
Boosting Coverage-Based Fault Localization via
Graph-Based Representation Learning

Yiling Lou
HCST, Department of Computer
Science and Technology, Peking

University
Beijing, China

yiling.lou@pku.edu.cn

Qihao Zhu
HCST, Department of Computer
Science and Technology, Peking

University
Beijing, China

zhuqh@pku.edu.cn

Jinhao Dong
HCST, Department of Computer
Science and Technology, Peking

University
Beijing, China

dongjinhao@stu.pku.edu.cn

Xia Li
Department of Software Engineering
and Game Design and Development,

Kennesaw State University
Kennesaw, US

xli37@kennesaw.edu

Zeyu Sun
HCST, Department of Computer
Science and Technology, Peking

University
Beijing, China

szy_@pku.edu.cn

Dan Hao∗

HCST, Department of Computer
Science and Technology, Peking

University
Beijing, China

haodan@pku.edu.cn

Lu Zhang
HCST, Department of Computer
Science and Technology, Peking

University
Beijing, China

zhanglucs@pku.edu.cn

Lingming Zhang
Department of Computer Science,

University of Illinois at
Urbana-Champaign

Illinois, USA
lingming@illinois.edu

ABSTRACT

Coverage-based fault localization has been extensively studied in

the literature due to its effectiveness and lightweightness for real-

world systems. However, existing techniques often utilize coverage

in an oversimplified way by abstracting detailed coverage into num-

bers of tests or boolean vectors, thus limiting their effectiveness in

practice. In this work, we present a novel coverage-based fault lo-

calization technique, Grace, which fully utilizes detailed coverage

information with graph-based representation learning. Our intu-

ition is that coverage can be regarded as connective relationships

between tests and program entities, which can be inherently and

integrally represented by a graph structure: with tests and program

entities as nodes, while with coverage and code structures as edges.

Therefore, we first propose a novel graph-based representation to

reserve all detailed coverage information and fine-grained code

structures into one graph. Then we leverage Gated Graph Neural

Network to learn valuable features from the graph-based coverage

representation and rank program entities in a listwiseway. Our eval-

uation on the widely used benchmark Defects4J (V1.2.0) shows that

∗Dan Hao is the corresponding author. HCST is short for Key Lab of High Confidence
Software Technologies (Peking University), Ministry of Education, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468580

Grace significantly outperforms state-of-the-art coverage-based

fault localization: Grace localizes 195 bugs within Top-1 whereas

the best compared technique can at most localize 166 bugs within

Top-1. We further investigate the impact of each Grace component

and find that they all positively contribute toGrace. In addition, our

results also demonstrate that Grace has learnt essential features

from coverage, which are complementary to various information

used in existing learning-based fault localization. Finally, we eval-

uate Grace in the cross-project prediction scenario on extra 226

bugs from Defects4J (V2.0.0), and find that Grace consistently out-

performs state-of-the-art coverage-based techniques.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

KEYWORDS

Fault Localization, Graph Neural Network, Representation Learning

ACM Reference Format:

Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang,

and Lingming Zhang. 2021. Boosting Coverage-Based Fault Localization

via Graph-Based Representation Learning. In Proceedings of the 29th ACM

Joint European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering (ESEC/FSE ’21), August 23ś28, 2021, Athens,

Greece. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3468264.

3468580

1 INTRODUCTION

Fault localization (FL) [19, 34, 39, 54, 63, 70, 74, 78] aims to diagnose

buggy program entities (i.e., classes, methods, or statements) fully

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and Lingming Zhang

automatically and has been extensively studied to facilitate software

debugging process. More specifically, fault localization techniques

often leverage various static and/or dynamic program analysis infor-

mation to compute suspiciousness scores (i.e., probability of being

faulty) for each program entity. Program entities are then ranked in

the descending order of their suspiciousness scores, based on which

manual bug fixing or automated program repair [21, 26, 31, 66, 73]

can further be applied. To date, researchers have proposed to lever-

age various information to facilitate fault localization, such as cov-

erage [10, 33, 68], mutation [42, 50, 52, 78], predicate switching [80],

program repair [15, 46], bug report [37, 64], and code history [62].

Among them, coverage-based fault localization has been intensively

studied in the literature due to its effectiveness and lightweightness

for real-world systems [85].

Spectrum-based fault localization (SBFL) [9, 33, 68], one of the

most popular coverage-based FL techniques, identifies buggy pro-

gram entities by statistically analyzing coverage of failed and passed

tests. In particular, existing SBFL represents coverage by the num-

bers of failed and passed tests covering each program entity, and

regards the entities covered by more failed tests and less passed

tests as more suspicious. Although widely adopted for its simplicity

and efficiency, SBFL has limited effectiveness in practice [72], which

results from two major drawbacks in its design. (1) SBFL utilizes

coverage in an oversimplified way by abstracting it into the num-

ber of covering tests for each program entity, which may ignore

detailed coverage information. (2) SBFL considers coverage as the

only input information, which cannot always infer the actual causal

relationships between program entities and faulty behaviours, or

distinguish program entities with similar coverage.

To address the limitations in traditional spectrum-based fault

localization, recently learning-based fault localization [16, 62, 69,

81, 82] has been proposed, which leverages advanced machine/deep

learning techniques to (1) utilize coverage more exhaustively (i.e.,

learning-to-represent), or (2) integrate coverage with extra infor-

mation more intelligently (i.e., learning-to-combine). In particular,

learning-to-represent techniques [69, 71, 81, 82] summarize cov-

erage by a finer-grained representation (i.e., a boolean vector for

each test), based on which various learning approaches are further

applied to learn causal relationships between test coverage and test

outcome. However, such a representation can still be imprecise,

since it treats each program entity equally and analyzes each test

independently. In addition, these techniques still consider coverage

as the only input, which suffers from the same issue of single infor-

mation source as SBFL. Orthogonal to more exhaustive coverage

utilization, learning-to-combine fault localization [41, 42, 62, 85]

learns to integrate coverage with extra information by using suspi-

ciousness scores computed by existing SBFL and other information

as features. For example, FLUCCS [62] learns to rank program

entities based on suspiciousness scores of existing SBFL, code com-

plexity, and code history; similarly, the latest learning-to-combine

technique DeepFL [41], utilizes neural networks [49, 55] to combine

suspiciousness scores of spectrum-based FL and mutation-based

FL [50, 52, 78], code complexity, and text similarity. However, these

techniques directly adopt suspiciousness scores generated by ex-

isting SBFL, which inherently suffers from the same issues of the

compressed coverage representation in SBFL (i.e., summarizing cov-

erage by numbers of tests). Moreover, some information (e.g., bug

reports and code change history) used in these techniques cannot

be always available, while other information (e.g., mutation) can be

very time-consuming to collect [85], limiting their applications in

practice. In summary, although achieving substantial improvement,

existing learning-based fault localization techniques still fail to well

address the limitations in coverage-based fault localization.

In this work, we present a novel coverage-based fault localization

technique, Grace, which leverages Graph-based representation

learning to fully utilize coverage information. The intuition in

Grace is that coverage can be regarded as connective relationships

between tests and program entities, which can be inherently and

integrally represented by a graph structure: with tests and program

entities as nodes, while with coverage and code structures as edges.

