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ABSTRACT

Defect prediction aims to automatically identify potential defective
code with minimal human intervention and has been widely stud-
ied in the literature. Just-in-Time (JIT) defect prediction focuses
on program changes rather than whole programs, and has been
widely adopted in continuous testing. CC2Vec, state-of-the-art JIT
defect prediction tool, first constructs a hierarchical attention net-
work (HAN) to learn distributed vector representations of both
code additions and deletions, and then concatenates them with
two other embedding vectors representing commit messages and
overall code changes extracted by the existing Deep]IT approach
to train a model for predicting whether a given commit is defective.
Although CC2Vec has been shown to be the state of the art for JIT
defect prediction, it was only evaluated on a limited dataset and
not compared with all representative baselines. Therefore, to fur-
ther investigate the efficacy and limitations of CC2Vec, this paper
performs an extensive study of CC2Vec on a large-scale dataset
with over 310,370 changes (8.3 X larger than the original CC2Vec
dataset). More specifically, we also empirically compare CC2Vec
against Deep]IT and representative traditional JIT defect prediction
techniques. The experimental results show that CC2Vec cannot con-
sistently outperform Deep]IT, and neither of them can consistently
outperform traditional JIT defect prediction. We also investigate
the impact of individual traditional defect prediction features and
find that the added-line-number feature outperforms other tradi-
tional features. Inspired by this finding, we construct a simplistic
JIT defect prediction approach which simply adopts the added-line-
number feature with the logistic regression classifier. Surprisingly,
such a simplistic approach can outperform CC2Vec and Deep]IT in
defect prediction, and can be 81k X/120k X faster in training/testing.
Furthermore, the paper also provides various practical guidelines
for advancing JIT defect prediction in the near future.
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1 INTRODUCTION

Software development nowadays has been increasingly involved
with rapidly changing requirements, diverse and evolving infras-
tructures, and fierce peer pressure among developers, all of which
together can raise intense time and resource constraints on software
quality assurance tasks. Therefore, it is essential to identify pro-
gram defects as early as possible such that developers/testers can
focus on specific program scopes to reduce the overall testing and
debugging time and efforts. To this end, Just-in-Time (JIT) defect
prediction approaches have been proposed [32] to provide early pre-
dictions about likely program defects during software evolution. In
particular, compared with traditional defect prediction approaches
which mainly operate at the file or module level [10, 27, 45, 46], JIT
defect prediction approaches work at the fine-grained code-change
level to provide precise hints about potential defects.

Among the existing general-purpose JIT defect prediction ap-
proaches, CC2Vec, proposed at ICSE’20 [19], has been demonstrated
to be the state of the art. CC2Vec basically learns the vector rep-
resentations for code additions and deletions, and then integrates
that with the previous Deep]IT approach [18] to construct a deep
neural network for JIT defect prediction. More specifically, CC2Vec
first applies a hierarchical attention network (HAN) [51] to de-
liver the distributed vector representations of both code additions
and deletions. Meanwhile, the previous Deep]IT approach is lever-
aged to obtain two embedding vectors representing commit mes-
sages and overall code changes via convolutional neural networks
(CNNs) [25]. Next, the resulting vectors of CC2Vec and Deep]IT
are concatenated and input to a fully-connected network for final
defect prediction. Taking two open-source projects with a total of
37k commits (with 3.6k defects) , CC2Vec can outperform Deep]IT
by over 7% in terms of the AUC score.

Meanwhile, despite its advanced design, the effectiveness of
CC2Vec is still unclear because (1) CC2Vec was only evaluated
upon a limited dataset with marginal improvements (i.e., around
7% in terms of the AUC [26] score) against the previous state-
of-the-art approach Deep]IT; (2) CC2Vec is built on deep neural
networks and thus relies on training data quality; and (3) there is no
comprehensive comparison between CC2Vec (or Deep]JIT) and other
representative traditional approaches. Therefore, in this paper, to
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fully understand the efficacy and limitations of the general-purpose
deep-learning-based JIT defect prediction approaches, we construct
a large-scale dataset by extending the original one to include the
latest program versions and introducing additional popular open-
source projects. As a result, we collect 310k commits from six well-
known open-source projects. To the best of our knowledge, this is
so far the largest evaluation in the literature on general-purpose
deep-learning-based JIT defect prediction.

The experimental results show that overall the performance of
Deep]IT and CC2Vec can be replicated on their original dataset.
However, surprisingly, the GitHub version of Deep]JIT, which ab-

stracts all the detailed code changes into simple labels (i.e., “added_code/

removed_code”), performs better than the Deep]IT version de-
scribed in the original Deep]IT paper, which leverages the detailed
code-change information. This indicates that feeding detailed infor-
mation into machine learning models does not always help with JIT
defect prediction. Our experimental results on the extended dataset
further show that CC2Vec fails to outperform Deep]IT under most
studied projects. Also, we find that neither Deep]IT nor CC2Vec
can consistently outperform traditional JIT defect prediction on all
the studied projects under either within-project or cross-project
prediction scenarios. Therefore, we further investigate how dif-
ferent popular traditional defect prediction features can impact
the performance of JIT defect prediction. Interestingly, the exper-
imental results show that the added-line-number feature (which
simply computes the number of added lines of code in each commit)
can provide the higher prediction accuracy than all other studied
features.

At last, inspired by the findings of our study, we construct a
simplistic and fast approach, LApredict, which simply adopts the
added-line-number feature with the logistic regression classifier for
JIT defect prediction. We also compare LApredict with all the stud-
ied approaches on top of the extended dataset under both within-
project and cross-project scenarios. Surprisingly, the results show
that LApredict can outperform CC2Vec and all other existing ap-
proaches for most cases in JIT defect prediction, and can be 81k
X/120k X faster than CC2Vec in training/testing. Furthermore, the
superiority of LApredict is even enlarged in cross-project validation.
Accordingly, our study also reveal various practical guidelines for
how to further advance JIT defect prediction in the near future. In
summary, this paper makes the following contributions.

e Dataset. An extensive dataset with 310k commits, collected
from all program versions of six popular projects over the
last 10 years. Such a dataset provides not only a much larger
amount of real-world software defects but also their distribu-
tions over a larger time span, which can potentially benefit
and impact all future JIT defect prediction research.

e Study. An extensive study of state-of-the-art general-purpose
JIT defect prediction approaches (CC2Vec and Deep]IT) on
the proposed extended dataset, with detailed quantitative
and qualitative analysis on their strengths and limitations.

e Technique. A simplistic and fast approach, LApredict, which
simply adopts the added-line-number feature with the tradi-
tional logistic regression classifier instead of building com-
plex deep neural networks for JIT defect prediction.
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Fixing Commit Message
Revert "Make VisibleRefFilter.Filter reuse the refs passed from JGit."

This reverts commit b032a529f83892dfbdfb375c47a90d89756dd8ab. This commit introduced an
issue where tags were not replicated under certain circumstances.

