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Abstract: Characterizing topological properties and anomalous behaviors of higher-dimensional
topological spaces via notions of curvatures is by now quite common in mainstream physics and
mathematics, and it is therefore natural to try to extend these notions from the non-network domains
in a suitable way to the network science domain. In this article we discuss one such extension,
namely Ollivier’s discretization of Ricci curvature. We first motivate, define and illustrate the
Ollivier–Ricci Curvature. In the next section we provide some “not-previously-published” bounds
on the exact and approximate computation of the curvature measure. In the penultimate section we
review a method based on the linear sketching technique for efficient approximate computation of
the Ollivier–Ricci network curvature. Finally in the last section we provide concluding remarks with
pointers for further reading.
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1. Introduction

It is by now quite common in mainstream physics and mathematics [1,2] to characterize
topological properties and anomalous behaviors of higher-dimensional topological spaces via notions
of (local and global) curvatures of these spaces, e.g., in general relativity, extreme variations of
four dimensional space-time curvatures via geodesic incompleteness lead to characterizations of
black-holes [3]. It is therefore natural to try to extend these notions from the non-network domains
e.g., from continuous metric spaces or from higher-dimensional geometric objects) in a suitable way
to the network science domain so that non-trivial new topological characteristics of networks can be
captured. There are several ways this can be achieved; we briefly mention two other approaches before
proceeding with the approach that is the main topic of this paper. Note that such extensions need to
overcome at least two key challenges, namely that (i) networks are discrete (non-continuous) objects,
and that (ii) networks may not necessarily have an associated natural geometric embedding.

One notion of network curvature that has been well-studied in the network theory literature,
first suggested by Gromov in a non-network group theoretic context [4], is the Gromov-hyperbolic
curvature. First defined for infinite continuous metric space [2], the measure was later adopted for finite
graphs. Usually the measure is defined via properties of geodesic triangles or via equivalent (in a sense
that can be made precise) 4-node conditions, though Gromov originally defined the measure using
Gromov-product nodes in [4]. Informally any infinite metric space has a finite Gromov-hyperbolicity
measure if it behaves metrically in the large scale as a negatively curved Riemannian manifold,
and thus the value of this measure can be correlated to the standard scalar curvature of a hyperbolic
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manifold. Intuitively, for a finite network the measure is based on the properties of the set of exact
and approximate geodesics of the network. There is a large body of research works dealing with
theoretical and empirical aspects of this measure, e.g., see [5–10] for theoretical aspects, and see [11–13]
for empirical aspects with applications to real-world networks.

A second notion of curvature is the applying Forman’s discretization of Ricci curvature for
(polyhedral or CW) complexes (the “Forman–Ricci curvature”) [14] to networks. Informally, one applies
the Forman-Ricci curvature to networks by topologically associating components (sub-graphs) of
the given graphs with higher-dimensional objects. The topological association itself can be carried
out several ways. Although this type of curvature originated relatively recently, there are already
a number of papers investigating properties of these measures and applying them to real-world
networks, e.g., see [8,15–18].

The network curvature discussed in this paper is another discretization of Ricci curvature,
namely Ollivier’s discretization [19–22], henceforth dubbed as the “Ollivier–Ricci curvature”.
Both Ollivier–Ricci curvature and Forman-Ricci curvature assign measures that assign a number
to each edge of the given network, but the numbers are calculated in quite different ways in these
two curvatures since they capture different metric properties of a Riemannian manifold. The reader
is referred to the paper by [15] for a comparative analysis of these two measures. In addition to
the network curvatures measures discussed above, researchers have also explored other notions of
curvature, such as the one based on circle packings by Chow and Luo [23].

Basic Notations and Terminologies

To simplify exposition, we assume in this paper that the given network (In this paper the terms
“graph” and “network” will be used interchangeably.) G = (V, E) is an undirected unweighted
connected graph; generalization of the corresponding definitions and concepts to the case of
non-negative edge weights is mostly straightforward. The following notations will be used in the rest
of this paper.

