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Abstract—Aggregation of the amyloid-β (Aβ) protein has been
implicated in Alzheimer’s disease (AD). Since, low molecular
weight Aβ aggregates are hypothesized to serve as the primary
toxic species in AD pathogenesis, significant research has been
conducted to understand the mechanistic details of the aggre-
gation process. We previously demonstrated that heterotypic
interactions between Aβ and fatty acids (FAs) can lead to
competing pathways of Aβ aggregation, termed as the off-
pathway; this off-pathway kinetics can also be modulated by FA
concentrations as captured by mass action models. We employed
ensemble kinetics simulations which uses a system of Ordinary
Differential Equations to model the competing on- and off-
pathways of Aβ aggregation that were trained and validated
by biophysical experiments. However, these models had several
rate constants, treated as free parameters to be estimated, which
resulted in over-fitting of the model. Hence, in this paper, we
present a global fitting based method to accurately identify the
rate constants involved in the complex competing pathway model
of Aβ aggregation. We additionally employ detailed parameter
identifiability tests for uncertainty quantification using the profile
likelihood method. Since, the emergence of off- or on-pathway
aggregates are typically controlled by a narrow set of rate
constants, it is imperative to rigorously identify the proper
rate constants involved in these pathways. These rate constants
serve as a basis for future experiments on modulating the
aggregation pathways to populate a particular possibly less toxic
oligomeric species. The obtained rate constants also motivate new
biophysical experiments to better understand the mechanisms of
amyloid aggregation in other neurodegenerative diseases.

Index Terms—systems biology, profile likelihood, optimization,
global fitting, protein aggregation.

I. INTRODUCTION

Aggregation of the amyloid β (Aβ) protein is an important

process in Alzheimer disease (AD) pathogenesis. Proteolytic

processing of the amyloid precursor protein generates Aβ(1−
40) and Aβ(1− 42) peptides, which spontaneously aggregate

to form insoluble fibrils that deposit as senile plaques in the

AD brain. During aggregation, soluble proteins misfold into

insoluble fibrils comprising of cross-β-sheets. Fibrils along

with smaller oligomers are believed to be the main toxic agents

causing synaptic dysfunction and neural loss ([1], [2], [3],

[4]). Hence, several studies have focused on understanding

the biophysical and biochemical aspects of aggregation.

Aβ aggregation towards fibril formation proceeds along the

canonical on-pathway; however, competing partners such as

fatty acids (FAs) can shift the oligomer formation to the off-

pathway that arrests fibril formation by producing smaller

soluble oligomers. We demonstrated that it is possible that

the reactions involving Aβ could switch between the on- and

off-pathways [5] by changes in FA concentration. Several prior

studies also reveal a rate-limiting mechanism for the formation

of the nucleus or nuclei in the on-pathway ([6], [7], [8],

[9], [10], [11]). The on-pathway reactions typically consist

of two phases. The first phase comprises of the nucleation

process where the soluble oligomers aggregate at a slower

pace, called the lag phase. The second phase is known as

the elongation or the fibrillation phase, and is designated by

rapid fibril formation. We have earlier explored the heterotypic

interactions between Aβ and FAs by using two independent

tools: reduced-order modeling (ROM) and ensemble kinetic

simulations (EKS) [12], both of which were based on Ordinary

Differential Equations (ODEs). On the other hand, the psuedo-

micellar phase in the off-pathway (around the critical micelle

concentration, CMC) can be categorized by three different

phases [12], [13]. In the first phase, the monomers react with

the pseudomicelles to make 4mers. In the next phase, these

4mers elongate (using monomers) to form 12mers. Finally,

the 12mers combine with the 4-11mers of the second phase

to form 12-23mers. We also assume that switching between

on- and off-pathways can occur at any oligomer level. We

have established these on- or off-pathway reactions and their

switching behavior in our previous work ([5], [12], [14], [15]).

