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Abstract—Aggregation of the amyloid-3 (A/3) protein has been
implicated in Alzheimer’s disease (AD). Since, low molecular
weight A aggregates are hypothesized to serve as the primary
toxic species in AD pathogenesis, significant research has been
conducted to understand the mechanistic details of the aggre-
gation process. We previously demonstrated that heterotypic
interactions between AS and fatty acids (FAs) can lead to
competing pathways of AJ aggregation, termed as the off-
pathway; this off-pathway kinetics can also be modulated by FA
concentrations as captured by mass action models. We employed
ensemble Kinetics simulations which uses a system of Ordinary
Differential Equations to model the competing on- and off-
pathways of AJ aggregation that were trained and validated
by biophysical experiments. However, these models had several
rate constants, treated as free parameters to be estimated, which
resulted in over-fitting of the model. Hence, in this paper, we
present a global fitting based method to accurately identify the
rate constants involved in the complex competing pathway model
of AS aggregation. We additionally employ detailed parameter
identifiability tests for uncertainty quantification using the profile
likelihood method. Since, the emergence of off- or on-pathway
aggregates are typically controlled by a narrow set of rate
constants, it is imperative to rigorously identify the proper
rate constants involved in these pathways. These rate constants
serve as a basis for future experiments on modulating the
aggregation pathways to populate a particular possibly less toxic
oligomeric species. The obtained rate constants also motivate new
biophysical experiments to better understand the mechanisms of
amyloid aggregation in other neurodegenerative diseases.

Index Terms—systems biology, profile likelihood, optimization,
global fitting, protein aggregation.

I. INTRODUCTION

Aggregation of the amyloid 8 (Af) protein is an important
process in Alzheimer disease (AD) pathogenesis. Proteolytic
processing of the amyloid precursor protein generates A3(1—
40) and AB(1 — 42) peptides, which spontaneously aggregate
to form insoluble fibrils that deposit as senile plaques in the
AD brain. During aggregation, soluble proteins misfold into
insoluble fibrils comprising of cross-3-sheets. Fibrils along
with smaller oligomers are believed to be the main toxic agents
causing synaptic dysfunction and neural loss ([1], [2], [3],
[4]). Hence, several studies have focused on understanding
the biophysical and biochemical aspects of aggregation.

A aggregation towards fibril formation proceeds along the
canonical on-pathway; however, competing partners such as
fatty acids (FAs) can shift the oligomer formation to the off-
pathway that arrests fibril formation by producing smaller
soluble oligomers. We demonstrated that it is possible that

the reactions involving A/ could switch between the on- and
off-pathways [5] by changes in FA concentration. Several prior
studies also reveal a rate-limiting mechanism for the formation
of the nucleus or nuclei in the on-pathway ([6], [7], [8],
[9], [10], [11]). The on-pathway reactions typically consist
of two phases. The first phase comprises of the nucleation
process where the soluble oligomers aggregate at a slower
pace, called the lag phase. The second phase is known as
the elongation or the fibrillation phase, and is designated by
rapid fibril formation. We have earlier explored the heterotypic
interactions between AS and FAs by using two independent
tools: reduced-order modeling (ROM) and ensemble kinetic
simulations (EKS) [12], both of which were based on Ordinary
Differential Equations (ODESs). On the other hand, the psuedo-
micellar phase in the off-pathway (around the critical micelle
concentration, CMC) can be categorized by three different
phases [12], [13]. In the first phase, the monomers react with
the pseudomicelles to make 4mers. In the next phase, these
4mers elongate (using monomers) to form 12mers. Finally,
the 12mers combine with the 4-11mers of the second phase
to form 12-23mers. We also assume that switching between
on- and off-pathways can occur at any oligomer level. We
have established these on- or off-pathway reactions and their
switching behavior in our previous work ([5], [12], [14], [15]).

