 𝑑 + 𝜏𝑐,𝑑 𝑐 𝑡 − 𝑑 ) + 𝑛 𝑡 (2)

Where e t-d is the delayed e nvelope modulation predictor and 𝜏e, d the

orresponding envelope modulation TRF, c t-d is the delayed c arrier pre-

ictor and 𝜏c, d the corresponding carrier TRF. In this model, the two pre-

ictors compete against each other to explain response variance, which

esults in larger TRFs for the predictor that contributes more to the neu-

al response. The model parameters were estimated jointly, such that

he model is not affected by the ordering of the predictors. TRF esti-

ation, for lags from –40 to 200 ms, was performed with the boosting

lgorithm and early stopping based on cross validation ( David et al.,

007 ) as implemented in eelbrain. The boosting algorithm may result

n overly sparse TRFs, and hence an overlapping basis of 4 ms Hamming

indows (with 1 ms spacing) was used in order to allow smoothly vary-

ng responses; altering the Hamming window duration did not substan-

ively affect the results. For the volume source space, the neural response

t each voxel is a 3-dimensional current vector. Accordingly, for each

oxel, a TRF vector was computed using the boosting algorithm and was

sed to predict the neural response vector. For each voxel, the predic-

ion accuracy was assessed through the average dot product between

he normalized predicted and true response, which varies between − 1

nd 1 in analogy to the Pearson correlation coefficient. 
.6. Pitch analysis 

Prior studies have suggested that neural time-locking at high gamma

ates may reflect processing of pitch related features of the speech

 Smith et al., 1978 ). In order to investigate the extent to which the

esponse oscillations were influenced by the pitch frequency of the

peech stimulus, a simple pitch analysis was performed as follows. The

itch of the speech signal was extracted using Praat ( Boersma, 1993 ;

oersma and Weenick, 2018 ) in sliding 40 ms windows and used to

ark times when the pitch was above or below the median pitch value

98.11 Hz). This algorithm is a better approximation of the percept of

itch than simply dividing the stimulus based on its frequency content,

hus allowing subsequent analysis to be done on a neurally relevant fea-

ure of the stimulus. Two new ‘high pitch’ predictors were formed based

n the previous two predictors (envelope modulation and carrier) by ze-

oing out the times when the pitch was below the median. Similarly, ‘low

itch’ predictors were formed by zeroing out times when the pitch was

bove the median. Time windows without a stable pitch estimate were

et to zero in all predictors. Hence four new predictors were created:

igh pitch envelope modulation, low pitch envelope modulation, high

itch carrier and low pitch carrier. All 4 predictors were used simulta-

eously in a competing TRF model analogous to that in Eq. (2) . 

.7. Statistical tests 

Statistical tests were performed across subjects by comparing the

RF model to a noise model. The predictor was circularly shifted in

ime and TRFs were estimated using this time-shifted predictors as noise

odels ( Brodbeck et al., 2018a , 2018b ). This preserves the local tempo-

al structure of the predictor while removing the temporal relationship

etween the predictor and the response. Circular shifts of duration 15,

0 and 45 s were used to form three noise models. For each voxel, the

rediction accuracies of the true model were compared to the average

rediction accuracies of the three noise models as a measure of model

t. Since all the predictors in the model are fit jointly, this results in one

oint prediction accuracy for all the predictors for each voxel. 

To account for variability in neural source locations due to map-

ing the responses of individual subjects onto the ‘fsaverage’ brain,

hese coefficients were spatially smoothed using a Gaussian win-

ow with 5 mm standard deviation. Nonparametric permutation tests

 Nichols and Holmes, 2002 ) and Threshold Free Cluster Enhancement

TFCE) ( Smith and Nichols, 2009 ) were used to control for multiple

omparisons. This method, as outlined in full in Brodbeck et al., 2018c ,

018a , is implemented in eelbrain, and is briefly recounted here. Firstly,

 paired sample t -value was evaluated for each neural source, across sub-

ects, from the difference of the prediction accuracies of the true model

nd the average of the three noise models after rescaling using Fisher’s z -

ransform. Then the TFCE algorithm was applied to those t -values, which

nhances continuous clusters of large values, based on the assumption

hat significant neural activity would have a larger spatial spread than

purious noise peaks. This procedure was repeated 10,000 times with

andom permutations of the data where the labels of the condition were

ipped on a randomly selected subset of the subjects. A distribution of

FCE values was formed using the maximum TFCE value of each per-

utation to correct for multiple comparisons across the brain volume.

ny value of the original TFCE map that exceeded the 95th percentile

f the distribution was considered as significant at the 5% significance

evel. This corresponds to a one-tailed test of whether the true model

ncreases the prediction accuracy over the noise model. In cases where

oth sides of the comparison are important, corresponding two-tailed

ests were used (as explained below, for e.g., left vs. right, younger vs.

lder, envelope vs. carrier). In all subsequent results, the maximum or

inimum t-value across voxels is reported as t max or t min respectively. 