. For a node v ∈ V, Nbr(v) = { u | {v, u} ∈ E} denotes the set of neighbors of v, and deg(v) =

|Nbr(v) | denotes the degree of v.
. distG(u, v) (or simply dist(u, v)) denote the distance (i.e., number of edges in a shortest path)

between the nodes u and v in G.

2. Ollivier–Ricci Curvature: Motivation, Definition and Illustration

In this section, we provide the formal definition of the Ollivier–Ricci curvature. First, we need
to define the so-called Earth Mover’s Distance (EMD) (also known as the L1 transportation distance,
the L1 Wasserstein distance and the Monge-Kantorovich-Rubinstein distance) [24–27]. For the purpose
of this paper, it suffices to define the distance in the discrete setting of a network as follows. Suppose
that we have two probability distributions P1 and P2 on a subset ∅ ⊂ V′ ⊆ V of nodes, i.e., two real
numbers 0 ≤ P1(v),P2(v) ≤ 1 for every node v ∈ V′ with ∑v∈V′ P1(v) = ∑v∈V′ P2(v) = 1. We can
think of every number P1(v) as the maximum total amount of “earth” (dirt) at node v that can be
moved to other nodes, and every number P2(v) as the maximum total amount of earth node v can store
in its storage. The cost of transporting one unit of earth from node u to node v is distG(u, v), and the
goal is to satisfy the storage requirement of all nodes by moving earths as needed while minimizing
the total transportation cost. Letting the variable zu,v ∈ [0, 1] denote the amount of shipment from
node u to node v in an optimal solution, EMD for the two probability distributions P1 and P2 on V′

can be formulated as the linear programming (LP) problem shown in Figure 1 which can be solved
in polynomial time. One can also think of the EMD solution as the distance between two probability
distributions P1 and P2 on the set of nodes V′ based on the shortest-path metric on G. We will use the
notation EMD(V′,P1,P2) to denote the value of the objective function in an optimal solution of the LP

in Figure 1.
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variables: zu,v for every pair of nodes u, v ∈ V
′

minimize ∑
u∈V′

∑
v∈V′

dist(u, v) zu,v (* minimize total transportation cost *)

subject to

∑
v∈V′

zu,v = P1(u), for each u ∈ V
′ (* take from u as much as it has *)

∑
u∈V′

zu,v = P2(v), for each v ∈ V
′ (* ship to v as much as it needs *)

zu,v ≥ 0, for all u, v ∈ V
′

Figure 1. LP-formulation for EMD on the set of nodes |V′|with |V′|2 variables. Comments are enclosed
by (* and *). Note that the constraints zu,v ≤ 1 are unnecessary and therefore omitted.

For an intuitive understanding of the connection of EMD to Ollivier–Ricci curvature for networks,
we informally recall one way of defining Ricci curvature measure for a smooth Riemannian manifold.
The Ricci curvature at a point x in the manifold along a direction can be thought of transporting a
small ball centered at x along that direction and measuring the “distortion” of that ball. The role of
the direction is captured by the edge {u, v}, the roles of the balls at the two nodes are played by the
distributions P1 and P2, and the role of the distortion due to transportation is captured by the EMD

measure. More precisely, given our input graph G = (V, E) and an edge {u, v} ∈ E, the paper [20]
uses the EMD measure to define the “course Ricci curvature” RIC(u, v) along the edge {u, v} in the
following manner (see Figure 2 for an illustration):

I Let V′ be the set of nodes Vu,v
def
= {u, v} ∪Nbr(u) ∪Nbr(v).