Therefore, we first propose a novel graph-based representation to

reserve all detailed coverage information and fine-grained code

structures into one graph. Then we leverage Gated Graph Neural

Network (GGNN) [43] to learn helpful features from the graph-

based coverage representation, and to rank program entities in a

listwise way. Different from traditional machine learning and neural

networks which often preprocess graph structured data to a simpler

representation before learning [17, 25], GGNN can directly analyze

graph structured information with all topological relationships

reserved [27, 60], and has a prominent capability in graph analysis,

enabling more powerful fault localization.

We evaluateGrace on the widely used benchmark [35] Defects4J

(V1.2.0), which contains 395 real-world bugs from six open-source

Java projects. Our results show that Grace significantly outper-

forms state-of-the-art coverage-based fault localization techniques

including Ochiai [10], CNNFL [81], FLUCCS [62], and DeepFL [41].

For example, Grace localizes 195 bugs within Top-1 whereas the

compared techniques can at most localize 166 bugs within Top-1.

We further investigate the impact of each component and find that:

(1) the default listwise ranking is the most effective ranking loss

function; (2) the default fine-grained code structures with detailed

coverage information can also positively contribute to Grace; (3)

representing tests by oversimplified numbers as prior work sig-

nificantly degrades fault localization. In addition, Grace can fur-

ther boost state-of-the-art learning-to-combine fault localization,

DeepFL, by integrating suspiciousness scores of Grace as extra

features for DeepFL, localizing 225 bugs within Top-1, the best

learning-based fault localization results on Defects4J (V1.2.0) to

our knowledge. This indicates that Grace learns essential features

from coverage, which are complementary to various information

used in existing learning-based FL. Finally, we evaluate Grace

in the cross-project prediction scenario on extra 226 bugs from

the latest version of Defects4J benchmark, i.e., Defects4J (V2.0.0).

Our results show that Grace consistently outperforms state-the-

of-the-art coverage-based fault localization techniques on the new

benchmark, indicating general effectiveness of our approach.

This paper makes the following contributions:

• A novel graph-based coverage representation that in-

tegrally reserves all detailed coverage information by repre-

senting program entities, tests, their coverage relationships,

and fine-grained code structures into one unified graph. This

coverage representation is general and could be applied to

other problems using code coverage as inputs (e.g., regression

test prioritization and reduction).

Boosting Coverage-Based Fault Localization via

Graph-Based Representation Learning ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

• A novel GGNN-based FL technique Grace that lever-

ages Gated Graph Neural Network (GGNN) to fully analyze

the proposed graph-based coverage representation and to

rank suspicious program entities in a listwise way.

• Anextensive evaluation on two versions ofwell-established

Defects4J benchmarks in bothwithin-project and cross-project

prediction scenarios. The results demonstrate the effective-

ness and general applicability of the proposed approach. Our

replication package is available at [8].

2 BACKGROUND AND RELATED WORK

Since our work leverages graph-based representation learning to

boost coverage-based fault localization, in this section, we discuss

the closely related work in traditional coverage-based fault localiza-

tion (Section 2.1) and learning-based fault localization (Section 2.2).

2.1 Spectrum-Based Fault Localization

Spectrum-based fault localization (SBFL) [10, 11, 33, 56, 57, 68, 75],

one of the most popular coverage-based FL techniques, calculates

suspiciousness scores (probability of being faulty) of each program

entity based on the number of failed/passed tests that cover it. The

basic intuition in SBFL is that program entities covered by more

failed tests and less passed tests are more likely to be faulty. More

specifically, given a buggy program, the test suite (with at least one

failed test), and coverage information, SBFL first abstracts coverage

information into the number of tests covering each program entity

𝑒 , including the number of failed tests covering 𝑒 (𝑒𝑓) or not cov-

ering 𝑒 (𝑛𝑓), and the number of passed tests covering 𝑒 (𝑒𝑝) or not

covering 𝑒 (𝑛𝑝). Based on these numbers, SBFL further leverages

ranking formulae, e.g., Ochiai [10], DStar [68], and Tarantula [33],

to calculate suspiciousness scores for each program entity. For ex-

ample, Ochiai computes the suspiciousness score of the program

entity 𝑒 as 𝑂𝑐ℎ𝑖𝑎𝑖 (𝑒) = 𝑒𝑓 (𝑒𝑓 + 𝑒𝑝)
− 1

2 (𝑒𝑓 + 𝑛𝑓)
− 1

2 .

Although widely adopted for simplicity and efficiency, SBFL

has been shown to have limited effectiveness in practice [72]. In

particular, traditional SBFL suffers from two major drawbacks. (1)

SBFL utilizes coverage in an oversimplified way, which summarizes

coverage by the number of tests. Such a compressed representation

ignores detailed coverage information that may be essential for

fault localization. (2) SBFL considers coverage as the only input

information, which fails to distinguish program entities with similar

coverage. In addition, coverage alone cannot always help infer the

actual causal relationships between program entities and faulty

behaviours.

2.2 Learning-Based Fault Localization

To address the limitations in traditional spectrum-based fault local-

ization, learning-based fault localization [16, 41, 42, 62, 69, 71, 81,

81, 82, 85] has also been extensively studied to leverage advanced

machine/deep learning techniques to (1) utilize more detailed cover-

age information (i.e., learning-to-represent), or (2) integrate coverage

with extra information more intelligently (i.e., learning-to-combine).

In particular, learning-to-represent FL techniques learn suspicious-

ness scores from a finer-grained coverage representation [16, 82].

Different from existing SBFL summarizing coverage by the number

of failed/passed tests, these techniques represent coverage of each

test by a boolean vector that reserves its coverage relationships

with each program entity. Given a test and its coverage vector 𝒗,

the element 𝑣𝑖 shows whether the test covers the 𝑖th program entity.

Learning approaches are then applied on the vectors to learn causal

relationships between test coverage and test outcomes, based on

which suspiciousness of program entities can further be inferred.

Researchers have proposed to utilize various learning approaches,

such as back propagation neural network [71], radial basis func-

tion network [69], multi-layer perceptrons [82], and convolutional

neural network [81]. For example, CNNFL [81], the state-of-the-art

learning-to-represent technique, leverages convolutional neural

network [13] to facilitate coverage vector analysis.

Orthogonal to more exhaustive coverage utilization, learning-

to-combine FL techniques learn to combine strengths of coverage

and extra information by adopting suspiciousness scores computed

by existing SBFL and other information as features. For example,

FLUCCS [62] adopts the suspiciousness scores of existing SBFL,

code complexity, and code history as features; TraPT [42] lever-

ages suspiciousness scores of existing SBFL and also mutation-

based fault localization [50, 52, 78] as features; CombineFL [85]

adopts suspiciousness scores computed by existing spectrum-based,

mutation-based, slicing-based [12, 58], and information-retrieval-

based fault localization [83] as features. Similarly, DeepFL [41], the

state-of-the-art learning-to-combine fault localization technique,

utilizes neural networks (e.g., recurrent neural network [49] and

multi-layer perceptron [55]) to combine features of four dimensions,

including suspiciousness scores of spectrum-based and mutation-

based FL, code complexity, and text similarity.

Although achieving substantial improvement, existing learning-

based FL techniques still fail to eliminate the limitations in tradi-

tional SBFL completely. For learning-to-represent techniques, rep-

resenting coverage of each test as a vector can be imprecise, which

treats all program entities equally and analyzes each test indepen-

dently. Moreover, these techniques also suffer from the same issue

of single information source as SBFL, since they consider coverage

as the only input. For learning-to-combine techniques, adopting

suspiciousness scores computed by existing SBFL inherently suffers

from the same issues of the compressed coverage representation in

SBFL (i.e., representing coverage as numbers of tests). Moreover,

some information (e.g., bug reports and code change history) used

in these techniques cannot be always available, while other infor-

mation (e.g., mutation) can be rather time-consuming to collect [85],

further limiting their applications in practice.