The TRF itself was also tested for significance against the noise model

n a similar manner. In the volume source space, a TRF that consists of

 3-dimensional vector which varies with time was estimated for each
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Fig. 2. Prediction Accuracy of Volume Source Localized TRFs. A. Prediction 

accuracy using the TRF model for each voxel in the volume source space ROIs 

(non-gray regions) averaged across subjects. Only ROI voxels for which model 

prediction accuracy significantly increased over the noise model are plotted ( p < 

0.05, corrected). The prediction accuracy is larger in cortical areas than in sub- 

cortical areas. Plots are of the maximum intensity projection, with an overlay 

of the brain. When taking into account expected MEG volume source localiza- 

tion leakage, these results are consistent with the response originating solely 

from cortical areas and with a right hemispheric bias. B. An area in the right 

hemisphere near the auditory cortex is significantly more predictive than the 

left hemisphere, but only in the younger subjects. (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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oxel, representing the estimated current dipole amplitude and direction

t that voxel. The amplitudes of these TRF vectors for the true model

nd the average noise model were used for significance testing. The TRF

mplitudes were spatially smoothed using the same Gaussian window

efore performing the tests. A one-tailed test was done with paired sam-

le t -values and TFCE, and the procedure is identical to that outlined

reviously, with the added dimension of time ( Brodbeck et al., 2018a ).

Lateralization tests were performed to check for hemispheric asym-

etry. The volume source space estimates in the cortical ROI were sep-

rated into left and right hemispheres and, as above, the prediction ac-

uracies were spatially smoothed with the same Gaussian window. The

rediction accuracies of the average noise model were subtracted from

hat of the true model and paired sample t -values with TFCE in a two-

ailed test were used to test for significant differences between each of

he corresponding left and right voxels. 

Age-related differences were assessed between the younger and older

roups. The difference of prediction accuracies between the true TRF

odel and the average of the noise TRF models were used to form inde-

endent sample t -values for each source across age groups after which a

wo-tailed test was performed with TFCE. Significant differences in later-

lization across age groups were assessed by subtracting the prediction

ccuracies of the left hemisphere from the right hemisphere and then

onducting independent samples tests across age groups as described

bove. The peak latency of the TRFs was also tested for significant dif-

erences across age groups. The latency of the maximum value of the 𝓁 2 
orm of the TRF vectors in the time range of significant responses (20–

0 ms) was used to test for peak latency differences across age groups

sing a two-tailed test with independent sample t -values and TFCE. 

To further investigate differences by age across both low frequency

nd high frequency (i.e., high gamma) responses, two additional models

ere analyzed; a low frequency (1–10 Hz) TRF and a high frequency TRF

ith the same parameters as the above models, but using cortical surface

ource space. An ANOVA was performed on the prediction accuracies

f these two models with factors TRF frequency (high or low) and age

young or old) (detailed methods and results in Appendix). 

. Results 

.1. Cortical origins of high gamma responses to continuous speech 

Per-voxel TRFs in volume source space were estimated in the high

amma range for the two ROIs: the temporal lobes, and the brain-

tem (plus its surrounding volume). The prediction accuracies of the

ompeting stimulus model described above for high gamma responses

mean = 0.021, std = 0.003) were much smaller (factor of 3) than those

esulting from low frequency cortical TRFs ( Brodbeck et al., 2018a ), in-

icating that these responses are weaker than slow cortical responses.

his is not surprising, as the spectral power of the MEG response de-

ays with frequency. Noise floor models, used to test for significant

esponses, generated corresponding noise model prediction accuracies

mean = 0.018, std = 0.001). For each voxel, a one-tailed test with paired

ample t -values and TFCE (to account for multiple comparisons) was

sed to test for significant increases in the prediction accuracies of the

rue model against the noise model across subjects. A large portion of

he voxels showed a significant increase in prediction accuracy (younger

ubjects t max = 6.19, p < 0.001; older subjects t max = 5.66, p < 0.001;

ee Fig. 2 A). The disproportionate extent of this result is not unexpected,

owever, due to the large spatial spread of MNE volume source space

stimates. The prediction accuracy over the noise model for voxels in

eschl’s gyrus was significantly larger than that within the subcortical

OI for both age groups (two-tailed paired sample t -test; younger sub-

ects t = 3.67, p = 0.002; older subjects t = 2.65, p = 0.015; difference

cross age not significant). Although some voxels in the subcortical ROI

re significant, this can be ascribed to artifactual leakage arising from

he source localization algorithm (see simulation in Appendix). 
Lateralization differences were tested using the prediction accuracy

t each voxel. The prediction accuracy of the average noise model was

ubtracted from that of the true model and a two-tailed test with paired

ample t -values and TFCE was performed for significant differences in

he left and right hemispheres. The tests revealed significantly higher

rediction accuracies for younger subjects in the right hemisphere than

n the left ( t max = 3.81, p = 0.035), but only for a few voxels (1.6%) in

he temporal lobe close to auditory areas (see Fig. 2 B). No significant

ifferences in lateralization were seen for older subjects ( t max = 3.41,

 min = –1.52, p > 0.09), nor was lateralization significantly different

cross age groups (independent samples test; t max = 1.93, t min = –2.28,

 > 0.88). When the analysis was constrained to only right-handed sub-

ects (13 younger, 18 older; see Methods for details), the only resulting

hange was that no voxels were significantly right lateralized in either

ge group. 

