

Deep Just-in-Time Defect Prediction: How Far Are We? ISSTA ’21, July 11–17, 2021, Virtual, Denmark

CC2Vec

DeepJIT

Fully Connected Neural Network

Output

Fully Connected Neural Network

Hierarchical
Attention Network

Comparison Layers

Code Changes Vector

Added Code Removed Code

Hierarchical
Attention Network

Comparison Layers

Hierarchical
Attention Network

Comparison Layers

Hierarchical
Attention Network

Comparison Layers

Hierarchical
Attention Network

Encoding

Convolutional
Neural Network

Commit Message Code Changes

Encoding

Convolutional
Neural Network

Encoding EncodingEncoding

Convolutional
Neural Network

Convolutional
Neural Network

EncodingEncodingEncoding

Figure 2: The overall framework of CC2Vec + DeepJIT

Therefore, commit 6db280 was further made to replace łrefsž back
with łdb.getAllRefs()ž.

From the example, we can observe that the defect refers to an
only one-line discrepancy of the source code between the two
commits, which can be rather challenging to predict automatically.
Many existing approaches perform JIT defect prediction based on
classic features (e.g., the number of modified files and the file size)
and traditional machine learning techniques (e.g., logistic regres-
sion [12]). However, traditional techniques can hardly learn useful
information for all possible cases, e.g., simply extracting the tradi-
tional syntactic features for comparative analysis can hardly work
for this example with a single-line change. Intuitively, to identify
such defects, it is helpful to understand their specific program se-
mantics, e.g., investigating program control/data flows. However,
such analysis can be rather challenging for complex programs and
involve intensive manual efforts. Therefore, recently, researchers
have leveraged deep learning models to learn more useful semantic
information for precise JIT defect prediction [18, 19]. For example,
the deep learning models can potentially learn from other historical
defects that the change in commit b032a5 can be dangerous.

2.2 State-of-the-Art CC2Vec

Figure 2 presents the overall neural network structure for CC2Vec [19].
Specifically, as the state-of-the-art general-purpose JIT defect pre-
diction approach, CC2Vec constructs a hierarchical attention net-
work (HAN) [51] to embed added and deleted code of each changed
file associated with one given commit respectively. Specifically,
the adopted HAN first builds vector representations for lines, and
further uses them to build vector representations of hunks. At last,
such hunk vector representations are aggregated to construct the
embedding vectors corresponding to the added or removed code.

CC2Vec further adopts multiple comparison functions to capture
the difference between the derived embedding vectors of the added
and removed code for exploring their relationship, where each
comparison function can produce a vector. Next, all the resulting
vectors are concatenated into one embedding vector to represent
the file-level added/removed code changes. Eventually, all the em-
bedding vectors associated with all the changed files under one
commit are aggregated as the distributed vector representations of
the code additions and deletions.

In addition, CC2Vec also adopts a previous JIT defect prediction
approach, DeepJIT [18], to strengthen the prediction efficacy. Deep-
JIT constructs two convolutional neural networks (CNNs) [25] to
extract the features of (1) commit messages and (2) overall code
changes of a given commit. Note that, the DeepJIT code-change
feature extraction is totally different from CC2Vec and can be com-
plementary: DeepJIT simply aggregates added/removed code as one
single input, and thus ignores the distributed information between
code additions and deletions considered by CC2Vec (which treats
added/removed code as two different inputs for HAN).

Eventually, all the vectors derived by CC2Vec and DeepJIT are
input to a fully-connected layer for computing the likelihood that
the given commit incurs a defect.

Although CC2Vec attempts to leverage the semantic information
out of code changes for facilitating the JIT defect prediction efficacy,
the adopted input information is still limited, i.e., only the textual
code changes and their associated commit messages are considered.
On the other hand, there is no detailed exploration for validating
the actual contributions of different adopted components. Moreover,
the study of CC2Vec only considers two open-source projects QT [5]
and OpenStack [4] with a total of 37k commits. Such a dataset may
be too limited to demonstrate the generalizability and scalability of
CC2Vec. Lastly, the program versions of the adopted projects are a
bit outdated, i.e., QT contains data from June 2011 to March 2014
while OpenStack contains data from November 2011 to February
2014, making the evaluation incapable of demonstrating whether
the findings vary over time since no recent data are included.

3 STUDY ON DEEP JIT DEFECT PREDICTION

As discussed in Section 2.2, state-of-the-art CC2Vec was only eval-
uated upon a limited dataset against DeepJIT. Therefore, it is essen-
tial to extend the efficacy evaluation of CC2Vec (and DeepJIT) to a
more diverse and larger dataset with more representative baseline
approaches to thoroughly understand deep JIT defect prediction.

3.1 Dataset Collection

In general, we attempt to collect influential open-source projects
for conducting our study. In particular, since one of our study tasks
is to replicate the evaluations of CC2Vec, we first retain all the
projects used in the evaluations of the original CC2Vec paper, i.e.,
QT and OpenStack. Next, we choose to extend the existing dataset
by including the projects which are not only influential but also
diverse from the existing ones. To this end, we also adopt Eclipse
JDT and Platform [1], which haven been widely adopted by prior
defect prediction work [20, 21, 49] and are programmed mainly
in Java (while QT and OpenStack are mainly in C++). Moreover,
we also include project Gerrit [2], a professional code review tool
which has been adopted by many commercial and open-source
projects for their code review process[53]. Lastly, we select project
Go [3] for our study since it is a representative and popular modern
programming language. In this way, we have a diverse set of real-
world projects in different programming languages.