Different from existing coverage-based techniques, this work

makes the first attempt to represent detailed coverage by graph

structures and utilize Gated Graph Neural Network to directly

cope with the proposed graph-based representation. In addition, we

integrate coverage with lightweight information (i.e., fine-grained

code structures) to boost coverage-based fault localization for the

first time.

3 MOTIVATING EXAMPLE

To better illustrate the limitations in existing coverage-based fault

localization, we further present a motivating example in this sec-

tion. As shown in Table 1, we use a real bug Lang-47 from the

widely-used benchmark Defects4J (V1.2.0) [35]. Lang-47 denotes

Boosting Coverage-Based Fault Localization via

Graph-Based Representation Learning ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

To avoid the problem of vanishing gradients, we further leverage

residual connection [29] and layer normalization [14] between each

of the two sub-layers.

4.2.3 Inference. The outputs after the computation of all GGNN

iterations, are further fed to a linear transformation layer followed

by a softmax activation. In particular, for node 𝑣𝑖 , 𝒛𝑖 denotes its

output of the last iteration in GGNN layer, which is further linearly

transformed into a real number 𝑦′𝑖 as Equation 6, where𝑊 ∈ R𝑑×1

and 𝒃 ∈ R. In Grace, nodes are ranked in a listwise way, and thus

we leverage softmax function to normalize the outputs of all nodes

as Equation 7, where 𝑝 (𝑣𝑖) denotes the probability of node 𝑣𝑖 being

faulty. Since Grace targets at method-level fault localization, we

consider only root code nodes in the inference phase, i.e., 𝑛 is the

number of root code nodes.

𝑦′𝑖 =𝑊 𝒛𝑖 + 𝑏 (6)

𝑝 (𝑣𝑖) =
exp {𝑦′𝑖 }∑𝑛
𝑗=1 exp {𝑦

′
𝑗 }

(7)

4.2.4 Ranking loss function. Listwise, pairwise, and pointwise are

three common loss functions that have beenwidely used in learning-

to-rank techniques [22, 38]. Given a ranked list, listwise function

evaluates the entire list based on the order of all elements. It in-

herently agrees with the intuition of Grace that represents and

analyzes all elements and their relationships in an integral way.

Therefore, Grace adopts listwise ranking as its default loss function,

which can be computed as Equation 8. In particular, 𝑔(𝑣𝑖) denotes

the ground truth label for node 𝑣𝑖 , and 𝑝 (𝑣𝑖) denotes its inference

results.

L𝑙𝑖𝑠𝑡 = −

𝑛∑

𝑖=1

𝑔(𝑣𝑖) log(𝑝 (𝑣𝑖)) (8)

In principle,Grace can also leverage the other two functions (i.e.,

pairwise and pointwise) for loss calculation, which can be computed

as Equation 9. Pairwise function compares buggy nodes 𝑣− and

correct nodes 𝑣+ in pair while pointwise function computes loss

for each node 𝑣𝑖 as a binary classification problem. Different from

listwise function, sigmoid activation function is used in the last

layer instead of softmax, i.e., 𝑝 (𝑣𝑖) = sigmoid(𝑦′𝑖). We would further

investigate the impacts of loss functions in the detailed experiments.

L𝑝𝑎𝑖𝑟 =

∑

𝑖∈𝑣−

∑

𝑗 ∈𝑣+

max{𝛼 − (𝑝 (𝑣𝑖) − 𝑝 (𝑣 𝑗)), 0}

L𝑝𝑜𝑖𝑛𝑡 = − (𝑔(𝑣𝑖) log(𝑝 (𝑣𝑖)) + (1 − 𝑔(𝑣𝑖)) log(1 − 𝑝 (𝑣𝑖)))

(9)

5 EXPERIMENT DESIGN

5.1 Research Question

• RQ1: Effectiveness of Grace. How does Grace perform

compared to state-of-the-art coverage-based fault localiza-

tion techniques?

• RQ2: Impact analysis of Grace components.

ś RQ2a: Impact of ranking loss function. How does the

ranking loss function impact the effectiveness of Grace?

ś RQ2b: Impact of code representation. How does the

code representation impact the effectiveness of Grace?

ś RQ2c: Impact of test representation. How does the

test representation impact the effectiveness of Grace?

• RQ3: Integrating with other information. Can Grace

further boost state-of-the-art learning-based fault localiza-

tion techniques that use various information?

• RQ4: Cross-project effectiveness on Defects4J (V2.0.0).

How does Grace perform in the cross-project prediction

scenario on the new benchmark Defects4J (V2.0.0)?

Table 2: Benchmark information

ID Name #Bug #Test LoC

Lang Apache commons-lang 65 2,245 22K

Math Apache commons-math 106 3,602 85K

Time Joda-Time 27 4,130 28K

Chart JFreeChart 26 2,205 96K

Closure Google Closure compiler 133 7,927 90K

Mockito Mockito framework 38 1,366 23K

Defects4J (V1.2.0) 395 21,475 344K

Cli Commons-cli 39 361 4K

Codec Commons-codec 18 850 10K

Collections Commons-collections 4 1,286 65K

Compress Commons-compress 47 73 12K

Csv Commons-csv 16 257 2K

Gson Gson 18 NA NA

JacksonDatabind Jackson-databind 112 NA NA

JacksonCore Jackson-core 26 692 31K

JacksonXml Jackson-dataformat-xml 6 160 6K

Jsoup Jsoup 48 530 14K

JxPath Commons-jxpath 22 401 21K

Defects4J (V2.0.0) 226 4,610 165K

5.2 Benchmark

We perform our experiments on the widely used benchmark De-

fects4J [35], which contains hundreds of reproducible real bugs

from a wide range of projects. The benchmark currently has two

versions: an original version Defects4J (V1.2.0) and a recently re-

leased version Defects4J (V2.0.0) [28] with extra bugs. To our knowl-

edge, existing fault localization work uses only the original version

Defects4J (V1.2.0) for evaluation. In our study, we evaluate our

approach and state-of-the-art fault localization techniques not only

on the original version (i.e., from RQ1 to RQ3) but also on the latest

version (i.e., RQ4) for the first time.

Table 2 shows detailed information of the benchmark. Columns

łIDž and łNamež present the short name and full name of each

subject; Column ł#Bugsž presents the number of bugs in each sub-

ject; Columns łLocž and ł#Testž present the number of lines and

tests in the HEAD version of each subject. Note that the first 45

bugs in Jsoup and all bugs in Gson/JacksonCore (highlighted in

gray) fail to be reproduced. Thus we exclude subjects Gson and

JacksonCore and use the remaining 48 bugs for Jsoup. In total, our

experiments are conducted on all 395 bugs from Defects4J (V1.2.0)

and 226 additional bugs from Defects4J (V2.0.0).