ODEs are widely used to model biological dynamics. A
central challenge of ODE models is to estimate the various
model parameters such as the concentration of reactants and
the rate constants to calibrate the model. This is achieved
by optimizing an objective function to evaluate the goodness
of fit to the experimental data on aggregation kinetics. The
likelihood function, which is analogous to the least-squares
criterion in typical Systems Biology applications, is an effi-
cient objective function for this purpose. Another vital step
in this modeling procedure is the assessment of uncertainty
which is typically done by calculating the confidence interval
for the parameters. Standard errors such as, the propagation
of measurement uncertainty, are modeled by the Gaussian law
of error propagation which is based on the linearization of the
model. However, mechanistic models in Systems Biology are
typically quite complex and exhibit nonlinear characteristics
that cannot be properly captured by such regression models.

The confidence intervals of different parameters may present
complex patterns due to the non-linearity in the likelihood
function. Here, classical methods may provide rough approxi-
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mations for finite samples. In cases of structural and practical
non-identifiability [16], this method becomes infeasible. In
contrast, the profile likelihood method results in confidence
intervals, which do not vary with parameter transformation,
and are immune to the nonlinear distortions of the likelihood
landscape. Hence, the profile likelihood is a one-dimensional
representation indicating the values of a parameter, that statisti-
cally agrees with available measurements. Profile likelihood is
thus a popular method for calculating confidence intervals and
identifiability of parameters in systems biology applications.

In this paper, we use COPASI [17] to model the reactions
in AS aggregation along competing pathways. We estimate the
parameters by performing a global fit with experimental results
considering separate experiments on individual pathways as
well as a comprehensive competing pathways scenario. We
also perform uncertainty quantification using COPASI and
PyBNF [18] by using the profile likelihood method.

II. RELATED WORKS:

The following works form the skeleton of our framework.

A. Detailed description of A3 competing pathways reactions

Heterotypic interactions between FAs and A3 were studied
in [12] by using two independent methods: reduced order
modelling (ROM) and Ensemble Kinetic Simulations (EKS),
to validate our prior experimental observations. These models
showed the significance of the initial condition and concen-
tration of the species from both pathways in dictating the
outcomes of aggregation. Furthermore, [5] introduced a new
game theoretic approach using the ROM and EKS methods to
model the dynamics of A aggregation; this work established
the possibilities of switching of oligomers between the two
pathways and also demonstrated control mechanisms that favor
the prevalence of oligomers from a particular pathway.

We experimentally demonstrated on- to off-pathway switch-
ing in [5]. 5 mM C12 FA was added to 25 M A/342 buffered
in 20 mM Tris, 50 mM NaCl at pH 8.0 (micelle addition
event) in two separate experiments at 3h, 24h. It resulted in
increased ThT fluorescence without a lag phase motivating two
hypotheses: a) on introducing C12 FA, unreacted monomers
adopt off-pathway, and/or b) preformed aggregates along on-
pathway are switched back to off-pathway. For off- to on-
pathway switching, we incubated 5 mM C12 FA, exhibiting an
exponential increase in ThT fluorescence; the sample was then
diluted 5- and 10-folds to reduce the effective concentration
of C12 FA from 1 to 0.1 mM, which is well below its
CMC (micelle removal event). When dilution of C12 FA was
introduced at 5h and 24h time points, appropriately blank
subtracted data showed a sharp rise in ThT fluoresence; this
indicated the switching of off- to on- pathway species. The 5-
and 10-fold dilutions led to the rise in the molecular weight
of the aggregates including the formation of fibrils both at 5h
and 24 h as compared to the sample in 5 mM C12 FA.

B. Parameter Estimation in ODE models:

Parameter estimation in ODE models is solved as an op-
timization problem by minimizing an objective function that
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measures the deviation between simulated and experimental
data. Several prior works have developed heuristic global/local
search methods for stochastic systems where the embed-
ded noise can introduce errors in the gradient estimation.
Derivative free optimization methods avoid computation of
derivatives of the objective function making them, in principle,
less susceptible to stochastic noise than the gradient-based
methods. Our AS competing pathways model using the EKS
method also needs a gradient-free parameter optimization
algorithm as it consists of several biochemical reactions from
the competing pathways that makes the gradient-based models
less effective.