The TRFs at each source voxel are represented by a 3-dimensional

urrent vector that varies over the time lags. Hence for each voxel and

ime lag, the amplitude of the TRF vector for the true model was tested

or significance against the average of the noise models across subjects

sing a one-tailed test with paired sample t -values and TFCE. The TRFs

or the envelope modulation predictor in the cortical ROI were signifi-

ant (younger t max = 5.38, p < 0.001; older t max = 4.69, p < 0.001) start-

ng at a time lag of 23 ms, and ending at 63 ms, with an average peak

atency of 40 ms (see Fig. 3 A). The TRF current dipoles oscillate with al-
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Fig. 3. Volume Source Localized Envelope Modulation TRFs. The amplitude of the TRF vectors for the envelope modulation predictor averaged across voxels in the 

ROI, and, the mean ± (standard error) across subjects is plotted in the cortical (A) and subcortical (B) ROIs. Red curves are time points when the TRF showed a 
significant increase in amplitude over noise. The TRF was resampled to 2000 Hz for visualization purposes. The TRF shows a clear response with a peak latency of 

~40 ms. The distribution of TRF vectors in the brain at each voxel at the time with the maximum response are plotted as an inset for each TRF, with color representing 

response strength and the arrows representing the TRF directions. The color bar represents the response strength for all 4 brain insets. The response oscillates around 

a frequency of ~80 Hz and is much stronger in the cortical ROI compared to the subcortical ROI. Note that since only the TRF amplitude is shown, and not signed 

current values, signal troughs and peaks both appear as peaks. In the original, signed TRFs, the current direction alternates between successive amplitude peaks. 

The latency and amplitude of the response suggests a predominantly cortical origin. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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ernating direction between successive amplitude peaks. However, in all

ubsequent TRF plots, the TRF amplitude is shown, and not signed cur-

ent values, and hence signal troughs and peaks both appear as peaks.

he subcortical ROI was also analyzed in a similar manner and the TRF

howed significance in a much smaller time range of 31–35 ms only for

lder subjects (younger t max = 2.96, p > 0.13; older t max = 3.69, p < 0.01)

see Fig 3 B). There was no significant difference in amplitudes between

ounger and older subjects (cortical ROI t max = 3.7, t min = –3.38, p >

.18; subcortical ROI t max = 3.05, t min = –3.39, p > 0.45). The TRF re-

ponses oscillate at a frequency of ~80 Hz (see below for a more detailed

pectral analysis). The amplitude of these TRFs was significantly larger

n voxels in Heschl’s gyrus than in the subcortical ROI (two-tailed test

ith paired sample t-values on the 𝓁 2 norm of the TRFs across subjects:

ounger t = 3.51, p = 0.003; older t = 4.52, p < 0.001). Since the sub-

ortical TRFs also have a similar latency and shape to the cortical TRFs,

nd because a latency of 23 to 63 ms is late for a subcortical response,

hese subcortical TRFs are consistent with artifactual leakage from the

ortical TRFs due to the spatial spread of MNE source localization. Sim-

lated volume source estimates for current dipoles originating only in

eschl’s gyrus generated a spatial distribution of TRF directions consis-

ent with the experimental data (see Appendix), i.e. the spatial spread of

NE localized cortical responses resulted in apparent TRF vectors even

n the subcortical ROI. These results indicate that the response originates

redominantly from cortical regions. 

.2. Responses to the envelope modulation and the carrier 

Next, the neural response to the carrier was compared with that to

he envelope modulation. The carrier TRF was also tested for signifi-

ance using a corresponding noise model (as employed above). The car-

ier TRF showed weak responses that were only significant in the corti-

al ROI between 33 and 51 ms (younger t = 3.70, p = 0.042; older
max 
 max = 4.7, p < 0.001) (see Fig. 4 A, B). Although the carrier and enve-

ope modulation predictors are correlated ( r = –0.42), the TRF analysis

s able to separate the contributions of these two predictors remarkably

ell. Two-tailed paired sample t -values and TFCE were used to test for

 significant increase of the 𝓁 2 norm of the envelope modulation TRF

hen compared to the carrier TRF in a time window of 20–70 ms in

he cortical ROI (see Fig. 5 A). This test was significant for both younger

 t max = 4.38, p = 0.002) and older ( t max = 3.63, p = 0.017) subjects.

owever, this test did not find a significant increase in the envelope

odulation TRF over the carrier TRF in the subcortical ROI for either

ounger ( t max = 0.045, p > 0.32) or older subjects ( t max = 0.89, p > 0.36).

ince the TRF analysis allows both stimulus predictors to directly com-

ete for explaining response variance, the results strongly indicate that

he response is primarily due to the envelope modulation over the car-

ier. 