Furthermore, for each studied project, we collect all its code com-
mits between 2011-01-01 and 2020-12-01 (which subsumes the time
range covered by the CC2Vec dataset) to explore how JIT defect
prediction results vary across time. Specifically, following prior

429

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Zhengran Zeng, Yuqun Zhang, Haotian Zhang, and Lingming Zhang

Table 1: Dataset statistics

Project # Changes % Defect
Median Defect

Fix Delay (days)
Language

QT 95758 15.16 526.29 C++
OpenStack 66065 31.68 280.06 C++

JDT 13348 41.20 251.28 Java
Platform 39365 37.74 259.01 Java
Gerrit 34610 8.64 294.58 Java
Go 61224 36.75 243.21 Golang

work [18, 19, 31], we apply the widely-used SZZ algorithm [22, 41]
to identify the defective commits. First, we identify defect-fixing
commits by analyzing their commit messages. Next, we locate the
modified lines of the defect-fixing commits using theDiff command.
Furthermore, we use the Blame command to detect the commits
inducing the modified lines as defective commits. Meanwhile, fol-
lowing prior work [31], all other commits unmarked by the SZZ
algorithm will be treated as the correct instances for training/test-
ing. At last, we filter such commits based on the procedure by Kim
et al. [22] and McIntosh et al. [31] to remove whitespace commits,
comment commits, merged commits, and other suspicious commits.
Note that we also eliminate the authentication latency issue [6] by
following prior work [6, 31, 42], e.g., we remove recent data accord-
ing to Column łMedian Defect Fix Delay (days)ž in Table 1, which
represents the median time interval for the defect from appearance
to be fixed. The reason is that many defects from recent data have
not been fully detected/fixed yet, and may affect our study. Finally,
we obtain a dataset with six projects and 310,370 total real-world
commits including 81,300 defects, enabling an extensive evaluation
and study of CC2Vec. Table 1 presents the detailed dataset statis-
tics. To the best of our knowledge, this is the largest dataset for
general-purpose deep-learning-based JIT defect prediction.

3.2 Research Questions

We investigate the following research questions for studying CC2Vec:

• RQ1: Why do DeepJIT and CC2Vec work? For this RQ, we
explore what makes the deep learning models effective in
JIT defect prediction. In particular, we reproduce the ex-
periments in the DeepJIT [18] and CC2Vec [19] papers and
conduct a more detailed analysis of their adopted input com-
ponents than the original papers, including exploring each
input component’s contribution to the overall models.

• RQ2: How do DeepJIT and CC2Vec perform on the extended

dataset? For this RQ, we conduct an extensive study for the
performance comparison between CC2Vec, DeepJIT, and
other representative traditional JIT defect prediction ap-
proaches upon the extended dataset. We also investigate
not only the AUC score adopted in the original study, but
also other widely used metrics for prediction effectiveness.

• RQ3: How do traditional defect prediction features perform

for JIT defect prediction? For this RQ, we adopt the features
widely used in traditional JIT defect prediction and investi-
gate their respective performance impact.

• RQ4: Can a simplistic approach without deep learning outper-

form DeepJIT/CC2Vec for JIT defect prediction? For this RQ,
we attempt to design/implement a simplistic but effective
JIT defect prediction approach without deep learning.

Commit Id: "0041b2267144f215fee9a6c4c99739e0559a527b"

Message: "remove qtalgorithms usage from qt designer ..."

Code Change: Array

 0: "added _ code removed _ code"

 1: "added _ code removed _ code"

 2: "added _ code removed _ code"

 3: "added _ code removed _ code"

 4: "added _ code removed _ code"

 5: "added _ code removed _ code"

 6: "added _ code removed _ code"

Figure 3: DeepJIT example with abstracted code changes

3.3 Results and Analysis

3.3.1 RQ1: Why Do DeepJIT and CC2Vec Work? For this RQ, we
replicate the experiments on DeepJIT and CC2Vec under exactly
the same setting and dataset of their original papers [18, 19]. We
also explore how the three different inputs of CC2Vec (the DeepJIT
code-change vector, the DeepJIT commit-message vector, and the
CC2Vec code-change vector) impact JIT defect prediction.

Note that after carefully inspecting the source code provided by
the DeepJIT and CC2Vec GitHub pages, we find that instead of using
the vector representations of detailed code changes as declared in
the original DeepJIT paper, DeepJIT and the DeepJIT component in
CC2Vec actually abstract each changed file within one commit into
a simple ładded_code/removed_codež label (with a maximum of 10
labels for each commit), as shown in Figure 3. Therefore, we also
collect the vector representations of the detailed code changes ac-
cording to the original DeepJIT paper and implement them for both
DeepJIT and the DeepJIT component in CC2Vec. Eventually, we
end up with a complete replication study on DeepJIT and CC2Vec
by involving not only reusing the provided source code on GitHub
but also reimplementing their original versions described in the
original papers (i.e., we modify the "added_code/removed_code"
labels back to the detailed source code they represent for DeepJIT).