I Let the probability distributions P1 and P2 be uniform distributions (If the given graph is
non-negative node weights then another option is to normalize the restrictions of these node
weights to the sub-graph Hu,v and use them for the distributions P1 and P2.) Pu and Pv,
respectively, over the nodes in {u} ∪Nbr(u) and {v} ∪Nbr(v), respectively, i.e.,

Pu(x) def
= P1(x) =


1∣∣ {u}∪Nbr(u)

∣∣ , if x ∈ {u} ∪Nbr(u)

0, otherwise

Pv(x) def
= P2(x) =


1∣∣ {v}∪Nbr(v)

∣∣ , if x ∈ {v} ∪Nbr(v)

0, otherwise
(1)

I Remembering that distG(u, v) = 1 for an edge {u, v} ∈ E, we can then define the course Ricci
curvature as (cf. [20] (Definition 3)):

RIC(u, v) = 1− EMD(Vu,v,Pu,Pv)

distG(u, v)
≡ RIC(u, v) = 1− EMD(Vu,v,Pu,Pv) (2)

The measure can easily be extended for graphs with non-negative edge weights; redefine dist(u, v)
to be minimum total weight over all possible paths between u and v and use the equation:

RIC(u, v) = 1− EMD(Vu,v,Pu,Pv)

distG(u, v)

Some authors also define the discrete Ricci curvature RIC(u) for a node u ∈ V by taking
the average of the discrete Ricci curvarure over all edges incident on u, e.g., by letting RIC(u) =
∑{u,v}∈E RIC(u,v)

deg(u) .
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{u} ∪ Nbr(u){u} ∪ Nbr(u){u} ∪ Nbr(u)

{v} ∪ Nbr(v){v} ∪ Nbr(v){v} ∪ Nbr(v)

Figure 2. A pictorial illustration of calculation of RIC(u, v). (a) The given graph G; (b) The subset of
nodes Vu,v; (c) The distributions Pu and Pv. For visual clarity, only two distances dist(q3, q3) = 0 and
dist(v, q3) = 1 are shown.

An Illustration of Computing the Value of RIC(u, v) For a Two-dimensional Grid

Consider an infinite two-dimensional grid on the plane and any edge {u, v} of the grid
as shown in Figure 3. Note that any node of the grid has exactly 4 neighbors, thus Pu(x) ={

1/5, if x ∈ {u} ∪Nbr(u)

0, otherwise
and Pv(x) =

{
1/5, if x ∈ {v} ∪Nbr(v)

0, otherwise
. Moreover, the set of nodes

Nbr(u) \ {v} and Nbr(v) \ {u} are disjoint, thus it is easy to see that EMD(Vu,v,Pu,Pv) = 1 (see Figure 3).
Using (2) we therefore get RIC(u, v) = 0.
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Figure 3. A pictorial illustration of calculation of RIC(u, v) for a two-dimensional grid. The blue
edges, when shifted to the left by one unit, coincide with the red edges, giving EMD(Vu,v,Pu,Pv) ≤ 1.
It can also be argued that EMD(Vu,v,Pu,Pv) ≥ 1 (e.g., see [20] (Example 5) with N = 2), thus giving
EMD(Vu,v,Pu,Pv) = 1.

3. Exact and Approximate Computation of Ric(u, v)

Note that any node x ∈ Vu,v with either Pu(x) = 0 or Pv(x) = 0 can be ignored in the calculation
of EMD(Vu,v,Pu,Pv). Thus, a straightforward calculation of RIC(u, v) requires the following two steps:

. Find the pair-wise distances between the nodes in Nbr(u) and Nbr(v). This can be done in
O(nω log n) using Seidel’s algorithm [28] where n is the number of nodes and ω be the value such
that two n× n matrices can be multiplied in O(nω) time; the smallest current value of ω is slightly
less than 2.373 [29].

. Solve an LP with O(deg(u)deg(v)) variables and O(deg(u)deg(v)) constraints via standard LP

solvers such as the interior-point method. Alternatively, the LP can be solved by minimum-cost
network flow algorithms by viewing it as a transportation problem, e.g., see [30].

However, the calculation of EMD(Vu,v,Pu,Pv) (and therefore RIC(u, v)) can be further simplified
if we make some more observations.