ODEs are widely used to model biological dynamics. A

central challenge of ODE models is to estimate the various

model parameters such as the concentration of reactants and

the rate constants to calibrate the model. This is achieved

by optimizing an objective function to evaluate the goodness

of fit to the experimental data on aggregation kinetics. The

likelihood function, which is analogous to the least-squares

criterion in typical Systems Biology applications, is an effi-

cient objective function for this purpose. Another vital step

in this modeling procedure is the assessment of uncertainty

which is typically done by calculating the confidence interval

for the parameters. Standard errors such as, the propagation

of measurement uncertainty, are modeled by the Gaussian law

of error propagation which is based on the linearization of the

model. However, mechanistic models in Systems Biology are

typically quite complex and exhibit nonlinear characteristics

that cannot be properly captured by such regression models.

The confidence intervals of different parameters may present

complex patterns due to the non-linearity in the likelihood

function. Here, classical methods may provide rough approxi-
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mations for finite samples. In cases of structural and practical

non-identifiability [16], this method becomes infeasible. In

contrast, the profile likelihood method results in confidence

intervals, which do not vary with parameter transformation,

and are immune to the nonlinear distortions of the likelihood

landscape. Hence, the profile likelihood is a one-dimensional

representation indicating the values of a parameter, that statisti-

cally agrees with available measurements. Profile likelihood is

thus a popular method for calculating confidence intervals and

identifiability of parameters in systems biology applications.
In this paper, we use COPASI [17] to model the reactions

in Aβ aggregation along competing pathways. We estimate the

parameters by performing a global fit with experimental results

considering separate experiments on individual pathways as

well as a comprehensive competing pathways scenario. We

also perform uncertainty quantification using COPASI and

PyBNF [18] by using the profile likelihood method.

II. RELATED WORKS:

The following works form the skeleton of our framework.

A. Detailed description of Aβ competing pathways reactions
Heterotypic interactions between FAs and Aβ were studied

in [12] by using two independent methods: reduced order

modelling (ROM) and Ensemble Kinetic Simulations (EKS),

to validate our prior experimental observations. These models

showed the significance of the initial condition and concen-

tration of the species from both pathways in dictating the

outcomes of aggregation. Furthermore, [5] introduced a new

game theoretic approach using the ROM and EKS methods to

model the dynamics of Aβ aggregation; this work established

the possibilities of switching of oligomers between the two

pathways and also demonstrated control mechanisms that favor

the prevalence of oligomers from a particular pathway.
We experimentally demonstrated on- to off-pathway switch-

ing in [5]. 5 mM C12 FA was added to 25 μM Aβ42 buffered

in 20 mM Tris, 50 mM NaCl at pH 8.0 (micelle addition
event) in two separate experiments at 3h, 24h. It resulted in

increased ThT fluorescence without a lag phase motivating two

hypotheses: a) on introducing C12 FA, unreacted monomers

adopt off-pathway, and/or b) preformed aggregates along on-

pathway are switched back to off-pathway. For off- to on-

pathway switching, we incubated 5 mM C12 FA, exhibiting an

exponential increase in ThT fluorescence; the sample was then

diluted 5- and 10-folds to reduce the effective concentration

of C12 FA from 1 to 0.1 mM, which is well below its

CMC (micelle removal event). When dilution of C12 FA was

introduced at 5h and 24h time points, appropriately blank

subtracted data showed a sharp rise in ThT fluoresence; this

indicated the switching of off- to on- pathway species. The 5-

and 10-fold dilutions led to the rise in the molecular weight

of the aggregates including the formation of fibrils both at 5h

and 24 h as compared to the sample in 5 mM C12 FA.

B. Parameter Estimation in ODE models:
Parameter estimation in ODE models is solved as an op-

timization problem by minimizing an objective function that

measures the deviation between simulated and experimental

data. Several prior works have developed heuristic global/local

search methods for stochastic systems where the embed-

ded noise can introduce errors in the gradient estimation.

Derivative free optimization methods avoid computation of

derivatives of the objective function making them, in principle,

less susceptible to stochastic noise than the gradient-based

methods. Our Aβ competing pathways model using the EKS

method also needs a gradient-free parameter optimization

algorithm as it consists of several biochemical reactions from

the competing pathways that makes the gradient-based models

less effective.