Table 2 shows our reproduced experimental results in terms of
AUC scores. Note that considering the model randomness, we run
all our experiments for 16 runs as recommended by prior work [36],
and present the mean, min, max, and standard deviation values
across all 16 runs. In the table, DeepJIT𝐺𝑖𝑡𝐻𝑢𝑏 refers to the DeepJIT
version using the ładded_code/removed_codež labels (i.e., consis-
tent with the original DeepJIT implementation on GitHub) and
DeepJIT𝑃𝑎𝑝𝑒𝑟 refers to the DeepJIT version vectorizing the de-
tailed given code changes (i.e., consistent with the original Deep-
JIT paper description). Also, we denote DeepJIT𝐺𝑖𝑡𝐻𝑢𝑏+CC2Vec
as CC2Vec𝐺𝑖𝑡𝐻𝑢𝑏 , denote DeepJIT𝑃𝑎𝑝𝑒𝑟+CC2Vec as CC2Vec𝑃𝑎𝑝𝑒𝑟 .
We can observe that in general, the original experimental results
can be replicated. For example, the Mean AUC score is 0.7705 for
DeepJIT𝐺𝑖𝑡𝐻𝑢𝑏 and 0.7841 for DeepJIT𝐺𝑖𝑡𝐻𝑢𝑏+CC2Vec in our re-
produced results, while they were 0.7595 and 0.8155, respectively,
in the original papers1. Interestingly, the standard deviations of 16
identical runs are less than 0.0030 and the differences between the
minimum and maximum AUC values are no greater than 0.0094
for all the replicated techniques. We have similar findings for all
our subsequent experiments. Therefore, due to such rather stable
results, we only show the experimental results for one run for all
our subsequent experiments.

1Note that considering the randomness in the 5-fold cross validation process used
by the original papers and the discrepancies on the execution environments, such
performance discrepancies can be tolerated and neglected.

430

Deep Just-in-Time Defect Prediction: How Far Are We? ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 2: Replication study results for DeepJIT and CC2Vec

AUC Score
QT Openstack Mean

Mean Min Max S.D. Mean Min Max S.D. Mean Min Max S.D.

DeepJIT𝐺𝑖𝑡𝐻𝑢𝑏 .7959 .7940 .7979 .0012 .7452 .7429 .7472 .0015 .7705 .7691 .7719 .0009
DeepJIT𝑃𝑎𝑝𝑒𝑟 .7724 .7683 .7756 .0021 .7152 .7124 .7218 .0026 .7438 .7417 .7465 .0014
CC2Vec𝐺𝑖𝑡𝐻𝑢𝑏 .8118 .8106 .8129 .0008 .7564 .7539 .7579 .0012 .7841 .7823 .7852 .0008
CC2Vec𝑃𝑎𝑝𝑒𝑟 .7788 .7780 .7805 .0007 .7378 .7328 .7404 .0018 .7583 .7566 .7601 .0008

DeepJIT code-change vector effectiveness. We can further ob-
serve that the performance of DeepJIT𝐺𝑖𝑡𝐻𝑢𝑏 is slightly better than
DeepJIT𝑃𝑎𝑝𝑒𝑟 . For instance, 0.7959 vs. 0.7724 on QT and 0.7452
vs. 0.7152 on OpenStack. We also have similar observations for
DeepJIT𝐺𝑖𝑡𝐻𝑢𝑏 + CC2Vec and DeepJIT𝑃𝑎𝑝𝑒𝑟 + CC2Vec (0.8118 vs.
0.7788 on QT and 0.7564 vs. 0.7378 on OpenStack). Such observa-
tions indicate that the ładded_code/removed_codež labels, which
are literally simply the number of changed files, can outperform
the detailed code-change vectors described in the original DeepJIT
paper for JIT defect prediction. This finding is rather surprising to
us, as it implies that while the power of the code-change semantics
can be leveraged by deep learning techniques, a simple traditional
feature (e.g., the number of changed files) can be more helpful in
JIT defect prediction! Note that based on such experimental results,
for all the following studies, we would apply DeepJIT𝐺𝑖𝑡𝐻𝑢𝑏 and
its associated combinations with CC2Vec, as DeepJIT𝐺𝑖𝑡𝐻𝑢𝑏 not
only performs better but also was the version used to produce the
experimental results in the original CC2Vec and DeepJIT papers.

Finding 1: The performance of DeepJIT and CC2Vec can overall

be replicated on the originally adopted benchmark projects (QT

and OpenStack). Interestingly, the two DeepJIT versions per-

form differently: the GitHub version which abstracts detailed

code changes (DeepJIT𝐺𝑖𝑡𝐻𝑢𝑏) outperforms the original-paper

version which leverages the detailed code-change semantics

(DeepJIT𝑃𝑎𝑝𝑒𝑟) on both two studied projects.

DeepJIT commit-message vector effectiveness. Next, we at-
tempt to infer how the commit messages can advance the perfor-
mance of DeepJIT and CC2Vec. In particular, we use the Grad-CAM
(Class Activation Mapping) algorithm [39] which is widely used
for visual analysis of neural network model inputs. In particular,
since the last layer of the cumulative convolution layer in a CNN
model contains the richest spatial and semantic information, the
Grad-CAM algorithm can weight and sum the last layer feature
maps of the CNN model to deliver the contribution of each word to
the model’s output. Accordingly, we can derive which words in the
commit messages significantly impact the model’s prediction re-
sults. For instance, Figure 4a demonstrates a true positive example
where DeepJIT derives that it is 80.39% a defect. Then, we calculate
each word’s contribution to the predicted results using the Grad-
CAM algorithm and mark them under colors, where darker colors
indicate more significant contributions of the associated words.
We can observe that łtask-numberž and łqtbug-27968ž make the
largest contributions to the prediction result. In QT, łtask-numberž
is always followed by a task ID which indicates this commit may
be a bug fix or a feature commit. Actually, many previous stud-
ies [14, 37] have found that fixing a bug or adding a new feature is

Table 3: Word rank by contribution

QT OpenStack

Rank Word Rank Word

18 task-number 39 failures
443 fix 96 resolves
532 bug 474 fail
643 failures 693 bugs

likely to result in a bug. Therefore, we can infer that DeepJIT iden-
tifies łtask-numberž and łqtbug-27968ž to be useful and highlight
their impact for defect prediction. We can also strengthen such
finding via the other two examples from Figure 4b and Figure 4c,
where łtask-numberž in Figure 4b and łfixesž in Figure 4c cause
the examples to be classified as defective.