Optimization algorithms can be classified as deterministic or
stochastic. In stochastic optimization, metaheuristics are gen-
erally used [19] that solve the optimization problem by guiding
and modifying other heuristics to provide better solutions
than local optimization algorithms; however, they also involve
a tradeoff between randomization and local search. Also,
metaheuristics require moderate computation time but may fail
in some cases. The two major components of metaheuristics
are intensification i.e., focusing search operations in the local
region given that a good solution was found in that region, and
diversification i.e., generating diverse solutions by performing
a global search. A good balance of these two components en-
sures that the global optimality is achieved when the algorithm
converges. Different types of metaheuristics include Simulated
Annealing, Genetic Algorithms, Differential Evolution, Bee
Algorithms, Tabu Search, Harmony Search, and so on [20].

C. Parameter Identifiability

The agreement of experimental data with the observables
predicted by the parameterized model is measured by an
objective function, which is commonly the weighted sum of
squared residuals (SSR, [16]). The parameters are estimated
using a maximum likelihood estimator. Considering 7 number
of parameters, the likelihood profile of the i*" parameter p; is
LP(p;) and the fitted parameters are p;, for ¢ = 1,...,m.

LP(pi) = miny, . (SSR(p;)) (1

The likelihood profile for each fitted parameter is calculated
by re-optimizing the objective function SSR(p;) with respect
to all other parameters i.e, pj»; in the neighborhood of the
original estimated parameter value p; [21]. A confidence inter-
val of a parameter tells us that the true value of the parameter
is located within this interval with probability, numerically
equal to the confidence level. If the re-optimized SSR(p;)
exceeds a specific confidence level within the same range, then
the parameter is identifiable. The likelihood contour C'~ and
likelihood ratio Cpr for n data points are calculated as:

Cre = {p: SSR(p) < SSR(H)(1 + — TmF;fw,m)}, or
2

3
where Fi7 | and X, 2 represent the upper a-critical values

for the F-ratio and Chi-squared distribution, respectively [22].

Crr ={p: SSR(p) < SSR(p)e*a/"}
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The confidence intervals can be asymptotic or a finite sample
[16]. Sometimes, the number of parameters in the model are
more than the number of data points used for fitting. In such
cases, with a dearth of data points, the parameters do not
properly rely on the data and are called non-identifiable [16].
Non-identifiable parameters can be in turn structurally non-
identifiable, when there arises a redundant parameterization
due to the insufficient mapping of internal model states to
the observables resulting in infinite confidence intervals. Non-
identifiable parameters can also be practically non-identifiable,
when the amount and quality of experimental data is insuffi-
cient and manifests in an infinite confidence interval.

D. Parameter Uncertainty

Uncertainty in parameter estimation occurs when the exact
value of the parameter is unknown but bounded at both ends.
Parameter uncertainty quantification methods start with an
assumed prior probability distribution for each parameter and
a likelihood function, and aim to sample the multidimen-
sional posterior probability distribution of the parameters given
the data. PyBNF provides methods for Bayesian uncertainty
quantification of parameter estimates [18] by using Markov
chain Monte Carlo with the Metropolis-Hastings algorithm or
parallel tempering. PyBNF can also quantify the uncertainty
of model predictions by performing simulations using the
sampled parameter or by bootstrapping the resampling data.

III. METHOD

We used COPASI for the ODE model, parameter estimation
and identifiability study and cross-validated them with PyBNF.

A. COPASI

COPASI (COmplex PAthway SImulator) is an open-source
software [17] for solving mathematical models of biological
processes such as metabolic networks, reaction pathways,
regulatory networks, etc. It is helpful in studying biochemical
networks as it can perform flexible parameter scans, optimiza-
tion of arbitrary expressions and parameter estimation using
time course and steady-state data simultaneously. COPASI
reads and writes SBML files through the libsbml library. We
used COPASI to convert our earlier ODE based A competing
pathways model with switching reactions into SBML format.