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and Lingming Zhang

5.3 Independent Variables

5.3.1 Compared techniques. In RQ1 and RQ4, we compare Grace

with the following state-of-the-art coverage-based fault localiza-

tion techniques. (1) Spectrum-based fault localization. We compare

Grace with all 34 SBFL formulae studied in prior work [41] and

present the best one (i.e., Ochiai [10]) in our results. (2) Learning-

based fault localization.Wealso consider three representative learning-

based fault localization for comparison, including the state-of-the-

art learning-to-represent fault localization CNNFL [81], the repre-

sentative learning-to-combine fault localization FLUCCS [62] based

on machine learning, and the representative learning-to-combine

fault localization DeepFL [41] based on deep learning. For CNNFL,

since its source code is not available, we reimplement it strictly

following the original paper [62]. For FLUCCS and DeepFL, we di-

rectly take their corresponding implementations from the DeepFL

GitHub webpage [2]. Note that in this study we focus on coverage-

based fault localization that includes only source code, tests, and

coverage as inputs, while the original DeepFL technique includes

mutation-based fault localization information which can be very

time-consuming to collect (i.e., hours of online collection time per

bug [85]). Therefore for a fair comparison with Grace, we modify

the original DeepFL implementation to exclude mutation-related

features and keep the remaining three dimensions (i.e., spectrum-

based fault localization information, code complexity, and text sim-

ilarities) that can be derived from source code and coverage. We

denote such a variant as DeepFL𝑐𝑜𝑣 to differentiate with the original

DeepFL (which additionally includes mutation-related features).

In RQ2, we consider the following variants of Grace to analyze

impacts of each component. (1) Ranking loss function. we consider

Grace with different ranking loss functions as mentioned in Sec-

tion 4.2.4, by replacing the default loss function (i.e., listwise) with

pairwise and pointwise loss respectively. For distinction, we denote

these two variants as Grace𝑝𝑎𝑖𝑟 and Grace𝑝𝑜𝑖𝑛𝑡 . Comparing the

default Grace with these variants can show the impact from rank-

ing loss functions. (2) Code representation.We simplify current code

representation (i.e., Definition 4.1) to investigate its contribution

to Grace. More specifically, instead of using code nodes, node at-

tributes, and code edges to reserve fine-grained code structures, we

use only one node with the number of containing statements to

represent each method; in addition, coverage is adjusted to be edges

between test nodes and method nodes. We denoted the variant with

such a coarse-grained code representation as Grace𝑐𝑜𝑑𝑒− . (3) Test

representation. We simplify current test representation (i.e., Defini-

tion 4.2) to investigate its contribution to Grace. In particular, we

remove test nodes and directly adopt the number of failed/passed

tests that cover each code node as its extra node attributes. We

denoted the variant with such a coarse-grained test representation

as Grace𝑡𝑒𝑠𝑡− .

In RQ3, to investigate whether Grace has learned novel fea-

tures that are complementary to other information used in existing

fault localization techniques, we further integrate Grace with the

state-of-the-art learning-to-combine technique, DeepFL [41]. In

particular, we extend the original DeepFL with a fifth dimension

of features, which are suspiciousness scores computed by Grace.

We denote such a variant of DeepFL as DeepFL𝐺𝑟𝑎𝑐𝑒 . Comparing

DeepFL𝐺𝑟𝑎𝑐𝑒 with DeepFL, we can investigate the complementar-

ity between Grace and the other four feature dimensions used in

DeepFL (i.e., suspiciousness scores of spectrum-based and mutation-

based fault localization, code complexity, and textual similarity).

5.3.2 Experimental configurations. From RQ1 to RQ3, we perform

within-project prediction by leave-one-out cross validation on bugs

for each project. Following previous work [41], we split buggy ver-

sions in each project into two groups: one buggy version as testing

data for prediction and all the remaining buggy versions in the

same project as training data. Besides within-project prediction,

in RQ4, we further perform cross-project prediction on the addi-

tional benchmark Defects4J (V2.0.0) by two-fold cross-validation.

In particular, we use buggy versions of all six projects in Defects4J

(V1.2.0) as training data, and randomly separate all buggy versions

in Defects4J (V2.0.0) into two folds, which serve as testing set and

validation set in turn.

5.4 Measurement

Following recent fault localization work [15, 40ś42, 46, 62, 79], in

this work, we perform fault localization at method level, because

recent studies have shown that class-level fault localization is too

coarse-grained to aid debugging while statement level might be too

fine-grained to convey useful context information [36, 53]. We use

the widely used measurements as follows [15, 40ś42, 46].

Recall at Top-N. Top-N computes the number of buggy ver-

sions that have at least one buggy element localized within Top-N

positions in the ranked list. Previous studies [53] have shown that

developers inspect only a small number of buggy elements within

top positions in the ranked list, e.g., 73.58% developers inspect only

the Top-5 elements in the given list [36]. Therefore, following prior

work [15, 41, 42, 46], we adopt Top-N (N=1,3,5).

Mean First Rank (MFR). For each buggy version, the first rank

is the ranking of the first faulty element in the list. For each project,

MFR calculates the mean of first ranks for all buggy versions.

Mean Average Rank (MAR). For each buggy version, the av-

erage rank is the average ranking of all faulty elements in the list.

For each project, MAR calculates the mean of average ranks for all

buggy versions.

Following previous work [15, 41, 42, 46], we use the worst rank-

ing for the tied elements that have the same suspiciousness scores.

For example, if a correct element and a buggy element are tied with

each other and both ranked at 𝑘th position in the ranked list, we

consider both of them are ranked at 𝑘 + 1th.

5.5 Implementation

Data collection. We use ASM [18] and Java Agent [4] to instrument

bytecode for coverage collection. For Grace, we parse source code

via Javalang toolkit [5] to construct AST. In line with prior work [41,

62], we use Jhawk [6], ASM [18], and Indri [3] to collect code

complexity and textual similarity required by compared techniques

DeepFL and FLUCCS.

Time costs. Table 3 presents the time costs for Grace on the

HEAD version of each project. In particular, Column ł#Vertexesž

and Column ł#Edgesž present the number of vertexes and edges

in the constructed unified coverage graph; Column łConstructž

presents the graph construction time; Column łTrainž and Column

Boosting Coverage-Based Fault Localization via

Graph-Based Representation Learning ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

łTestž present the training and testing time for Grace. To restrain

the scale of the graph, we consider only suspicious methods (i.e.,

covered by at least one failed test) and tests covering at least one

suspicious method during graph construction. Based on the table,

we can find that graph construction is highly efficient, i.e., only one

minute for the largest project Closure. In addition, training time

varies from seconds to one hour (i.e., 73 minutes for the largest

project Closure), which is acceptable since training process is of-

ten performed offline. After the training model is ready, Grace

then takes seconds to perform testing process. Overall, Grace is a

lightweight learning-based technique in practice.

Hyperparameters.We globally use learning rate of 0.01 and em-

bedding size of 32 for all projects. For the sake of efficiency, we

maximize batch size based on the scale of graphs to make full use of

GPU memory. In particular, we use batch size of 60 for all projects

except Closure (i.e., batch size of 20), since its scale of graph is sig-

nificant larger than other projects as shown in Table 3. Following

prior work [41], we use a default training epoch (i.e., 10) when

performing within-project prediction. The experimental results

for configurations can be found at our GitHub website [8] due to

space limit. Furthermore, all experiments are conducted with fixed

random seed to avoid randomness and guarantee reproducibility.

Environment. All experiments are conducted on a Dell worksta-

tion with 300G RAM, Intel Xeon CPU E5-2680 v4 @ 2.40GHz, and

eight 24G GPUs of GeForce RTX 3090, running Ubuntu 16.04.6 LTS.

We build our experiments on PyTorch V1.7.1 [7].