We further derive the impact rank of the words (which appear
more than once in QT and OpenStack) on the defect prediction re-
sults according to their average Grad-CAM scores. Table 3 presents
the results of the words we consider to be relevant to the intents of
their associated programs. We can observe that although some of
them, e.g., łtask-numberž in QT and łfailuresž in OpenStack, rank
relatively high, the others’ rankings are rather less distinctive. Such
results indicate that while DeepJIT can identify the importance
of the words associated with the program intents under certain
circumstances, its overall effectiveness can be nevertheless com-
promised by many other words, making the contributions of the
commit-message feature somewhat limited.

Finding 2: DeepJIT and CC2Vec can extract the intent of code

changes from commitmessages to assist defect prediction under

certain circumstances.

CC2Vec code-change vector effectiveness. Furthermore, we at-
tempt to investigate the effect posed by the code-change vectors
extracted by CC2Vec. Specifically, CC2Vec is designed to lever-
age its HAN model structure to extract code-change semantics
information to further boost DeepJIT. However, we can observe
that DeepJIT+CC2Vec only leads to limited performance improve-
ment over DeepJIT, i.e., 1.99% and 1.50% on QT and OpenStack,
respectively. From such results, we can infer that the code-change
semantics information extracted by CC2Vec may have limited ef-
fectiveness for JIT defect prediction, and will further verify it in
our extended experimental settings (Section 3.3.2).
Ablation study. At last, we attempt to investigate the impact of
each individual feature input adopted by CC2Vec. To this end, we
choose to adopt/remove only one DeepJIT/CC2Vec input feature at
a time to train the deep JIT model for evaluating their respective
effectiveness, as presented in Table 4. In the table, CC2Vec𝐶𝑜𝑑𝑒 ,
DeepJIT𝐶𝑜𝑑𝑒 , and DeepJIT𝑀𝑠𝑔 represent the CC2Vec code-change
input, the DeepJIT code-change input, and the DeepJIT commit-
message input, respectively. The last three rows present the results

431

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Zhengran Zeng, Yuqun Zhang, Haotian Zhang, and Lingming Zhang

Table 8: Within- and cross-project prediction effectiveness for LApredict

AUC Score
QT OpenStack JDT Platform Gerrit Go Mean

WP CP WP CP WP CP WP CP WP CP WP CP WP CP

DeepJIT .6927 .6734 .7132 .7126 .6701 .6886 .7712 .6957 .7025 .6571 .6891 .6574 .7065 .6808
CC2Vec .6936 .6843 .7227 .7198 .6653 .6822 .7613 .6574 .6986 .6690 .6917 .6497 .7055 .6771
LR-JIT .6651 .5887 .7248 .6645 .6736 .6572 .6403 .6946 .6570 .6550 .6749 .6339 .6726 .6490
DBN-JIT .6752 .5844 .7330 .6707 .6426 .6595 .7016 .7113 .6835 .6602 .6724 .6334 .6847 .6532
LApredict .7438 .7438 .7491 .7491 .6757 .6757 .7461 .7461 .7495 .7495 .6831 .6831 .7246 .7246

Table 9: Training and testing time for all studied approaches (Seconds)

Time Cost
QT OpenStack JDT Platform Gerrit Go Mean

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

DeepJIT 1.37e+03 1.65e+01 1.37e+03 1.38e+01 1.85e+02 1.45e+01 6.35e+02 3.23e+01 8.75e+02 4.23e+01 1.07e+03 2.45e+01 9.17e+02 2.40e+01
CC2Vec 1.42e+03 1.54e+01 1.32e+03 4.89e+01 1.85e+02 4.47e+01 6.22e+02 3.79e+01 9.06e+02 3.32e+01 1.10e+03 2.61e+01 9.25e+02 3.44e+01
LR-JIT 2.07e-02 4.00e-04 2.30e-02 4.00e-04 6.90e-03 2.00e-04 1.61e-02 2.00e-04 1.88e-02 2.00e-04 1.76e-02 2.00e-04 1.72e-02 3.00e-04
DBN-JIT 4.96e+01 3.00e-03 4.74e+01 3.00e-03 7.00e+00 6.00e-04 2.26e+01 2.00e-03 3.16e+01 2.00e-03 4.00e+00 3.00e-03 3.30e+01 2.40e-03
LApredict 1.14e-02 3.00e-04 1.29e-02 4.00e-04 5.80e-03 2.00e-04 1.25e-02 2.00e-04 1.51e-02 2.00e-04 1.03e-02 2.00e-04 1.13e-02 2.00e-04

Finding 9: Our simplistic LApredict can substantially outper-

form the advanced deep-learning-based approaches in JIT

defect prediction under both within-project and cross-project

scenarios in terms of both effectiveness and efficiency.

