
2
0
2
1
 I

E
E

E
 I

n
te

rn
at

io
n
al

 S
y
st

em
s

C
o
n
fe

re
n
ce

 (
S

y
sC

o
n
)

| 9
7
8
-1

-6
6
5
4
-4

4
3
9
-2

/2
0
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/S

y
sC

o
n
4
8
6
2
8
.2

0
2
1
.9

4
4
7
0
7
4

A Novel Approach to Behavior Design for Model
Based Systems Engineering Application Using

Design Structure Matrix
Adilya Akundi

Complex Engineering Systems
Laboratory,

Deparment o f Manufacturing and
Industrial Engineering,

The University o f Texas Rio Grande

Valley
Brownsville, Texas, 78520.

Rocio J. Lopez-Terrazas

Department o f Industrial,
Manufacturing, and Systems

Engineering
The University o f Texas at El Paso

El Paso, Texas, 79968.

Tzu-Liang (Bill) Tseng

Department o f Industrial,
Manufacturing, and Systems

Engineering
The University o f Texas at El Paso

El Paso, Texas, 79968.

Hebin Luan

Avionics Engineering Department
Mission Systems Group

Naval Air Warfare Center Aircraft
Division

Patuxent River, MD 20670.

Carmen N. Almeraz

Department o f Industrial,
Manufacturing, and Systems

Engineering
The University o f Texas at El Paso

El Paso, Texas, 79968.

Abstract— Model-Based Systems Engineering (MBSE) is the

formalized application of modeling to support various system

evolving stages starting from the conceptual design phase to all
the life cycle phases that follow. To facilitate in an efficient
system behavior design process, in this paper, a Design

Structure Matrix (DSM) based approach is developed and

illustrated for determining the operational sequence of activities

relevant to requirements of the system and in identifying the

concurrent activities as well. A triangularization algorithm

method is extended especially for application on activity

diagrams to determine knowledge activities in an interaction

graph to identify groups of activities and arrange them

concurrently. The findings through the DSM based approach

are validated by a system engineering expert and are

implemented to construct the MBSE activity diagram to

facilitate an enhanced behavior design of the system. This paper

illustrates the use of Design Structure Matrix to facilitate

modeling interdependencies between activities and the

approach to aggregate the resulted sequential and concurrent
activities with the activity diagram, applied to a case study of

Execute Hohmann Transfer based on DellSat-77 Satellite

System. In addition, the potentials benefits of using a Design

Structure Matrix methodology for assisting Model Based

Systems Engineering activities for enhanced systems behavior

design is portrayed.

Keywords—MBSE, DSM, SysML, Triangularization, Activity

Diagram, Systems Engineering, Model-Based Systems, DellSat-77

I. In t r o d u c t i o n

As systems are getting more complex, it has become more
difficult for the systems modeler to visualize the interactions
and sequences between activities, system requirements,
structures, and parameters. Therefore, different tools,
methods, and algorithms are required to help the modeler have
a better visualization of the components of its system. In this
paper, the behavioral design o f the system considered, is used
for analysis. Usually, a behavior design based approach is
used to communicate the expected system’s actors and
behavior with the stakeholders [1].

Design Structure Matrix (DSM) is becoming a widely

used tool to represent and conduct analyses o f different
processes, products, and organizations for system modeling,
mostly for decomposition and integration purposes. This

method differs from other tools such as project-management
tools since it focuses on representing flow o f information
rather than workflow. A d Sm is a model that exchanges
information that allows complex tasks to be represented in
order to determine a sequence in which tasks should be
modeled. To model and understand a complex system,
generally:

a) The system is decomposed into known subsystems

b) The relationship and integration o f the subsystems
that emerge to system behavior are considered,

c) The effect o f external inputs and outputs on the
system are considered

With technology advancing day by day, system
requirements evolve and change as well. Changes in
requirements reflect in multiple subsystems, which lead to
increased project lead times and costs. This leads to the
question; Can the DSM be used to determine operational
sequences? In order to determine this, first comes
understanding the system behavior. For behavioral analysis,
the only thing considered is the component-based
representation, since each component behavior must be
understood first before understanding the overall system
behavior. An advantage of using a matrix instead of a digraph
is its ability to provide systematic mapping among
components. However, these are not intended to capture the
behavioral characteristics of the system.

