z entropy

Article

Cache-Aided General Linear Function Retrieval

Kai Wan *, Hua Sun 2, Mingyue Ji 3, Daniela Tuninetti  and Giuseppe Caire

check for

updates
Citation: Wan, K.; Sun, H.; Ji, M.;
Tuninetti, D.; Caire, G. Cache-Aided
General Linear Function
Retrieval. Entropy 2021, 23, 25.
https:/ /dx.doi.org/10.3390/€23010025

Received: 7 November 2020
Accepted: 22 December 2020
Published: 26 December 2020

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional claims
in published maps and institutional

affiliations.

Copyright: (© 2020 by the authors. Li-
censee MDPI, Basel, Switzerland. This
article is an open access article distributed
under the terms and conditions of the
Creative Commons Attribution (CC BY)
license (https:/ / creativecommons.org/
licenses/by/4.0/).

1

Electrical Engineering and Computer Science Department, Technische Universitit Berlin,

10587 Berlin, Germany; caire@tu-berlin.de

Department of Electrical Engineering, University of North Texas, Denton, TX 76203, USA; hua.sun@unt.edu
3 Electrical and Computer Engineering Department, University of Utah, Salt Lake City, UT 84112, USA;
mingyue ji@utah.edu

Electrical and Computer Engineering Department, University of Illinois Chicago, Chicago, IL 60607, USA;
danielat@uic.edu

*  Correspondence: kai.wan@tu-berlin.de

Abstract: Coded Caching, proposed by Maddah-Ali and Niesen (MAN), has the potential to reduce
network traffic by pre-storing content in the users’ local memories when the network is underutilized
and transmitting coded multicast messages that simultaneously benefit many users at once during
peak-hour times. This paper considers the linear function retrieval version of the original coded
caching setting, where users are interested in retrieving a number of linear combinations of the
data points stored at the server, as opposed to a single file. This extends the scope of the authors’
past work that only considered the class of linear functions that operate element-wise over the files.
On observing that the existing cache-aided scalar linear function retrieval scheme does not work in
the proposed setting, this paper designs a novel coded caching scheme that outperforms uncoded
caching schemes that either use unicast transmissions or let each user recover all files in the library.

Keywords: coded caching; linear function retrieval; uncoded cache placement

1. Introduction

Content caching is an efficient technique to handle the increase of requests for massive
amounts of data and content over communication networks. By leveraging low-cost
memory components at the user sides, caching reduces peak-time traffic by prefetching
contents closer to users during off-peak time, thereby reducing the transmission delay or
equivalently increasing the bandwidth in communication systems. Traditional caching
techniques aim at prefetching popular content by predicting the user demands, thus
realizing a “local caching gain” (i.e., that scales with the amount of local memory) [1].
Maddah-Ali and Niesen (MAN) showed that it is possible to actually attain a “global
caching gain” (i.e., that scales with the global amount of memory in the network) by
using codes [2]. The idea is that, if a single transmission can serve a number of users
simultaneously, the network load can be reduced by the same factor thus speeding-up
communications significantly.

In the MAN setting, a server has a library of N files and broadcasts to K users through
an error-free shared-link. Each user has a cache of size of at most M files. The MAN
scheme consists of two phases: placement phase, where the server pushes content from the
library to the local caches without knowledge of user future demands, and delivery phase,
where each user requests one file and the server broadcasts coded packets such that each
user can correctly recover its desired file. The objective is to minimize the worst-case load
over all possible user demands, that is, the number of files that must be communicated
so that any demands can be satisfied. The MAN scheme is optimal under the constraint
of uncoded cache placement (i.e., each user directly stores a collection of segments of the
library files in its cache) when N > K [3,4]. By removing the redundant transmissions in
the MAN scheme when a file is requested multiple times, Yu, Maddah-Ali, and Avestimehr

Entropy 2021, 23, 25. https:/ /dx.doi.org/10.3390/e23010025

https://www.mdpi.com/journal/entropy



Entropy 2021, 23, 25

20f 16

(YMA) derived a scheme that is optimal under the constraint of uncoded cache placement
for N < K [5]. In general, the YMA scheme is order optimal to within a factor of 2 [6],
that is, coded placement can at best half the load of the YMA scheme.

On the motivation that linear and multivariate polynomial queries naturally arise
in modern engineering problems and deep learning algorithms such as matrix-vector,
matrix-matrix multiplications, in [7] the authors posed the question of what is the optimal
worst-case load when the cache-aided users are interested in retrieving a scalar linear
function of the files rather than a single file. For the class of functions considered in [7],
which are restricted to operate element-wise on the file entries, it was surprisingly shown
that the YMA load can be achieved, that is, there is no penalty in terms of load in retrieving
scalar linear functions under the constraint of uncoded cache placement. It was noted
in [7] that the proposed scalar linear function scheme can be extended to all scenarios to
which the original MAN scheme has been extended, such as for example demand-private
retrieval [8] and Device-to-Device networks [9,10]. In addition, the scalar linear function
scheme [7] can be used as a building block to provide demand-privacy and content-security
against colluding users [11,12].

In this paper, we move to a more general case of cache-aided linear function retrieval
than in [7], where users can request general linear combinations of all symbols in the library,
and not necessarily restricted to operate element-wise on the file entries. For example, each
user aims to compute some statistics of a bunch of data such as local weighted averages
(which are general linear functions) of the data; these are very common tasks in many
applications depending on the data and on the weights.

Instead, each user may want to compute some statistics of a bunch of data such
as average, or compute local weighted averages (which are general linear functions) of
the data. We think that it is a very common task in many applications depending on
the data and on the weights. So in our paper, if the Academic Editor agrees, we will
replace the application in deep neutral networks by the application in computing local
weighted averages.

