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Abstract— Model-Based Systems Engineering (MBSE) is the 

formalized application of modeling to support various system 

evolving stages starting from the conceptual design phase to all 
the life cycle phases that follow. To facilitate in an efficient 
system behavior design process, in this paper, a Design 

Structure Matrix (DSM) based approach is developed and 

illustrated for determining the operational sequence of activities 

relevant to requirements of the system and in identifying the 

concurrent activities as well. A triangularization algorithm 

method is extended especially for application on activity 

diagrams to determine knowledge activities in an interaction 

graph to identify groups of activities and arrange them 

concurrently. The findings through the DSM based approach 

are validated by a system engineering expert and are 

implemented to construct the MBSE activity diagram to 

facilitate an enhanced behavior design of the system. This paper 

illustrates the use of Design Structure Matrix to facilitate 

modeling interdependencies between activities and the 

approach to aggregate the resulted sequential and concurrent 
activities with the activity diagram, applied to a case study of 

Execute Hohmann Transfer based on DellSat-77 Satellite 

System. In addition, the potentials benefits of using a Design 

Structure Matrix methodology for assisting Model Based 

Systems Engineering activities for enhanced systems behavior 

design is portrayed.

Keywords—MBSE, DSM, SysML, Triangularization, Activity 

Diagram, Systems Engineering, Model-Based Systems, DellSat-77

I. In t r o d u c t i o n

As systems are getting more complex, it has become more 
difficult for the systems modeler to visualize the interactions 
and sequences between activities, system requirements, 
structures, and parameters. Therefore, different tools, 
methods, and algorithms are required to help the modeler have 
a better visualization of the components of its system. In this 
paper, the behavioral design o f the system considered, is used 
for analysis. Usually, a behavior design based approach is 
used to communicate the expected system’s actors and 
behavior with the stakeholders [1].

Design Structure Matrix (DSM) is becoming a widely 

used tool to represent and conduct analyses o f different 
processes, products, and organizations for system modeling, 
mostly for decomposition and integration purposes. This

method differs from other tools such as project-management 
tools since it focuses on representing flow o f information 
rather than workflow. A d Sm  is a model that exchanges 
information that allows complex tasks to be represented in 
order to determine a sequence in which tasks should be 
modeled. To model and understand a complex system, 
generally:

a) The system is decomposed into known subsystems

b) The relationship and integration o f the subsystems 
that emerge to system behavior are considered,

c) The effect o f  external inputs and outputs on the 
system are considered

With technology advancing day by day, system 
requirements evolve and change as well. Changes in 
requirements reflect in multiple subsystems, which lead to 
increased project lead times and costs. This leads to the 
question; Can the DSM be used to determine operational 
sequences? In order to determine this, first comes 
understanding the system behavior. For behavioral analysis, 
the only thing considered is the component-based 
representation, since each component behavior must be 
understood first before understanding the overall system 
behavior. An advantage of using a matrix instead of a digraph 
is its ability to provide systematic mapping among 
components. However, these are not intended to capture the 
behavioral characteristics of the system.

II. Ba c k g r o u n d

A. Model Based Systems Engineering (MBSE)
As the world continues revolutionizing, systems are 

becoming more complex. In 2014, the International Council 
of Systems Engineering (INCOSE) released an article that 
stated the vision they had for systems engineering for 2025. In 
order to help systems engineering to address the market 
demands o f innovation, productivity, product quality and 
safety for the increasingly complexity in systems, one o f the 
main expectations stated is the usage o f models and 
simulations [2].

Since then, research has been done on model-based 
approaches in different areas o f engineering throughout
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different parts o f  the life cycle to help transition from 
document-based to model-based approach, in order to control 
the model o f the system instead o f controlling the 
documentation about the system [3]. Traditionally, systems 
engineers produce artifacts and models using the document- 
based approach for systems. The communication is not 

effective, and the documentation is not as accurate as expected 
because when creating individual models or making changes, 
it is difficult to integrate them into a coherent model of the 
overall system. Moreover, considering the modelling 

activities performed by systems engineers in different teams 
o f a project it is often difficult to fully integrate with other 
activities of the systems engineering process. Therefore, 
document-based approach has the tendency to produce a chain 
o f inconsistencies along all the artifacts owned by different 
teams on a project or a system [3].