II. Ba c k g r o u n d

A. Model Based Systems Engineering (MBSE)
As the world continues revolutionizing, systems are

becoming more complex. In 2014, the International Council
of Systems Engineering (INCOSE) released an article that
stated the vision they had for systems engineering for 2025. In
order to help systems engineering to address the market
demands o f innovation, productivity, product quality and
safety for the increasingly complexity in systems, one o f the
main expectations stated is the usage o f models and
simulations [2].

Since then, research has been done on model-based
approaches in different areas o f engineering throughout

978-1-6654-4439-2/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on July 08,2021 at 00:31:28 UTC from IEEE Xplore. Restrictions apply.

different parts o f the life cycle to help transition from
document-based to model-based approach, in order to control
the model o f the system instead o f controlling the
documentation about the system [3]. Traditionally, systems
engineers produce artifacts and models using the document-
based approach for systems. The communication is not

effective, and the documentation is not as accurate as expected
because when creating individual models or making changes,
it is difficult to integrate them into a coherent model of the
overall system. Moreover, considering the modelling

activities performed by systems engineers in different teams
o f a project it is often difficult to fully integrate with other
activities of the systems engineering process. Therefore,
document-based approach has the tendency to produce a chain
o f inconsistencies along all the artifacts owned by different
teams on a project or a system [3].

MBSE is the formalized application of modeling to
support system requirements, design, analysis, verification,
and validation activities beginning in the conceptual design
phase and continuing throughout development and later life
cycle phases [4]. The MBSE approach is expected to become
the standard practice in the systems engineering field and will
be crucial to support effective collaborative development
environment and facilitate the systems engineering activities

[5].

In [1], Delligatti presents an interesting point of view of
the three pillars of MBSE: a modeling tool, a modeling
method, and a modeling language. Modeling tools enable to
create an integrated, and consistent system model, which is the
main artifact of MBSE. The system model consists of model
elements, which are interconnected, and represent key aspects
o f the system such as activities and artifacts developed
throughout life cycle phases. Furthermore, modeling tools
help create the model elements and their relationships using a
modeling method which is a set o f tasks already tailored to
meet project’s specific needs. The system model and the
model elements are expressed in a standard modeling
language which includes a set of rules that determines whether
a given model is well formed or not. There are different
modeling languages that MBSE practitioners use, the most
common one is Systems Modeling Language (SysML).

B. Systems Modeling Language (SysML)
In this paper, modeling language is of main focus. There

are different modeling languages that MB SE practitioners use,
the most common one is Systems Modeling Language
(SysML). Object Management Group, Inc. (OMG) owns and
published the standards specifications o f SysML, including
grammar and notations. SysML is intended to unify diverse
modeling languages used by systems engineers and can be
used with a wide variety of discipline- and domain-specific
modeling languages [6]. SysML is a language/medium used

to create system models, and specify structures, requirements,
behaviors, allocations, and constraints [1]. There are three
groups of SysML diagrams: structure, behavior, and
requirements. In this paper, we focus on the “behavior”
diagram. Moreover, there are four kinds of behavioral SysML
diagrams: activity diagram, sequence diagram, state machine
diagram, and use case diagram. Each diagram must have a
frame, a contents area, and a header. The header normally
contains four pieces o f information: diagram kind (shown as
its SysML-defined abbreviation), model element type, model
element name, and diagram name. Based on these four pieces
of information, the diagram can be identified. As each diagram

has its set of elements based on the purpose of each one of
them; in this paper, a behavioral diagram.