.3. Age-related differences 

Statistical tests were performed for age-related differences between

lder and younger subjects on both the prediction accuracy and the

RFs. Two-tailed tests of prediction accuracy with independent sam-

le t -values and TFCE indicated no significant difference (cortical ROI

 max = 1.17, t min = –2.72, p > 0.44; subcortical ROI t max = –0.78, t min =
1.37, p > 0.38). Similarly, no voxels or time points were significantly

ifferent in either the envelope modulation TRF (cortical ROI t max = 3.7,

 min = –3.38, p > 0.18; subcortical ROI t max = 3.05, t min = –3.39, p > 0.45)

r the carrier TRF (cortical ROI t max = 3.34, t min = –3.89, p > 0.25; sub-

ortical ROI t max = 2.69, t min = –3.10, p > 0.18). In addition, the cortical

OI TRFs showed no significant differences across age groups in peak

atency (envelope modulation TRF t max = 1.82, t min = –2.62, p > 0.5; car-

ier TRF t max = 2.79, t min = –2.32, p > 0.53). An additional analysis was

erformed using surface source space TRFs as described in detail in the
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Fig. 4. Volume Source Localized Carrier TRFs. The amplitude of the TRF vectors for the carrier predictor averaged across sources. Mean ± (standard error) across 
subjects is shown, analogous to Fig. 3 . For comparison, the axis and color scale are identical to that in Fig. 3 . The TRF shows a weaker response compared to the 

case of envelope modulation, with a peak latency of ~40 ms, that is significant in the cortical ROI for both groups, and over a longer time interval for older subjects. 

Comparison with Fig. 3 suggests that the high gamma response is dominated by the envelope modulation over the carrier. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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t  
ppendix. Both high (70–200 Hz) and low (1–10 Hz) frequency TRFs

ere computed in surface source space, and model prediction accuracy

as assessed with an ANOVA with factors TRF frequency and age. The

NOVA showed a significant frequency × age interaction ( F 1, 38 = 6.46,

 = 0.015), suggesting that age related differences are indeed not con-

istent across high and low frequency responses (detailed results in Ap-

endix), i.e. present at low but not at high frequencies. 

.4. Pitch analysis 

To further understand the contributions of these predictors to the

RF oscillations, the frequency spectrum of the TRFs and the predictors

ere compared (see Fig. 5 B). The frequency spectrum of the average

RFs showed a broad peak centered near 80 Hz for both predictors and

oth age groups (envelope TRF spectral peak mean = 81 Hz, std = 5 Hz;

arrier TRF spectral peak mean = 82 Hz, std = 8 Hz). In contrast, the

pectral peak of the predictor variables was near 110–120 Hz for the

arrier, and near 70–75 Hz for the envelope modulation. Since the TRF

eak frequency did not match the peak power in either of the predic-

ors, a further analysis was performed after separating the stimulus into

igh- and low-pitch time segments (see Methods). This resulted in a

odel with 4 predictors and their corresponding TRFs: high/low-pitch

nvelope modulation and high/low-pitch carrier. The low-pitch enve-

ope modulation TRFs and low-pitch carrier TRFs are broadly similar to

hose of the earlier analysis (see Fig. 6 ). These TRFs show more signif-

cant regions than the previous analysis, although the two models (one

ith 2 predictors, the other with 4 predictors) cannot be directly com-

ared since an increased number of predictors has more degrees of free-

om and allows for the model to predict more of the signal. The TRF am-

litudes were significantly larger in the low pitch TRFs when compared

o the high pitch TRFs (see Fig. 5 C; envelope modulation t max = 7.6, p <

.001; carrier t max = 3.78, p = 0.013). In addition, the spectra of the low

itch TRFs peak near 80 Hz similar to the low pitch predictors (envelope

RF spectral peak mean = 81 Hz, std = 6 Hz; carrier TRF spectral peak

ean = 82 Hz, std = 4 Hz), while the high pitch TRFs do not have a

lear peak (see Fig. 5 D). This suggests that the TRF oscillation is driven

ainly by the segments of the stimulus with pitch below 100 Hz, and

hat responses to stimulus pitches above 100 Hz are not easily detected

y this analysis. 
. Discussion 

In this study, we investigated high gamma time-locked responses to

ontinuous speech measured using MEG. Such responses were found,

nd their volume source localized TRFs provided evidence that these

esponses originated from cortical areas with a peak response latency

f approximately 40 ms. The responses showed a significant right hemi-

pheric asymmetry. These responses oscillate with a frequency of ap-

roximately 80 Hz and track the low pitch segments of the speech stim-

lus. We also showed that the response is significantly stronger to the

nvelope modulation than the carrier. Surprisingly, there were no signif-

cant age-related differences in response amplitude, latency, localization

r predictive power. This is in contrast to age-related differences seen

n both the subcortical EEG FFR (younger > older) and the cortical low

requency TRF (older > younger). 