Bug: Issue 2500
Bug: Issue 1748
Change-Id: 19c902b99c7f656c7002cf3eab9e525f22a22fb85

Def Commit: bO: dfb375c4

gerrit-server/src/main/java/com/google/gerrit/server/git/VisibleRefFilter.java

if (!deferredTags.isEmpty() & (!result.isEmpty() || filterTagsSeperately)) {
TagMatcher tags = tagCache.get(projectName).matcher(
tagCache,
db,
- filterTagsSeperately ? filter(db.getAllRefs()).values() : result.values());
+ filterTagsSeperately ? filter(refs).values() : result.values());
for (Ref tag : deferredTags) {
if (tags.isReachable(tag)) {

107

result.put(tag.getName(), tag);
}
+
+

Fixing Commit: 6db280663f836096c30a9626e7170f4a36d8cc1f

2 Em gerrit-server/src/main/java/com/google/gerrit/server/git/VisibleRefFilter.java
if (!deferredTags.isEmpty() & (!result.isEmpty() || filterTagsSeperately)) {
TagMatcher tags = tagCache.get(projectName).matcher(
tagCache,
db,
- filterTagsSeperately ? filter(refs).values() : result.values());
+ filterTagsSeperately ? filter(db.getAllRefs()).values() : result.values());
for (Ref tag : deferredTags) {
if (tags.isReachable(tag)) {
result.put(tag.getName(), tag);
}
+
¥

116

116

Figure 1: An illustrative example

e Implications. An empirical evaluation of LApredict, state-
of-the-art CC2Vec and Deep]IT, and two other representative
JIT defect prediction approaches, indicating that simplistic/-
traditional approaches/features can easily outperform the
advanced deep-learning-based approaches and be 81k X/120k
X faster in training/testing. The paper also reveals various
practical guidelines for future JIT defect prediction.

The replication package for this paper, including all our data,
source code, and documentation, is publicly available online at:

https://github.com/ZZR0/ISSTA21-JIT-DP

2 BACKGROUND
2.1 Deep JIT Defect Prediction: Example

In this section, we present a defective commit (commit b032a5) and
its fixing commit (commit 6db280) of project Gerrit [2] in Figure 1
to demonstrate the challenges of JIT defect prediction. Specifically
in commit b032a5, the developer replaced a database request oper-
ation with a parameter passed from JGit, e.g., “db.getAllRefs()”
(Line 107) is replaced with variable “refs”. It was until two years
later when the developers discovered that commit b032a5 intro-
duced an issue that “refs” and “db. getAl1Refs()” are not always
equivalent, i.e., “db.getAl1Refs()” returns the whole “Refs” ob-
ject of “db” while “refs” can only return partial “Refs” object.
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Therefore, commit 6db280 was further made to replace “refs” back
with “db.getAl1Refs()”.

From the example, we can observe that the defect refers to an
only one-line discrepancy of the source code between the two
commits, which can be rather challenging to predict automatically.
Many existing approaches perform JIT defect prediction based on
classic features (e.g., the number of modified files and the file size)
and traditional machine learning techniques (e.g., logistic regres-
sion [12]). However, traditional techniques can hardly learn useful
information for all possible cases, e.g., simply extracting the tradi-
tional syntactic features for comparative analysis can hardly work
for this example with a single-line change. Intuitively, to identify
such defects, it is helpful to understand their specific program se-
mantics, e.g., investigating program control/data flows. However,
such analysis can be rather challenging for complex programs and
involve intensive manual efforts. Therefore, recently, researchers
have leveraged deep learning models to learn more useful semantic
information for precise JIT defect prediction [18, 19]. For example,
the deep learning models can potentially learn from other historical
defects that the change in commit b032a5 can be dangerous.

2.2 State-of-the-Art CC2Vec

Figure 2 presents the overall neural network structure for CC2Vec [19].
Specifically, as the state-of-the-art general-purpose JIT defect pre-
diction approach, CC2Vec constructs a hierarchical attention net-
work (HAN) [51] to embed added and deleted code of each changed
file associated with one given commit respectively. Specifically,
the adopted HAN first builds vector representations for lines, and
further uses them to build vector representations of hunks. At last,
such hunk vector representations are aggregated to construct the
embedding vectors corresponding to the added or removed code.

CC2Vec further adopts multiple comparison functions to capture
the difference between the derived embedding vectors of the added
and removed code for exploring their relationship, where each
comparison function can produce a vector. Next, all the resulting
vectors are concatenated into one embedding vector to represent
the file-level added/removed code changes. Eventually, all the em-
bedding vectors associated with all the changed files under one
commit are aggregated as the distributed vector representations of
the code additions and deletions.
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In addition, CC2Vec also adopts a previous JIT defect prediction
approach, Deep]IT [18], to strengthen the prediction efficacy. Deep-
JIT constructs two convolutional neural networks (CNNs) [25] to
extract the features of (1) commit messages and (2) overall code
changes of a given commit. Note that, the Deep]IT code-change
feature extraction is totally different from CC2Vec and can be com-
plementary: Deep]IT simply aggregates added/removed code as one
single input, and thus ignores the distributed information between
code additions and deletions considered by CC2Vec (which treats
added/removed code as two different inputs for HAN).

Eventually, all the vectors derived by CC2Vec and Deep]IT are
input to a fully-connected layer for computing the likelihood that
the given commit incurs a defect.

Although CC2Vec attempts to leverage the semantic information
out of code changes for facilitating the JIT defect prediction efficacy,
the adopted input information is still limited, i.e., only the textual
code changes and their associated commit messages are considered.
On the other hand, there is no detailed exploration for validating
the actual contributions of different adopted components. Moreover,
the study of CC2Vec only considers two open-source projects QT [5]
and OpenStack [4] with a total of 37k commits. Such a dataset may
be too limited to demonstrate the generalizability and scalability of
CC2Vec. Lastly, the program versions of the adopted projects are a
bit outdated, i.e., QT contains data from June 2011 to March 2014
while OpenStack contains data from November 2011 to February
2014, making the evaluation incapable of demonstrating whether
the findings vary over time since no recent data are included.

3 STUDY ON DEEP JIT DEFECT PREDICTION

As discussed in Section 2.2, state-of-the-art CC2Vec was only eval-
uated upon a limited dataset against Deep]IT. Therefore, it is essen-
tial to extend the efficacy evaluation of CC2Vec (and Deep]IT) to a
more diverse and larger dataset with more representative baseline
approaches to thoroughly understand deep JIT defect prediction.

3.1 Dataset Collection

In general, we attempt to collect influential open-source projects
for conducting our study. In particular, since one of our study tasks
is to replicate the evaluations of CC2Vec, we first retain all the
projects used in the evaluations of the original CC2Vec paper, i.e.,
QT and OpenStack. Next, we choose to extend the existing dataset
by including the projects which are not only influential but also
diverse from the existing ones. To this end, we also adopt Eclipse
JDT and Platform [1], which haven been widely adopted by prior
defect prediction work [20, 21, 49] and are programmed mainly
in Java (while QT and OpenStack are mainly in C++). Moreover,
we also include project Gerrit [2], a professional code review tool
which has been adopted by many commercial and open-source
projects for their code review process[53]. Lastly, we select project
Go [3] for our study since it is a representative and popular modern
programming language. In this way, we have a diverse set of real-
world projects in different programming languages.