C. Activity Diagrams
An activity diagram is a type of behavioral diagram, which

help to express information about a system’s dynamic
behavior. It can be easily identified via examining the header.
Furthermore, the SysML-defined abbreviation for activity
diagram is act, and the only allowable model element type is
activity. Activity diagrams are used to model the workflow
that is complex and has conditions, constraints, sequential and
concurrent activities. The activity diagram represents the
executed actions in order based on the availability o f their
inputs, outputs, and control; and how the actions transform the
inputs to outputs [1]. There are three types of nodes that can
be found in activity diagrams: action, object node, and control
node; and two types of edges: object flow and control flow. A
list o f the most important and common elements used in
activity diagrams can be found in Table I divided by type o f
element.

TABLE I. FEATURES OF ACTIVITY DIAGRAMS

Type of Element Name of Element

Actions

Action

Call Behavior Action

Send Signal Action

Accept Event Action

Wait time Action

Object Node

Pin

Activity Parameter

Non streaming Behavior

Streaming Behavior

Control Node

Initial Node

Activity Final Node

Flow Final Node

Decision Node

Merge Node

Fork Node

Join Node

Edges Object Flow

Control Flow

D. Design Structure Matrix (DSM)
The Design Structure Matrix (DSM), also known as

Dependency and Structure Modelling, is a popular method
used for improving and analyzing the design of system models

and products in different implementation areas. A DSM
provides a simple, visual representation o f a complex system
that facilitates innovative solutions to decomposition as well
as integration problems [7]. It is also amenable to analyses
such as clustering and sequencing, which assist in modularity
and minimizing cost and schedule risk processes. A DSM is a
square matrix, meaning it has an equal amount of rows and
columns that shows the relationships between the system
elements (N rows x N columns). Typically, the system
behavior and values are determined by the interactions
between its primary elements. In recent years, the use of the
DSM system representation and analysis techniques have led
to many advantages in a variety o f settings, including systems
engineering, product development, project planning and
project management.

A DSM needs to be adapted to the elements and
relationships that exist within the system. Basically, the type
o f the elements and dependencies needs to be defined as

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on July 08,2021 at 00:31:28 UTC from IEEE Xplore. Restrictions apply.

precisely as possible to obtain the information structure for the
matrix. There are two main components used to convey the
DSM information: inputs in rows (IR) or inputs in columns
(IC) (the inputs of an action are either elements in a row or a
column) [8],

There are two main DSM types: static and time-based.
Static can be architecture or organizational design structure
matrices; whereas time-based can be activity or parameter
based. Time-based DSMs can be applied for project
scheduling, activity sequencing, cycle time reduction, risk

reduction and low-level process sequencing and integration.
A simple DSM example is shown in Figure 1, based on a
digraph form. A digraph is a representation of a set of nodes
connected via edges along with the direction of flow
associated with them. Figure 1 shows a sample digraph
consisting of five nodes, two feedbacks and six feed forward
loops. A binary DSM representation of this digraph is also
shown indicating the presence or absence of interactions,
where, the nodes analogous to the digraph are labeled A
through E, which are placed across rows and columns. This
approach of node placement helps to identify the relations
among them. Reading across row E for example, it is observed
that node E has inputs from node B and node D marked by an
'X ' in the table. Similarly, reading down column D, it can be

seen that the output of node D acts as an input for node B. It

Fig. 1. Sample Digraph and Corresponding DSM Representation

A H A H A H X

X X B § & g j

Parallel Sequential Coupled

Fig. 2. Common Types of Flows in DSM

can also be observed that, all the feed forward loops are placed
below the diagonal and all the feedback loops are placed
above the diagonal [9].

information exchange is required; these activities can be
executed simultaneously. Sequential (dependent) activities
require sequential information transfer and they are typically
performed in series. Coupled (inter-dependent) activities are
mutually dependent on information and they often require
multiple iterations to complete. The DSM method facilitates
for minimizing iterations in the process.