MBSE is the formalized application of modeling to 
support system requirements, design, analysis, verification, 
and validation activities beginning in the conceptual design 
phase and continuing throughout development and later life 
cycle phases [4]. The MBSE approach is expected to become 
the standard practice in the systems engineering field and will 
be crucial to support effective collaborative development 
environment and facilitate the systems engineering activities 

[5].

In [1], Delligatti presents an interesting point of view of 
the three pillars of MBSE: a modeling tool, a modeling 
method, and a modeling language. Modeling tools enable to 
create an integrated, and consistent system model, which is the 
main artifact of MBSE. The system model consists of model 
elements, which are interconnected, and represent key aspects 
o f the system such as activities and artifacts developed 
throughout life cycle phases. Furthermore, modeling tools 
help create the model elements and their relationships using a 
modeling method which is a set o f tasks already tailored to 
meet project’s specific needs. The system model and the 
model elements are expressed in a standard modeling 
language which includes a set of rules that determines whether 
a given model is well formed or not. There are different 
modeling languages that MBSE practitioners use, the most 
common one is Systems Modeling Language (SysML).

B. Systems Modeling Language (SysML)
In this paper, modeling language is of main focus. There 

are different modeling languages that MB SE practitioners use, 
the most common one is Systems Modeling Language 
(SysML). Object Management Group, Inc. (OMG) owns and 
published the standards specifications o f SysML, including 
grammar and notations. SysML is intended to unify diverse 
modeling languages used by systems engineers and can be 
used with a wide variety of discipline- and domain-specific 
modeling languages [6]. SysML is a language/medium used 

to create system models, and specify structures, requirements, 
behaviors, allocations, and constraints [1]. There are three 
groups of SysML diagrams: structure, behavior, and 
requirements. In this paper, we focus on the “behavior” 
diagram. Moreover, there are four kinds of behavioral SysML 
diagrams: activity diagram, sequence diagram, state machine 
diagram, and use case diagram. Each diagram must have a 
frame, a contents area, and a header. The header normally 
contains four pieces o f information: diagram kind (shown as 
its SysML-defined abbreviation), model element type, model 
element name, and diagram name. Based on these four pieces 
of information, the diagram can be identified. As each diagram

has its set of elements based on the purpose of each one of 
them; in this paper, a behavioral diagram.

C. Activity Diagrams
An activity diagram is a type of behavioral diagram, which 

help to express information about a system’s dynamic 
behavior. It can be easily identified via examining the header. 
Furthermore, the SysML-defined abbreviation for activity 
diagram is act, and the only allowable model element type is 
activity. Activity diagrams are used to model the workflow 
that is complex and has conditions, constraints, sequential and 
concurrent activities. The activity diagram represents the 
executed actions in order based on the availability o f their 
inputs, outputs, and control; and how the actions transform the 
inputs to outputs [1]. There are three types of nodes that can 
be found in activity diagrams: action, object node, and control 
node; and two types of edges: object flow and control flow. A 
list o f the most important and common elements used in 
activity diagrams can be found in Table I divided by type o f 
element.