Besides the novel and realistic problem formulation, our main contributions are
as follows. We first introduce a baseline scheme that either lets each user recover all the
symbols in the library or uses unicast transmissions to satisfy each user. The main challenge
to implement a coded caching strategy in this problem is that each symbol in a user’s
demand is a linear combination of all the symbols in the library. Inspired by the grouping
coded caching strategy in [13], which was used to reduce the sub-packetization level
(The sub-packetization level is the smallest file length necessary to realize an achievable
scheme.), we propose a scheme that treats the demand of each user as a matrix-vector
multiplication and uses the grouping strategy to generate multicast messages after possibly
performing invertible linear matrix operations. The proposed scheme outperforms the
baseline scheme in all parameter regimes.

1.1. Paper Organization

The rest of this paper is organized as follows. Section 2 formulates the shared-link
cache-aided general linear function retrieval problem. Section 3 provides the main result of
this paper. Section 4 provides some numerical evaluations. Section 5 concludes the paper.
Some proofs may be found in Appendices.

1.2. Notation Convention

Calligraphic symbols denote sets, bold symbols denote vectors and matrices, and
sans-serif symbols denote system parameters. We use | - | to represent the cardinality of
a set or the length of a vector; [a : b] := {a,a+1,...,b} and [n] := [1 : n]; @ represents
bit-wise XOR; [a] := max{a,0}; Fq represents a finite field with order q; AT and A~!
represent the transpose and the inverse of matrix A, respectively; rank,(A) represents
the rank of matrix A on field Fy; I, represents the identity matrix with dimension n x n;



Entropy 2021, 23, 25

3o0f16

(A)mxn represents the dimension of matrix A is m x n; we let (;) =0ifx<Oory <Oor
x <.

2. System Model

Different from [7], here we consider the case where the users’ desired linear functions
are no longer scalar or operating element-wise across the files entries, thus we consider the
whole library as a single file.

The (K, F, L, q) shared-link cache-aided general linear function retrieval problem con-
sists of a central server with access to a library of F independent and identically distributed
(i.i.d.) symbols over a finite filed Fq, denoted by w = (wy, ..., wg)T € (Fq)F. We often
treat w as a column vector, which should be clear from the context. The server is connected
to K cache-aided users through an error-free shared-link. The system has two phases.

e In the placement phase, the server pushes up to M symbols into the local cache of
each user, where M € [0 : F|, without knowing what the users will demand later. The
cached content of user k € [K] is denoted by

Z = ¢r(w), 1)
where ¢y, is the placement function for user k defined as
9t (Fq)" — (F)™, ke [K]. @)

M is referred to as the cache (or memory) size. If each user directly copies M symbols
from the library into its cache, the cache placement is said to be uncoded.

e In the delivery phase, each user wants to retrieve L linear combinations of all the
symbols in the library, where L € [1 : F].
The demand of user k € [K] is represented by the matrix Dy € (Fq)-*F, meaning user
k aims to retrieve

yi = Dy w € (Fg)b, 3)

Let the collection of all demand matrices be D := [Dy;...; D] € (Fq)K-*F. We
assume that the server and all users know D which is communicated on a separate
channel, thus not impacting the downlink load next—see also Remark 4. ( Notice that
differently from the cache-aided matrix multiplication problem in [14], where the
matrix on the each side of the desired multiplication is one of the library files, in this
paper each user k € [K]| desires Dyw where Dy is known by all the users in the delivery
phase and w represents the vector of all symbols in the library.)

According to all the users” demand matrix D, the server broadcasts the message

X =¢p(D,w), )
where 1 is the encoding function
P2 (Fq) T x (Fq)T — (Fo)R, ©)

for some R € [0 : F]. Ris referred to as the load.

Achievability: For the (K, F,L,q) shared-link cache-aided general linear function re-
trieval problem, we say that the pair (M, R) is achievable if for any possible demand D
there exist placement functions in (2) and a delivery function in (5) such that

H(Dww|D, Z, X) =0, Vk € [K]. (6)



Entropy 2021, 23, 25

40f16

Optimal memory-load tradeoff: For the (K, F, L, q) shared-link cache-aided general linear
function retrieval problem, the objective is to determine the minimum worst-case downlink
load (or load for simplicity) defined as

R*(M) = min {R:(M,R) isachievable}. (7)
P PR Y
Optimal memory-load tradeoff in the limit for large file size: Since solving the problem
in (7) for any given (K, F, L, q) is challenging, in the following we shall consider the regime
where the file size F is as large as desired and we thus let the system parameters scale with
the file length as follows

M:=uF, u €[0,1], ®)
L:=AF, A €[0,1], 9)
R:=pF, p €[0,1]. (10)

For fixed (K, 1) we aim to characterize the minimum worst-case normalized downlink
load (or normalized load for simplicity)

0" (p) = ¢1mg& lp{p : (M,R) = (uF, pF) is achievable for some (F,q)}. (11)

Remark 1 (Relationship to [7]). The cache-aided scalar linear function retrieval problem in [7] is
a special case of the formulation here. More precisely, let F = NL (i.e., % = A), where N indicates
the number of files and AF is the file length. The demand of user k € [K] is represented by the vector
Vi = (Vi1 Y2 -- - YkN) € (Fq)N by which we mean that the user is requesting

Dy = [yiill, violl, - yinIL] € (Fg)-<N, (12)

where 1, is the identity matrix with dimension n X n. In the restricted setting where the demands
are as in (12) the optimal load under the constraint of uncoded cache placement is the lower convex
envelop of the points

M Rscalar o N t (t-&lfl) - (K—mtingK,N}) .
() (3 S o,
K\ (K-—min{K,N}
= (W Pscalar) = <é' )‘(H_l) ((K) = )>’t €[0:K], (14)
t

where for a given value of t in (13) the subpacketization level L must be an integer multiple of (’f)

Remark 2 (A minrank solution). For the (K,F,L,q) shared-link cache-aided general linear
function retrieval problem, the best linear scheme, inspired by [15,16], is a follows. Linear placement:
user k € [K] caches Zy = Pyw € (Fq)M for some Py, € (Fq)M*F. Linear delivery: the server
sends, in the worst case, a number of symbols given by

D, + TPy

] ) D, + T)P,
Rt = iy, g i, ranke| a9

Dk + TPk

where Ty, € (Fq)-M, k € [K].
Solving the minrank problem in (15) is hard [15,16], thus in the following we shall design a
scheme with lower complexity.