4 IMPLICATIONS AND DISCUSSIONS

Our study reveals the following important practical guidelines for
future JIT defect prediction.
Deep learning does not always help. Our study reveals that al-
though the deep JIT defect prediction approaches can be advanced
under certain scenarios, they are rather data dependant and have
limited effectiveness under diverse datasets/scenarios (Findings 5,
7, and 9). Also, the interpretability issue of deep learning models
makes it even harder to ensure the optimal performance of deep JIT
defect prediction. Furthermore, deep learning techniques can be
orders of magnitude slower than traditional classifiers. We highly
recommend the researchers/developers to conduct thorough evalu-
ations for future deep JIT defect prediction approaches.
Simple features can work. Our study shows that DeepJIT𝐺𝑖𝑡𝐻𝑢𝑏 ,
which abstracts code changes in each file into a simple label (i.e.,
ładded_code/removed_codež), performs even better than the orig-
inal DeepJIT𝑃𝑎𝑝𝑒𝑟 described in the paper, which analyzes the de-
tailed code changes (Finding 1). Also, the single added-line-number
feature (with the logistic regression model) can already outper-
form all existing JIT defect prediction approaches, including the
deep-learning-based approaches with rather complicated features
(Finding 9). All such observations indicate that simple features
should not be just ignored. In fact, they should be considered and
even combined with advanced learning models and features for
even more advanced JIT defect prediction.
Commit messages are helpful. Our results show that certain
keywords in the commit messages are rather helpful for deep JIT
defect prediction, since they can convey the intents of specific code
changes (Finding 2). This suggests that developers/teams interested
in JIT defect prediction should maintain strict rules for drafting
informative commit messages. Furthermore, this also motivates
researchers to develop more advanced approaches to better align
commit messages with code changes to avoid the negative impact
of noisy commit messages.

Training data selection is important.Our study shows that sim-
ply adding more training data cannot enhance the prediction ac-
curacy for traditional or deep JIT defect prediction approaches
(Finding 6). On the other hand, it is rather challenging to manu-
ally capture the most informative training set which optimizes the
prediction accuracy under different benchmarks/scenarios. There-
fore, we suggest researchers/developers to consider fully automated
training data selection approaches targeting specific projects under
prediction or even specific commits under prediction.
Cross-project validation should be considered.Our experimen-
tal results show that the existing traditional/deep JIT defect predic-
tion approaches witnessed a decreased performance when switch-
ing to cross-project validation (Finding 7). Interesting, our simplistic
LApredict, which only uses the added-line-number feature with the
classic logistic regression model, incurs no performance drop in
cross-project validation (Finding 9). Such observation motivates
future researchers to investigate more robust JIT defect prediction
approaches under both within- and cross-project scenarios.

5 THREATS TO VALIDITY

Threats to Internal Validity. The threats to internal validity
mainly lie in the potential bugs in our implementation. To reduce
such threats, we directly obtain the original source code from the
GitHub repositories of the studied techniques. Also, we use the
same hyperparameters as the original papers. The authors also care-
fully reviewed the experimental scripts to ensure their correctness.
Meanwhile, the validity of the SZZ algorithm used for our dataset
construction is also a critical threat that has been widely argued.
Several studies have pointed out the limitations of SZZ [16, 38],
while there are also studies demonstrating the effectiveness/accu-
racy of SZZ [11, 22, 48]. Despite the ongoing debate about SZZ, our
focus is on the performance comparison of different prediction mod-
els, which is not directly affected by the SZZ algorithm. Therefore,
we simply applied the same SZZ algorithm with DeepJIT/CC2Vec
for a fair comparison.
Threats to External Validity. The threats to external validity
mainly lie in the benchmark projects used in this study. To reduce
such threats, we not only use all the benchmark projects studied in
the original CC2Vec and DeepJIT papers, but also construct a much
larger-scale JIT defect prediction dataset (with 310k commits).

436

Deep Just-in-Time Defect Prediction: How Far Are We? ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Threats to Construct Validity. The threat to construct validity
mainly lies in the adoptedmetrics in our evaluations. To reduce such
threat, following the prior CC2Vec and DeepJIT work, we adopt
the widely-used Area Under the Curve (AUC) score to evaluate
the performance of the studied approaches. In particular, the AUC
score does not need to manually set a threshold and thus can be
quite objective [43]. To further reduce the threats, we also adopt
other widely used metrics, e.g., Recall, ACC, and FDR.

6 RELATED WORK

JIT defect prediction has been extensively studied in the last two
decades. Mockus et al. [32] built a classifier based on information
extracted from historic changes to predict the risk of new code
changes. Kamei et al. [21] built a Logistic Regression Model on a set
of 14manually summarized features. Meanwhile, they also took into
account the effort required to find defects in their evaluation. Based
on Kamei’s work [21], Yang et al. [50] used Deep Belief Network
(DBN) to extract higher-level information from the initial features
and achieved better performance compared with Kamei’s approach.
Also, by adopting Kamei’s features, Yang et al. [49] combined de-
cision tree and ensemble learning to build a two-layer ensemble
learning model for JIT defect prediction. Later, to enhance such
approach [49], by allowing using arbitrary classifiers in the ensem-
ble and optimizing the weights of the classifiers, Young et al. [52]
proposed a new deep ensemble approach and achieved significantly
better results. Meanwhile, Liu et al. [29] found that the code churn
metric is effective in effort-aware JIT defect prediction, while Chen
et al. [8] transformed the effort-aware JIT defect prediction task
into a multi-objective optimization problem and selected a set of ef-
fective features via evolutionary algorithms. More recently, Cabral
et al. [6] provided a new sampling approach to handle verification
latency and class imbalance evolution of online JIT defect predic-
tion. Also, Yan et al. [47] proposed a two-phase framework by
combining JIT defect identification and localization. Note that most
of such approaches are developed based on the two classic tradi-
tional JIT defect prediction approaches (Kamei et al. [21] and Yang
et al. [50]) adopted for our study. On the other hand, the current
state-of-the-art approaches, CC2Vec [19] and DeepJIT [18], attempt
to enhance the prediction accuracy by applying modern advanced
deep learning models to automatically extract features from commit
messages and code changes.