B. PyBioNetFit (PyBNF)

Various tools like COPASI, D2D, AMICI and PyBNF can
parameterize ODE models [23], [24], [17], [18]. PyBNF is
a recent method, and was chosen because it can support
BioNetGen models where the algorithms are parallelized,
making the metaheuristics computationally more efficient.

C. ODE model of on-off pathway switching

In order to keep our model simple and prevent overfitting,
we considered a minimal set of reactions to represent the on-
off pathway switching. We use the following notations: A;
represents an on-pathway i-mer, A/ represents an off-pathway
i-mer, L represents pseudo-micelles, F' represents the on-
pathway oligomers or fibrils, F} is an off-pathway oligomer
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and the total ThT signal is the sum of the on-pathway ThT
signal (signal,y) and the off-pathway ThT signal (signal,y ).
As in [25], A;5 is considered equivalent to F’ i.e., the nucleus
of an on-pathway is 12-mer. In the EKS model, we considered
that the switching occurs only for oligomers ranging in size
from A; to Ay; while Apo is the nucleus. The on-pathway
oligomers beyond that fibrillate to on-pathway fibrils, F'
Likewise, A}, to Aj; are considered as F} as they are smaller
off-pathway oligomers which is kinetically trapped and hence,
lacks the energy to aggregate further. This model was already
validated in [12].
L. Reactions in on pathway: (considering A;- as F)

A+ A, % A Vi€ {1,2,...,11}

F+ A %%F;We{m,...,n} )
fo_

II. Reactions in off pathway model:

4A,+ L ilreon, Al

con_

A+ A <:—f> Vi {4,5,..., 11}
nuf_

o+ Al % F|;Vi € {4,5,...,11}
ellf_
III. On to off switching reaction:
UPLETNG B

swi_

o)

Flux of on pathway reactions:

Hi = knuon[Az][Al] - knuon_[Ai+1];Vi € {L 27 e 511}
I = kfpon[A][F) — kfpon_[Fl; Vi€ {1,2,--- 11}

Flux of the reactions from off pathway

Gll = kecon [A1]4[L] - kcon—[Ail]
Hj = knuoss[Ad i 1]lA1] = knuogs [A4 i Vi€ {1,2,--- .8}
11 = kgnog [ Ass 1] A%] — Kpoopy [F{J:Vi € 1,2, ,8)

Flux of on-off switching reaction:

J = kewilA4] — kswi_[A}] ©

IV. RESULT

A. Parameter Estimation and Identifiability of the on-pathway

First, we fitted the experimental data of the on-pathway,
considering the reactions in Eq. 4. These estimated on-pathway
parameters were used to define the parameter ranges in the
subsequent steps. We used scatter search optimizer from
COPASI to fit the on pathway experimental data and found
an excellent fit having sum of squared error (SSE) as 0.13
(Fig. 1(a)). For the lowest objective function, we found kg
is about 400 times higher than k,,,,. The backward nucleation
rate constant k,,,_is only 1 — 2 times lower than k,,,, while
kyy,_ is almost 100 — 200 times lower than k ;.
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Fig. 1. Fit of EKS models with experimental data from [5]; dots denote
experimental data and solid lines are simulated results by EKS. Fit between
experimental results and EKS for (a) on-pathway, (b) micelle addition event,
(c) micelle removal event and (d) global event considering all the experiments.
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Fig. 2. Parameter identifiability (90% confidence interval) for on pathway.

Next, we calculated the identifiability of the four rate
constants of the on-pathway. However, we found the forward
rate constants are not identifiable in the presence of backward
rate constants, i.e., when the backward rate constants were also
considered as free parameters to be estimated. For example,
the rate constant k,,,, is not identifiable in the presence of rate
constant k., . One explanation for this is that the reaction
flux of the nucleation stage can be altered by both forward
and backward rate constants. So, we may need concentration
data of intermediate species, e.g., As, A3, to properly identify
forward rate constant parameters in the presence of the back-
ward rate constants; but, technical limitations and experimental
cost is a bottleneck to gather these data. However, we found
knu, and ky, are identifiable when we fixed the corresponding
backward rate constants. The profile likelihood of k,,,, and &y
with fixed backward rate constants, is shown in Fig. 2(a)-(b).