.1. MEG sensitivity to high gamma responses 

MEG signals are known to have poor SNR at high frequencies

 ≳100 Hz) ( Hansen et al., 2010 ). The MEG signal is an average over

 large population of neurons, and hence detection of population level

igh gamma responses requires precise (within a few ms) phase syn-

hrony across these populations ( Hämäläinen et al., 1993 ). However, the

ortical sources which MEG would otherwise be sensitive to rarely phase

ynchronize across a large population at these high gamma ranges, lead-

ng to poor neural SNR for these high gamma ranges (reflected in our

esults by the small correlation values between actual responses and

odel predictions). The implications of this for our study are twofold.

irstly, conclusions regarding the intrinsic properties of high gamma re-

ponses to speech are limited by these methodological constraints on

he MEG signal. Our results only show that there are significant corti-

al responses at ~80 Hz, but do not rule out higher frequency cortical

esponses, or subcortical responses, that may be buried in poor SNR.

onversely, however, it is somewhat surprising that using such a simple

xperimental paradigm, with short duration continuous natural speech,

t is possible to reliably detect such MEG responses using a TRF model. 

.2. MEG sensitivity to deep sources 

Gradiometer-based MEG is physically constrained to be less sensi-

ive to deep structures, typically resulting in such subcortical MEG re-
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Fig. 5. Comparison of Responses to the Envelope Modulation and to the Car- 

rier. A . The 𝓁 2 norm of the TRF between 20 ms and 70 ms was larger in the 

envelope modulation TRF than the carrier TRF ( ∗ ∗ ∗ p < 0.001). Boxplots after 

combining both age groups are shown. B . The frequency spectrum of the TRF 

reveals that the oscillation has a broad peak around 80 Hz (vertical gray bars 

denote a narrow frequency band excluded from analysis because of 120 Hz line 

noise). In contrast, the predictors’ peaks are displaced in frequency from the TRF 

peak, either well below (for the envelope modulation) or well above (for the car- 

rier). Note that the sharp cutoff in the envelope modulation spectrum at 70 Hz 

arises from the bandpass filter used in analysis: without the bandpass filter the 

spectrum would continue rising toward lower frequencies. C. The 𝓁 2 norm of 

the TRF for the pitch-separated model between 20 ms and 70 ms was larger in 

the low pitch TRFs than the high pitch TRFs for both envelope modulation and 

carrier ( ∗ ∗ ∗ p < 0.001). D . The frequency spectrum of the low-pitch TRF has a 

peak around 80 Hz, while the high pitch TRF does not show any peaks. This sug- 

gests that the TRF is dominantly driven by the low-pitch segments of the speech 

waveform. The spectra of the corresponding high and low pitch predictors are 

also shown, highlighting the clear separation of the spectra at the median pitch 

frequency of 98 Hz. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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ponses being up to 100 times weaker than cortical responses at equiva-

ent current strengths ( Attal et al., 2007 ; Hillebrand and Barnes, 2002 ).

everal source localization techniques have been proposed to cor-

ect for this inherent bias towards cortical sources ( Dale et al., 2000 ;

rishnaswamy et al., 2017 ; Pascual-Marqui, 2002 ). Some studies were

ble to resolve MEG responses to the hippocampus ( Cornwell et al.,

012 ), amygdala ( Balderston et al., 2014 ; Cornwell et al., 2008 ;

umas et al., 2013 ) and thalamus ( Roux et al., 2013 ). Prior work
as also been done using MEG for measuring brainstem responses

 Coffey et al., 2016 ; Parkkonen et al., 2009 ). These studies show that

EG can be used to localize sources in subcortical areas given a large

umber of repetitions or specialized experimental paradigms. However,

ome of these studies used magnetometer-based MEG, which is more

ensitive to deep sources than gradiometer based MEG ( Lopes da Silva

nd van Rotterdam, 2005 ). In addition, resolving several sources with

EG is more complicated than localizing an isolated source due to the

on-unique nature of distributed inverse solutions ( Lütkenhöner, 2003 ).

n our study, we used such a distributed source localization and a

hort experimental paradigm (without many stimulus repetitions) and

ound responses dominated by cortical sources. Simulation results sug-

ested that the small amount of activation associated with the brain-

tem is more easily explained as an artifact of source localization leak-

ge from cortical sources. On the other hand, although these results

o not identify responses from subcortical regions, this does not im-

ly at all that such responses are absent in the auditory system. Brain-

tem responses to continuous speech have been detected using EEG

 Maddox and Lee, 2018 ), and it is entirely possible that high gamma

ubcortical responses to speech may also be detected in MEG by other

xperiments with higher SNR, different analysis methods or MEG sys-

ems that are more sensitive to deep sources. 

.3. Cortical FFRs and high gamma TRFs 

The high gamma TRF is not directly analogous to the FFR because,

mong other reasons, it is not an average over several repetitions of

imple stimuli, but is instead a weighted average over longer time. How-

ver, the TRFs measured here indeed show a measure of high gamma

ime-locking that can be compared to the FFR. Cortical FFRs to repeated

ingle speech syllables have been measured in MEG ( Coffey et al., 2016 )

nd EEG ( Bidelman, 2018 ; Coffey et al., 2017b ). Our work shows that

ortical TRFs contain significant responses up to 62 ms, comparable

o the long-lasting explanatory power of the auditory cortex ROI in

offey et al., 2016 . These TRFs are also predominantly from auditory

ortex, centered around Heschl’s gyrus, and right lateralized similar to

he MEG FFR ( Coffey et al., 2016 ). However, some studies have demon-

trated that the contribution of cortical sources to the FFR as measured

ith EEG is weaker than when measured with MEG ( Ross et al., 2020 ),

nd rapidly decreases for harmonics above 100 Hz ( Bidelman, 2018 ). In

act, while subcortical FFR is measurable with EEG for harmonics up to

000 Hz, there were no cortical contributions to the FFR above 150 Hz

 Bidelman, 2018 ). Unsurprisingly our results confirm that the cortical

ources dominate the MEG response at frequencies near 100 Hz. 