Furthermore, for each studied project, we collect all its code com-
mits between 2011-01-01 and 2020-12-01 (which subsumes the time
range covered by the CC2Vec dataset) to explore how JIT defect
prediction results vary across time. Specifically, following prior
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Table 1: Dataset statistics

Project | # Changes | % Defect Flziegl:lz}?éf:;:) Language
QT 95758 15.16 526.29 C++
OpenStack 66065 31.68 280.06 C++
DT 13348 41.20 251.28 Java
Platform 39365 37.74 259.01 Java
Gerrit 34610 8.64 294.58 Java
Go 61224 36.75 243.21 Golang

work [18, 19, 31], we apply the widely-used SZZ algorithm [22, 41]
to identify the defective commits. First, we identify defect-fixing
commits by analyzing their commit messages. Next, we locate the
modified lines of the defect-fixing commits using the Diff command.
Furthermore, we use the Blame command to detect the commits
inducing the modified lines as defective commits. Meanwhile, fol-
lowing prior work [31], all other commits unmarked by the SZZ
algorithm will be treated as the correct instances for training/test-
ing. At last, we filter such commits based on the procedure by Kim
et al. [22] and McIntosh et al. [31] to remove whitespace commits,
comment commits, merged commits, and other suspicious commits.
Note that we also eliminate the authentication latency issue [6] by
following prior work [6, 31, 42], e.g., we remove recent data accord-
ing to Column “Median Defect Fix Delay (days)” in Table 1, which
represents the median time interval for the defect from appearance
to be fixed. The reason is that many defects from recent data have
not been fully detected/fixed yet, and may affect our study. Finally,
we obtain a dataset with six projects and 310,370 total real-world
commits including 81,300 defects, enabling an extensive evaluation
and study of CC2Vec. Table 1 presents the detailed dataset statis-
tics. To the best of our knowledge, this is the largest dataset for
general-purpose deep-learning-based JIT defect prediction.

3.2 Research Questions

We investigate the following research questions for studying CC2Vec:

o RQ1: Why do DeepJIT and CC2Vec work? For this RQ, we
explore what makes the deep learning models effective in
JIT defect prediction. In particular, we reproduce the ex-
periments in the Deep]IT [18] and CC2Vec [19] papers and
conduct a more detailed analysis of their adopted input com-
ponents than the original papers, including exploring each
input component’s contribution to the overall models.

e RQ2: How do DeepJIT and CC2Vec perform on the extended
dataset? For this RQ, we conduct an extensive study for the
performance comparison between CC2Vec, Deep]JIT, and
other representative traditional JIT defect prediction ap-
proaches upon the extended dataset. We also investigate
not only the AUC score adopted in the original study, but
also other widely used metrics for prediction effectiveness.

e RQ3: How do traditional defect prediction features perform
for JIT defect prediction? For this RQ, we adopt the features
widely used in traditional JIT defect prediction and investi-
gate their respective performance impact.

o RQ4: Can a simplistic approach without deep learning outper-
form DeepJIT/CC2Vec for JIT defect prediction? For this RQ,
we attempt to design/implement a simplistic but effective
JIT defect prediction approach without deep learning.
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Commit Id: "0041b2267144f215fee9a6c4c99739e0559a527b"
Message: "remove gtalgorithms usage from qt designer ..."

v Code Change: Array
@: "added _ code removed _ code"
1: "added _ code removed _ code"
2: "added _ code removed _ code"
3: "added _ code removed _ code"
4: "added _ code removed _ code"
5: "added _ code removed _ code"
6: "added _ code removed _ code"

Figure 3: Deep]IT example with abstracted code changes

3.3 Results and Analysis

3.3.1 RQI: Why Do DeepJIT and CC2Vec Work? For this RQ, we
replicate the experiments on Deep]IT and CC2Vec under exactly
the same setting and dataset of their original papers [18, 19]. We
also explore how the three different inputs of CC2Vec (the Deep]IT
code-change vector, the Deep]IT commit-message vector, and the
CC2Vec code-change vector) impact JIT defect prediction.

Note that after carefully inspecting the source code provided by
the Deep]IT and CC2Vec GitHub pages, we find that instead of using
the vector representations of detailed code changes as declared in
the original Deep]IT paper, DeepJIT and the DeepJIT component in
CC2Vec actually abstract each changed file within one commit into
a simple “added_code/removed_code” label (with a maximum of 10
labels for each commit), as shown in Figure 3. Therefore, we also
collect the vector representations of the detailed code changes ac-
cording to the original Deep]IT paper and implement them for both
Deep]IT and the Deep]IT component in CC2Vec. Eventually, we
end up with a complete replication study on Deep]IT and CC2Vec
by involving not only reusing the provided source code on GitHub
but also reimplementing their original versions described in the
original papers (i.e., we modify the "added_code/removed_code"
labels back to the detailed source code they represent for Deep]JIT).

Table 2 shows our reproduced experimental results in terms of
AUC scores. Note that considering the model randomness, we run
all our experiments for 16 runs as recommended by prior work [36],
and present the mean, min, max, and standard deviation values
across all 16 runs. In the table, Deep]ITg;; gup refers to the Deep]IT
version using the “added_code/removed_code” labels (i.e., consis-
tent with the original Deep]IT implementation on GitHub) and
DeepJITpgper refers to the Deep]IT version vectorizing the de-
tailed given code changes (i.e., consistent with the original Deep-
JIT paper description). Also, we denote DeepJITg;;r,p+CC2Vec
as CC2Vecg;;pyp, denote Deep]ITpgper+CC2Vec as CC2Vecpgper-
We can observe that in general, the original experimental results
can be replicated. For example, the Mean AUC score is 0.7705 for
DeepJITGirHup and 0.7841 for Deep]ITG;;gup+CC2Vec in our re-
produced results, while they were 0.7595 and 0.8155, respectively,
in the original papers!. Interestingly, the standard deviations of 16
identical runs are less than 0.0030 and the differences between the
minimum and maximum AUC values are no greater than 0.0094
for all the replicated techniques. We have similar findings for all
our subsequent experiments. Therefore, due to such rather stable
results, we only show the experimental results for one run for all
our subsequent experiments.

!Note that considering the randomness in the 5-fold cross validation process used
by the original papers and the discrepancies on the execution environments, such
performance discrepancies can be tolerated and neglected.
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Table 2: Replication study results for DeepJIT and CC2Vec

T Openstack Mean
AUC Score Mean MinQ Max S.D. | Mean MI:n Max S.D. | Mean Min Max S.D.
Deep)ITGirtub 7959 .7940 .7979 .0012 7452 7429 7472 .0015 | .7705 .7691 .7719 .0009
Deep]ITpaper 7724 7683 7756 .0021 | .7152 7124 7218 .0026 | .7438 .7417 .7465 .0014
CC2VecGiriup | 8118 8106 8129 0008 | .7564 7539 7579 0012 | 7841 7823 7852 .0008
CCZVeCpaper 7788 .7780 .7805 .0007 | .7378 .7328 .7404 .0018 | .7583 .7566 .7601 .0008

Deep]IT code-change vector effectiveness. We can further ob-
serve that the performance of DeepJITg;;gyp is slightly better than
DeepJITpgper. For instance, 0.7959 vs. 0.7724 on QT and 0.7452
vs. 0.7152 on OpenStack. We also have similar observations for
Deep]ITg;pup + CC2Vec and Deep]ITpgper + CC2Vec (0.8118 vs.
0.7788 on QT and 0.7564 vs. 0.7378 on OpenStack). Such observa-
tions indicate that the “added_code/removed_code” labels, which
are literally simply the number of changed files, can outperform
the detailed code-change vectors described in the original Deep]IT
paper for JIT defect prediction. This finding is rather surprising to
us, as it implies that while the power of the code-change semantics
can be leveraged by deep learning techniques, a simple traditional
feature (e.g., the number of changed files) can be more helpful in
JIT defect prediction! Note that based on such experimental results,
for all the following studies, we would apply DeepJITg; .5 and
its associated combinations with CC2Vec, as DeepJITg;;gyup not
only performs better but also was the version used to produce the
experimental results in the original CC2Vec and Deep]IT papers.

Finding 1: The performance of DeepJIT and CC2Vec can overall
be replicated on the originally adopted benchmark projects (QT
and OpenStack). Interestingly, the two DeepJIT versions per-
form differently: the GitHub version which abstracts detailed
code changes (Deep TG up) outperforms the original-paper
version which leverages the detailed code-change semantics
(DeepJITpaper) on both two studied projects.