TABLE I. FEATURES OF ACTIVITY DIAGRAMS

Type of Element Name of Element

Actions

Action

Call Behavior Action

Send Signal Action

Accept Event Action

Wait time Action

Object Node

Pin

Activity Parameter

Non streaming Behavior

Streaming Behavior

Control Node

Initial Node

Activity Final Node

Flow Final Node

Decision Node

Merge Node

Fork Node

Join Node

Edges Object Flow

Control Flow

D. Design Structure Matrix (DSM)
The Design Structure Matrix (DSM), also known as 

Dependency and Structure Modelling, is a popular method 
used for improving and analyzing the design of system models 

and products in different implementation areas. A DSM 
provides a simple, visual representation o f a complex system 
that facilitates innovative solutions to decomposition as well 
as integration problems [7]. It is also amenable to analyses 
such as clustering and sequencing, which assist in modularity 
and minimizing cost and schedule risk processes. A DSM is a 
square matrix, meaning it has an equal amount of rows and 
columns that shows the relationships between the system 
elements (N rows x N columns). Typically, the system 
behavior and values are determined by the interactions 
between its primary elements. In recent years, the use of the 
DSM system representation and analysis techniques have led 
to many advantages in a variety o f settings, including systems 
engineering, product development, project planning and 
project management.

A DSM needs to be adapted to the elements and 
relationships that exist within the system. Basically, the type 
o f the elements and dependencies needs to be defined as
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precisely as possible to obtain the information structure for the 
matrix. There are two main components used to convey the 
DSM information: inputs in rows (IR) or inputs in columns 
(IC) (the inputs of an action are either elements in a row or a 
column) [8],

There are two main DSM types: static and time-based. 
Static can be architecture or organizational design structure 
matrices; whereas time-based can be activity or parameter 
based. Time-based DSMs can be applied for project 
scheduling, activity sequencing, cycle time reduction, risk 

reduction and low-level process sequencing and integration. 
A simple DSM example is shown in Figure 1, based on a 
digraph form. A digraph is a representation of a set of nodes 
connected via edges along with the direction of flow 
associated with them. Figure 1 shows a sample digraph 
consisting of five nodes, two feedbacks and six feed forward 
loops. A binary DSM representation of this digraph is also 
shown indicating the presence or absence of interactions, 
where, the nodes analogous to the digraph are labeled A 
through E, which are placed across rows and columns. This 
approach of node placement helps to identify the relations 
among them. Reading across row E for example, it is observed 
that node E has inputs from node B and node D marked by an 
'X ' in the table. Similarly, reading down column D, it can be 

seen that the output of node D acts as an input for node B. It

Fig. 1. Sample Digraph and Corresponding DSM Representation

A H  A H  A H  X

X X B § & g j

Parallel Sequential Coupled

Fig. 2. Common Types of Flows in DSM

can also be observed that, all the feed forward loops are placed 
below the diagonal and all the feedback loops are placed 
above the diagonal [9].

information exchange is required; these activities can be 
executed simultaneously. Sequential (dependent) activities 
require sequential information transfer and they are typically 
performed in series. Coupled (inter-dependent) activities are 
mutually dependent on information and they often require 
multiple iterations to complete. The DSM method facilitates 
for minimizing iterations in the process.

Figure 2 shows a portrayal of the described flows. Time-based 
DSMs can be applied for project scheduling, activity 
sequencing, cycle time reduction, risk reduction and low-level 

process sequencing and integration [11],

III. D e s i g n  S t r u c t u r e  M a t r i x  Ba s e d  M e t h o d o l o g y

There are many variant DSM methodologies from 
literature. The one is used for this paper is called the 
"Triangularization Algorithm/’ This approach can be 
implemented in modeling one-dimension matrix (e.g., activity 
only) to form many sub-groups with the sequence and identify 
concurrent activities among overall activities. This 
methodology requires a di-graph, which is modeling inter-

dependencies among activities initially. The interaction 
between actions of collection is represented as a digraph 
(directed graph), where a vertex denotes a task, and a directed 
edge denotes a dependence. Based on the interactions within 

a graph, three types of interaction graphs have been defined: 
continuous, semi-continuous, and discrete. After the digraph 

is acquired, the incidence matrix of activity can be developed. 
Note that action dependencies and iterations are represented 
more clearly in an incidence matrix. A nonempty element in 
the incidence matrix represents a dependence between the 
corresponding tasks (row and column). The action- 
dependence problem is equivalent to cluster determination in 

graphs and matrices, of which numerous approaches have 
been discussed in literatures [12], [13], The triangularization 
algorithm is one approach for determining dependence and 
has been defined for digraphs. The algorithm has been widely 
used in modular products, both for design [14] and concurrent 
engineering [15],