Consider a pair of nodes u′ ∈ Nbr(u) and v′ ∈ Nbr(v) for an edge {u, v} ∈ E. Note that there are
only four possible values of distG(u′, v′): distG(u′, v′) = 0 if u′ = v′, distG(u′, v′) = 1 if {u′, v′} ∈ E,
distG(u′, v′) = 2 if there is a path of length 2 between u′ and v′, and distG(u′, v′) = 3 for all other cases.
Thus, to to find all pair-wise distances between the nodes in Nbr(u) and Nbr(v) we only need to check
for paths up to length 3, which can be done faster in O(nω) time using Seidel’s algorithm [28] again.

For further discussion, consider the total variation distance (TVD) between the two distributions
Pu and Pv on the set of nodes in Vu,v:

||Pu − Pv ||TVD
def
=

1
2

 ∑
v′∈Vu,v

(
|Pu(v′)− Pv(v′)|

)
Note that ||Pu − Pv ||TVD can be trivially computed in O(deg(u) + deg(v)) time.

Proposition 1. 1− 3||Pu − Pv ||TVD ≤ RIC(u, v) ≤ 1− ||Pu − Pv ||TVD.

Proof. Since every pair of non-identical nodes u′, v′ ∈ Vu,v satisfy 1 ≤ distG(u′, v′) ≤ 3, we have
||Pu − Pv ||TVD ≤ EMD(Vu,v,Pu,Pv) ≤ 3||Pu − Pv ||TVD which imply the claimed result via definition
of RIC(u, v).

The bound in Proposition 1 may not necessarily be a tight approximation for RIC(u, v);
for example, for the grid in Figure 3 we get ||Pu − Pv ||TVD = 3/5 giving −4/5 ≤ RIC(u, v) ≤ 2/5

as an approximation to the actual value of RIC(u, v) = 0.
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For development of further bounds, consider the edge {u, v} ∈ E. Assume without loss of
generality that deg(u) ≤ deg(v) and G has 4 or more nodes, thus deg(v) ≥ 2. Suppose that u and v
have 0 ≤ ` ≤ deg(u) common neighbour nodes as shown pictorially below:

Nbr(u) =
{ k+`=deg(u)−1≥ `+1 nodes︷ ︸︸ ︷

p1, p2, . . . , pk, q1, q2, . . . , q`
}{

q1, q2, . . . , q`︸ ︷︷ ︸
`≥ 0 common
neighbours

, r1, r2, . . . , rm

︸ ︷︷ ︸
m+`=deg(v)−1≥ `+1 nodes

}
= Nbr(v)

Note that the two probability vectors Pu and Pv for the edge {u, v} are as shown below:

p1 . . . pk q1 . . . q` u r1 . . . rm v

Pu =
(

1
deg(u)+1 . . . 1

deg(u)+1
1

deg(u)+1 . . . 1
deg(u)+1

1
deg(u)+1 0 . . . 0 1

deg(u)+1

)
Pv =

(
0 . . . 0 1

deg(v)+1 . . . 1
deg(v)+1

1
deg(v)+1

1
deg(v)+1 . . . 1

deg(v)+1
1

deg(v)+1

)
By our assumption 1

deg(u)+1 ≥ 1
deg(v)+1 , and thus a straightforward calculation gives the following

value for ||Pu − Pv ||TVD:

||Pu − Pv ||TVD =
1
2
×
(

k
deg(u) + 1

+
m

deg(v) + 1
+ (`+ 2)×

(
1

deg(u) + 1
− 1

deg(v) + 1

))
=

k+`
2 + 1

deg(u) + 1
+

m−`
2 − 1

deg(v) + 1
=

1
2
+

(deg(v) + 1)− 2(`+ 2)
2(deg(v) + 1)

= 1− `+ 2
deg(v) + 1

(3)

Proposition 2. −2 + 3 `+2
deg(v)+1 ≤ RIC(u, v) ≤ `+2

deg(v)+1 , and in particular it always holds that −2 <

RIC(u, v) ≤ 1.