Figure 2 shows a portrayal of the described flows. Time-based
DSMs can be applied for project scheduling, activity
sequencing, cycle time reduction, risk reduction and low-level

process sequencing and integration [11],

III. D e s i g n S t r u c t u r e M a t r i x Ba s e d M e t h o d o l o g y

There are many variant DSM methodologies from
literature. The one is used for this paper is called the
"Triangularization Algorithm/’ This approach can be
implemented in modeling one-dimension matrix (e.g., activity
only) to form many sub-groups with the sequence and identify
concurrent activities among overall activities. This
methodology requires a di-graph, which is modeling inter-

dependencies among activities initially. The interaction
between actions of collection is represented as a digraph
(directed graph), where a vertex denotes a task, and a directed
edge denotes a dependence. Based on the interactions within

a graph, three types of interaction graphs have been defined:
continuous, semi-continuous, and discrete. After the digraph

is acquired, the incidence matrix of activity can be developed.
Note that action dependencies and iterations are represented
more clearly in an incidence matrix. A nonempty element in
the incidence matrix represents a dependence between the
corresponding tasks (row and column). The action-
dependence problem is equivalent to cluster determination in

graphs and matrices, of which numerous approaches have
been discussed in literatures [12], [13], The triangularization
algorithm is one approach for determining dependence and
has been defined for digraphs. The algorithm has been widely
used in modular products, both for design [14] and concurrent
engineering [15],

A. Triangularization Algorithm
The triangularization algorithm [15, 16] identifies groups

of activities and arranges them concurrently. This algorithm is
extended to determine knowledge activities in an interaction
graph. To present the algorithm, a terminology is introduced.
An activity with no other activity preceding it is called an
Origin Activity (OA) if there are no other items preceding it.
The OA activities can be easily identified in the incidence
matrix. If the ith row of the incidence matrix has only one
nonempty element (a diagonal element), then it is an OA. In a
digraph with no OAs, there exists at least one cycle. And an
activity with activities preceding it is called a Destination
Activity (DA). Note that if an analyst is not satisfied with the
outcome, examination of the interaction graph is usually
undertaken. A modified triangularization algorithm, revised

from the original, in order to model activity dependencies is
presented here.

In [10], Nonsiri et al. have process architecture DSMs
represented by Inputs in Rows/Feedback above the Diagonal
(IR/FD) convention where an input is represented in row (IR)
and a feedback is represented above diagonal (FAD). They
also present three common types of flows; parallel, sequential,
and coupled, which represent the interactions between tasks
and are distinguished by an X or values in the corresponding
DSM cell. Between parallel (independent) activities no

Step 0: Begin [with the initial sequence o f the activities (1, 2,
3......m)]

Step 1 : End the algorithm i f all the vertices are underlined.

Identify an activity which is an origin activity (OA) or a
destination activity (DA)

Go to Step 5 i f neither an OA nor a DA is found.

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on July 08,2021 at 00:31:28 UTC from IEEE Xplore. Restrictions apply.

Step 2: Apply the Sorting Rule to the activity identified in Step
1.

I f the activity is an origin activity (OA), move it to the most left
position in the sequence o f activities that are not underlined.

I f the activity is a destination activity (DA), move it to the most
right position in the sequence o f activities that are not
underlined.

Step 3: Underline the activity identified in Step 1.

Step 4: Delete the row and column associated with the
underlined activity (see Step 1) from the incidence matrix and
go to Step 1.

Step 5: Find a cycle.

Step 6: Merge all the activities in the cycle into one activity.

Step 7: Update the corresponding rows and columns in the
incidence matrix and go to Step 1.

Step 8: Assign the activities and cycles in the final solutions to
levels according to the earliest start time.

Here, the triangularization algorithm is used to model activity
dependencies and it can deal with the multi-interaction graph
simultaneously. In the next section, the activities are
partitioned by the triangularization algorithm and illustrated in
the example. This algorithm determines a set of clusters to
schedule activities. Furthermore, the algorithm could be
performed to explore a process structure and enhances
concurrence of the activities involved in the process.

B. An Illustrated Example
The following example demonstrates the use of the presented

modified triangularization algorithm.

Example'. Considering the actions and associated interactions

of the digraph illustrated in Figure 3, Action C needs to feed

both action D and F, action D needs to decide between action

A and E, and action B is preceded by action F. Based on the

digraph, a binary DSM representation was made to indicate

the presence or absence of interactions, as represented in

Figure 4. This will help the modeler to see the sequence of

the system’s activities or actions. Then, the triangularization

method is applied in order to arrange the actions. It can be

easily identified that Action C is the first OA in the matrix, as

it does not have predecessors. Action C is going to be moved

to the most left position in the sequence of activities and it is

going to be the first one to be underlined.