.4. Comparison of responses to the envelope modulation vs. the carrier 

The subcortical FFR is typically analyzed by averaging across stimu-

us presentations of opposite polarity, which results in responses driven

ainly by the stimulus envelope and other even-order nonlinearities

 Lerud et al., 2014 ). However, studies have also analyzed the FFR by

ubtracting the responses to stimulus presentations of opposite polarity

 Aiken and Picton, 2008 ), which is driven mainly by the carrier and

dd-order nonlinearities. Hence both the envelope and the carrier mod-

late responses across the auditory pathway. Unlike FFR analysis, the

RF analysis used in this study is well suited to disentangle the con-

ributions of different features of the stimulus to the neural response,

ince it allows each stimulus representation to directly compete to ex-

lain the response variance. Our results found significant time-locked

igh gamma cortical responses to continuous speech for both envelope

odulation and carrier, but these responses were predominantly driven

y the envelope modulation over the carrier. This could be related to

he perceptual phenomenon that modulation of the speech spectrum

bove 300 Hz is more behaviorally relevant for speech understanding,

nd more resistant to background noise, than the carrier below 200 Hz

 Assmann et al., 2004 ). Slow evoked responses in auditory cortex are
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Fig. 6. Pitch-separated TRFs. The amplitude of the low pitch TRF (A) and high pitch TRF (B) vectors for both the envelope modulation and carrier predictors averaged 

across sources. Mean ± (standard error) across subjects is shown, analogous to Figs 3,4 . The axis and color scale are smaller than those in Figs. 3,4 since the pitch 
separated TRFs are each based on a subset of the stimulus predictors, and hence have weaker amplitudes. All four TRFs show significant regions around 40 ms, but 

the low pitch envelope modulation TRF is the strongest, followed by the low pitch carrier TRF. This indicates that the high gamma response is time-locked to the low 

pitch segments of the speech stimulus. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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lso sensitive to fine-structure acoustic features such as pitch and timbre

 Roberts et al., 2000 ), and the auditory cortical response to the slowly

arying envelope of speech is likewise modulated by the spectrotempo-

al fine structure of the stimulus ( Ding et al., 2014 ). 

.5. High gamma TRF is driven by low pitch segments of the speech 

The TRF response oscillates with a peak frequency of approximately

0 Hz, and is well time-locked to the segments of speech where the

itch is below 100 Hz. Cortical auditory phase locked responses to

imple sounds have been measured using MEG ( Coffey et al., 2016 ;

ertrich et al., 2004 ; Schoonhoven et al., 2003 ) at frequencies of up

o 111 Hz. For continuous speech stimuli, such phase locked responses

ould reflect a cortical mechanism that represents complex speech fea-

ures such as modulations in vowel formants, using fluctuations in

he fundamental frequency domain of natural speech. Our pitch anal-

sis showed that the response strongly locks to pitch frequencies be-

ow 100 Hz, but not above 100 Hz. This agrees with other studies

hat show a bias in cortical phase-locking towards lower frequencies

 Bidelman, 2018 ; Ross et al., 2000 ; Schoonhoven et al., 2003 ). 

.6. Right lateralization of responses 

The TRF model prediction accuracy was significantly right later-

lized in younger subjects. The lack of significant right lateralization

mong older subjects may not indicate an age-related lateralization dif-

erence, but rather a lack of statistical power, since the lateralization

as not significantly different across age groups. However, similar lat-

ralization differences across age groups have been found for 80 Hz

SSR ( Goossens et al., 2016 ). Stronger responses in the right audi-

ory cortex have been observed for ASSR using EEG ( Ross et al., 2005 )

nd MEG ( Hertrich et al., 2004 ) as well as in cortical FFRs using MEG

 Coffey et al., 2016 ). This agrees with prior studies showing that right

uditory cortex is specialized for early tonal processing and pitch res-

lution ( Cha et al., 2016 ; Hyde et al., 2008 ; Zatorre, 1988 ). Both this
ight hemispheric bias, and the relatively short peak latency of 40 ms of

ur TRFs suggest that these cortical high gamma responses are due to

arly auditory processing of acoustic periodicity. However, some studies

ave also suggested that increased cortical folding in left auditory cor-

ex could lead to a cancelation of MEG signals in the left hemisphere,

hich could lead to a similar right-ward bias in the absence of functional

ateralization ( Shaw et al., 2013 ). 