Proof. Plugging the bound (3) in Proposition 1 proves the first claim. To prove the second claim,
note that 0 < `+2

deg(v)+1 ≤ 1.

For further bounds, suppose that there exists a γ ∈ {1, 2, 3} such that for any two distinct nodes
u′ ∈ Nbr(u) and v′ ∈ Nbr(v) we have dist(u′, v′) is exactly γ. In that case, it follows that

EMD(Vu,v,Pu,Pv) = γ×||Pu−Pv ||TVD ⇒ RIC(u, v) = 1−γ×||Pu−Pv ||TVD = 1−γ+
γ(`+ 2)

deg(v) + 1

Now, suppose that G has no cycles of 5 of fewer edges containing the edge {u, v} (a tree is a trivial
example of such a graph). This implies γ = 3 and ` = 0, giving the following bound.

Proposition 3. If G has no cycles of 5 of fewer edges containing the edge {u, v} then RIC(u, v) is precisely
−2 + 6

deg(v)+1 ≤ 0 and can be computed in O(deg(u) + deg(v)) time.

4. Review of Efficient Approximate Computation of Ric(u, v) via Linear Sketching

It is clear that a crucial bottleneck in computing RIC(u, v) for an arbitrary graph G = (V, E)
is the computation of EMD(Vu,v,Pu,Pv) since it seems to require solving a linear program
with O(deg(u)deg(v)) variables and O(deg(u)deg(v)) constraints (note that in the worst case
deg(u)deg(v) can be as large as Θ(n2) when n is the number of nodes of G). In this section we review
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a non-trivial approach for computing EMD(Vu,v,Pu,Pv) provided we settle for a slightly non-optimal
solution for EMD(Vu,v,Pu,Pv).

Linear sketching is a popular method to perform approximate computations on large data sets
using dimensionality reduction [31]. The general (informal) intuition behind linear sketching is to take
linear projections of the given data set and then use these projections to provide solutions to the original
problem. Significant research has been done on the problem of estimating EMD using linear sketches
for general metric spaces [32–36]. In this section, we discuss the results by McGregor and Stubbs [37]
to approximately estimate EMD on a graph metric (i.e., metric induced by inter-node distances in
a graph, as is the case for computing RIC(u, v)). Recall that our bottleneck is the computation of
EMD(Vu,v,Pu,Pv) for the given graph G.

The first step is to transform the problem of computing EMD(Vu,v,Pu,Pv) by standard techniques
to the following equivalent problem which will be denoted by EMDd. Given two multi-sets A,B ⊆ X
over a ground set X with |A| = |B| = k, and a metric d : X × X 7→ R+ on X , compute the
minimum-cost of perfect matching between A and B, i.e., using πA,B to denote a 1-1 mapping from A
to B, we need to compute

EMDd(A,B) = min
πA,B

{
∑

a∈A
d(a, πA,B(a))

}
For the purpose of measuring approximation quality, we say that an algorithm is an

(ε, δ)-algorithm for computing a quantity of value Q if the value Q′ returned by the algorithm satisfies
Pr[ |Q−Q′| < εQ ] ≥ 1− δ.

The basic approach of McGregor and Stubbs in [37] is to define two vectors x, y ∈ R|E|
corresponding to the set A and B. We then estimate EMDd(A,B) by posing it as a `1-regression
problem using the vectors x, y and a set of other vectors defined by the structure of the underlying
graph. The idea is take some random projections of these vectors to a smaller dimensional space
and then perform `1-regression on these projections to save space and time. The following result by
Kane et al. [38] is crucial to the analysis of this approach (the notation PrM∼ν is the standard notation
for denoting that the entries of M are drawn from the distribution ν):