There also have been various studies on JIT defect prediction.
McIntosh et al. [31] conducted a study of the impact of systems
evolution on JIT defect prediction models via a longitudinal case
study of 37,524 changes from the QT and OpenStack systems. They
found that the performance of the JIT defect prediction model de-
creases as the interval between training periods and testing periods
increases. Tabassum et al. [42] investigated cross-project JIT defect
prediction in realistic online learning scenarios. They showed that
in online learning scenarios, the model trained with both within-
and cross-project data achieved better performance over the model
trained with within-project data only. Recently, through literature
review and a survey of practitioners, Wan et al. [44] discussed the
shortcomings of existing defect prediction tools and highlighted
future research directions. Different from all prior studies, our work

presents the first extensive study of the state-of-the-art deep JIT
defect prediction approaches.

SZZ is also a critical part to be discussed [38]. Kim et al. [22]
proposed an improved SZZ and claimed that such SZZ can achieve
high accuracy under manual validation. Note that our dataset con-
struction process followed such enhanced SZZ algorithms to ensure
high accuracy (Section 3.1). Recently, Herbold et al. [16] conducted
an empirical study on 38 Apache projects and found that many of
the bug fixing commits identified by SZZ were incorrect or impre-
cise. Meanwhile, Fan et al. [11] investigated the impact of different
SZZ variants on JIT defect prediction, and showed that different
SZZ algorithms have limited impact on the prediction accuracy
of the studied JIT defect prediction models. More recently, Yan et
al. [48] performed a case study on 14 industrial projects and found
that SZZ-tagged data can be validated to successfully derive a JIT
defect prediction model which can help developers reduce their
workload in real-world code review process. Despite the ongoing
debate about SZZ, our focus is on the performance comparison
of different prediction models, which is not directly affected by
the SZZ algorithm. Therefore, we simply applied the same SZZ
algorithm with DeepJIT/CC2Vec for a fair comparison.

7 CONCLUSIONS

In this study, we have investigated the effectiveness and limita-
tions of state-of-the-art deep JIT defect prediction approaches, i.e.,
DeepJIT and CC2Vec. Specifically, we have constructed an extended
dataset containing over 310k commits and used it to evaluate the
performance of DeepJIT, CC2Vec, and two representative tradi-
tional JIT defect prediction approaches. We found that CC2Vec
cannot consistently outperform DeepJIT and neither of them can
be ensured to outperform the traditional JIT defect prediction ap-
proaches. We also noticed that all the studied traditional and deep
JIT defect prediction approaches witnessed a performance drop in
cross-project validation. Moreover, simply increasing the training
data size does not improve the prediction accuracy of the studied
approaches. Surprisingly, we have also demonstrated that a simplis-
tic JIT defect prediction approach, LApredict, which simply uses the
added-line-number feature with a traditional classifier, can already
outperform CC2Vec and DeepJIT in terms of both effectiveness and
efficiency on most studied projects. Lastly, our study also revealed
various practical guidelines for future JIT defect prediction.

ACKNOWLEDGEMENTS

This work was partially supported by the National Natural Science
Foundation of China (Grant No. 61902169) and Shenzhen Peacock
Plan (Grant No. KQTD2016112514355531). This work was also par-
tially supported by National Science Foundation under Grant Nos.
CCF-1763906 and CCF-1942430, and Kwai Inc.

REFERENCES
[1] 2020. Eclipse JDT adn Eclipse Platform. Website. https://git.eclipse.org/r/.
[2] 2020. Gerrit Code Review Website. Website. https://www.gerritcodereview.com/.
[3] 2020. Golang Code Review Website. Website. https://go-review.googlesource.

com/.
[4] 2020. OpenStack Code Review Website. Website. https://review.opendev.org/.
[5] 2020. QT Code Review Website. Website. https://codereview.qt-project.org/.
[6] George G Cabral, Leandro L Minku, Emad Shihab, and Suhaib Mujahid. 2019.

Class imbalance evolution and verification latency in just-in-time software defect

437

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Zhengran Zeng, Yuqun Zhang, Haotian Zhang, and Lingming Zhang

prediction. In 2019 IEEE/ACM 41st International Conference on Software Engineer-
ing (ICSE). IEEE, 666ś676. https://doi.org/10.1109/ICSE.2019.00076

[7] Gemma Catolino, Dario Di Nucci, and Filomena Ferrucci. 2019. Cross-project
just-in-time bug prediction for mobile apps: an empirical assessment. In 2019
IEEE/ACM 6th International Conference on Mobile Software Engineering and Sys-
tems (MOBILESoft). IEEE, 99ś110.