Table 3: Efficiency of Grace

Subject
Graph representation Model

Vertexes # Edges Construct (s) Train (s) Test (s)

Chart 1,715 232,222 13.13 10.64 6.48
Time 3,785 276,174 8.65 28.76 21.82
Lang 54 474 6.51 2.22 0.34
Math 3,316 55,650 11.51 140.91 11.46
Mockito 1,946 631,560 8.03 64.44 48.50
Closure 6,246 4,161,080 62.81 4,384.53 79.88

5.6 Threats to Validity

Threats to internal validity lie in technique implementations and

experimental scripts. To mitigate the threat, we manually check our

code and build them on state-of-the-art frameworks, e.g., ASM [18]

and PyTorch [7]. We also directly use the original implementations

from prior work [41]. Threats to external validity lie in benchmarks

used in our study. To reduce this threat, we perform our experi-

ments on the widely-used benchmark with hundreds of real-world

bugs. Furthermore, to our knowledge, we alsomake the first attempt

to evaluate fault localization techniques on the latest version of the

benchmark, i.e., Defects4J (V2.0.0), which contains additional over

two hundreds real bugs. In the future, we plan to further evaluate

our approach on extra bugs [32]. Threats to construct validity lie in

measurements used in our study. To reduce this threat, we use mul-

tiple measurements which are all widely used in fault localization

studies [40ś42, 46]. In addition, we also perform our experiments

under various settings (e.g., within/cross project prediction and

two-fold/leave-one-out cross validation) to strengthen generality

of the study.

6 RESULT ANALYSIS

6.1 RQ1: Effectiveness of Grace

Table 4 presents fault localization results of Grace and state-of-

the-art coverage-based FL techniques on Defects4J (V1.2.0). The

first two columns present corresponding subjects and techniques,

and the remaining columns present results in terms of Top-1, Top-3,

Top-5, MFR and MAR. From the table, we can observe that Grace

substantially outperforms all the compared techniques in all stud-

ied metrics. Overall, Grace successfully localizes 195 bugs within

Top-1, 29 more than DeepFL𝑐𝑜𝑣 , 35 more than FLUCCS, 140 more

than CNNFL, and 115 more than Ochiai. In addition, MFR and MFR

are also remarkably improved, i.e., 41.50% improvement in MFR and

37.78% improvement in MAR compared to the best compared tech-

nique DeepFL𝑐𝑜𝑣 , indicating that Grace is effective for all buggy

elements. Moreover, Grace consistently outperforms other tech-

niques on each project. For example, the improvement of Grace

is prominent even on the largest project Closure, i.e., with 55.19%

improvement in MFR and 55.29% improvement in MAR compared

to the best compared technique DeepFL𝑐𝑜𝑣 on Closure. On the con-

trary, we notice that CNNFL performs extremely poorly on the

Closure project, i.e., no bug is localized within Top-1. Such a poor

performance actually results from its coverage representation that

uses a boolean vector to represent the coverage of each test. The

boolean vectors can be extremely sparse (i.e., most elements are

zero), especially in large projects where a test can cover only a

small ratio of program entities. Therefore, based on such a coverage

representation, almost all the suspiciousness scores predicted by

CNNFL are values close to zero. However, Grace would not suffer

from such an issue in large projects, since we leverage graph neutral

network on a graph structured representation, which focuses on

only adjacent nodes rather than all nodes during learning process.

This observation further demonstrates the advantage of our cov-

erage representation and learning model on projects of different

scales.

To further confirm the observations above, we performWilcoxon

signed-rank test [67] with Bonferroni corrections [24] to investigate

statistical significance between Grace and other state-of-the-art

techniques. In particular, we compare the rankings of buggy ele-

ments generated by Grace and each compared technique in pair at

the significance level of 0.05. The results suggest that the improve-

ments in terms of MAR/MFR achieved by Grace are all statistically

significant (i.e., 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05).

6.2 RQ2: Impact Analysis

In this RQ, we further analyze the impact of each component in

Grace. Figure 5 compares MFR and MAR metrics between variants

and the default Grace (i.e., with listwise loss, fine-grained code

and test representations). In particular, Figure 5(a) presents results

of default Grace and variants of different ranking loss functions,

i.e., pairwise and pointwise; Figure 5(b) presents results of default

Grace and the variant of a coarse-grained code representation;

Figure 5(c) presents results of default Grace and the variant of a

coarse-grained test representation. Note that the results for the

Boosting Coverage-Based Fault Localization via

Graph-Based Representation Learning ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 5: Integrating Grace with DeepFL

Techniques Top-1 Top-3 Top-5 MFR MAR

DeepFL 207 277 304 6.99 8.43
DeepFL𝐺𝑟𝑎𝑐𝑒 225 290 316 4.81 6.21

6.4 RQ4: Cross-Project Prediction on Defects4J
(V2.0.0)

We further evaluate Grace on the newer version of Defects4J

benchmark, i.e., Defects4J (V2.0.0), to our knowledge, which has

been used in fault localization studies for the first time. Table 6

presents fault localization results of Grace and state-of-the-art

coverage-based fault localization techniques in the cross-project

prediction scenario. From the table, we can observe that Grace still

substantially outperforms all compared techniques by localizing 85

bugs within Top-1, i.e., 53 more than Ochiai, 58 more than CNNFL,

28 more than FLUCCS, and 42 more than DeepFL𝑐𝑜𝑣 . Moreover,

MAR and MFR are consistently improved at least by 50.57% and

38.38% compared to all the other coverage-based techniques. In ad-

dition, we can observe that compared to within-project prediction

(i.e., RQ1) on Defects4J (V1.2.0), all techniques perform worse on

Defects4J (V2.0.0) in the cross-project prediction scenario. For exam-

ple, DeepFL𝑐𝑜𝑣 can localize 42.03% bugs within Top-1 on Defects4J

(V1.2.0) while only 19.03% bugs within Top-1 on Defects4J (V2.0.0);

as for Grace, it can localize 49.36% bugs within Top-1 on Defects4J

(V1.2.0) while 37.64% bugs within Top-1 on Defects4J (V2.0.0). The

observation is as expected, since in the within-project prediction

scenario, testing data and training data are from the same project,

which tend to share similar features; whereas the cross-project

prediction can be more challenging since characteristics between

projects can be very different. Even though, we can observe that

compared to other techniques, Grace exhibits the smallest effec-

tiveness drop between within-project and cross-project prediction.

In summary, our results demonstrate that even when trained in the

cross-project prediction scenario, Grace still consistently outper-

forms state-of-the-art coverage-based techniques on hundreds of

extra bugs.

Table 6: Cross-project effectiveness on Defects4J (V2.0.0)

Subject Techniques Top-1 Top-3 Top-5 MFR MAR

Overall

Ochiai 32 74 93 14.26 20.19

CNNFL 27 60 77 21.76 27.12

FLUCCS 57 97 119 14.85 20.95

DeepFL𝑐𝑜𝑣 43 89 112 14.03 21.06

Grace 85 119 140 6.92 12.91

7 CONCLUSION

In this work, we present a novel coverage-based fault localiza-

tion technique, Grace, which fully utilizes coverage information

with graph-based representation learning. We first propose a novel

graph-based representation to reserve all detailed coverage informa-

tion and fine-grained code structures into one graph: with tests and

program entities as nodes, while with coverage and code structures

as edges. Then we leverage Gated Graph Neural Network to learn

valuable features from the graph-based coverage representation

and to rank program entities in a listwise way. Our evaluation on

the widely used benchmark Defects4J (V1.2.0) shows that Grace

significantly outperforms state-of-the-art coverage-based fault lo-

calization. In particular, Grace localizes 195 bugs within Top-1

whereas the best comparison technique can at most localize 166

bugs within Top-1. We further investigate the impact of each com-

ponent and find that they all positively contribute to Grace. In

addition, our results also demonstrate thatGrace has learned essen-

tial features from coverage, which are complementary to various

information used in existing learning-based fault localization. Fi-

nally, we evaluate Grace in the cross-project prediction scenario

on extra 226 bugs from Defects4J (V2.0.0), and find that Grace con-

sistently outperforms state-of-the-art coverage-based techniques.