Entropy 2021, 23, 25

50f 16

Remark 3 (A baseline scheme). For the (K, F,L,q) shared-link cache-aided general linear func-
tion retrieval problem, the load

Ruaseline = min{KLr F— M}
< Pbaseline = min{ KA, 1 — ,u}/ (16)

can be achieved by an uncoded caching strategy as follows.

e Inorder to achieve the load KL, we transmit one by one the elements of yi, k € [K], in (3). The
main limitation of this unicast transmission scheme is the lack of multicast gain.

e  In order to achieve F — M we let each user recover all the symbols in the library. In the
placement phase, each user caches the first M symbols in the library. In the delivery phase,
the server transmits all the remaining F — M symbols. The main limitation of this scheme is
that, if L < F — M, the users do not need to recover all the symbols in the library in order to
retrieve their desired function.

The main contribution of this paper is to find schemes that, despite the lack of structure on the
demand matrices in general, achieve a smaller load than (16).

Remark 4 (Uplink and downlink loads). Besides downlink load, uplink load is also considered
in the distributed matrix-matrix multiplication problem [17-19]. In this work, the communication
cost of uploading the demand matrix to the server is not a focus, i.e, we assume that each user
communicates the whole demand matrix to the server and all other users on a separate channel
that is not the bottleneck in the system. This assumption can be also justified as follows. Let (k)
denotes the set of possible demand matrices of user k € [K], referred to as demand range, that is,
user k chooses one matrix in 9 (k) as its demand. We assume that 2 (k) is known by the server
and all users. The communication cost to let the server and the other users know the realization
of the demand matrix is negligible compared to the number of transmissions from the server if

Yrelk) log, (|12(k)|) < F.

3. Main Result

Based on Remark 3, the main challenge is to design a coded caching strategy that (i)
lets each user directly recover the desired linear combinations, instead of recovering all
the library symbols, and (ii) attains coded caching gain, as opposed to serving the users
one-by-one with unicast transmissions. The main contribution of this paper is the following
theorem, which is proved in Appendix A.

Theorem 1. For the (K, A) shared-link cache-aided general linear function retrieval problem,
we have:

o ifu= a% +(1— uc)ggﬁ where ¢ € [K— 1] and a € [0, 1], the following normalized load
is achievable

s ezl
Pach = , (17)
min{pr, 02} i & < [%]a
o _ K (1—a)
pl'g+mm{[g+1b’ g+1 } 19

e PR (AR

o ifu=at+ (1—«)wherea € [0,1], the following normalized load is achievable

Puc = p3 = min{ 7, A }. (20)



Entropy 2021, 23, 25

6 of 16

O

Next, we provide the intuition behind the proposed scheme in Theorem 1, which is

based on three ingredients:

1.

We start by the achievable scheme for (20) with « = 1. We aim to design the cache
placement such that each user caches a fraction % of the file and the uncached
part of file by this user is known by the remaining K — 1 users. With this cache
placement, the delivery consists of a single multicast message with multicasting gain
K. More precisely, the construction of the proposed scheme is as follows.

ecalling that, in Remark 1 with f = K — 1, each user misses a fraction 1/K of each
file and that missing fraction is known by the remaining K — 1 users; with t +-1 = K,
the delivery consists of a single multicast message with multicasting gain K that is the
sum of each user’s missing fraction of the demanded file. In our context, this idea
becomes the following scheme.

Assume K divides F. We use here a Matlab-like notation for submatrices. The library
is partitioned into K equal length subfiles as follows

7, = (k—1)£+1:k£ ke [K], 1)
wi = w(Z) € (Fq) ¥,k € [K], (22)
w=(Wy,...,WK); (23)

user k € [K] caches Z; = (w; : j € [K]\ {k}); the server delivers the multicast
message

L i F
X — {Zke[K] Dy, .z wi € (Fq)-, if g > 1L o1

F . 7
Ykelk) Wk € (Fq)¥, ifE <L

where Dy. . 7, represents the sub-matrix of Dy including the columns with indices in
Zi. In X, each user k € [K] knows all but the requested vector

Dy, .7, wi, if k> L;
Wy, lf% < L,’

such that user k can recover either of them. Thus an achieved normalized memory-

load tradeoff is
1 (1
(u,p) = (1 R mm{K,A}). (25)

We then introduce the achievable scheme for (17) with « € {0,1}. Assume now

the K users are portioned into g groups of {g—‘ users each, where ¢ € [K —1]. Let

the users in the same group share the same cache content and recover all the linear
combinations demanded by the users in the group. Then the normalized memory-

load tradeoff is as in (25) but with K replaced by with g and L replaced by [%—‘ L.
Therefore, we get that the following normalized memory-load points are achievable

(n,p) = <1 - ; min{;%[:b), g € [K]. (26)

The rest of the proof of Theorem 1 consists of a method to ‘interpolate” among
the points in (26), as explained in Appendix A. Unlike cache-aided scalar linear
function retrieval in [7], the difficulty in the considered problem is that connecting two
normalized memory-load points by a line segment is generally impossible. The main



Entropy 2021, 23, 25

7 of 16

reason is that if we partition w as w = [w’; w”] and use a different cache placement
strategy on each part, each demanded function D;w is in the form

Dyw = Diw’ + D/w’; (27)

thus it cannot be divided into two separate parts, where the first part only contains the
linear combinations of w’ and the second part only contains the linear combinations
of w”. An example to highlight this limitation and our approach to overcome it is
provided at the end of this section.