Optimization algorithms can be classified as deterministic or

stochastic. In stochastic optimization, metaheuristics are gen-

erally used [19] that solve the optimization problem by guiding

and modifying other heuristics to provide better solutions

than local optimization algorithms; however, they also involve

a tradeoff between randomization and local search. Also,

metaheuristics require moderate computation time but may fail

in some cases. The two major components of metaheuristics

are intensification i.e., focusing search operations in the local

region given that a good solution was found in that region, and

diversification i.e., generating diverse solutions by performing

a global search. A good balance of these two components en-

sures that the global optimality is achieved when the algorithm

converges. Different types of metaheuristics include Simulated

Annealing, Genetic Algorithms, Differential Evolution, Bee

Algorithms, Tabu Search, Harmony Search, and so on [20].

C. Parameter Identifiability
The agreement of experimental data with the observables

predicted by the parameterized model is measured by an

objective function, which is commonly the weighted sum of

squared residuals (SSR, [16]). The parameters are estimated

using a maximum likelihood estimator. Considering m number

of parameters, the likelihood profile of the ith parameter pi is

LP(pi) and the fitted parameters are p̂i, for i = 1, ...,m.

LP (pi) = minpj �=i
(SSR(pj)) (1)

The likelihood profile for each fitted parameter is calculated

by re-optimizing the objective function SSR(pj) with respect

to all other parameters i.e, pj �=i in the neighborhood of the

original estimated parameter value p̂i [21]. A confidence inter-

val of a parameter tells us that the true value of the parameter

is located within this interval with probability, numerically

equal to the confidence level. If the re-optimized SSR(pj)

exceeds a specific confidence level within the same range, then

the parameter is identifiable. The likelihood contour CLC and

likelihood ratio CLR for n data points are calculated as:

CLC = {p : SSR(p) ≤ SSR(p̂)(1 +
m

n−m
Fα
m,n−m)}, or

(2)

CLR = {p : SSR(p) ≤ SSR(p̂)eX
2
α/n} (3)

where Fα
m,n−m and X2

α represent the upper α-critical values

for the F-ratio and Chi-squared distribution, respectively [22].
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The confidence intervals can be asymptotic or a finite sample

[16]. Sometimes, the number of parameters in the model are

more than the number of data points used for fitting. In such

cases, with a dearth of data points, the parameters do not

properly rely on the data and are called non-identifiable [16].

Non-identifiable parameters can be in turn structurally non-

identifiable, when there arises a redundant parameterization

due to the insufficient mapping of internal model states to

the observables resulting in infinite confidence intervals. Non-

identifiable parameters can also be practically non-identifiable,

when the amount and quality of experimental data is insuffi-

cient and manifests in an infinite confidence interval.

D. Parameter Uncertainty
Uncertainty in parameter estimation occurs when the exact

value of the parameter is unknown but bounded at both ends.

Parameter uncertainty quantification methods start with an

assumed prior probability distribution for each parameter and

a likelihood function, and aim to sample the multidimen-

sional posterior probability distribution of the parameters given

the data. PyBNF provides methods for Bayesian uncertainty

quantification of parameter estimates [18] by using Markov

chain Monte Carlo with the Metropolis-Hastings algorithm or

parallel tempering. PyBNF can also quantify the uncertainty

of model predictions by performing simulations using the

sampled parameter or by bootstrapping the resampling data.

III. METHOD

We used COPASI for the ODE model, parameter estimation

and identifiability study and cross-validated them with PyBNF.

A. COPASI
COPASI (COmplex PAthway SImulator) is an open-source

software [17] for solving mathematical models of biological

processes such as metabolic networks, reaction pathways,

regulatory networks, etc. It is helpful in studying biochemical

networks as it can perform flexible parameter scans, optimiza-

tion of arbitrary expressions and parameter estimation using

time course and steady-state data simultaneously. COPASI

reads and writes SBML files through the libsbml library. We

used COPASI to convert our earlier ODE based Aβ competing

pathways model with switching reactions into SBML format.