The next step is to delete the row and column associated with

the underlined activity. Then after applying steps 1 to 4

several times, all the activities are underlined, and the result

is {C, D, A, E, F, B}. In this case, a cycle could not be

identified, therefore, steps 5 to 7 are not applied. Figure 5

shows the final result and the activities were assigned

accordingly to the earliest start time identified based on the

OA’s andDA’s.

A B C D E F

Action A ■ X

Action B ■ X

Action C ■
Action D

■ ■
Action E

« ■
Action F X ■

Fig. 4. The Initial Incident Matrix

c D A E F B

Action C ■
Action D « ■
Action A « ■
Action E X ■
Action F X ■
Action B

« ■
Fig. 5. The Finalized Matrix after Performing the Triangularization

Algorithm

After organizing the sequence of the activities with the

triangularization algorithm, this finding is used to facilitate

the modeler to arrange activities involved in behavior design.

In addition, it can help the modeler determine which activities

interact with each other with only feed forward loops. The

draft activity diagram shown in Figure 6 can be developed

Fig. 6. Activity Diagram of the Illustrated Example in Fig.3.

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on July 08,2021 at 00:31:28 UTC from IEEE Xplore. Restrictions apply.

using the findings derived from the triangularization

algorithm.

In Figure 6, the control nodes are implemented to simulate

different situations and interactions that the activities are

involved. Action C feeds Action F and D, therefore, a fork

node was used to simulate both feed forward loops coming

out of Action C. Moreover, a decision node was used to

simulate the decision that needs to take place after Action D,

and a merge node was used to simulate that both decisions

(i.e., Action E and Action A) will end in the same result. Note

that since Action E and Action F are mutual exclusive and

Action F is an immediate successor from Action C,

consequently the Action F is placed at the beginning of the

second path. Once all action items (e.g., Action A through

Action F) have been identified, they are placed in the activity

diagram.

IV. C a s e St u d y a n d C o m p u t a t i o n a l Re s u l t s

In this section, an use case of “Execute Hohmann
Transfer” is implemented in this case study adopted from the

DellSat-77 Satellite System [1], [17].” Basically this case
study describes different standings of the Dell Sat-77 satellite

system when it enters or leaves the orbit and correlation
between satellite attitude and orbit control. If the satellite is in

the orbit then the system will execute spin stabilization. The
satellite must de-spin and dump momentum as the satellite is
out of orbit. Here, the primary actor is the NASA mission

manager while the supporting (secondary) actors include but
not limited to NASA mission manager, flight controller and
Tracking and Data Relay Satellite (TDRS). Note that there are

two preconditions described in this case studies: (1) The
Dell Sat-77 Satellite must be in its parking orbit, and (2) The
DellSat-77 Satellite must have an open communications link

to a TDRS. The activity list and the digraph described inter-
relation among activities in this case study (see Figure 7) are
as follows:

A- Update altitude; B- Measure Altitude; C- Satellite receives
valid command (command relayed); D- Validate the
command; E- Invalidate the command; F- Fire thrusters to
enter into the final orbit; G- Generate a command response
with a “Valid Command” status, Repeat back o f the

command, the specified final altitude, and the command
execution time; H- Transmit Valid Command Response; I-
Satellite receives invalid command; J- Generate a command
response with an “Invalid Command” status; K- Transmit
invalid command response ; L- Fire thrusters to enter into the
transfer orbit; M- Wait time (30 sec.); N- Insert the command

into the stored command queue; O- Current Altitude Greater

or equal than final altitude; P- Current Altitude Less than

final altitude

In this case study, the initial digraph is used to construct the
initial activity incidence matrix (see Iteration #1 in Figure 8).

Following through the steps described in the triangularization
algorithm, the intermediate solutions (e.g., Iteration #7 and
Iteration #13) can be found in Figure 8.