.7. Absence of age-related differences 

Temporal precision and synchronized activity decreases in the au-

itory system with age and is characterized by age related differences

n both subcortical and cortical responses. Older adults have subcor-

ical FFR responses with smaller amplitudes, longer latencies and re-

uced phase coherence, which could be due to an excitation-inhibition

mbalance or a lack of neural synchrony ( Hornickel et al., 2012 ). In

 surprising reversal, MEG and EEG studies have revealed that older

dults have larger slow (below ~10 Hz) cortical responses than younger

dults ( Alain et al., 2014 ; Bidelman et al., 2014 ; Herrmann et al., 2016 ),

hat result in better prediction accuracy for reverse correlation meth-

ds ( Decruy et al., 2019 ; Presacco et al., 2016a , 2016b ). Animal studies

uggest that this opposite effect could be due to cortical compensatory

entral mechanisms ( Chambers et al., 2016 ; Salvi et al., 2017 ) or lack

f inhibition ( Caspary et al., 2008 ; Villers-Sidani et al., 2010 ). Another

ossibility is the recruitment of additional neural areas for redundant

rocessing ( Brodbeck et al., 2018b ; Peelle et al., 2010 ). Contrary to

oth these cases, we found no significant age-related differences in high

amma cortical responses, although this might be due to a lack of sta-

istical power (see Ross et al., 2020 ). An ANOVA with factors TRF fre-

uency and age suggested that the difference in low frequency responses

mong older and younger adults is not preserved for high gamma re-

ponses (see Appendix). These results suggest that high gamma cortical

esponses do not show a clear difference with age. The high gamma MEG

RF reflects fine-grained time-locked neural activity, like a subcortical

FR, but arising from cortical areas. It is possible that older adults’ exag-
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Fig. A1. Simulation of Spatial Spread of Volume Source Localization. A. One 

dipole in Heschl’s gyrus was simulated. B. Volume Source Localization of the 

dipole after it was projected to sensor space. The cortical and subcortical ROIs 

are shown and artifactual leakage is seen in the brainstem voxels. 
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Fig. A2. Prediction Accuracy of Surface Source Space TRFs. Pearson correlation 

coefficients between the actual and predicted response using the TRF model for 

each source in the surface source space ROI averaged across subjects are shown 

on an inflated brain. Only the voxels showing a significant increase in predic- 

tion accuracy over the noise model are plotted. Although most neural sources 

are significantly predictive, the prediction accuracy is larger in areas near core 

auditory cortex. A region in auditory cortex is significantly more predictive in 

the right hemisphere than the left, but only in younger subjects. 
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erated responses in cortical areas and the lack of neural synchrony at

igh frequencies (as seen in subcortical FFRs) affect their high gamma

EG responses in opposite directions and obscure what would otherwise

e detectable age-related differences. 

.8. Neural mechanisms for the MEG high gamma response 

Given that MEG records the aggregate response over a large pop-

lation of neurons, the specific origins of high gamma time-locked re-

ponses are not readily apparent. It is possible that the high gamma TRF

eflects the effects of several processing stages along the auditory path-

ay, similar to the FFR. Electrocorticography (ECoG) studies have seen

ortical phase-locked activity at these high rates ( Nourski et al., 2014 ;

teinschneider et al., 2013 ). However, cortical phase-locking at the

ndividual neuron level drastically reduces with increasing frequency

 Lu et al., 2001 ), and hence cortical neurons may not be the sole con-

ributor to these high gamma responses. 

Such phase locked auditory activity is compatible with the spiking

utput of the Medial Geniculate Body (MGB) ( Miller et al., 2002 ), which

rovides input to early auditory cortical areas. The MEG signal is dom-

nantly driven by dendritic currents (that give rise to the Local Field

otential) ( Hämäläinen et al., 1993 ), and hence these high gamma re-

ponses may be due to the inputs from the MGB into auditory cortex.

rior work has shown that auditory cortex is able to transiently time-

ock to continuous acoustic features with surprisingly high temporal pre-

ision of the order of milliseconds ( Elhilali et al., 2004 ). Time-locked in-

uts from MGB may provide a neural substrate for such precise transient

emporal locking to stimulus features. Direct correspondences with age-

elated changes in thalamus from animal work are limited ( Caspary and

lano, 2019 ), and hence it is unclear if time-locked high gamma spiking

ctivity in MGB animal models would be similar across age. However,

nvasive neural recordings could help to disentangle the opposite ef-

ects of aging in the brainstem and the cortex seen with MEG and EEG,

eading to a better understanding of time-locked responses in the aging

uditory pathway. 

. Conclusion 

In this study, we found high gamma time-locked responses to contin-

ous speech, using MEG, that localized to auditory cortex, occurred with

 peak latency of approximately 40 ms, and were stronger in the right
emisphere. We showed that TRF analysis could be used to reliably sep-

rate the contributions of several stimulus features to this response. The

esponse function showed oscillations at approximately 80 Hz, predom-

nantly driven by the envelope modulations during the segments of the

peech where the pitch is below 100 Hz. Such high gamma time-locked

esponses may originate from the thalamic inputs to cortical neurons.