ACKNOWLEDGEMENTS

This work was partially supported by the National Key Research

and Development Program of China No. 2017YFB1001803 and the

National Natural Science Foundation of China under Grant Nos.

61872008. This work was also partially supported by National Sci-

ence Foundation under Grant Nos. CCF-1763906 and CCF-1942430.

REFERENCES
[1] 2020. Apache Commons Lang. http://commons.apache.org/proper/commons-

lang/.
[2] 2020. DeepFL Website. https://github.com/DeepFL/DeepFaultLocalization.git.
[3] 2020. Indri. https://www.lemurproject.org/indri.php.
[4] 2020. JavaAgent. https://docs.oracle.com/javase/7/docs/api/java/lang/

instrument/package-summary.html.
[5] 2020. Javalang. https://github.com/c2nes/javalang/.
[6] 2020. Jhawk. http://www.virtualmachinery.com/jhawkprod.html.
[7] 2020. PyTorch. https://pytorch.org.
[8] 2021. Replication package. https://github.com/yilinglou/Grace.
[9] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund. 2009.

A practical evaluation of spectrum-based fault localization. J. Syst. Softw. 82, 11
(2009), 1780ś1792. https://doi.org/10.1016/j.jss.2009.06.035

[10] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2006. An Evaluation of
Similarity Coefficients for Software Fault Localization. In 12th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC 2006), 18-20 December,
2006, University of California, Riverside, USA. IEEE Computer Society, 39ś46.
https://doi.org/10.1109/PRDC.2006.18

[11] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2009. Spectrum-Based
Multiple Fault Localization. In ASE 2009, 24th IEEE/ACM International Conference
on Automated Software Engineering, Auckland, New Zealand, November 16-20,
2009. IEEE Computer Society, 88ś99. https://doi.org/10.1109/ASE.2009.25

[12] Hiralal Agrawal, Joseph R. Horgan, Saul London, and W. Eric Wong. 1995. Fault
localization using execution slices and dataflow tests. In Sixth International Sym-
posium on Software Reliability Engineering, ISSRE 1995, Toulouse, France, October
24-27, 1995. IEEE Computer Society, 143ś151. https://doi.org/10.1109/ISSRE.1995.
497652

[13] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. 2017. Understanding of
a convolutional neural network. In 2017 International Conference on Engineering
and Technology (ICET). Ieee, 1ś6.

[14] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normaliza-
tion. arXiv:1607.06450 [stat.ML]

[15] Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang. 2020. On the Effec-
tiveness of Unified Debugging: An Extensive Study on 16 Program Repair Sys-
tems. In 35th IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2020, Melbourne, Australia, September 21-25, 2020. IEEE, 907ś918.
https://doi.org/10.1145/3324884.3416566

[16] Lionel C. Briand, Yvan Labiche, and Xuetao Liu. 2007. Using Machine Learning
to Support Debugging with Tarantula. In ISSRE 2007, The 18th IEEE International
Symposium on Software Reliability, Trollhättan, Sweden, 5-9 November 2007. IEEE
Computer Society, 137ś146. https://doi.org/10.1109/ISSRE.2007.31

[17] Sergey Brin and Lawrence Page. 2012. The anatomy of a large-scale hypertextual
web search engine. Comput. Networks 56, 18 (2012), 3825ś3833. https://doi.org/
10.1016/j.comnet.2012.10.007

[18] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: a code manip-
ulation tool to implement adaptable systems. Adaptable and extensible component
systems 30, 19 (2002).

[19] Bruno Castro, Alexandre Perez, and Rui Abreu. 2019. Pangolin: An SFL-Based
Toolset for Feature Localization. In 34th IEEE/ACM International Conference on

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and Lingming Zhang

Automated Software Engineering, ASE 2019, San Diego, CA, USA, November 11-15,
2019. IEEE, 1130ś1133. https://doi.org/10.1109/ASE.2019.00119

[20] Junjie Chen, Yiling Lou, Lingming Zhang, Jianyi Zhou, Xiaoleng Wang, Dan
Hao, and Lu Zhang. 2018. Optimizing test prioritization via test distribution
analysis. In Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018, Gary T.
Leavens, Alessandro Garcia, and Corina S. Pasareanu (Eds.). ACM, 656ś667.
https://doi.org/10.1145/3236024.3236053

[21] Lingchao Chen, Yicheng Ouyang, and Lingming Zhang. 2021. Fast and Precise On-
the-fly Patch Validation for All. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). 1123ś1134.

[22] Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhiming Ma, and Hang Li. 2009. Rank-
ing Measures and Loss Functions in Learning to Rank. In Advances in Neural
Information Processing Systems 22: 23rd Annual Conference on Neural Informa-
tion Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009,
Vancouver, British Columbia, Canada, Yoshua Bengio, Dale Schuurmans, John D.
Lafferty, Christopher K. I. Williams, and Aron Culotta (Eds.). Curran Associates,
Inc., 315ś323.

[23] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[24] Olive Jean Dunn. 1961. Multiple comparisons among means. Journal of the
American statistical association 56, 293 (1961), 52ś64.

[25] Paolo Frasconi, Marco Gori, and Alessandro Sperduti. 1998. A general framework
for adaptive processing of data structures. IEEE Trans. Neural Networks 9, 5 (1998),
768ś786. https://doi.org/10.1109/72.712151

[26] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program
repair via bytecode mutation. In Proceedings of the 28th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis, ISSTA 2019, Beijing,
China, July 15-19, 2019, Dongmei Zhang and Anders Mùller (Eds.). ACM, 19ś30.
https://doi.org/10.1145/3293882.3330559

[27] Marco Gori, Gabriele Monfardini, and Franco Scarselli. 2005. A new model for
learning in graph domains. In Proceedings. 2005 IEEE International Joint Conference
on Neural Networks, 2005., Vol. 2. IEEE, 729ś734.