B. PyBioNetFit (PyBNF)
Various tools like COPASI, D2D, AMICI and PyBNF can

parameterize ODE models [23], [24], [17], [18]. PyBNF is

a recent method, and was chosen because it can support

BioNetGen models where the algorithms are parallelized,

making the metaheuristics computationally more efficient.

C. ODE model of on-off pathway switching
In order to keep our model simple and prevent overfitting,

we considered a minimal set of reactions to represent the on-

off pathway switching. We use the following notations: Ai

represents an on-pathway i-mer, A′
i represents an off-pathway

i-mer, L represents pseudo-micelles, F represents the on-

pathway oligomers or fibrils, F ′
i is an off-pathway oligomer

and the total ThT signal is the sum of the on-pathway ThT

signal (signalon) and the off-pathway ThT signal (signaloff ).

As in [25], A12 is considered equivalent to F i.e., the nucleus

of an on-pathway is 12-mer. In the EKS model, we considered

that the switching occurs only for oligomers ranging in size

from A1 to A11 while A12 is the nucleus. The on-pathway

oligomers beyond that fibrillate to on-pathway fibrils, F .

Likewise, A′
12 to A′

23 are considered as F ′
1 as they are smaller

off-pathway oligomers which is kinetically trapped and hence,

lacks the energy to aggregate further. This model was already

validated in [12].

I. Reactions in on pathway: (considering A12 as F)

Ai +A1
knu←−→
knu

Ai+1; ∀i ∈ {1, 2, ..., 11}

F +A1
kfb←−→
kfb

F ; ∀i ∈ {1, 2, ..., 11} (4)

II. Reactions in off pathway model:

4A1 + L
kcon←−−→
kcon

A′
4

A′
i +A1

knuf←−−→
knuf

A′
i+1; ∀i ∈ {4, 5, ..., 11}

A′
12 +A′

i

kel1f←−−→
kel1f

F ′
1; ∀i ∈ {4, 5, ..., 11}

III. On to off switching reaction:

A′
i

kswi←−−→
kswi

Ai (5)

Flux of on pathway reactions:

Hi = knuon[Ai][A1]− knuon [Ai+1]; ∀i ∈ {1, 2, · · · , 11}
Ii = kfbon[Ai][F ]− kfbon [F ]; ∀i ∈ {1, 2, · · · , 11}

Flux of the reactions from off pathway

G′
1 = kcon[A1]

4[L]− kcon [A′
4]

H ′
i = knuoff [A

′
4+i−1][A1]− knuoff [A′

4+i]; ∀i ∈ {1, 2, · · · , 8}
I ′i = kfboff [A

′
4+i−1][A

′
12]− kfboff [F ′

1]; ∀i ∈ {1, 2, · · · , 8}
Flux of on-off switching reaction:

J = kswi[A4]− kswi [A
′
4] (6)

IV. RESULT

A. Parameter Estimation and Identifiability of the on-pathway

First, we fitted the experimental data of the on-pathway,

considering the reactions in Eq. 4. These estimated on-pathway

parameters were used to define the parameter ranges in the

subsequent steps. We used scatter search optimizer from

COPASI to fit the on pathway experimental data and found

an excellent fit having sum of squared error (SSE) as 0.13
(Fig. 1(a)). For the lowest objective function, we found kfb
is about 400 times higher than knu. The backward nucleation

rate constant knu is only 1− 2 times lower than knu, while

kfb is almost 100− 200 times lower than kfb.
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Fig. 1. Fit of EKS models with experimental data from [5]; dots denote
experimental data and solid lines are simulated results by EKS. Fit between
experimental results and EKS for (a) on-pathway, (b) micelle addition event,
(c) micelle removal event and (d) global event considering all the experiments.

Fig. 2. Parameter identifiability (90% confidence interval) for on pathway.