[8] Xiang Chen, Yingquan Zhao, Qiuping Wang, and Zhidan Yuan. 2018. MULTI:
Multi-objective effort-aware just-in-time software defect prediction. Information
and Software Technology 93 (2018), 1ś13.

[9] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2010. An extensive com-
parison of bug prediction approaches. In 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010). IEEE, 31ś41.

[10] Geanderson Esteves, Eduardo Figueiredo, Adriano Veloso, Markos Viggiato, and
Nivio Ziviani. 2020. Understanding machine learning software defect predictions.
Automated Software Engineering 27, 3 (2020), 369ś392.

[11] Yuanrui Fan, Xin Xia, Daniel Alencar da Costa, David Lo, Ahmed E Hassan, and
Shanping Li. 2019. The impact of changes mislabeled by SZZ on just-in-time
defect prediction. IEEE Transactions on Software Engineering (2019). https:
//doi.org/10.1109/TSE.2019.2929761

[12] John Fox. 1997. Applied regression analysis, linear models, and related methods.
Sage Publications, Inc.

[13] Todd L Graves, Alan F Karr, James S Marron, and Harvey Siy. 2000. Predicting
fault incidence using software change history. IEEE Transactions on software
engineering 26, 7 (2000), 653ś661. https://doi.org/10.1109/32.859533

[14] Philip J Guo, Thomas Zimmermann, NachiappanNagappan, and BrendanMurphy.
2010. Characterizing and predicting which bugs get fixed: an empirical study of
MicrosoftWindows. In Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering-Volume 1. 495ś504.

[15] Ahmed E Hassan. 2009. Predicting faults using the complexity of code changes.
In 2009 IEEE 31st international conference on software engineering. IEEE, 78ś88.

[16] Steffen Herbold, Alexander Trautsch, Fabian Trautsch, and Benjamin Ledel. 2019.
Issues with SZZ: An empirical assessment of the state of practice of defect
prediction data collection. arXiv preprint arXiv:1911.08938 (2019).

[17] Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensional-
ity of data with neural networks. science 313, 5786 (2006), 504ś507.

[18] Thong Hoang, Hoa Khanh Dam, Yasutaka Kamei, David Lo, and Naoyasu
Ubayashi. 2019. DeepJIT: an end-to-end deep learning framework for just-in-
time defect prediction. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 34ś45. https://doi.org/10.1109/MSR.2019.00016

[19] Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. 2020. CC2Vec: Dis-
tributed representations of code changes. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 518ś529. https://doi.org/10.
1145/3377811.3380361

[20] Yasutaka Kamei, Takafumi Fukushima, Shane McIntosh, Kazuhiro Yamashita,
Naoyasu Ubayashi, and Ahmed E Hassan. 2016. Studying just-in-time defect
prediction using cross-project models. Empirical Software Engineering 21, 5 (2016),
2072ś2106. https://doi.org/10.1007/s10664-015-9400-x

[21] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E Hassan, Audris Mockus,
Anand Sinha, and Naoyasu Ubayashi. 2012. A large-scale empirical study of
just-in-time quality assurance. IEEE Transactions on Software Engineering 39, 6
(2012), 757ś773. https://doi.org/10.1109/TSE.2012.70

[22] Sunghun Kim, Thomas Zimmermann, Kai Pan, E James Jr, et al. 2006. Auto-
matic identification of bug-introducing changes. In 21st IEEE/ACM international
conference on automated software engineering (ASE’06). IEEE, 81ś90.

[23] Ron Kohavi et al. 1995. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Ijcai, Vol. 14. Montreal, Canada, 1137ś1145.

[24] A Güneş Koru, Dongsong Zhang, Khaled El Emam, and Hongfang Liu. 2008. An
investigation into the functional form of the size-defect relationship for software
modules. IEEE Transactions on Software Engineering 35, 2 (2008), 293ś304.

[25] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436ś444. https://doi.org/10.1038/nature14539

[26] Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch. 2008.
Benchmarking classification models for software defect prediction: A proposed
framework and novel findings. IEEE Transactions on Software Engineering 34, 4
(2008), 485ś496. https://doi.org/10.1109/TSE.2008.35

[27] Jian Li, Pinjia He, Jieming Zhu, and Michael R Lyu. 2017. Software defect pre-
diction via convolutional neural network. In 2017 IEEE International Confer-
ence on Software Quality, Reliability and Security (QRS). IEEE, 318ś328. https:
//doi.org/10.1109/QRS.2017.42

[28] Weiwei Li,Wenzhou Zhang, Xiuyi Jia, and ZhiqiuHuang. 2020. Effort-Aware semi-
Supervised just-in-Time defect prediction. Information and Software Technology
126 (2020), 106364. https://doi.org/10.1016/j.infsof.2020.106364

[29] Jinping Liu, Yuming Zhou, Yibiao Yang, Hongmin Lu, and Baowen Xu. 2017.
Code churn: A neglected metric in effort-aware just-in-time defect prediction. In
2017 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). IEEE, 11ś19. https://doi.org/10.1109/ESEM.2017.8

[30] Shinsuke Matsumoto, Yasutaka Kamei, Akito Monden, Ken-ichi Matsumoto, and
Masahide Nakamura. 2010. An analysis of developer metrics for fault prediction.

In Proceedings of the 6th International Conference on Predictive Models in Software
Engineering. 1ś9. https://doi.org/10.1145/1868328.1868356

[31] Shane McIntosh and Yasutaka Kamei. 2017. Are fix-inducing changes a mov-
ing target? a longitudinal case study of just-in-time defect prediction. IEEE
Transactions on Software Engineering 44, 5 (2017), 412ś428.