Remark 5 (Comparison to the baseline scheme). We show here that the proposed scheme in
Theorem 1 outperforms the baseline scheme in (3).

e Casey= a%l +(1- a)% where ¢ € [K] and a € [0,1]: From (17) and (19), it can be
seen that

Pach < [ZWA < KA. (28)

From (17) and (18), it can be seen that

o 1—«
<— = — .

Hence, from (28) and (29), we can prove Paey < Ppaseline i1 this case.
o Casep = aXgl + (1—a) where a € [0,1): Since in this case & =1 — p, from (20) we can
Prove Paen < Praseline i this case.

Remark 6 (Connection to Remark 1). For the proposed scheme achieving (25), the cache place-
ment is the same as the cache-aided scalar linear function retrieval scheme in Remark 1 with
t=K-1

ecalling that, in Remark 1 with t = K — 1, each user misses a fraction 1/K of each file and that
missing fraction is known by the remaining K — 1 users; with t +1 = K, the delivery consists of a
single multicast message with multicasting gain K that is the sum of each user’s missing fraction of
the demanded file. In our context, this idea becomes the following scheme.

Notice that, for the considered cache-aided general linear function retrieval problem where

= g and t € [K], we could use the cache-aided scalar linear function retrieval scheme in Remark 1

K

to deliver (,',) pieces of the requested vectors. The scheme would achieve

t+1
t K

o) = (o A, 51) ) e 0)

which reduces to (25) for t = K — 1. By the grouping arqument we would achieve

(R EEHIGH)
o)==, Al= ,te gl g € (K] 31
o) = (5 2|5] (1)) tellselk @
Let then fix one g € [K] and one t € [g — 2], and analyse the achieved normalized load in (31).
We will show that
K

Pl =A ’Vg-‘ (t i 1) 2 Pbaseline- (32)



Entropy 2021, 23, 25 8 of 16

as follows. It can be seen that

8
A [Kw < N ) > ki) (33)
gI\t+1 g
> KA (34)
2 Pbaselines (35)
where (34) follows since t € [g — 2] and thus (, fl) > g. This shows that, with the exception for

the normalized memory-load points with t = g — 1, the scheme in (31) is inferior to the baseline
scheme in (16), and will thus not be pursued in the rest of the paper.

We finish this section with an example to illustrate the main ideas of the proposed scheme.

Example 1. We consider a system with K = 6 users, cache fraction y = %, and demand
fraction A = ﬁ It can be seen that

47 g—1 g
= — = X + 1_04 .
. 72 8 ( )g+1 a:ﬁ,g:Z

(36)

Placement Phase. 1t can be seen that the memory size is between y; = gg;l = % and
Hy = ggﬁ = 2. We partition w into two parts as w = [w!; w?] where w! € (Fq)F/12 and
w? € (Fq)"F/12, Furthermore,
e w!is partitioned into two equal-length subfiles, w! = [w%l} ; w% 2 ], each of which has
. symbols. We divide the 6 users into 2 groups where G} = {1,3,5} and G3 = {2,4,6}.
We let users in G} cache w%l} and let users in G} cache W}z}'
e Ww2is partitioned into three equal-length subfiles, w2 = [w%l % w%l 3} W%z 3}], each
of which has % symbols. We divide the 6 users into 3 groups, where G = {1,4},
G3 = {2,5}, and G3 = {3,6}. We let users in G7 cache W%l,Z} and W%1,3}’ let users in
g§ cache W%l,z}' W%Z,B}, and let users in Qg cache W?LB} and W%ZB}.

Each user caches % + 2X3161F = % symbols, thus satisfying the memory size con-

straint.
Delivery Phase. With some permutation on the rows of w, the demand of user 1 can be
expressed as

Diw :Dl,{l} W%l} + Dl,{l,Z} W%Lz} + D1’{1,3} W%l,S} + Dl,{Z} W%Z} + D1’{2,3} W%2,3}. (37)

User 1 can recover Dl,{l}wh} + Dl,{l,Z}W%Lz} + Dl,{l,B}W%Ls} from its cache, and sim-
ilarly for the other users. Thus in the delivery phase, the users need to recover

By :=D; 5 wh} +Dy 53 w‘%m}, (38)
By := Dy (13 Wipy + D13 Wiy a) (39)
B3 i= Dj (2 Wipy + D 1} Wiy (40)
By :=Dy 1) Wh} + Dy 231 w%m}, (41)
Bs := D (3} Wiy, + Ds (13} W, 5}, (42)
Be := Dg 1) wh} +De {12} Wiy (43)

If we treat each sum in (38)—(43) as a block and use the MAN strategy to delivery
these blocks, we would transmit By + By, B3 4+ By, Bs + B for a total of g symbols. Hence,
the scheme achieves the same normalized load as the proposed scheme in (26) with 1 = ;



Entropy 2021, 23, 25 9of 16

in other words, a portion of the memory of size y — yy = % - % = % would be wasted.

We next propose two novel schemes to let each user recover its desired sum in (38)—(43)
while leveraging the whole memory.