Deep]IT commit-message vector effectiveness. Next, we at-
tempt to infer how the commit messages can advance the perfor-
mance of Deep]IT and CC2Vec. In particular, we use the Grad-CAM
(Class Activation Mapping) algorithm [39] which is widely used
for visual analysis of neural network model inputs. In particular,
since the last layer of the cumulative convolution layer in a CNN
model contains the richest spatial and semantic information, the
Grad-CAM algorithm can weight and sum the last layer feature
maps of the CNN model to deliver the contribution of each word to
the model’s output. Accordingly, we can derive which words in the
commit messages significantly impact the model’s prediction re-
sults. For instance, Figure 4a demonstrates a true positive example
where Deep]IT derives that it is 80.39% a defect. Then, we calculate
each word’s contribution to the predicted results using the Grad-
CAM algorithm and mark them under colors, where darker colors
indicate more significant contributions of the associated words.
We can observe that “task-number” and “qtbug-27968” make the
largest contributions to the prediction result. In QT, “task-number”
is always followed by a task ID which indicates this commit may
be a bug fix or a feature commit. Actually, many previous stud-
ies [14, 37] have found that fixing a bug or adding a new feature is
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Table 3: Word rank by contribution

QT OpenStack
Rank ‘ Word Rank ‘ Word
18 task-number 39 failures
443 fix 96 resolves
532 bug 474 fail
643 failures 693 bugs

likely to result in a bug. Therefore, we can infer that Deep]IT iden-
tifies “task-number” and “qtbug-27968” to be useful and highlight
their impact for defect prediction. We can also strengthen such
finding via the other two examples from Figure 4b and Figure 4c,
where “task-number” in Figure 4b and “fixes” in Figure 4c cause
the examples to be classified as defective.

We further derive the impact rank of the words (which appear
more than once in QT and OpenStack) on the defect prediction re-
sults according to their average Grad-CAM scores. Table 3 presents
the results of the words we consider to be relevant to the intents of
their associated programs. We can observe that although some of
them, e.g., “task-number” in QT and “failures” in OpenStack, rank
relatively high, the others’ rankings are rather less distinctive. Such
results indicate that while Deep]JIT can identify the importance
of the words associated with the program intents under certain
circumstances, its overall effectiveness can be nevertheless com-
promised by many other words, making the contributions of the
commit-message feature somewhat limited.

Finding 2: DeepJIT and CC2Vec can extract the intent of code
changes from commit messages to assist defect prediction under
certain circumstances.

CC2Vec code-change vector effectiveness. Furthermore, we at-
tempt to investigate the effect posed by the code-change vectors
extracted by CC2Vec. Specifically, CC2Vec is designed to lever-
age its HAN model structure to extract code-change semantics
information to further boost DeepJIT. However, we can observe
that Deep]JIT+CC2Vec only leads to limited performance improve-
ment over Deep]IT, i.e., 1.99% and 1.50% on QT and OpenStack,
respectively. From such results, we can infer that the code-change
semantics information extracted by CC2Vec may have limited ef-
fectiveness for JIT defect prediction, and will further verify it in
our extended experimental settings (Section 3.3.2).

Ablation study. At last, we attempt to investigate the impact of
each individual feature input adopted by CC2Vec. To this end, we
choose to adopt/remove only one Deep]JIT/CC2Vec input feature at
a time to train the deep JIT model for evaluating their respective
effectiveness, as presented in Table 4. In the table, CC2Veccyge,
DeepJITcoge, and Deep]IT s, represent the CC2Vec code-change
input, the Deep]IT code-change input, and the DeepJIT commit-
message input, respectively. The last three rows present the results
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Commit Id: 3a9b01127054981293b177e538eb8cfa3937e9fe
Defect Label: 1, Predict: 0.8039

Support toggling antialiasing for Text and Rectangle. [ESKENUMBER:
QTBUG-27968 QTBUG-34366 Change-Id:
Ic446ff4470abf21696e1764f982bd71e79762697

(a) Example in QT

Commit Id: 1b34df6eab680bd361768be4091a255987e38f91c
Defect Label: 1, Predict: ©8.7718

Long live QOpenGLTexturell [ESKERUMBENR: QTBUG-33274 Change-Id:
19259d947d11f8ba330a2cd7f5620d8f1afeas8e4b
(b) Another example in QT

Commit Id: 35cb218adb9a370fa1013b6ef2593e9ef081461e
Defect Label: 1, Predict: 0.6198

Resetting session persisnence for a VIP. This change allows to reset
session persistence, if it was configured for a VIP. It's possible by

passing None value for session persistence through the REST API. Change-
Id: 18690850d0589065502a8eb774d51fe4085162418 [lEE: bug #1189101

(c) Example in OpenStack
Figure 4: Class Activation Mapping (CAM) examples

Table 4: The impact of different feature subsets for CC2Vec

| Input | QT | OpenStack | Mean |
CC2Vecroge | 4881 4849 4865
DeepITysg | 7044 6833 6938
DeeplITcoge | 7126 7194 7160
-CC2Veccoge | 7780 7562 7671
DeeplITysy | 7075 7166 7120
-DeeplITcoge | 6989 6853 6921

when removing each of the three feature inputs, e.g., “-CC2Vecc,qe”
denotes removing CC2Vec, 4, from CC2Vec. From the table, we
can observe that using individual inputs can reduce the prediction
accuracy in terms of the AUC scores. For example, the average
AUC of CC2Veccoge, DeeplITcoge, and Deep]IT sy is respectively
0.4865, 0.6938, and 0.7160. Meanwhile, removing each feature input
can also reduce the prediction accuracy of CC2Vec. For example,
the average AUC when removing CC2Veccy 4., Deep]ITpge, and
Deep]ITysq is respectively 0.7671, 0.7120, and 0.6921. From such
results, we can also infer that the vector representations of commit
messages and code changes extracted by Deep]IT (i.e., DeepJITpsq
and Deep]JIT¢,q4.) can make more contributions than the CC2Vec
code-change vector representation (i.e., CC2Vecc, 4. ) for deep JIT
defect prediction.

Finding 3: The DeepJIT commit-message/code-change vector
representations contribute more for deep JIT defect prediction
than the CC2Vec code-change vector representations.

3.3.2  RQ2: How Do DeepJIT and CC2Vec Perform on the Extended
Dataset? In particular, we investigate how they perform under both
the within-project and cross-project JIT defect prediction scenarios
on top of the extended dataset. We also choose to conduct the ex-
periments on the late versions of the adopted benchmark projects
(partially for experimental comparison with the previous studies
on early versions). Note that to eliminate the authentication la-
tency issues [6], we remove certain recent data according to the
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defect fix delay time. As a result, we select the latest three-year
commits, e.g., commits from 2015-01-01 to 2018-01-01 for QT and
from 2016-01-01 to 2019-01-01 for OpenStack. Moreover, our train-
ing data and testing data are extracted chronologically and follow
the same training/testing data partitioning of the original Deep]IT
and CC2Vec work, i.e., the earlier 80% data are used for training
and the later 20% data are used for testing.