(?) There exists a distribution (“q-dimensional sketch”) ν over linear maps from Rn 7→ Rq

where q = O(ε−2 log n log δ−1) and a “post-processing” function f : Rq 7→ R such that for
any x ∈ Rn with polynomially-bounded entries, it holds that

Pr
M∼ν

[ ∣∣ ‖ x ‖1 − f (Mx)
∣∣ ≤ ε ‖ x ‖1

]
≥ 1− δ

To understand how the above result relates to the calculation of EMDd(A,B), first consider the
case when the given instance of EMDd(A,B) is one dimensional, i.e., let G = (V, E) be a path with n
nodes V = {1, . . . , n} and n− 1 edges E = {e1, . . . , en−1} where ei = {i, i + 1}, let A, B ⊆ V, and let
d(i, j) = distG(i, j) for all i, j ∈ V. Then we can associate computation of EMDd(A,B) to a norm
estimation problem in the following manner. Assume that we have vectors x = (x1, . . . , xn−1) ∈ Rn−1

and y = (y1, . . . , yn−1) ∈ Rn−1 such that for all i ∈ {0, 1, n − 1} the following assertions hold:
xi = |{a ∈ A |i ≥ a}| and yi = |{b ∈ B |i ≥ b}|. Then, it can be shown that EMDd(A,B) =‖ x− y ‖1

and thus we can use the result of Kane et al. [38] as stated in (?) directly.
As a second illustration of the above point, suppose that the graph G in the previous example

is now a cycle of n nodes V = {1, . . . , n} and n edges E = {e1, . . . , en} where ei = {i, i + 1} for
i ∈ {1, . . . , n− 1} and en = {n, 1}. Suppose that we simply ignore the last edge en so that the graph
becomes a path and we can apply the previous approach. However, this omission of en changes the
distance between the nodes i ∈ A and j ∈ B from d(i, j) = min

{
|i − j|, |i − n| + 1 + |1− j|, |i −

1| + 1 + |n − j|
}

to a new distance d′(i, j) = |i − j|. To resolve this issue, we make a sequence of
guesses for the number of pairs of nodes that will be joined using the edge en. More precisely,



Mathematics 2020, 8, 1416 8 of 11

for λ ∈ {−k,−k + 1, . . . , k− 1, k} let Cλ be the multi-set consisting of λ copies of “1” if λ > 0 and |λ|
copies of “n” if λ < 0. Then, one can show that

EMDd(A,B) ≤ |λ|+ EMDd′(A] Cλ,B ] C−λ)

with equality for some λ ∈ {−k,−k + 1, . . . , k− 1, k}, where ] denotes the union for multi-sets. Thus,
we can use the result in (?) in the following manner. First define two vectors x = (x1, . . . , xn) ∈ Rn and
y = (y1, . . . , yn) ∈ Rn where xi = |{a ∈ A | i ≥ a}| and yi = |{b ∈ B | i ≥ b}| for i ∈ {1, . . . , n− 1},
and xn = yn = 0. Let z = x− y and c = (1, . . . , 1) ∈ Rn. Then, it follows that

EMDd(A,B) = min
λ∈{−k,−k+1,...,k−1,k}

{
‖ z + λc ‖1

}
Define the function f : R 7→ R as f (λ) =‖ z + λc ‖1; clearly EMDd(A,B) =

minλ∈{−k,−k+1,...,k−1,k}
{

f (λ)
}

. For a specific λ ∈ {−k,−k + 1, . . . , k − 1, k}, we can use (?) to
find an approximation f̃λ of fλ using a O(ε−2 log n log(kδ−1))-dimensional sketch of z such that
Pr
[
| f̃λ − f (λ) | > ε f (λ)]

]
< δ

2k+1 . Iterating the process 2k + 1 times and using the union bound for
probabilities, we get

Pr
[
∀λ ∈ {−k, . . . , k} : | f̃λ − f (λ)| ≤ ε f (λ)

]
≥ 1−

k

∑
λ=−k

Pr
[
| f̃λ − f (λ) | > ε f (λ)]

]
> 1− (2k + 1)× δ

2k + 1
= 1− δ

It is possible to design a more careful approach that iterates only O(log k) times instead of
2k + 1 times. The ideas behind this approach as described above can be extended to trees with some
non-trivial effort.