The solution that achieves py in (18). Focus on the demanded sum of user 1 in (38). The
key idea is to let user 1 recover Dy {z}wb} and Dy, {2,3}w%2,3} separately. In particular,

e For the first term in By in (38), since the dimension of D 5y is % X % and the sub-
demand matrix Dy (5 is known by each user, we let user 1 directly recover W%z}'

which contains 2—':4 symbols, and then compute Dy {Z}W}Z}. Similarly, we let users 3,5

recover W%z}/ and users 2,4, 6 recover wh}. Thus in the delivery phase, the server
transmits

Wiy Wiy, (44)

for a total of % symbols, where users 1, 3,5 know wh} and users 2,4, 6 know w% 2}

e  For the second term in By in (38), since the dimension of Dy (2,3} is % X % and the
sub-demand matrix Dy (5 3} is known by each user, user 1 needs to recover all symbols

in Dy {2,3}W%2,3}‘ We denote C =Dy {2/3}w%2,3} since it is known by users

2 )
1,{2356} °
2,3,5,6. Hence, in order to let each user recover the first term in its desired sum,

the server transmits

2 2 2

C3s6) T Co 1306 T 6511245 (45)
2 2 2

Cii2356) T C5 113460 T C6(1245) (46)

for a total of % symbols.

Hence, in the delivery phase the server transmits 2—'1 + % = % symbols, and the
normalized load is p; = 25—4, which coincides with (18).

The solution that achieves py in (19). The idea is to partition each user’s demand into two
parts after having removed its cached content, where the partition is the result of a clever
invertible linear transformation; we then have two steps, one for each of the two parts.

We first focus on the demand of user 1 in (38), i.e.,

‘ W)
Bi =Dy 0yWpy +D123)Whos, = [ Dig2) | Digasy | [ &%il} ] (47)

The main strategy here is to take a linear transformations of (47) as follows

(fv %2})2%51,

) 1 (18)
2,3 )
{,} %Xl

12 %21 1 6

Bl = (Ti)e, ¢ [ (Dl,{z}>£ £ ‘ (DL{M})%Xﬁ ] (

where Ty is full-rank and the bottom % - % = % symbols in B] are linear combinations
of w%z 3) only (i.e., these linear combinations do not contain any term in w}z}). This is
possible because B; contains % linear combinations of all symbols in [w}z} ; W%z,s}}' while
w} } contains 1 symbols. Hence, we can re-express B} as
B! ) )
( 1{26} i x1

B, = ,(];/”” <, (49)
1,{2,3,5,6}) Fa

2



Entropy 2021, 23, 25

10 of 16

where B1 {26} contains % linear combinations of the symbols in W%z (23} which

are both known by users 2 and 6, while B’1 (23,56} contains % linear combinations of the

) and w2

symbols in w%z 3) which are known by users in {2,3,5,6}. It will be clarified later that
the server transmits B} {26} with coded caching gain equal to ¢ = 2 (i.e., the multicast
message satisfies two users simultaneously), and B’
tog+1=3.

Following the same line or reasoning, we can express the demands of the other users as

{2356} with coded caching gain equal

B) = [B; 2{13}r B) (1546 (50)
B; = [B; 3{24}/ 3{1245}]r (51)
B} = [B} (351 B (2356 ) (52)
B; =B 5{46}’B5{1346}]’ (53)
Bg = (B (151 Bg (12,45} (54)

The transmission contains two steps.

o In the first step, we let each user k € [6] recover the first term of its demand B;. In this
step, the server transmits

B (26} T B2 1) (55)
B} o4y + By (35 (56)
BS (161 + B (151 (57)

which contains % symbols.
e In the second step, we let each user k € [6] recover the second term of its demand B;.
In this step, the server transmits

Bl 2356 T B2 (1346 T B3 (1245) (58)
!/ ! !
B, 23560 T Bs 11346} T Bo {1,245/ (59)

for a total of % symbols. From the received multicast messages and its cache content,
each user k € [K] can recover B}, and then compute By from T, 'B}.

The normalized load is py = % + % = 25—4, which conincides with (19).
In conclusion, the normalized load of the proposed scheme is p,e, = min{p1, 02} = 25—4,
while the baseline scheme in (16) achieves the normalized load equals %

4. Numerical Evaluations

We provide here some numerical evaluations on the performance of the proposed
scheme in (17). In Figure la we consider the case (K,A) = (6,1/15) and in Figure 1b
the case (K,A) = (6,1/10). In Figure 2a we consider the case (K,A) = (10,1/50) and in
Figure 2b the case (K, A) = (10,1/10). From the figures, we observe that:

e In both settings our proposed scheme in Theorem 1 outperforms the baseline scheme,
as proved in Remark 5.

e FixKand u. When A grows, the gap between the proposed scheme and the baseline
scheme reduces. When A = %, the proposed scheme and the baseline scheme have
the same load; this is because at the corner points of the proposed scheme in (26) we
achieve the load 1 — y which is the same as the baseline scheme.

e Inaddition, we also plot the cache-aided scalar linear function retrieval scheme in (14),
which only works for the case where the demand matrices are with the form in (12).
This comparison shows that, if the demand matrices are structured, we can design



Entropy 2021, 23, 25 11 of 16

0.4

0.35

0.3

0.25

0.15

0.1

0.05

caching schemes that leverage the special structure of the demands to achieve a load
that is no larger than the load for the worst-case demands. Moreover, the more the
structure the more the gain compared to in (17).