Next, we calculated the identifiability of the four rate

constants of the on-pathway. However, we found the forward

rate constants are not identifiable in the presence of backward

rate constants, i.e., when the backward rate constants were also

considered as free parameters to be estimated. For example,

the rate constant knu is not identifiable in the presence of rate

constant knu . One explanation for this is that the reaction

flux of the nucleation stage can be altered by both forward

and backward rate constants. So, we may need concentration

data of intermediate species, e.g., A2, A3, to properly identify

forward rate constant parameters in the presence of the back-

ward rate constants; but, technical limitations and experimental

cost is a bottleneck to gather these data. However, we found

knu, and kfb are identifiable when we fixed the corresponding

backward rate constants. The profile likelihood of knu and kfb
with fixed backward rate constants, is shown in Fig. 2(a)-(b).

B. Parameter Estimation and Identifiability with the pseudo-
micelle addition Event (on-to-off pathway switching)

Next, we fit the pseudo-micelle addition event data from

[5]. We built a COPASI model with events at 3h and 24 h,

which simulate the addition of pseudo-micelles and monomers

Fig. 3. Parameter identifiability (90% confidence interval) for the micelle
addition event.

in the system. Here the on-pathway rate constants are varied

between 0.1-10 times of the estimated values from the previ-

ous on pathway fit, while all the off-pathway rate constants

were varied freely from 10−2 to 105 units. The off-pathway

mapping constant map′ is also varied freely from 100 to

105. We achieved a good fit between the experimental data

and the simulated curve (Fig. 1c). The sum of the squared

error (SSE) of the three experiments is 4.12. Here we found

that the forward off-pathway nucleation rate constant is quite

higher than the forward on-pathway nucleation rate constant.

However, the backward rate constant is quite low.

Next, we calculated the profile likelihood of the rate con-

stants using 90% confidence intervals. The parameter identifi-

ability of all the significant parameters of this event (kcon,

knuoff , knuoff−, knuon, knuon−, koff , kfboff and kswi)

are shown in Fig. 3. The horizontal line cuts the parameter

identifiability curve of each parameter at two points: the left

and right point of intersection give the lower and upper bounds

of the parameter value with 90% confidence, respectively.

The parameter value for which the objective function or SSE

is minimized lies between these bounds. All the parameters

except kswi and kcon were found to be identifiable.

C. Parameter Estimation and Identifiability with pseudo-
micelle removal event (off-to-on switching)

We next fitted the experimental ThT data for the pseudo-

micelle removal event from [5]. We built the COPASI model

with all off and on pathway reactions. We also defined an

event to simulate micelle removal from the system along

with monomer addition. Lastly, we fitted the data using the

parameter optimization function of COPASI. Here also, we
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Parameters On-Pathway On-Off Switching Off-On Switching Global

kcon (hr−1μM−4) – 675.528 139.545 1221.69
kfboff (hr−1μM−1) – 426.503 40.3329 97.3176
knuoff (hr−1μM−1) – 28.4215 195.943 40.8795

knuoff− (hr−1) – 1.41607 49.2318 8.69222
knuon (hr−1μM−1) 22.04 8.83326 4.61013 0.141644

knuon− (hr−1) 12.72 253.824 3.49735 37.8865
koff – 97.024 164.59 –

kswi (hr−1) – 183.97 0.1 2.93977
koff1 – – – 161.832
koff2 – – – 48.8039

TABLE I
PARAMETER VALUES OF THE DIFFERENT MODELS. BOLD DENOTES IDENTIFIABLE PARAMETERS WHILE THE OTHER ONES WERE NOT IDENTIFIABLE.

Fig. 4. Parameter identifiability (90% confidence interval) for the micelle
removal event.

found an excellent fit with the experimental data (Fig. 1b).