Furthermore, we choose to extend the performance comparison
between CC2Vec, Deep]IT, and other representative approaches.
To this end, we first retain DBN-JIT [50] which uses Deep Belief
Network [17] to extract high-level information from the traditional
defect prediction features and is adopted as the evaluation baseline
in the original Deep]IT paper. Moreover, we also adopt a classic
approach proposed by Kamei et al. [21] (denoted as LR-JIT), which
integrates manually extracted features with the logistic regression
model and has been widely adopted as the evaluation baseline for
many traditional JIT defect prediction approaches [8, 29, 50].
Within-project prediction. The “WP” columns in Table 5 present
the overall within-project results for CC2Vec, Deep]IT and the other
selected approaches on the extended dataset. We can observe that
CC2Vec fails to retain performance advantages over DeepJIT on
most of the projects. Specifically, for QT, OpenStack and Go, the
prediction accuracy advantages of CC2Vec over Deep]JIT in terms
of the AUC scores are rather limited, i.e., 0.13%, 1.33% and 0.37%
respectively. On the other hand, for the remaining three studied
projects, Deep]JIT can even outperform CC2Vec by 0.56% to 1.29%.
Since CC2Vec only differs from Deep]IT by including additional
code-change vector representations, such performance deviation
can indicate that the code-change vector representation extracted
by CC2Vec does not generalize its advantages over the original
Deep]IT features to diverse datasets, indicating CC2Vec’s limited
effectiveness for real-world JIT defect prediction compared with
Deep]IT.

Finding 4: In general, CC2Vec cannot clearly outperform Deep-
JIT in the extended dataset, indicating that the vector represen-
tation of code changes extracted by CC2Vec do not contribute
much in advancing JIT defect prediction.

Next, we can also observe that while DeepJIT and CC2Vec can
deliver rather marginal average performance advantage over the
two traditional approaches LR-JIT and DBN-JIT on top of all the
adopted benchmarks, i.e., 0.7065 (Deep]JIT) and 0.7055 (CC2Vec) vs.
0.6726 (LR-JIT) and 0.6847 (DBN-JIT), they cannot always outper-
form traditional approaches under all of the adopted projects. To be
specific, on OpenStack, the AUC results of the two traditional ap-
proaches LR-JIT and DBN-JIT are 0.7248 and 0.7330, compared with
0.7132 of Deep]IT and 0.7227 of CC2Vec. On Eclipse JDT, LR-JIT
can also slightly outperform Deep]IT and CC2Vec.

We further attempt to explore the prediction accuracy of all the
studied approaches in terms of diverse metrics, e.g., false discovery
rate, recall, and accuracy, as such metrics have been widely adopted
in previous work [21, 49, 50]. In particular, Accuracy (ACC) is the
ratio of the number of correct predictions over the total number
of predictions; Recall denotes the ratio of the number of correctly
predicted defective instances over the total number of defective
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Table 5: Within- and cross-project JIT defect prediction on our extended dataset

AUC Score QT OpenStack JDT Platform Gerrit Go Mean
WP [ CP | WP [ CP [ WP | CP [ WP | CP | WP][ CP | WP[CP | WP ][ CP [%Drop
Deep)IT | 6927 | 6734 | 7132 | 7126 | 6701 | .6886 | .7712 | 6957 | .7025 | .6571 | 6891 | .6574 | .7065 | .6808 | -3.63
CC2Vec 6936 | .6843 | .7227 | .7198 | .6653 | .6822 | .7613 | .6574 | .6986 | .6690 | .6917 | .6497 | .7055 | .6771 -4.03
LR-JIT .6651 | .5887 | .7248 | .6645 | .6736 | .6572 | .6403 | .6946 | .6570 | .6550 | .6749 | .6339 | .6726 | .6490 -3.52
DBN-JIT .6752 | .5844 | .7330 | .6707 | .6426 | .6595 | .7016 | .7113 | .6835 | .6602 | .6724 | .6334 | .6847 | .6532 -4.60

Table 6: With-project prediction on early versions

| AUC | QT | OpenStack | JDT | Platform [ Gerrit | Go l Mean ]
Deep]IT | .7144 7140 7491 6912 7875 7314 | 7317
CC2Vec | .7164 7078 7466 .6912 7873 7244 | 7290
LR-JIT | .6843 .6750 .7497 6912 8131 | .6783 | .7152
DBN-JIT | .6858 6627 7267 6781 7757 | .6805 | .7016
—o— Deep|IT
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50701 % LRJIT
20651 —+— DBNJT
3 0.60
g 0.55
8
£ 0.50
045
0.40
01 02 03 04 05 06 07 08 0.9
Recall
(a) FDR
—o— Deep|IT
0731 e ¥ CCavec
0.70 —— LRJIT
065 —+— DBN-JIT
S 060
<055
0.50
045

0.40

0.1 0.2 0.3 0.5 0.6

Recall
(b) ACC
Figure 5: FDR & ACC trends with respect to Recall
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instances; False Discovery Rate (FDR) denotes the ratio of the num-
ber of instances incorrectly predicted as defective over the number
of all instances predicted as defective.

While the existing approaches [21, 49, 50] simply present the
ACC, Recall, and FDR values in terms of a given decision threshold
(e.g., 0.5, above which a defect is predicted), we find that rather
inapplicable in our study. The reason is that different projects can
significantly vary from each other in terms of their defect patterns
(as shown in Table 1), and a uniform threshold can hardly present
their respective optimal performance. On the other hand, threshold
can be easily manipulated in practice for adjusting Recall accord-
ingly. To this end, we choose to present the ACC and FDR results in
terms of different Recall values for a more comprehensive analysis.
Specifically, we gradually adjust the thresholds such that the cor-
responding Recall values can be approached to be the scale values
(with the error range < 1%).

Figure 5a and 5b demonstrate the average FDR and ACC for all
studied projects in terms of different Recall values. We can observe
that the overall performance of advanced deep JIT defect predic-
tion approaches is slightly better than the traditional approaches.
However, such advantages are rather marginal and do not appear
for all Recall values and all studied projects. We can also observe
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that Deep]IT slightly outperforms CC2Vec in terms of ACC, while
CC2Vec slightly outperforms Deep]JIT in terms of FDR. To summa-
rize, Deep]JIT and CC2Vec cannot always outperform traditional
approaches in terms of FDR/ACC under identical Recall values.

Finding 5: DeepJIT and CC2Vec cannot always outperform
traditional approaches on all the studied projects, and the
finding holds for multiple widely-used metrics.

Furthermore, we perform a within-project experiment in the
early versions of the studied projects from 2011-01-01 to 2014-01-01
(roughly the same as the project versions in Deep]IT and CC2Vec),
as shown in Table 6. We can find that compared with the AUC scores
on the late versions of the studied projects (shown in Table 5), the
AUC scores on the early versions can be quite inconsistent. For
instance, for Deep]JIT, the AUC scores on the two settings can be
close on QT and OpenStack, i.e., 0.7144 vs. 0.6927 on QT and 0.7140
vs. 0.7132 on OpenStack, while they can be quite different on other
projects, e.g., 0.7491 vs. 0.6701 on JDT. The same is true for all
studied approaches. Accordingly, we can derive that all studied
approaches cannot ensure consistent performance even under the
identical benchmarks with different versions.

The above performance inconsistency implies that for certain
projects, their defect patterns can potentially vary between differ-
ent program versions, causing potential challenges for designing
training setups to optimize defect prediction. To better explore such
concern, we further attempt to investigate the performance impact
by adopting different training sets. In particular, we construct the
training set with its size ranging from 10k to 50k historical com-
mits for each studied project, and fixate most recent 2k samples
for testing, i.e., 20% of the minimum training set size. Note that
our training sets are constructed in the reverse chronological order
so that larger training sets include more outdated historical data
compared with smaller training sets; also, some projects will end
with smaller training sets if they do not have sufficient historical
data within last 10 years.