[28] Greg4cr. 2021. Defects4J ś version 2.0. https://github.com/rjust/defects4j.
[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 770ś778. https://doi.org/10.1109/CVPR.2016.90

[30] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (1997), 1735ś1780. https://doi.org/10.1162/neco.1997.9.8.1735

[31] Jiajun Jiang, Luyao Ren, Yingfei Xiong, and Lingming Zhang. 2019. Inferring Pro-
gram Transformations From Singular Examples via Big Code. In 34th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2019, San Diego,
CA, USA, November 11-15, 2019. IEEE, 255ś266. https://doi.org/10.1109/ASE.2019.
00033

[32] Yanjie Jiang, Hui Liu, Nan Niu, Lu Zhang, and Yamin Hu. 2021. Extracting Concise
Bug-Fixing Patches from Human-Written Patches in Version Control Systems.
In 43rd IEEE/ACM International Conference on Software Engineering, ICSE 2021,
Madrid, Spain, 22-30 May 2021. IEEE, 686ś698. https://doi.org/10.1109/ICSE43902.
2021.00069

[33] James A. Jones andMary Jean Harrold. 2005. Empirical evaluation of the tarantula
automatic fault-localization technique. In 20th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2005), November 7-11, 2005, Long Beach,
CA, USA, David F. Redmiles, Thomas Ellman, and Andrea Zisman (Eds.). ACM,
273ś282. https://doi.org/10.1145/1101908.1101949

[34] Frolin S. Ocariza Jr., Guanpeng Li, Karthik Pattabiraman, and Ali Mesbah. 2016.
Automatic fault localization for client-side JavaScript. Softw. Test. Verification
Reliab. 26, 1 (2016), 69ś88. https://doi.org/10.1002/stvr.1576

[35] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: a database of
existing faults to enable controlled testing studies for Java programs. In Interna-
tional Symposium on Software Testing and Analysis, ISSTA ’14, San Jose, CA, USA -
July 21 - 26, 2014, Corina S. Pasareanu and Darko Marinov (Eds.). ACM, 437ś440.
https://doi.org/10.1145/2610384.2628055

[36] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’
expectations on automated fault localization. In Proceedings of the 25th Inter-
national Symposium on Software Testing and Analysis, ISSTA 2016, Saarbrücken,
Germany, July 18-20, 2016, Andreas Zeller and Abhik Roychoudhury (Eds.). ACM,
165ś176. https://doi.org/10.1145/2931037.2931051

[37] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Martin Mon-
perrus, Jacques Klein, and Yves Le Traon. 2019. iFixR: bug report driven pro-
gram repair. In Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019, Marlon
Dumas, Dietmar Pfahl, Sven Apel, and Alessandra Russo (Eds.). ACM, 314ś325.
https://doi.org/10.1145/3338906.3338935

[38] Tuan Manh Lai, Trung Bui, and Sheng Li. 2018. A Review on Deep Learning
Techniques Applied to Answer Selection. In Proceedings of the 27th International

Conference on Computational Linguistics, COLING 2018, Santa Fe, New Mexico,
USA, August 20-26, 2018, Emily M. Bender, Leon Derczynski, and Pierre Isabelle
(Eds.). Association for Computational Linguistics, 2132ś2144.

[39] David Landsberg, Hana Chockler, and Daniel Kroening. 2016. Probabilistic
Fault Localisation. In Hardware and Software: Verification and Testing - 12th
International Haifa Verification Conference, HVC 2016, Haifa, Israel, November
14-17, 2016, Proceedings (Lecture Notes in Computer Science, Vol. 10028), Roderick
Bloem and Eli Arbel (Eds.). 65ś81. https://doi.org/10.1007/978-3-319-49052-6_5

[40] Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A learning-
to-rank based fault localization approach using likely invariants. In Proceedings
of the 25th International Symposium on Software Testing and Analysis, ISSTA 2016,
Saarbrücken, Germany, July 18-20, 2016, Andreas Zeller and Abhik Roychoudhury
(Eds.). ACM, 177ś188. https://doi.org/10.1145/2931037.2931049

[41] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, Beijing, China, July 15-19, 2019, Dongmei Zhang and Anders Mùller
(Eds.). ACM, 169ś180. https://doi.org/10.1145/3293882.3330574

[42] Xia Li and Lingming Zhang. 2017. Transforming programs and tests in tandem
for fault localization. Proc. ACM Program. Lang. 1, OOPSLA (2017), 92:1ś92:30.
https://doi.org/10.1145/3133916

[43] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated
Graph Sequence Neural Networks. In 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.).

[44] Zheng Li, Mark Harman, and Robert M Hierons. 2007. Search algorithms for
regression test case prioritization. IEEE Transactions on software engineering 33,
4 (2007), 225ś237.

[45] Yiling Lou, Junjie Chen, Lingming Zhang, and Dan Hao. 2019. Chapter One - A
Survey on Regression Test-Case Prioritization. Adv. Comput. 113 (2019), 1ś46.
https://doi.org/10.1016/bs.adcom.2018.10.001

[46] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao,
and Lu Zhang. 2020. Can automated program repair refine fault localization?
a unified debugging approach. In ISSTA ’20: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22,
2020, Sarfraz Khurshid and Corina S. Pasareanu (Eds.). ACM, 75ś87. https:
//doi.org/10.1145/3395363.3397351

[47] Yiling Lou, Dan Hao, and Lu Zhang. 2015. Mutation-based test-case prioritiza-
tion in software evolution. In 26th IEEE International Symposium on Software
Reliability Engineering, ISSRE 2015, Gaithersbury, MD, USA, November 2-5, 2015.
IEEE Computer Society, 46ś57. https://doi.org/10.1109/ISSRE.2015.7381798

[48] Yafeng Lu, Yiling Lou, Shiyang Cheng, Lingming Zhang, Dan Hao, Yangfan Zhou,
and Lu Zhang. 2016. How does regression test prioritization perform in real-
world software evolution?. In Proceedings of the 38th International Conference
on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, Laura K.
Dillon, Willem Visser, and Laurie A. Williams (Eds.). ACM, 535ś546. https:
//doi.org/10.1145/2884781.2884874

[49] Tomás Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khu-
danpur. 2010. Recurrent neural network based language model. In INTERSPEECH
2010, 11th Annual Conference of the International Speech Communication Associa-
tion, Makuhari, Chiba, Japan, September 26-30, 2010, Takao Kobayashi, Keikichi
Hirose, and Satoshi Nakamura (Eds.). ISCA, 1045ś1048.

[50] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the
Mutants: Mutating Faulty Programs for Fault Localization. In Seventh IEEE Inter-
national Conference on Software Testing, Verification and Validation, ICST 2014,
March 31 2014-April 4, 2014, Cleveland, Ohio, USA. IEEE Computer Society, 153ś
162. https://doi.org/10.1109/ICST.2014.28

[51] S Nachiyappan, A Vimaladevi, and CB SelvaLakshmi. 2010. An evolutionary
algorithm for regression test suite reduction. In 2010 International Conference on
Communication and Computational Intelligence (INCOCCI). IEEE, 503ś508.

[52] Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault
localization. Softw. Test. Verification Reliab. 25, 5-7 (2015), 605ś628. https:
//doi.org/10.1002/stvr.1509

[53] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques
actually helping programmers?. In Proceedings of the 20th International Sym-
posium on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada,
July 17-21, 2011, Matthew B. Dwyer and Frank Tip (Eds.). ACM, 199ś209.
https://doi.org/10.1145/2001420.2001445

[54] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D.
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and improving fault
localization. In Proceedings of the 39th International Conference on Software Engi-
neering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, Sebastián Uchi-
tel, Alessandro Orso, and Martin P. Robillard (Eds.). IEEE / ACM, 609ś620.
https://doi.org/10.1109/ICSE.2017.62

[55] Marius-Constantin Popescu, Valentina E Balas, Liliana Perescu-Popescu, and
Nikos Mastorakis. 2009. Multilayer perceptron and neural networks. WSEAS
Transactions on Circuits and Systems 8, 7 (2009), 579ś588.