The SSE of the fit is just 1.22. We also observed that the

ThT intensity was primarily the effect of the off-pathway

species. The on-pathway species concentration is quite low

to make any significant contributions to the ThT curve. The

off-pathway oligomers aggregate with the monomers after the

addition event, which eventually causes a sharp increase in

the ThT intensity. Moreover, we found that the estimated rate

constants of off-pathway are quite similar to those from the

previous fit. However, the on-pathway rate constants differed

significantly with the previous estimates (from the individual

on-pathway fits), and this led us to try a global fit on all the

data together. Parameter identifiability of all the significant

parameters like kcon, knuoff , knuoff−, knuon, knuon−, koff ,

kfboff and kswi are shown in Fig. 4. We calculated the profile

likelihood of the rate constants using 90% confidence intervals

and found all the parameters to be identifiable.

Fig. 5. Parameter identifiability (90% confidence interval) for the global fit.

D. Global Fit

We next performed a global fit of all the five curves: on

pathway data, micelle addition at 3h and 24 hour, micelle

removal at 5h and 24 hour (Fig. 5). We built a COPASI

model with two events. The first event simulated the addition

of monomer and pseudo-micelles in the system for pseudo-

micelle addition event. The second event signifies the micelle

removal and addition of monomers in the system. To avoid

overfitting, we considered the minimum reaction set of on and

off-pathway. We chose the range of parameters carefully using

the values estimated from the previous fit. The achieved fit (Fig

1d) had a combined SSE of 8.2. The estimated parameters

from the global fit is shown in Table I. Our global fit shows

the elongation rate constants (for both off and on-pathways)

are quite larger than the nucleation rate constants. However,

surprisingly we found that the backward rate constant of the

on-pathway is larger than the forward rate constant. The kcon
rate constant is also found to be quite large.
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TABLE II
COMPARISON OF DIFFERENT OPTIMIZATION ALGORITHMS

Algorithm off-on Time global Time

fit in sec fit in sec

Differential Evaluation 1.20 851 52.68 1757

Evolution Strategy (SRES) 1.54 442 68.49 1201

Evolutionary Programming 2.62 67 55.40 245

Genetic Algorithm 8.9 45 76.29 216

Genetic Algorithm SR 3.28 67 69.4 205

Hooke and Jeeves 18.74 452 74 207

Levenberg - Marquardt 97.33 7 93.9 14

Nelder - Mead 82.87 7 59 9.63

Particle Swarm 1.26 1754 53.21 3617

Random Search 4.18 1419 26.19 4488

Scatter search 1.37 333 8.99 674

Simulated Annealing 1.17 10373 72.11 21123

Steepest Descent 346 10 97.34 86

Truncated Newton 357 6 301 21

Lastly, we performed the profile likelihood analysis on

these rate constants. Profile likelihood with 90% confidence

interval of all significant parameters (kcon, knuoff , knuoff−,

knuon, knuon−, koff1, koff2, kfboff and kswi) found all rate

constants except kcon and knuon are identifiable (Fig 5).

E. Comparison of different optimization methods

We compared fourteen different optimization algorithms in

COPASI for two different ODE models (global fit and micelle

removal). Three of these algorithms are derivative-based ap-

proaches: Levenberg-Marquardt, Steepest Descent, and Trun-

cated Newton, and they performed poorly for both models.

The direct search algorithms like Nelder-Mead, Hooke-Jeeves

also showed poor performance in both models. The rest of

the algorithms are meta-heuristics that performed much better.

For the micelle removal event, five different meta-heuristics

showed excellent performance, while for the global fit, only

one algorithm (scatter search) was able to fit the data. The

comparisons of the different algorithms is shown in Table II.

V. CONCLUSION

In this paper, we have performed a global fit and parameter

identifiability analysis on the Aβ aggregation dataset. Five

different datasets involving different experimental conditions

considering the addition and removal of specific reactants at

different time-points were fitted to identify the rate constants

and parameters that can satisfy each of these five conditions.

Moreover, we also performed a parameter identifiability anal-

ysis on the model parameters. This method will help the

community to estimate the proper rate constants of complex bi-

ological models having time-dependent intervention measures

in general and identified the correct set of rate constants for the

competing pathways model of Aβ aggregation in particular.
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