In Iteration # 13, the sequence of activities (e.g.,
{C,D,G,H,I,E,J,K,N,M,L,0,F,A,B,P}) is determined per
definition of OA and DA depicted from the triangularization

algorithm.

Per the triangularization algorithm, the next step is to identify
the cycle (if any) from the activity incidence matrix. One can

observe that Activities “A, B and P” alternatively have a role
being predecessor or successor from each other in this case

study. Therefore, the cycle “B-A-P” is formed in Iteration #14
and the final solution carried out from the triangularization
algorithm is illustrated in Figure 9.

The findings through the triangularization algorithm (i.e., the
DSM based approach) are validated by a systems engineering

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on July 08,2021 at 00:31:28 UTC from IEEE Xplore. Restrictions apply.

expert and the sequence of activities and concurrency among
a couple of activities (e.g., activities “A”, “B” and “P”) are

implemented to construct the MBSE activity diagram to
enhance behavior design in die system (see Figure 10). There

are less identified activities hi Figure 10 than Figure 9, where

11 final articulated activities are observed in die MBSE
activity diagram while 16 activities are listed in the final
resulted incident matrix (after Iteration #15).

The conclusion obtamed from Figure 9 is that some of the

actions needed to be modified and/or merge to use the

features of activity diagrams (e.g., types of actions and

control nodes). First, considering the fact that die satellite is

only going to receive one command which is either valid or

invalid, therefore activities C and I can be merged by creating

only one activity called “Command Relayed” where the

satellite is gomg to receive that command, and later in the

diagram the satellite can determined if it is valid or invalid.

Then, in order to meet the requirement of determining if the

command is valid or invalid, activities D and E can be merged

by implementing a decision node hi the diagram diat will be

preceded by an action called “Validate Command”. Since

there is only gomg to be one command in the system,

activities H and K can be merged by calling them “Command

Response Transmitted”. A fork node is going to be used to

represent die start of concurrent sequences between activity

D and activities G and N.

Activity diagrams allow to have different types of actions;

activity M is a wait time action, and it will be represented in

die diagram with the corresponding notation of a stylized

hourglass symbol with a time expression string beneath it.

The cycle “B-A-P" is not necessarily going to be represented

together, as the satellite needs to be measuring the altitude

constantly. Therefore, the activities B and A are going to be

shown independently from the other sequences. However, a

Send Signal and Accept Event actions are going to be shown

hi the diagram to represent when activity A is gomg to be

taking place to represent the cycle. After die event is

accepted, as can be seen in the activity diagram there could

be two outcomes that will follow different sequences:

activities O and P. This can be represented by implementing

a decision node after the altitude is updated. The cycle “B-A-

P" is going to be represented by placing a merge node before

the altitude update event is accepted. After revising die

sequence of activities and concurrency among activities, die

final list of activities was completed hi Table 2.

TA B L E II. A c t i v i t y c o n v e r s i o n f r o m t h e f i n a l r e s u l t e d

INCIDENT MATRIX TO THE MBSE ACTIVITY DIAGRAM

Activities in
DSM based

approach

Activities in MBSE Activity Diagram

C & I Command Relayed

D & E Validate the command (decision node

created)

G Generate a command response with a “Valid

Command” status, Repeat back of the

command, the specified final altitude, and the

command execution time

J Generate a command response with an

"Invalid Command" status

H & K Command Response Transmitted

N Insert the command into the stored command

queue

M (wait
time action)

Wait time (30 sec)

L Fire thrusters to enter into the transfer orbit

F Fire thrusters to enter into the final orbit

B Measure Altitude

A Altitude Updated (send signal and accept

event actions created)

O & P Decision and Merge nodes created

Fig. 10. The Detailed MBSE Activity Diagram Based on Findings

Derived from the Modified DSM Approach

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on July 08,2021 at 00:31:28 UTC from IEEE Xplore. Restrictions apply.