A. Triangularization Algorithm
The triangularization algorithm [15, 16] identifies groups 

of activities and arranges them concurrently. This algorithm is 
extended to determine knowledge activities in an interaction 
graph. To present the algorithm, a terminology is introduced. 
An activity with no other activity preceding it is called an 
Origin Activity (OA) if there are no other items preceding it. 
The OA activities can be easily identified in the incidence 
matrix. If the ith row of the incidence matrix has only one 
nonempty element (a diagonal element), then it is an OA. In a 
digraph with no OAs, there exists at least one cycle. And an 
activity with activities preceding it is called a Destination 
Activity (DA). Note that if an analyst is not satisfied with the 
outcome, examination of the interaction graph is usually 
undertaken. A modified triangularization algorithm, revised 

from the original, in order to model activity dependencies is 
presented here.

In [10], Nonsiri et al. have process architecture DSMs 
represented by Inputs in Rows/Feedback above the Diagonal 
(IR/FD) convention where an input is represented in row (IR) 
and a feedback is represented above diagonal (FAD). They 
also present three common types of flows; parallel, sequential, 
and coupled, which represent the interactions between tasks 
and are distinguished by an X or values in the corresponding 
DSM cell. Between parallel (independent) activities no

Step 0: Begin [with the initial sequence o f the activities (1, 2, 
3......m)]

Step 1 : End the algorithm i f  all the vertices are underlined.

Identify an activity which is an origin activity (OA) or a 
destination activity (DA)

Go to Step 5 i f  neither an OA nor a DA is found.
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Step 2: Apply the Sorting Rule to the activity identified in Step 
1.

I f  the activity is an origin activity (OA), move it to the most left 
position in the sequence o f activities that are not underlined.

I f  the activity is a destination activity (DA), move it to the most 
right position in the sequence o f activities that are not 
underlined.

Step 3: Underline the activity identified in Step 1.

Step 4: Delete the row and column associated with the 
underlined activity (see Step 1) from the incidence matrix and 
go to Step 1.

Step 5: Find a cycle.

Step 6: Merge all the activities in the cycle into one activity.

Step 7: Update the corresponding rows and columns in the 
incidence matrix and go to Step 1.

Step 8: Assign the activities and cycles in the final solutions to 
levels according to the earliest start time.

Here, the triangularization algorithm is used to model activity 
dependencies and it can deal with the multi-interaction graph 
simultaneously. In the next section, the activities are 
partitioned by the triangularization algorithm and illustrated in 
the example. This algorithm determines a set of clusters to 
schedule activities. Furthermore, the algorithm could be 
performed to explore a process structure and enhances 
concurrence of the activities involved in the process.

B. An Illustrated Example
The following example demonstrates the use of the presented 

modified triangularization algorithm.

Example'. Considering the actions and associated interactions 

of the digraph illustrated in Figure 3, Action C needs to feed 

both action D and F, action D needs to decide between action 

A and E, and action B is preceded by action F. Based on the 

digraph, a binary DSM representation was made to indicate 

the presence or absence of interactions, as represented in 

Figure 4. This will help the modeler to see the sequence of 

the system’s activities or actions. Then, the triangularization 

method is applied in order to arrange the actions. It can be 

easily identified that Action C is the first OA in the matrix, as 

it does not have predecessors. Action C is going to be moved 

to the most left position in the sequence of activities and it is 

going to be the first one to be underlined.

The next step is to delete the row and column associated with 

the underlined activity. Then after applying steps 1 to 4 

several times, all the activities are underlined, and the result 

is {C, D, A, E, F, B}. In this case, a cycle could not be

identified, therefore, steps 5 to 7 are not applied. Figure 5 

shows the final result and the activities were assigned 

accordingly to the earliest start time identified based on the 

OA’s andDA’s.