hese responses can be reliably detected in MEG using natural speech

timuli even of short duration, allowing TRF analysis to be employed

o investigate auditory processing of speech from acoustics to semantics

nder several stimulus conditions in the same experiment. Furthermore,

here were no significant age-related differences in these high gamma

esponses, unlike in both the low frequency cortical TRFs or the sub-

ortical FFRs. Hence both the neural origin and the frequency domain

ust be considered when investigating age-related changes in the audi-

ory system. 
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Fig. A3. Surface Source Space TRFs. The amplitude of the TRFs for the competing model for both predictors averaged across neural sources and masked by significance 

against the noise model. Mean ± (standard error) across subjects is shown. The distribution of current dipoles in the temporal lobe ROI at the peak of the response is 
shown as an inset. Unlike the volume source space, the surface source space comprises of current dipoles with fixed orientation normal to the cortical surface. The 

signed magnitudes of these fixed direction dipoles are plotted on the surface, allowing for positive (orange) and negative (purple) values for outward and inward 

directions. 
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ppendix 

Simulation of spatial spread of distributed source localization 

Distributed neural source localization methods for MEG, such as

NE, result in a substantial amount of spatial spread. In order to charac-

erize this spread, a dipole was simulated on Heschl’s gyrus perpendic-

lar to the pial surface of the ‘fsaverage’ brain using the ‘ico-4’ surface

ource space. The dipole was then projected to sensor space, and MNE

ource localization with dSPM was performed to project it back onto

he volume source space (see Fig A1 ). The peak of the activity shows

 broad spread around Heschl’s gyrus but also some small activity in

ther parts of temporal lobe and even in the brainstem. This supports

he claim that high gamma responses seen at the brainstem in our study

re attributable to leakage from cortical areas. 

Surface source space TRF methods and results 

Cortical surface source space estimation was performed using the

ico-4’ source space, which consists of a fourfold icosahedral subdivi-

ion of the white matter surface of cortex with dipoles oriented normal

o the surface. The ‘aparc’ parcellation was used to select dipoles in the

emporal lobe for further analysis. In this surface source space analy-

is, current dipoles have a fixed orientation normal to the surface, and

ence the TRF consists only of signed scalar amplitude variations with

ime. The Pearson correlation between the actual and predicted neural

esponse was used as a measure of prediction accuracy for each neural

ource. For statistical tests, the TRFs and the correlation values were first

ectified and then spatially smoothed using a Gaussian window with a

tandard deviation of 5 mm. The rectified, smoothed TRF of the true

odel was compared to the average of that of the three noise models

sing the same one tailed test with paired sample t -values and the TFCE

rocedure outlined in Methods. 

Lateralization tests were performed to check for hemispheric asym-

etry. The correlation values at each neural source in both left and

ight hemisphere were morphed onto the right hemisphere of the ‘fsav-

rage_sym’ brain as described in Brodbeck et al. (2018a) . This brain
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odel is symmetric in left and right hemispheres, allowing for com-

arisons between corresponding neural sources in both hemispheres. As

efore, these correlation coefficients were spatially smoothed using the

ame Gaussian window. After morphing, the correlation values of the

verage noise model were subtracted from that of the true model and a

wo-tailed test with paired sample t -values and TFCE was used to assess

or significant differences in each of the corresponding left and right

urrent dipoles. 

TRFs were estimated using the cortical surface source space for neu-

al sources in the temporal lobe, using both the envelope modulation

nd the carrier predictors in a competing model. Both predictors were

ime-shifted to generate noise models. All surface space results were sim-

lar to volume source space results. The prediction accuracies and TRFs

re shown in Fig. A2 , Fig. A3 . The prediction accuracies were right lat-

ralized but only in younger subjects ( t max = 4.6, p = 0.008). The TRFs

howed a significant response in the range of 19–67 ms for the envelope

odulation and 23–57 ms for the carrier. The envelope modulation TRF

as stronger than the carrier TRF using the same tests as in the vol-

me source space (younger t max = 5.27, p < 0.001; older t max = 3.46,

 = 0.03). There were no age-related differences in surface source space

nalyses (prediction accuracy t max = 2.41, t min = –2.99, p > 0.29; maxi-

um amplitude of envelope modulation TRF t max = 2.40, t min = –2.47,

 > 0.68; maximum amplitude of carrier TRF t max = 1.79, t min = –3.07,

 > 0.54). 

In addition, low frequency TRFs were also estimated to compare age-

elated differences in both frequency domains. The stimulus represen-

ation for this model was the Hilbert envelope of the speech waveform

ltered at 1–10 Hz with a logarithmic nonlinearity applied. The MEG

ata was also filtered at 1–10 Hz and TRFs were estimated using the

urface source space. The resulting TRFs were as expected from prior

ork ( Brodbeck et al., 2018b ), with older subjects showing significantly

igher reconstruction accuracies ( t max = 0.93, t min = –3.45, p = 0.022).

he increase in model prediction accuracies above the noise, for the

igh frequency TRF and the low frequency TRF were averaged across

eural sources per subject, and a TRF frequency by age ANOVA was

erformed. Results indicated a significant interaction of TRF frequency

age ( F 1, 38 = 6.46, p = 0.015) and significant main effects of TRF fre-

uency ( F 1, 38 = 216.58, p < 0.001) and age ( F 1, 38 = 4.83, p = 0.034).

his suggests that age-related changes are not consistent across low and

igh frequency responses, in further agreement with all the above re-

ults. 
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