V. Co n c l u s i o n

This paper illustrates the use of DSM integrated with
Triangularization algorithm to facilitate modeling
interdependencies between activities in the designated system
and the approach to aggregate the resulted sequential and
concurrent activities with the MBSE activity diagram. The
articulated sequential activities derived from the original
activity set provide an indication of how to study this problem
further and pave a path for effective further investigation. This
paper forms the basis for solving many other similar problems

that occur in aerospace, manufacturing and service industries.

Ac k n o w l e d g m e n t

This work was partially supported by the National Science
Foundation (ECR-PEER-1952634). The authors wish to

express sincere gratitude for their financial support.

Re f e r e n c e s

[1] Delligatti, L. (2013). SysML distilled: A brief guide to the systems
modeling language. Addison-Wesley.

[2] INCOSE, A. (2014). A world in motion: systems engineering vision
2025. International Council on Systems Engineering, San Diego, CA,
USA.

[3] Friedenthal, S., Moore, A., & Steiner, R. (2014). A practical guide to
SysML: the systems modeling language. Morgan Kaufmann.

[4] INCOSE, T. (2007). Systems engineering vision 2020. INCOSE, San
Diego, CA, accessed Jan, 26, 2019.

[5] Ramos, A. L., Ferreira, J. V., & Barcelo, J. (2011). Model-based
systems engineering: An emerging approach for modern systems.
IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 42(1), 101-111.

[6] OMG, O. OMG Systems Modeling Language (OMG SysML), Version
1.4, Object Management Group Std., 2015.

[7] T. R. Browning, "Applying the design structure matrix to system
decomposition and integration problems: a review and new directions,"
in IEEE Transactions on Engineering Management, vol. 48, no. 3, pp.
292- 306, Aug. 2001, doi: 10.1109/17.946528

[8] Salas Cordero, S., Fortin, C., & Vingerhoeds, R. (2020). Concurrent
Conceptual Design Sequencing For MBSE Of Complex Systems
Through Design Structure Matrices. Proceedings of the Design
Society: DESIGN Conference, 1, 2375-2384.
doi: 10.1017/dsd.2020.96

[9] A. Akundi, E. Smith, T. Tseng and I. Rubio, "Quantifying system
structural complexity using design structure matrices," 2018 Annual
IEEE International Systems Conference (SysCon), Vancouver, BC,
2018, pp. 1-8, doi: 10.1109/SYSCON.2018.8369494

[10] Nonsiri, Sarayut & Christophe, François & Coatanéa, Eric &
Mokammel, Faisal. (2014). A Combined Design Structure Matrix
(DSM) and Discrete Differential Evolution (DDE) Approach for
Scheduling and Organizing System Development Tasks Modelled
using SysML. Journal of Integrated Design and Process Science. 18.
10.3233/jid-2014-0013.

[11] §ule Ta§liPekta§, M. P. (2006). Modelling detailed information flows
in building design with the parameter-based design structure matrix.
Design Studies, Vol 27., Issue 1, 99-122.

[12] J. Edmonds, “Matroid and the greedy algorithm,” Math. Program., vol.
9, no. 1, pp. 31-56, 1971.

[13] L. R. Ford and D. R. Fulkerson, Flow in Networks. Princeton, NJ:
Princeton Univ. Press, 1962

[14] C.-C. Huang and A. Kusiak, “Modularity in design of products and
systems,” IEEE Trans. Syst., Man, Cybern. A, vol. 28, no. 1, pp. 66-
77, Jan. 1998.

[15] A. Kusiak, J. Zhu, and J. Wang, “Algorithms for simplification of the
design process,” in Proc. National Science Foundation (NSF) Design
Manuf. Syst. Conf., Charlotte, NC: ASME, 1993, pp. 1107-1111.

[16] B. Tseng and C.C. Huang, "Capitalizing on Knowledge: A Novel
Approach to Crucial Knowledge Determination," IEEE Transactions
on Systems, Man, and Cybernetics Part A: Systems and Humans, vol.
35, no. 6, pp. 919-931, 2005.

[17] L. Delligatti, "OOSEM Accelerator™ MBSE Methodology Training
Course Handbook," Pearland, Texas, 2020.

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on July 08,2021 at 00:31:28 UTC from IEEE Xplore. Restrictions apply.