Figure 6 presents the AUC trends in terms of the training data
size for Deep]JIT and LR-JIT. Note that we select these two ap-
proaches as representatives since the performance of CC2Vec and
DBN-JIT are similar with DeepJIT and LR-JIT, respectively. We can
observe that in general, both approaches enable fluctuant prediction
accuracy under the increasing training data size. For instance, the
average AUC of OpenStack is degraded from 0.7294 to 0.7018, while
in contrast, the average AUC of QT increases from 0.6854 to 0.6906.
Moreover, even each approach itself can encounter different trends
under the increasing training data size. For instance, on Platform,
the AUC of Deep]IT first slightly increases from 0.7744 to 0.7769 and
then drops to 0.7610. In contrast, the AUC of LR-JIT first decreases
from 0.6463 to 0.6307, and then increases to 0.6374 eventually. Such
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results directly indicate that simply expanding training set by in-
cluding more historical data cannot always advance the prediction
accuracy for both deep-learning-based and traditional approaches.
We can also infer that the outdated historical data may not conform
to the defect patterns of more recent data, and thus have limited
effectiveness, which is consistent with prior findings on traditional
JIT defect prediction [31]. Therefore, it can be rather challenging
to adopt the optimal training set for JIT defect prediction.

Finding 6: Simply adding more historical data cannot improve
the prediction accuracy for both advanced deep JIT defect
prediction approaches and traditional approaches.

Cross-project prediction. While the original DeepJIT and CC2Vec
papers do not include any cross-project evaluation, in this paper, we
further study the performance of Deep]IT, CC2Vec, and the other
studied approaches for cross-project validation, which attempts
to address the issues caused by insufficient data from the projects
under prediction. Specifically, similar as existing work [7, 20], our
cross-project validation collects historical data from all the other
adopted projects rather than the project under prediction for train-
ing a classifier, i.e., we use the training data from all the other
studied projects for training a classifier and use the same testing
data as the within-project evaluation shown in Table 5 for testing.

The “CP” columns in Table 5 present the AUC scores for the
studied approaches in cross-project prediction. We can observe
the that deep JIT defect prediction approaches also cannot consis-
tently outperform the traditional approaches on all the projects in
this scenario. To be specific, on Platform, the AUC scores of the
two traditional approaches (LR-JIT and DBN-JIT) are 0.6946 and
0.7113, compared with 0.6957 of Deep]JIT and 0.6574 of CC2Vec.
Also, compared with the within-project evaluation results (pre-
sented in the “WP” columns in Table 5), we can observe that for
all the studied approaches, their within-project prediction accu-
racy can outperform their cross-project prediction accuracy for
almost all the studied projects. For instance, the average AUC score
of Deep]JIT drops slightly form 0.7065 to 0.6808 in cross-project
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Table 7: Studied 14 basic change features

Name | Description

NS The number of modified subsystems [32]

ND The number of modified directories [32]

NF The number of modified files [35]

Entropy | Distribution of modified code across each file [9, 15]

LA Lines of code added [33, 34]

LD Lines of code deleted [33, 34]

LT Lines of code in a file before the change [24]

FIX Whether or not the change is a defect fix [14, 37]

NDEV The number of developers that changed the modified files [30]
AGE The average time interval between the last and current change [13]
NUC The number of unique changes to the modified files [9, 15]
EXP Developer experience [32]

REXP Recent developer experience [32]

SEXP Developer experience on a subsystem [32]

validation, while the average AUC scores of LR-JIT and DBN-JIT
drop from 0.6726 and 0.6847 to 0.6490 and 0.6532, respectively. Such
results conform to the finding on traditional JIT detect prediction
that within-project prediction can usually outperform cross-project
prediction [20]. Therefore, cross-project prediction is usually taken
as the secondary choice when within-project prediction is not pos-
sible. Another interesting finding is that deep JIT approaches can
incur roughly the same AUC loss as the traditional approaches
when moving from within-project to cross-project prediction, i.e.,
-3.63% and -4.03% for two recent deep learning approaches vs. -
3.52% and -4.60% for two traditional approaches. This indicates that
deep JIT defect prediction approaches are not more robust than the
traditional approaches in cross-project prediction.

Finding 7: JIT defect prediction approaches usually perform
better for within-project prediction than for cross-project pre-
diction. In addition, deep JIT defect prediction approaches are
not more robust than the traditional approaches in cross-project
prediction.

3.3.3  RQ3: How Do Traditional Defect Prediction Features Perform
for Just-in-Time Defect Prediction? The findings from RQ1 and RQ2
altogether reveal the following facts. First, for deep JIT defect pre-
diction approaches, the Deep]IT code-change representations (i.e.,
the “added_ code/removed_ code” labels, which is essentially close
to a traditional defect prediction feature, i.e., changed file number)
have been shown to be more important than other feature inputs,
i.e., Deep]IT commit-message representations and CC2Vec code-
change representations (Table 4). Second, CC2Vec with more input
features than Deep]JIT can sometimes even degrade the prediction
accuracy. Third, the recent deep JIT defect prediction approaches
cannot consistently outperform traditional JIT defect prediction
approaches under different settings/scenarios. Such facts expose
that different features from traditional approaches have not been
fully studied for JIT defect prediction. Accordingly, we attempt to
answer this RQ by further investigating the performance of various
representative traditional features for JIT defect prediction.

Our investigation is launched based on a simple and classic JIT
defect prediction approach proposed by Kamei et al. [20] (i.e., LR-JIT
in RQ2). More specifically, they train a logistic regression classifier
on a set of 14 manually summarized features that can demonstrate
the size, diffusion, history, and author experience of the associated
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Figure 7: Effectiveness study for individual features

commit (presented in Table 7). Such features have also been widely
used in other JIT defect prediction work [8, 28, 49, 50, 52]. For each
feature, we build a logistic regression classifier for both within- and
cross-project prediction to understand its impact. Meanwhile, since
the results may help inspire our own simplistic approach (RQ4),
we only leverage the training data used in computing Table 5 for
feature analysis to prevent data leakage [40], i.e., we perform 10-
fold cross-validation [23] within the training data to explore each
feature’s detailed impact on JIT defect prediction.

Figure 7a presents the AUC scores in terms of the adopted tra-
ditional features for within-project prediction, where the x-axis
denotes the studied features while the y-axis denotes the AUC
scores. Note that “all” indicates that all the traditional features are
adopted for model training, while all other x-axis labels indicate
that only the corresponding feature is adopted for model training.
Interestingly, we find that it is possible to build a well-performed
classifier for JIT defect prediction using only one single feature.
In particular, the average AUC score of the model increases from
0.7212 when all the features are adopted to 0.7236 when only the
added-line-number (“la”) feature is used. Moreover, using the “la”
feature, the AUC scores of QT, OpenStack, and Go can reach 0.7343,
0.7465, and 0.7145, while they are only 0.6872, 0.7247, and 0.6842
when all the features are used.

We further present the effectiveness of each single traditional
feature for cross-project prediction in Figure 7b. In general, we find
that compared with the within-project prediction results, many
features are presented with significant performance variance, e.g.,
the “nuc” feature achieves an average AUC 0.6214 in within-project
prediction, but only 0.4783 in cross-project prediction. We infer that
such performance variance is caused by the divergent distributions
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of the studied features among different studied projects. On the
other hand, the fact that the cross-project prediction accuracy of the
“la” feature is quite close to its within-project prediction accuracy
indicates that such a simple feature is potentially variance-resilient
in its distribution among different projects.