0.6 N "
N | Baseline scheme
. in Remark 3
[ 7 B N Proposed scheme
05r \~\ in Theorem 1 I
L 4 N\ Scalar linear function
N retrieval in Remark 1
04 5 1
L - .
\~
\~
r 8 *03F i 8
\.
\~
L i N\,
\
- 0.2 g
77777 Baseline scheme N
r in Remark 3 7 \
Proposed scheme | N\ |
L in Theorem 1 i 0.1
Scalar linear function : :
retrieval in Remark 1 e R
N N 0 | | | | | i 0 | | | | | | | | i
0 0.1 02 03 04 05 06 07 08 09 1 0 0.1 02 03 04 05 06 07 08 09 1
w I
(@) (b)
Figure 1. The shared-link cache-aided general linear function retrieval problem K = 6. (a) A = %, (b) A = %0

0.2r T 1k T T
: \ \ LN Baseline schem
0.18 ‘\\ ] 09r . in Remark 3 7]
77777 Baseline scheme \ Proposed scheme

0.16 in Remark 3 \ 1 081 in Theorem 1 1

Prroposed scheme \ B Scalar linear function

0.14 in Theorem 1 \ b 0.7r retrieval in Remark 1

Scalar linear function \ g
0121 retrieval in Remark 1 \,\ 1 0.6 8
S0 Voo <05 ]
A
0.08 - 1 8 0.4 8
\
0.06 - v 03 1
\
0.04 L 0.2 1
\

0.02F N 01 F A

0 L L L L L L L T | SRR O L L L L L L L . e b SEETUI
0 0.1 02 03 04 05 06 07 08 09 1 0 0.1 02 03 04 05 06 07 08 09 1

I m
(a) (b)

Figure 2. The shared-link cache-aided general linear function retrieval problem K = 10. (a) A = %, (b) A = 11—0.

5. Conclusions

In this paper, we formulated the cache-aided general linear function retrieval problem,
where each user requests some linear combinations of all the symbols in the library. The for-
mulated problem generalizes the cache-aided scalar linear function retrieval problem. We
proposed a novel scheme that strictly improves on an uncoded caching baseline scheme.
Further directions include designing improved coded caching schemes for arbitrary users’
demand ranges (the setting considered here), as well as for given specific users’ demand
ranges. In addition, the derivation of a converse bound is also part of on-going work.

Author Contributions: Conceptualization, KW., H.S., M.]., D.T., and G.C.; methodology, KW., H.S.,
M.J., D.T,, and G.C.; writing—original draft preparation, K.W.; writing—review and editing, K.W.,
H.S., M]., D.T,, and G.C.; funding acquisition, H.S., M.]., D.T., and G.C. All authors have read and
agreed to the published version of the manuscript.



Entropy 2021, 23, 25

12 of 16

Funding: The work of K. Wan and G. Caire was partially funded by the European Research Council
under the ERC Advanced Grant N. 789190, CARENET. The work of H. Sun was supported in part by
NSF Award 2007108. The work of M. Ji was supported in part by NSF Awards 1817154 and 1824558.
The work of D. Tuninetti was supported in part by NSF Award 1910309.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Theorem 1

By a grouping strategy, we can achieve the normalized memory-load points in (26). In
the following, inspired by Example 1, we introduce a general interpolation method among
the points in (26).

We let Mod (b, a) represent the modulo operation on b with integer divisor 4 and we
let Mod(b,a) € {1,...,a} (ie., welet Mod(b,a) = a if a divides b).

: K
Appendix A.1. g € [K— 1] and g2 [g—‘/\

We first consider the case where ¢ € [K — 1] and e [%W A. Recall that p = a% +

(1—ua) % > gg%l In this case, we directly use the caching scheme in (26) for the memory

size % with achieved normalized load
min{ m A 1} _ M A (A1)
8 8 8

Appendix A.2. g € [K—1]and & < [%L\

which coincides with (17).

We then focus on the case where g € [K — 1] and g < {%—‘ A

Placement Phase. The placement is done by the memory-sharing between the proposed

placements in (26) for M; = % and Mp = g‘% We divide w into two parts, w = [w!; w?]

where the dimension of w! is «F x 1 and the dimension w? is (1 — a)F x 1.
For the first part, we further partition w! into g non-overlapping and equal-length
subfiles, w! = [wh: T C [g],|T| = g — 1], where the dimension of each subfile wl- is

% x 1. Each user k € [K] caches wl- where T C [g], |T| = ¢ — 1, and Mod(k, g) € 7.

For the second part of each file, we further partition w? into ¢ + 1 non-overlapping

and equal-length subfiles, w* = [w3 : T C [G +1],|T| = g|, where the dimension of
each subfile w3 is (1g_+“1)F x 1. Each user k € [K] caches w3 where 7 C [g+1], [T| =G,
and Mod(k,g+1) € T.

In total, each user caches

aF  g(1—a)F
(8—1)§+W—P‘F (A2)

symbols, satisfying the memory size constraint.

Delivery Phase. For each 71 € [g] where [T;| = ¢ — 1, we define Dy 7; as the sub-matrix
of Dy which contains the columns corresponding to the symbols in WlTl . In addition,
for each 7 € [¢ + 1] where |T;| = g, we define Dy 7, as the sub-matrix of Dy which

contains the columns corresponding to the symbols in wgr .
2



Entropy 2021, 23, 25 13 of 16

We can express the demand of user k € [K] as
Dy w = Y Dipwr+ ) Dipwg (A3)
TiElgl Til=g—1 Ta€[8+1]:|T2l=g
= Y Dygpwrp+ ) Dipwy
TiElgl| Til=g-1, T8 +1] T2|=g,
Mod(k,g)eTq Mod(k,g+1)€T,
1 2
+ D g\ (Mod(kg)} Wigh {Mod(kg)} T Dhlg+1)\(Mod(kg+1)} Wig1)\ {Mod(kg+1)} (A%)

It can be seen that user k knows all the terms in (A4) except

. 1 2
B := Dy o)\ (Mod(k,g)} Wie\ {Mod(kg)} T D [g+1)\ {Mod(kg+1)} Wig+1]\{Mod (kg+1)} (A5)

Hence, in the delivery phase user k should recover B;. We then propose two solutions
for this objective.
The solution that achieves pq in (18). We let user k recover

B 1= Dicfg]\ (Mod (k) Wigh\ (Mod (k) } (A6)
B2 = Dy [g 1]\ (Mod(kg 1)} Wig+1]\ (Mod(kg+1)}- (A7)