B. Parameter Estimation and Identifiability with the pseudo-
micelle addition Event (on-to-off pathway switching)

Next, we fit the pseudo-micelle addition event data from
[5]. We built a COPASI model with events at 3h and 24 h,
which simulate the addition of pseudo-micelles and monomers
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Fig. 3. Parameter identifiability (90% confidence interval) for the micelle
addition event.

in the system. Here the on-pathway rate constants are varied
between 0.1-10 times of the estimated values from the previ-
ous on pathway fit, while all the off-pathway rate constants
were varied freely from 1072 to 10° units. The off-pathway
mapping constant map’ is also varied freely from 10° to
10°. We achieved a good fit between the experimental data
and the simulated curve (Fig. 1c). The sum of the squared
error (SSE) of the three experiments is 4.12. Here we found
that the forward off-pathway nucleation rate constant is quite
higher than the forward on-pathway nucleation rate constant.
However, the backward rate constant is quite low.

Next, we calculated the profile likelihood of the rate con-
stants using 90% confidence intervals. The parameter identifi-
ability of all the significant parameters of this event (k.op,
knuoffs knuofffa knuona knuonf’ koff’ kfboff and kswi)
are shown in Fig. 3. The horizontal line cuts the parameter
identifiability curve of each parameter at two points: the left
and right point of intersection give the lower and upper bounds
of the parameter value with 90% confidence, respectively.
The parameter value for which the objective function or SSE
is minimized lies between these bounds. All the parameters
except ksw; and k.., were found to be identifiable.

C. Parameter Estimation and lIdentifiability with pseudo-
micelle removal event (off-to-on switching)

We next fitted the experimental ThT data for the pseudo-
micelle removal event from [5]. We built the COPASI model
with all off and on pathway reactions. We also defined an
event to simulate micelle removal from the system along
with monomer addition. Lastly, we fitted the data using the
parameter optimization function of COPASI. Here also, we
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Parameters On-Pathway | On-Off Switching | Off-On Switching Global

kcon (hr—ITuM—1%) - 675.528 139.545 1221.69
krvorys (hr=tuM—1) - 426.503 40.3329 97.3176
knuoff (hr™ LuM—1y - 28.4215 195.943 40.8795
knuwoff— (hr™ ) - 1.41607 49.2318 8.69222
knuon (hr=tuM—1) 22.04 8.83326 4.61013 0.141644
Enwon— (hr~1) 12.72 253.824 3.49735 37.8865

kor s - 97.024 164.59 -

kswi (hr~1) - 183.97 0.1 2.93977
Kogr1 - - - 161.832

kofra - - - 48.8039

TABLE I

PARAMETER VALUES OF THE DIFFERENT MODELS. BOLD DENOTES IDENTIFIABLE PARAMETERS WHILE THE OTHER ONES WERE NOT IDENTIFIABLE.

D) kfboﬂ

K 0 sl

DKo

Ky log s3]

Fig. 4. Parameter identifiability (90% confidence interval) for the micelle
removal event.

found an excellent fit with the experimental data (Fig. 1b).
The SSE of the fit is just 1.22. We also observed that the
ThT intensity was primarily the effect of the off-pathway
species. The on-pathway species concentration is quite low
to make any significant contributions to the ThT curve. The
off-pathway oligomers aggregate with the monomers after the
addition event, which eventually causes a sharp increase in
the ThT intensity. Moreover, we found that the estimated rate
constants of off-pathway are quite similar to those from the
previous fit. However, the on-pathway rate constants differed
significantly with the previous estimates (from the individual
on-pathway fits), and this led us to try a global fit on all the
data together. Parameter identifiability of all the significant
parameters like kcon, knuoffa k:nuofff’ knuon, knuonf’ koffa
krvos s and kg,; are shown in Fig. 4. We calculated the profile
likelihood of the rate constants using 90% confidence intervals
and found all the parameters to be identifiable.
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Fig. 5. Parameter identifiability (90% confidence interval) for the global fit.