Finally the approach can indeed be generalized to the case when G is an arbitrary graph (which
applies to computing RIC(u, v)) in the following manner. The basic idea to calculate EMDd(A,B) for
an arbitrary graph G is to reduce it in an approximate sense to that of computing EMD for a tree.
Let T = (V, ET) be an arbitrary spanning tree of G, and let F = E \ ET . The tree T defines a natural tree
metric d′ where d′(a, b) is the length of the shortest path between a and b in T for all a, b ∈ V. One can
then express EMDd(A,B) in terms of EMDd′(A′,B′) for some A′ ⊇ A and B′ ⊇ B in the following
manner. For f = (u, v) ∈ F and λ f ∈ {−k,−k + 1, . . . , k− 1, k}, let C f

λ f
be the multi-set consisting of

λ f copies “u” if λ f > 0 and |λ f | copies of “v” if λ f < 0. Then the following bound holds:

EMDd(A,B) ≤ ∑
f∈F
|λ f |+ EMDd′

(
A] ∑

f∈F
C f

λ f
, B ] ∑

f∈F
C f
−λ f

)
The above inequality leads to the following approach. Fix an arbitrary node r ∈ V as the root of

the spanning tree T, and let PT(u, v) denote the set of edges in the unique path in T between nodes
u and v. Define the two vectors x, y ∈ R|E| as follows (xe and ye denote the component of x and y,
respectively, indexed by the edge e ∈ E):

xe =

{
|{a ∈ A | e ∈ PT(a, r)}|, if e ∈ ET

0, otherwise
ye =

{
|{b ∈ B | e ∈ PT(b, r)}|, if e ∈ ET

0, otherwise

and let z = x− y. For each f = (u, v) ∈ F, define a vector c f ∈ R|E| where the component c f
e of c f

indexed by the edge e ∈ E is given by:
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c f
e =


1, if e ∈ PT(u, r) \ PT(v, r)

−1, if e ∈ PT(v, r) \ PT(u, r)

1, if e = f

0, otherwise

This leads to the following optimization problem:

EMDd(A,B) = min
∀ f∈F:λ f∈{−k,−k+1,...,k−1,k}

‖ z + ∑
f∈F

λ f c f ‖1

The above optimization problem can be solved using several approaches, e.g., using a recursive
regression algorithm that exploits the convexity of f or using some recent results on robust regression
via sub-space embeddings [39,40].

5. Discussion

In this paper we have reviewed some computational aspects of the Ollivier–Ricci curvature for
networks, and shown a few simple computational bounds. As already mentioned in Section 1, there are
other notions of network curvature that is also used by researchers and therefore this review should
not be viewed as championing the Ollivier–Ricci curvature over other curvatures. We hope that this
review will motivate further research on the exciting interplay between notions of curvatures from
network and non-network domains. Some applications of network curvatures for real-world networks
appear in references such as [11,13,15,16,18].

We conclude our article by mentioning an interesting application of the Ollivier–Ricci curvature
for Markov chains for graph coloring and other problems (recise technical descriptions of these results
are beyond the scope of this introductory review). The probability distributions on nodes used to
compute EMD in the Ollivier–Ricci curvature can be naturally associated with a Markov process on the
given graph (as a very simplified illustration, one can use a “normalized version” of EMD(Vu,v,Pu,Pv)

as the probability of transition between the states corresponding to nodes u and v). Such associations
have a long history in the Markov chain literature under various names such as path coupling [41]
and the values of RIC(u, v)’s have been used (explicitly or implicitly) to prove useful properties of the
Markov chain, such as fast convergence to its stationary distribution, in many settings such as graph
colouring [41] and sampling of paths with constraints [42].
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