. . . . F
For the first term By 1, the dimension of Dy [¢]\ (Mod(k,¢)} 1 AF X “? and Dy [¢\ (Mod (k,¢)}

is known by each user. Recall that in this case we have %
. 1 . . .
directly recover Wio\ (Mod(kg)}* Thus in the delivery phase, we let the server transmit

< AF. Hence, we let user k

1
L gy (B8)
i€lg]

. ﬁ . 1
with 5 symbols. It can be seen that each user k € [K] desires Wi\ {Mod(kg)} and caches all

kg
: 1
the other terms in (A8), such that user k can recover Wig)\ (Mod(kg)}*

(1—a)F .
ol Notice

that By , only contains linear combinations of the second parts of files in the library. For the
second part of each file, the users in

For the second term By 5, the dimension of Dy ¢, 1]\ (Mod (k¢ +1)} 18 AF X

G? = {k € [K] : Mod(k, g + 1) = i}

cache the same content, where i € [g + 1]. Thus we can use the proposed delivery scheme
in (26). More precisely, for each i € [g + 1], we generate a virtual user v; with the demand

D} Wlgs1\(i) = (A9)

Dg2(62)) fg+1\ ()

Notice that the dimension of D/ is |gi2|AF X (1g_ fl)F So virtual user v; only needs to
recover at most min{ [g%—‘ A, ;%”1‘ } F symbols in (A9). We denote the set of these symbols

by P/ -, which is known by all the other virtual users. We then let the server transmit
Llg+1\{i}

/
Y Pigingy (A10)

ie[g+1]

with min{ [g%—‘ A, ;‘T‘i‘ } F symbols, such that each virtual user can recover its demand.



Entropy 2021, 23, 25

14 of 16

In total, the server transmits

oF . K 1
g+mm{{g+1-‘)\ g+1}F—p1F (A11)

symbols, which coincides with (18).
The solution that achieves py in (19). Recall that the demanded sum of user k is

_ 2
By = Dy [¢]\ {Mod (k,g)} ng}\{Mod(k,g)} + Di [g+1]\ [Mod (kg+1)} Wig+1)\{Mod(kg+1)}  (A12)

1
| Wi\ (Mod(,
= [ Di g\ Mod(kg)} , Drlg+1]\{Mod(kg+1)} } [ wZ Il iModtkg)l _ ] (A13)
[g+1]\{Mod(k,g+1)}

We can take a linear transformations on By as follows

1
_ Vs Mod(kg)} ] (A14)

B} = Ti | Dyfgh\(Modkg)} | Dlg 1)\ (Mod(hg 1)} | [w
[g+1]\{Mod(k,g+1)}

+
where Ty is full-rank with dimension AF x AF, and the bottom {)L - %} F symbols in

Bk are some linear combinations of w[g 1\ {Mod(kg-+1)} (i.e., these linear combinations do

not contain any term in w[g]\ (Mod(k.g) }) This is p0551b1e because By contains AF linear

. . . 1 . 2 . l
combinations of all symbols in [w Wiol\ (Mod(kg) [g+1]\{M0d(k,g+1)}]’ while Wi\ (o))
contains £~ symbols Hence, we can re-express B} as

(B’lﬂ)mm{"fF /\Fkxl
() e | .

The delivery phase is divided into two steps. In the first step, we first let each user
k € [K] recover By ;. Notice that B , is the set of some linear combinations of the symbols

in w%g]\{Mod(k,g)}W%ngl]\{Mod(k,ngl)}‘ w%g}\{Mod(k,g)} is known by any user j; € [K] where

Mod(jy,8) # k; w%g+1]\{M0d(k,g+l)} is known by any user j, € [K] where Mod(jp,¢+1) # k.

Assume thatk = a,¢ +Mod(k, g), where a; = [ﬂ —landMod(k, g) € [g]. In Appendix B,
we prove the following lemma.

Lemma A1l. Each user ki = arg + j where j € [g] \ {Mod(k,g)} and ki € [K], caches both
1
Wil vodig)) 18 Wl 1) (Mod (kg 1))

Foreachi € [ [5—‘ } , we let the server transmit

8

)3 Bl _1)gi- (Al6)
jelgl(i-1)g+j<K

From Lemma A1, each user (i — 1)g + j knows all except B/ such that it can

K
i—-1)g+j,1° '
In the second step, we then let each user k € [K] recover Bj ,, which contains linear

(i-1)g+j1

recover B( In this step, the server transmits { 1 mm{ % )L} F symbols.

combinations of w[g 1)\ {Mod(kg+1)}° We can use the same delivery scheme as we used to

delivery the second term in the first solution (i.e., By, in (A7) which contains AF linear

5 /
combinations of w[g )\ {Mod(kg+1)} ). Here we do not repeat the scheme. Notice that By ,



Entropy 2021, 23, 25

150f 16

. Hence, in this step the

+
. _ & . . . 2
contains [)& g] F linear combinations of w[g 1)\ Mod(kg+1)}

+
server transmits min{ [g%—‘ [)\ - g} , ;ﬁ } F symbols.
After recovering By, each user k € [K] reconstructs

B, =T, 'Bj,

and then recovers its demand.
In total, the achieved normalized load is

{K—‘min{a A}+min {K w{A—“]JF 1-a =
g g g+1 g) g+

coinciding with (19).

Appendix A.3. Proof of (20)
Finally, we focus on the case y = tx% + (1 — «) where « € (0,1). In this case,
the proposed scheme is a direct extension from the proposed scheme in (25). More precisely,

o  we directly use the caching scheme in (25) for the memory size % with the achieved
normalized load equal to A.

e In this case, the number of symbols which are not cached by user is F. Hence, we
can let each user directly recover the uncached symbols with the achieved normalized
load equal to .

This concludes the proof.