D. Global Fit

We next performed a global fit of all the five curves: on
pathway data, micelle addition at 3h and 24 hour, micelle
removal at 5h and 24 hour (Fig. 5). We built a COPASI
model with two events. The first event simulated the addition
of monomer and pseudo-micelles in the system for pseudo-
micelle addition event. The second event signifies the micelle
removal and addition of monomers in the system. To avoid
overfitting, we considered the minimum reaction set of on and
off-pathway. We chose the range of parameters carefully using
the values estimated from the previous fit. The achieved fit (Fig
1d) had a combined SSE of 8.2. The estimated parameters
from the global fit is shown in Table I. Our global fit shows
the elongation rate constants (for both off and on-pathways)
are quite larger than the nucleation rate constants. However,
surprisingly we found that the backward rate constant of the
on-pathway is larger than the forward rate constant. The kcop,
rate constant is also found to be quite large.

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on July 07,2021 at 19:49:58 UTC from IEEE Xplore. Restrictions apply.



TABLE II
COMPARISON OF DIFFERENT OPTIMIZATION ALGORITHMS

Algorithm off-on Time global Time
fit in sec fit in sec
Differential Evaluation 1.20 851 52.68 1757
Evolution Strategy (SRES) 1.54 442 68.49 1201
Evolutionary Programming 2.62 67 55.40 245
Genetic Algorithm 8.9 45 76.29 216
Genetic Algorithm SR 3.28 67 69.4 205
Hooke and Jeeves 18.74 452 74 207
Levenberg - Marquardt 97.33 7 93.9 14
Nelder - Mead 82.87 7 59 9.63
Particle Swarm 1.26 1754 53.21 3617
Random Search 4.18 1419 26.19 4488
Scatter search 1.37 333 8.99 674
Simulated Annealing 1.17 10373 72.11 21123
Steepest Descent 346 10 97.34 86
Truncated Newton 357 6 301 21

Lastly, we performed the profile likelihood analysis on
these rate constants. Profile likelihood with 90% confidence
interval of all significant parameters (Kcon, knuoffs Enuoff—
Knwons Enuon—, koffly koffg, kfboff and kj,,;) found all rate
constants except kcon and kyqon_ are identifiable (Fig 5).

E. Comparison of different optimization methods

We compared fourteen different optimization algorithms in
COPASI for two different ODE models (global fit and micelle
removal). Three of these algorithms are derivative-based ap-
proaches: Levenberg-Marquardt, Steepest Descent, and Trun-
cated Newton, and they performed poorly for both models.
The direct search algorithms like Nelder-Mead, Hooke-Jeeves
also showed poor performance in both models. The rest of
the algorithms are meta-heuristics that performed much better.
For the micelle removal event, five different meta-heuristics
showed excellent performance, while for the global fit, only
one algorithm (scatter search) was able to fit the data. The
comparisons of the different algorithms is shown in Table II.

V. CONCLUSION

In this paper, we have performed a global fit and parameter
identifiability analysis on the AfS aggregation dataset. Five
different datasets involving different experimental conditions
considering the addition and removal of specific reactants at
different time-points were fitted to identify the rate constants
and parameters that can satisfy each of these five conditions.
Moreover, we also performed a parameter identifiability anal-
ysis on the model parameters. This method will help the
community to estimate the proper rate constants of complex bi-
ological models having time-dependent intervention measures
in general and identified the correct set of rate constants for the
competing pathways model of AJ3 aggregation in particular.
Acknowledgement: This work was partially supported by
NSF CBET-1802588, 1802793 and 1802641.
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