A B C D E F

Action A ■ X

Action B ■ X

Action C ■
Action D

■ ■
Action E

« ■
Action F X ■

Fig. 4. The Initial Incident Matrix

c D A E F B

Action C ■
Action D « ■
Action A « ■
Action E X ■
Action F X ■
Action B

« ■
Fig. 5. The Finalized Matrix after Performing the Triangularization 

Algorithm

After organizing the sequence of the activities with the 

triangularization algorithm, this finding is used to facilitate 

the modeler to arrange activities involved in behavior design. 

In addition, it can help the modeler determine which activities 

interact with each other with only feed forward loops. The 

draft activity diagram shown in Figure 6 can be developed

Fig. 6. Activity Diagram of the Illustrated Example in Fig.3.
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using the findings derived from the triangularization 

algorithm.

In Figure 6, the control nodes are implemented to simulate 

different situations and interactions that the activities are 

involved. Action C feeds Action F and D, therefore, a fork 

node was used to simulate both feed forward loops coming 

out of Action C. Moreover, a decision node was used to 

simulate the decision that needs to take place after Action D, 

and a merge node was used to simulate that both decisions 

(i.e., Action E and Action A) will end in the same result. Note 

that since Action E and Action F are mutual exclusive and 

Action F is an immediate successor from Action C, 

consequently the Action F is placed at the beginning of the 

second path. Once all action items (e.g., Action A through 

Action F) have been identified, they are placed in the activity 

diagram.

IV. C a s e  St u d y  a n d  C o m p u t a t i o n a l  Re s u l t s

In this section, an use case of “Execute Hohmann 
Transfer” is implemented in this case study adopted from the 

DellSat-77 Satellite System [1], [17].” Basically this case 
study describes different standings of the Dell Sat-77 satellite 

system when it enters or leaves the orbit and correlation 
between satellite attitude and orbit control. If the satellite is in 

the orbit then the system will execute spin stabilization. The 
satellite must de-spin and dump momentum as the satellite is 
out of orbit. Here, the primary actor is the NASA mission 

manager while the supporting (secondary) actors include but 
not limited to NASA mission manager, flight controller and 
Tracking and Data Relay Satellite (TDRS). Note that there are 

two preconditions described in this case studies: (1) The 
Dell Sat-77 Satellite must be in its parking orbit, and (2) The 
DellSat-77 Satellite must have an open communications link 

to a TDRS. The activity list and the digraph described inter-
relation among activities in this case study (see Figure 7) are 
as follows:

A- Update altitude; B- Measure Altitude; C- Satellite receives 
valid command (command relayed); D- Validate the 
command; E- Invalidate the command; F- Fire thrusters to 
enter into the final orbit; G- Generate a command response 
with a “Valid Command”  status, Repeat back o f the 

command, the specified final altitude, and the command 
execution time; H- Transmit Valid Command Response; I- 
Satellite receives invalid command; J- Generate a command 
response with an “Invalid Command”  status; K- Transmit 
invalid command response ; L- Fire thrusters to enter into the 
transfer orbit; M- Wait time (30 sec.); N- Insert the command 

into the stored command queue; O- Current Altitude Greater

or equal than final altitude; P- Current Altitude Less than 

final altitude

In this case study, the initial digraph is used to construct the 
initial activity incidence matrix (see Iteration #1 in Figure 8). 

Following through the steps described in the triangularization 
algorithm, the intermediate solutions (e.g., Iteration #7 and 
Iteration #13) can be found in Figure 8.

In Iteration # 13, the sequence of activities (e.g.,
{C,D,G,H,I,E,J,K,N,M,L,0,F,A,B,P}) is determined per 
definition of OA and DA depicted from the triangularization 

algorithm.