Finding 8: The within-project and cross-project JIT defect pre-
diction using only the “la” feature can achieve high prediction
accuracy and negligible performance variance.

3.3.4 RQ4: Can aSimpler Approach Outperform DeepJIT and CC2Vec?
Inspired by Finding 8, we propose a simplistic “la’-feature-based
JIT defect prediction approach, namely LApredict. While it is def-
initely possible to integrate the “la” (added-line-number) feature
with other information for more powerful JIT defect prediction, in
this paper, we want to keep our design simplistic and only leverage
the “la” feature with the classic logistic regression model for JIT
defect prediction. We have empirically compared LApredict with
all the other studied approaches, i.e., Deep]IT, CC2Vec, DBN-JIT,
and LR-JIT, for both within- and cross-project validation (under the
same setting as Table 5).

The “WP” columns in Table 8 show the AUC scores of all the
compared approaches for within-project prediction. Surprisingly,
we observe that LApredict can outperform all the other approaches
on average and on most of the studied projects! Specifically, the
average AUC of LApredict is 0.7246 while the best of the other
approaches is only 0.7065. Moreover, on QT, OpenStack, and Gerrit,
LApredict achieves an AUC of 0.7438, 0.7491 and 0.7495, while the
best results for DeepJIT and CC2Vec on those three projects are
only 0.6936, 0.7227 and 0.7025.

The “CP” columns in Table 8 further presents the AUC scores of
all the studied approaches for cross-project prediction. We can ob-
serve that LApredict not only can retain its performance superiority
over Deep]JIT and CC2Vec, but also further expand its advantage
compared with within-project prediction! The potential reason is
that while using the cross-project data can potentially bring extra
noises to the deep-learning-based approaches and thus degrade the
prediction accuracy compared with within-project prediction, the
simplistic added-line-number (“la”) feature can stay steady across
projects since the training data of both WP and CP reflect the same
rule, i.e., the larger the “la”, the higher the probability of being
defective. In fact, using the logistic regression model, LApredict will
always predict commit with a larger “la” value as more defect-prone.
Also, the AUC score is calculated only based on the relative ranking
of the predicted results. Thus, even different training data are used
in WP/CP, the same testing data will always yield the same AUC.

We further present the time costs of all the studied approaches
in terms of both training and testing time under within-project
prediction in Table 9. Note that the cross-project prediction results
are similar, and thus are omitted here. We can observe that LApre-
dict has negligible training and testing time due to its simplistic
design (i.e., single feature with traditional classifier). On the con-
trary, the recent deep-learning-based approaches (i.e., DeepJIT and
CC2Vec) can be much most costly due to their complicated neural
network design, e.g., at least 81k X/120k X slower than LApredict
in training/testing time.
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Table 8: Within- and cross-project prediction effectiveness for LApredict

AUC Score QT OpenStack JDT Platform Gerrit Go Mean
WP [ CP [ WP [ CP | WP [ CP [WP|CP | WP[CP|[WP]|CP [WP]CP
DeepJIT 6927 | .6734 | 7132 | .7126 | .6701 | .6886 | .7712 | .6957 | .7025 | .6571 | .6891 | .6574 | .7065 | .6808
CC2Vec .6936 | .6843 | .7227 | .7198 | .6653 | .6822 | .7613 | .6574 | .6986 | .6690 | .6917 | .6497 | .7055 | .6771
LR-JIT .6651 | .5887 | .7248 | .6645 | .6736 | .6572 | .6403 | .6946 | .6570 | .6550 | .6749 | .6339 | .6726 | .6490
DBN-JIT .6752 | .5844 | .7330 | .6707 | .6426 | .6595 | .7016 | .7113 | .6835 | .6602 | .6724 | .6334 | .6847 | .6532
LApredict | 7438 | .7438 | .7491 | .7491 | .6757 | .6757 | .7461 | .7461 | .7495 | .7495 | .6831 | .6831 | .7246 | .7246
Table 9: Training and testing time for all studied approaches (Seconds)
Time Cost ‘ QT ‘ OpenStack ‘ JDT ‘ Platform ‘ Gerrit ‘ Go ‘ Mean ‘
‘ Train ‘ Test ‘ Train ‘ Test ‘ Train ‘ Test ‘ Train ‘ Test ‘ Train ‘ Test ‘ Train ‘ Test ‘ Train Test ‘
Deep]IT 1.37e+03 | 1.65e+01 | 1.37e+03 | 1.38e+01 | 1.85e+02 | 1.45e+01 | 6.35e+02 | 3.23e+01 | 8.75e+02 | 4.23e+01 | 1.07e+03 | 2.45e+01 | 9.17e+02 | 2.40e+01
CC2Vec 1.42e+03 | 1.54e+01 | 1.32e+03 | 4.89e+01 | 1.85e+02 | 4.47e+01 | 6.22e+02 | 3.79e+01 | 9.06e+02 | 3.32e+01 | 1.10e+03 | 2.61e+01 | 9.25e+02 | 3.44e+01
LRJIT 2.07e-02 | 4.00e-04 | 2.30e-02 | 4.00e-04 | 6.90e-03 | 2.00e-04 | 1.61e-02 | 2.00e-04 | 1.88e-02 | 2.00e-04 | 1.76e-02 | 2.00e-04 | 1.72e-02 | 3.00e-04
DBN-JIT 4.96e+01 | 3.00e-03 | 4.74e+01 | 3.00e-03 | 7.00e+00 | 6.00e-04 | 2.26e+01 | 2.00e-03 | 3.16e+01 | 2.00e-03 | 4.00e+00 | 3.00e-03 | 3.30e+01 | 2.40e-03
LApredict 1.14e-02 | 3.00e-04 | 1.29e-02 | 4.00e-04 | 5.80e-03 | 2.00e-04 | 1.25e-02 | 2.00e-04 | 1.51e-02 | 2.00e-04 | 1.03e-02 | 2.00e-04 | 1.13e-02 | 2.00e-04

Finding 9: Our simplistic LApredict can substantially outper-
form the advanced deep-learning-based approaches in JIT
defect prediction under both within-project and cross-project
scenarios in terms of both effectiveness and efficiency.

4 IMPLICATIONS AND DISCUSSIONS

Our study reveals the following important practical guidelines for
future JIT defect prediction.

Deep learning does not always help. Our study reveals that al-
though the deep JIT defect prediction approaches can be advanced
under certain scenarios, they are rather data dependant and have
limited effectiveness under diverse datasets/scenarios (Findings 5,
7, and 9). Also, the interpretability issue of deep learning models
makes it even harder to ensure the optimal performance of deep JIT
defect prediction. Furthermore, deep learning techniques can be
orders of magnitude slower than traditional classifiers. We highly
recommend the researchers/developers to conduct thorough evalu-
ations for future deep JIT defect prediction approaches.

Simple features can work. Our study shows that Deep]ITG;;Hubs
which abstracts code changes in each file into a simple label (i.e.,
“added_code/removed_code”), performs even better than the orig-
inal Deep]ITpgper described in the paper, which analyzes the de-
tailed code changes (Finding 1). Also, the single added-line-number
feature (with the logistic regression model) can already outper-
form all existing JIT defect prediction approaches, including the
deep-learning-based approaches with rather complicated features
(Finding 9). All such observations indicate that simple features
should not be just ignored. In fact, they should be considered and
even combined with advanced learning models and features for
even more advanced JIT defect prediction.