[32] Audris Mockus and David M Weiss. 2000. Predicting risk of software changes.
Bell Labs Technical Journal 5, 2 (2000), 169ś180. https://doi.org/10.1002/bltj.2229

[33] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. 2008. A comparative
analysis of the efficiency of change metrics and static code attributes for de-
fect prediction. In Proceedings of the 30th international conference on Software
engineering. 181ś190. https://doi.org/10.1145/1368088.1368114

[34] Nachiappan Nagappan and Thomas Ball. 2005. Use of relative code churn mea-
sures to predict system defect density. In Proceedings of the 27th international con-
ference on Software engineering. 284ś292. https://doi.org/10.1145/1062455.1062514

[35] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. 2006. Mining metrics
to predict component failures. In Proceedings of the 28th international conference
on Software engineering. 452ś461. https://doi.org/10.1145/1134285.1134349

[36] Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan
Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan. 2020. Problems
and Opportunities in Training Deep Learning Software Systems: An Analysis of
Variance. In 2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 771ś783.

[37] Ranjith Purushothaman and Dewayne E Perry. 2005. Toward understanding the
rhetoric of small source code changes. IEEE Transactions on Software Engineering
31, 6 (2005), 511ś526. https://doi.org/10.1109/TSE.2005.74

[38] Gema Rodríguez-Pérez, Gregorio Robles, and Jesús M González-Barahona. 2018.
Reproducibility and credibility in empirical software engineering: A case study
based on a systematic literature review of the use of the szz algorithm. Information
and Software Technology 99 (2018), 164ś176.

[39] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from
deep networks via gradient-based localization. In Proceedings of the IEEE interna-
tional conference on computer vision. 618ś626.

[40] Asaf Shabtai, Yuval Elovici, and Lior Rokach. 2012. A survey of data leakage
detection and prevention solutions. Springer Science & Business Media.

[41] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do
changes induce fixes? ACM sigsoft software engineering notes 30, 4 (2005), 1ś5.

[42] Sadia Tabassum, Leandro L Minku, Danyi Feng, George G Cabral, and Liyan
Song. [n.d.]. An Investigation of Cross-Project Learning in Online Just-In-Time
Software Defect Prediction. ([n. d.]).

[43] Chakkrit Tantithamthavorn, Ahmed E Hassan, and Kenichi Matsumoto. 2018.
The impact of class rebalancing techniques on the performance and interpretation
of defect prediction models. IEEE Transactions on Software Engineering (2018).

[44] Zhiyuan Wan, Xin Xia, Ahmed E Hassan, David Lo, Jianwei Yin, and Xiaohu
Yang. 2018. Perceptions, expectations, and challenges in defect prediction. IEEE
Transactions on Software Engineering (2018).

[45] Song Wang, Taiyue Liu, Jaechang Nam, and Lin Tan. 2018. Deep semantic feature
learning for software defect prediction. IEEE Transactions on Software Engineering
(2018). https://doi.org/10.1109/TSE.2018.2877612

[46] Tiejian Wang, Zhiwu Zhang, Xiaoyuan Jing, and Liqiang Zhang. 2016. Multiple
kernel ensemble learning for software defect prediction. Automated Software
Engineering 23, 4 (2016), 569ś590. https://doi.org/10.1007/s10515-015-0179-1

[47] Meng Yan, Xin Xia, Yuanrui Fan, Ahmed E Hassan, David Lo, and Shanping
Li. 2020. Just-In-Time Defect Identification and Localization: A Two-Phase
Framework. IEEE Transactions on Software Engineering (2020).

[48] Meng Yan, Xin Xia, Yuanrui Fan, David Lo, Ahmed E Hassan, and Xindong Zhang.
2020. Effort-aware just-in-time defect identification in practice: a case study
at Alibaba. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
1308ś1319. https://doi.org/10.1145/3368089.3417048

[49] Xinli Yang, David Lo, Xin Xia, and Jianling Sun. 2017. TLEL: A two-layer ensemble
learning approach for just-in-time defect prediction. Information and Software
Technology 87 (2017), 206ś220. https://doi.org/10.1016/j.infsof.2017.03.007

[50] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. 2015. Deep learn-
ing for just-in-time defect prediction. In 2015 IEEE International Conference on
Software Quality, Reliability and Security. IEEE, 17ś26.

[51] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard
Hovy. 2016. Hierarchical attention networks for document classification. In
Proceedings of the 2016 conference of the North American chapter of the association
for computational linguistics: human language technologies. 1480ś1489.

[52] Steven Young, Tamer Abdou, and Ayse Bener. 2018. A replication study: just-
in-time defect prediction with ensemble learning. In Proceedings of the 6th In-
ternational Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering. 42ś47. https://doi.org/10.1145/3194104.3194110

[53] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. 2015. Automati-
cally recommending peer reviewers in modern code review. IEEE Transactions
on Software Engineering 42, 6 (2015), 530ś543.

438

	Abstract
	1 Introduction
	2 Background
	2.1 Deep JIT Defect Prediction: Example
	2.2 State-of-the-Art CC2Vec

	3 Study on deep JIT defect prediction
	3.1 Dataset Collection
	3.2 Research Questions
	3.3 Results and Analysis

	4 Implications and Discussions
	5 Threats to Validity
	6 Related Work
	7 CONCLUSIONS
	References