Per the triangularization algorithm, the next step is to identify 
the cycle (if any) from the activity incidence matrix. One can 

observe that Activities “A, B and P” alternatively have a role 
being predecessor or successor from each other in this case 

study. Therefore, the cycle “B-A-P” is formed in Iteration #14 
and the final solution carried out from the triangularization 
algorithm is illustrated in Figure 9.

The findings through the triangularization algorithm (i.e., the 
DSM based approach) are validated by a systems engineering
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expert and the sequence of activities and concurrency among 
a couple of activities (e.g., activities “A”, “B” and “P”) are 

implemented to construct the MBSE activity diagram to 
enhance behavior design in die system (see Figure 10). There 

are less identified activities hi Figure 10 than Figure 9, where

11 final articulated activities are observed in die MBSE 
activity diagram while 16 activities are listed in the final 
resulted incident matrix (after Iteration #15).

The conclusion obtamed from Figure 9 is that some of the 

actions needed to be modified and/or merge to use the 

features of activity diagrams (e.g., types of actions and 

control nodes). First, considering the fact that die satellite is 

only going to receive one command which is either valid or 

invalid, therefore activities C and I can be merged by creating 

only one activity called “Command Relayed” where the 

satellite is gomg to receive that command, and later in the 

diagram the satellite can determined if it is valid or invalid. 

Then, in order to meet the requirement of determining if the 

command is valid or invalid, activities D and E can be merged 

by implementing a decision node hi the diagram diat will be 

preceded by an action called “Validate Command”. Since 

there is only gomg to be one command in the system, 

activities H and K can be merged by calling them “Command 

Response Transmitted”. A fork node is going to be used to 

represent die start of concurrent sequences between activity 

D and activities G and N.

Activity diagrams allow to have different types of actions; 

activity M is a wait time action, and it will be represented in 

die diagram with the corresponding notation of a stylized 

hourglass symbol with a time expression string beneath it. 

The cycle “B-A-P" is not necessarily going to be represented 

together, as the satellite needs to be measuring the altitude 

constantly. Therefore, the activities B and A are going to be 

shown independently from the other sequences. However, a 

Send Signal and Accept Event actions are going to be shown 

hi the diagram to represent when activity A is gomg to be 

taking place to represent the cycle. After die event is 

accepted, as can be seen in the activity diagram there could 

be two outcomes that will follow different sequences: 

activities O and P. This can be represented by implementing 

a decision node after the altitude is updated. The cycle “B-A-

P" is going to be represented by placing a merge node before 

the altitude update event is accepted. After revising die 

sequence of activities and concurrency among activities, die 

final list of activities was completed hi Table 2.

TA B L E  II. A c t i v i t y  c o n v e r s i o n  f r o m  t h e  f i n a l  r e s u l t e d

INCIDENT MATRIX TO THE MBSE ACTIVITY DIAGRAM

Activities in 
DSM based 

approach

Activities in MBSE Activity Diagram

C & I Command Relayed

D & E Validate the command (decision node 

created)

G Generate a command response with a “Valid 

Command” status, Repeat back of the 

command, the specified final altitude, and the 

command execution time

J Generate a command response with an 

"Invalid Command" status

H & K Command Response Transmitted

N Insert the command into the stored command 

queue

M (wait 
time action)

Wait time (30 sec)

L Fire thrusters to enter into the transfer orbit

F Fire thrusters to enter into the final orbit

B Measure Altitude

A Altitude Updated (send signal and accept 

event actions created)

O & P Decision and Merge nodes created

Fig. 10. The Detailed MBSE Activity Diagram Based on Findings 

Derived from the Modified DSM Approach
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V. Co n c l u s i o n

This paper illustrates the use of DSM integrated with 
Triangularization algorithm to facilitate modeling 
interdependencies between activities in the designated system 
and the approach to aggregate the resulted sequential and 
concurrent activities with the MBSE activity diagram. The 
articulated sequential activities derived from the original 
activity set provide an indication of how to study this problem 
further and pave a path for effective further investigation. This 
paper forms the basis for solving many other similar problems 

that occur in aerospace, manufacturing and service industries.
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