Commit messages are helpful. Our results show that certain
keywords in the commit messages are rather helpful for deep JIT
defect prediction, since they can convey the intents of specific code
changes (Finding 2). This suggests that developers/teams interested
in JIT defect prediction should maintain strict rules for drafting
informative commit messages. Furthermore, this also motivates
researchers to develop more advanced approaches to better align
commit messages with code changes to avoid the negative impact
of noisy commit messages.

Training data selection is important. Our study shows that sim-
ply adding more training data cannot enhance the prediction ac-
curacy for traditional or deep JIT defect prediction approaches
(Finding 6). On the other hand, it is rather challenging to manu-
ally capture the most informative training set which optimizes the
prediction accuracy under different benchmarks/scenarios. There-
fore, we suggest researchers/developers to consider fully automated
training data selection approaches targeting specific projects under
prediction or even specific commits under prediction.
Cross-project validation should be considered. Our experimen-
tal results show that the existing traditional/deep JIT defect predic-
tion approaches witnessed a decreased performance when switch-
ing to cross-project validation (Finding 7). Interesting, our simplistic
LApredict, which only uses the added-line-number feature with the
classic logistic regression model, incurs no performance drop in
cross-project validation (Finding 9). Such observation motivates
future researchers to investigate more robust JIT defect prediction
approaches under both within- and cross-project scenarios.

5 THREATS TO VALIDITY

Threats to Internal Validity. The threats to internal validity
mainly lie in the potential bugs in our implementation. To reduce
such threats, we directly obtain the original source code from the
GitHub repositories of the studied techniques. Also, we use the
same hyperparameters as the original papers. The authors also care-
fully reviewed the experimental scripts to ensure their correctness.
Meanwhile, the validity of the SZZ algorithm used for our dataset
construction is also a critical threat that has been widely argued.
Several studies have pointed out the limitations of SZZ [16, 38],
while there are also studies demonstrating the effectiveness/accu-
racy of SZZ [11, 22, 48]. Despite the ongoing debate about SZZ, our
focus is on the performance comparison of different prediction mod-
els, which is not directly affected by the SZZ algorithm. Therefore,
we simply applied the same SZZ algorithm with DeepJIT/CC2Vec
for a fair comparison.

Threats to External Validity. The threats to external validity
mainly lie in the benchmark projects used in this study. To reduce
such threats, we not only use all the benchmark projects studied in
the original CC2Vec and Deep]IT papers, but also construct a much
larger-scale JIT defect prediction dataset (with 310k commits).
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Threats to Construct Validity. The threat to construct validity
mainly lies in the adopted metrics in our evaluations. To reduce such
threat, following the prior CC2Vec and Deep]JIT work, we adopt
the widely-used Area Under the Curve (AUC) score to evaluate
the performance of the studied approaches. In particular, the AUC
score does not need to manually set a threshold and thus can be
quite objective [43]. To further reduce the threats, we also adopt
other widely used metrics, e.g., Recall, ACC, and FDR.

6 RELATED WORK

JIT defect prediction has been extensively studied in the last two
decades. Mockus et al. [32] built a classifier based on information
extracted from historic changes to predict the risk of new code
changes. Kamei et al. [21] built a Logistic Regression Model on a set
of 14 manually summarized features. Meanwhile, they also took into
account the effort required to find defects in their evaluation. Based
on Kamei’s work [21], Yang et al. [50] used Deep Belief Network
(DBN) to extract higher-level information from the initial features
and achieved better performance compared with Kamei’s approach.
Also, by adopting Kamei’s features, Yang et al. [49] combined de-
cision tree and ensemble learning to build a two-layer ensemble
learning model for JIT defect prediction. Later, to enhance such
approach [49], by allowing using arbitrary classifiers in the ensem-
ble and optimizing the weights of the classifiers, Young et al. [52]
proposed a new deep ensemble approach and achieved significantly
better results. Meanwhile, Liu et al. [29] found that the code churn
metric is effective in effort-aware JIT defect prediction, while Chen
et al. [8] transformed the effort-aware JIT defect prediction task
into a multi-objective optimization problem and selected a set of ef-
fective features via evolutionary algorithms. More recently, Cabral
et al. [6] provided a new sampling approach to handle verification
latency and class imbalance evolution of online JIT defect predic-
tion. Also, Yan et al. [47] proposed a two-phase framework by
combining JIT defect identification and localization. Note that most
of such approaches are developed based on the two classic tradi-
tional JIT defect prediction approaches (Kamei et al. [21] and Yang
et al. [50]) adopted for our study. On the other hand, the current
state-of-the-art approaches, CC2Vec [19] and Deep]IT [18], attempt
to enhance the prediction accuracy by applying modern advanced
deep learning models to automatically extract features from commit
messages and code changes.

There also have been various studies on JIT defect prediction.
McIntosh et al. [31] conducted a study of the impact of systems
evolution on JIT defect prediction models via a longitudinal case
study of 37,524 changes from the QT and OpenStack systems. They
found that the performance of the JIT defect prediction model de-
creases as the interval between training periods and testing periods
increases. Tabassum et al. [42] investigated cross-project JIT defect
prediction in realistic online learning scenarios. They showed that
in online learning scenarios, the model trained with both within-
and cross-project data achieved better performance over the model
trained with within-project data only. Recently, through literature
review and a survey of practitioners, Wan et al. [44] discussed the
shortcomings of existing defect prediction tools and highlighted
future research directions. Different from all prior studies, our work
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presents the first extensive study of the state-of-the-art deep JIT
defect prediction approaches.

SZZ is also a critical part to be discussed [38]. Kim et al. [22]
proposed an improved SZZ and claimed that such SZZ can achieve
high accuracy under manual validation. Note that our dataset con-
struction process followed such enhanced SZZ algorithms to ensure
high accuracy (Section 3.1). Recently, Herbold et al. [16] conducted
an empirical study on 38 Apache projects and found that many of
the bug fixing commits identified by SZZ were incorrect or impre-
cise. Meanwhile, Fan et al. [11] investigated the impact of different
SZZ variants on JIT defect prediction, and showed that different
SZZ algorithms have limited impact on the prediction accuracy
of the studied JIT defect prediction models. More recently, Yan et
al. [48] performed a case study on 14 industrial projects and found
that SZZ-tagged data can be validated to successfully derive a JIT
defect prediction model which can help developers reduce their
workload in real-world code review process. Despite the ongoing
debate about SZZ, our focus is on the performance comparison
of different prediction models, which is not directly affected by
the SZZ algorithm. Therefore, we simply applied the same SZZ
algorithm with DeepJIT/CC2Vec for a fair comparison.

7 CONCLUSIONS

In this study, we have investigated the effectiveness and limita-
tions of state-of-the-art deep JIT defect prediction approaches, i.e.,
Deep]IT and CC2Vec. Specifically, we have constructed an extended
dataset containing over 310k commits and used it to evaluate the
performance of Deep]IT, CC2Vec, and two representative tradi-
tional JIT defect prediction approaches. We found that CC2Vec
cannot consistently outperform Deep]IT and neither of them can
be ensured to outperform the traditional JIT defect prediction ap-
proaches. We also noticed that all the studied traditional and deep
JIT defect prediction approaches witnessed a performance drop in
cross-project validation. Moreover, simply increasing the training
data size does not improve the prediction accuracy of the studied
approaches. Surprisingly, we have also demonstrated that a simplis-
tic JIT defect prediction approach, LApredict, which simply uses the
added-line-number feature with a traditional classifier, can already
outperform CC2Vec and Deep]IT in terms of both effectiveness and
efficiency on most studied projects. Lastly, our study also revealed
various practical guidelines for future JIT defect prediction.
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