Appendix B. Proof of Lemma A1

Recall that k = ag + Mod(k, g), where a; = [ﬂ —1and Mod(k, g) € [g]. We focus

onone user k1 = a;g + jwhere j € [g] \ {Mod(k, g)}. Since j = Mod(ky,g) # Mod(k, g), it
. l . . .

can be eas‘lly seen that Wiol\ [Mod(kg)} 13 cached b.y user j. In the rest of this proof, we show
that user j also caches w[2g+1]\{Mod(k,g+1)}; or equivalently, Mod (k1, g + 1) # Mod(k, g+ 1).

We prove it by contradiction. Assume that Mod(k1,¢ + 1) = Mod(k,g+ 1) = j’.
Hence, we can re-express k as k = a; (g + 1) +j and re-express ky as ky = a; (§+1) +7,
where a; = [g%—‘ —landag =a = [gkﬁ—‘ -1

Since k = a;g +Mod(k,g) = a;(g + 1) + ', we have

mg =a(g+1)+j —Mod(k,g). (A17)
In addition, we have
ki =ag+j=ap (§+1)+] (A18)

By taking (A17) into (A18), we have

ag+j = aj, (g +1) +/ (A19)
EL g (g +1) + ) —Mod(k,g) +j=al (g+1) +/ (A20)
= (af —a},)(g+1) = Mod(k g) . (821)

Since Mod(k,g) € [g] and j € [g], it can be seen that (A21) holds if and only if
a, — a;q = 0, which leads to k = k; and contradicts with Mod(k, g) # Mod(k1, g). Hence,
we proved that Mod(k1, g + 1) # Mod(k, g + 1) and proved Lemma Al.



Entropy 2021, 23, 25 16 of 16

References

1. Borst, S.; Gupta, V.; Walid, A. Distributed caching algorithms for content distribution networks. In Proceedings of the 2010
Proceedings IEEE INFOCOM, San Diego, CA, USA, 14-19 March 2010; pp. 1478-1486.

2. Maddah-Ali, M.A.; Niesen, U. Fundamental Limits of Caching. IEEE Trans. Inf. Theory 2014. 60, 2856-2867. [CrossRef]

3. Wan, K,; Tuninetti, D.; Piantanida. P. On the Optimality of Uncoded Cache Placement. In Proceedings of the IEEE Information
Theory Workshop (ITW), Cambridge, UK, 11-14 September 2016.

4. Wan, K,; Tuninetti, D.; Piantanida. P. An Index Coding Approach to Caching With Uncoded Cache Placement. IEEE Trans. Inf.
Theory 2020. 66, 1318-1332. [CrossRef]

5. Yu, Q; Maddah-Ali, M.A.; Avestimehr, S. The Exact Rate-Memory Tradeoff for Caching with Uncoded Prefetching. IEEE Trans.
Inf. Theory 2018, 64, 1281-1296. [CrossRef]

6.  Yu, Q;Maddah-Ali, M.A; Avestimehr, S. Characterizing the Rate-Memory Tradeoff in Cache Networks Within a Factor of 2. [EEE
Trans. Inf. Theory 2019, 65, 647—-663. [CrossRef]

7. Wan, K;; Sun, H; Ji, M.; Tuninetti, D.; Caire, G. On Optimal Load-Memory Tradeoff of Cache-Aided Scalar Linear Function
Retrieval. arXiv 2020, arXiv:2001.03577.

8. Wan, K;; Caire, G. On Coded Caching with Private Demands. IEEE Trans. Inf. Theory 2020. [CrossRef]

9. Ji, M.; Caire, G.; Molisch, A.F. Fundamental Limits of Caching in Wireless D2D Networks. IEEE Trans. Inf. Theory 2016. 62,
849-869. [CrossRef]

10.  Yapar, C.; Wan, K.; Schaefer, R.F,; Caire, G. On the Optimality of D2D Coded Caching With Uncoded Cache Placement and
One-Shot Delivery. IEEE Trans. Commun. 2019. 67, 8179-8192. [CrossRef]

11.  Yan, Q.; Tuninetti, D. Fundamental Limits of Caching for Demand Privacy against Colluding Users. arXiv 2020, arXiv:2008.03642.

12. Yan, Q.; Tuninetti, D. Key Superposition Simultaneously Achieves Security and Privacy in Cache-Aided Linear Function Retrieval.
arXiv 2020, arXiv:2009.06000.

13.  Shanmugam, K; Ji, M.; Tulino, A.M.; Llorca, J.; Dimakis, A.G. Finite-Length Analysis of Caching-Aided Coded Multicasting.
IEEE Trans. Inf. Theory 2016. 62, 5524-5537. [CrossRef]

14. Wan, K;; Sun, H.; Ji, M.; Tuninetti, D.; Caire, G. Cache-Aided Matrix Multiplication Retrieval. arXiv 2020, arXiv:2007.00856.

15. Bar-Yossef, Z.; Birk, Y.; Jayram, T. S.; Kol, T. Index Coding with Side Information. IEEE Trans. Inf. Theory 2011. 57, 1479-1494.
[CrossRef]

16. Lee, N.; Dimakis, A.G.; Heath, RW. Index Coding with Coded Side-Information. IEEE Commun. Lett. 2015. 19, 319-322.
[CrossRef]

17.  Jia, Z.;Jafar, S.A. Cross Subspace Alignment Codes for Coded Distributed Batch Computation. arXiv 2019, arXiv:1909.13873.

18. Chang, W.; Tandon, R. On the Upload versus Download Cost for Secure and Private Matrix Multiplication. arXiv 2019,
arXiv:1906.10684.

19. Kakar, J.; Khristoforov, A.; Ebadifar S.; Sezgin, A. Uplink-downlink tradeoff in secure distributed matrix multiplication. arXiv

2019, arXiv:1910.13849.