Boosting Coverage-Based Fault Localization via

Graph-Based Representation Learning ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

[56] Moeketsi Raselimo and Bernd Fischer. 2019. Spectrum-based fault localization
for context-free grammars. In Proceedings of the 12th ACM SIGPLAN International
Conference on Software Language Engineering, SLE 2019, Athens, Greece, October
20-22, 2019, Oscar Nierstrasz, Jeff Gray, and Bruno C. d. S. Oliveira (Eds.). ACM,
15ś28. https://doi.org/10.1145/3357766.3359538

[57] Sofia Reis, Rui Abreu, and Marcelo d’Amorim. 2019. Demystifying the Combina-
tion of Dynamic Slicing and Spectrum-based Fault Localization. In Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, Sarit Kraus (Ed.). ijcai.org, 4760ś4766.
https://doi.org/10.24963/ijcai.2019/661

[58] Manos Renieris and Steven P. Reiss. 2003. Fault Localization With Nearest
Neighbor Queries. In 18th IEEE International Conference on Automated Software
Engineering (ASE 2003), 6-10 October 2003, Montreal, Canada. IEEE Computer
Society, 30ś39. https://doi.org/10.1109/ASE.2003.1240292

[59] Gregg Rothermel, Roland H Untch, Chengyun Chu, and Mary Jean Harrold. 1999.
Test case prioritization: An empirical study. In Proceedings IEEE International
Conference on Software Maintenance-1999 (ICSM’99).’Software Maintenance for
Business Change’(Cat. No. 99CB36360). IEEE, 179ś188.

[60] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61ś80.

[61] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura,
and David L Dill. 2018. Learning a SAT solver from single-bit supervision. arXiv
preprint arXiv:1802.03685 (2018).

[62] Jeongju Sohn and Shin Yoo. 2017. FLUCCS: using code and change metrics to
improve fault localization. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Santa Barbara, CA, USA, July 10 -
14, 2017, Tevfik Bultan and Koushik Sen (Eds.). ACM, 273ś283. https://doi.org/
10.1145/3092703.3092717

[63] Qianqian Wang, Chris Parnin, and Alessandro Orso. 2015. Evaluating the use-
fulness of IR-based fault localization techniques. In Proceedings of the 2015
International Symposium on Software Testing and Analysis, ISSTA 2015, Balti-
more, MD, USA, July 12-17, 2015, Michal Young and Tao Xie (Eds.). ACM, 1ś11.
https://doi.org/10.1145/2771783.2771797

[64] Shaohua Wang, Foutse Khomh, and Ying Zou. 2013. Improving bug localization
using correlations in crash reports. In Proceedings of the 10th Working Conference
on Mining Software Repositories, MSR ’13, San Francisco, CA, USA, May 18-19, 2013,
Thomas Zimmermann, Massimiliano Di Penta, and Sunghun Kim (Eds.). IEEE
Computer Society, 247ś256. https://doi.org/10.1109/MSR.2013.6624036

[65] Eric W Weisstein. 1999. Laplacian matrix. https://mathworld. wolfram. com/
(1999).

[66] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-aware patch generation for better automated program repair. In Pro-
ceedings of the 40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chaudron, Ivica Crnkovic,
Marsha Chechik, and Mark Harman (Eds.). ACM, 1ś11. https://doi.org/10.1145/
3180155.3180233

[67] Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Break-
throughs in statistics. Springer, 196ś202.

[68] W. EricWong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. 2014. The DStar Method
for Effective Software Fault Localization. IEEE Trans. Reliab. 63, 1 (2014), 290ś308.
https://doi.org/10.1109/TR.2013.2285319

[69] W. Eric Wong, Vidroha Debroy, Richard Golden, Xiaofeng Xu, and Bhavani M.
Thuraisingham. 2012. Effective Software Fault Localization Using an RBF Neural
Network. IEEE Trans. Reliab. 61, 1 (2012), 149ś169. https://doi.org/10.1109/TR.
2011.2172031

[70] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
Survey on Software Fault Localization. IEEE Trans. Software Eng. 42, 8 (2016),
707ś740. https://doi.org/10.1109/TSE.2016.2521368

[71] W. Eric Wong and Yu Qi. 2009. Bp Neural Network-Based Effective Fault
Localization. Int. J. Softw. Eng. Knowl. Eng. 19, 4 (2009), 573ś597. https:

//doi.org/10.1142/S021819400900426X
[72] Xiaoyuan Xie, Zicong Liu, Shuo Song, Zhenyu Chen, Jifeng Xuan, and Baowen

Xu. 2016. Revisit of automatic debugging via human focus-tracking analysis. In
Proceedings of the 38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016, Laura K. Dillon, Willem Visser, and Laurie A.
Williams (Eds.). ACM, 808ś819. https://doi.org/10.1145/2884781.2884834

[73] Yuan Yuan and Wolfgang Banzhaf. 2020. ARJA: Automated Repair of Java Pro-
grams via Multi-Objective Genetic Programming. IEEE Trans. Software Eng. 46,
10 (2020), 1040ś1067. https://doi.org/10.1109/TSE.2018.2874648

[74] Abubakar Zakari, Sai Peck Lee, Rui Abreu, Babiker Hussien Ahmed, and
Rasheed Abubakar Rasheed. 2020. Multiple fault localization of software pro-
grams: A systematic literature review. Inf. Softw. Technol. 124 (2020), 106312.
https://doi.org/10.1016/j.infsof.2020.106312

[75] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing failure-
inducing program edits based on spectrum information. In IEEE 27th International
Conference on SoftwareMaintenance, ICSM 2011,Williamsburg, VA, USA, September
25-30, 2011. IEEE Computer Society, 23ś32. https://doi.org/10.1109/ICSM.2011.
6080769

[76] Lingming Zhang, Darko Marinov, and Sarfraz Khurshid. 2013. Faster mutation
testing inspired by test prioritization and reduction. In International Symposium
on Software Testing and Analysis, ISSTA ’13, Lugano, Switzerland, July 15-20, 2013,
Mauro Pezzè and Mark Harman (Eds.). ACM, 235ś245. https://doi.org/10.1145/
2483760.2483782

[77] Lingming Zhang, Darko Marinov, Lu Zhang, and Sarfraz Khurshid. 2011. An Em-
pirical Study of JUnit Test-Suite Reduction. In IEEE 22nd International Symposium
on Software Reliability Engineering, ISSRE 2011, Hiroshima, Japan, November 29 -
December 2, 2011, Tadashi Dohi and Bojan Cukic (Eds.). IEEE Computer Society,
170ś179. https://doi.org/10.1109/ISSRE.2011.26

[78] Lingming Zhang, Lu Zhang, and Sarfraz Khurshid. 2013. Injecting mechanical
faults to localize developer faults for evolving software. In OOPSLA. 765ś784.

[79] Mengshi Zhang, Xia Li, Lingming Zhang, and Sarfraz Khurshid. 2017. Boosting
spectrum-based fault localization using PageRank. In Proceedings of the 26th
ACM SIGSOFT International Symposium on Software Testing and Analysis, Santa
Barbara, CA, USA, July 10 - 14, 2017, Tevfik Bultan and Koushik Sen (Eds.). ACM,
261ś272. https://doi.org/10.1145/3092703.3092731

[80] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2006. Locating faults through
automated predicate switching. In 28th International Conference on Software
Engineering (ICSE 2006), Shanghai, China, May 20-28, 2006, Leon J. Osterweil,
H. Dieter Rombach, and Mary Lou Soffa (Eds.). ACM, 272ś281. https://doi.org/
10.1145/1134285.1134324

[81] Zhuo Zhang, Yan Lei, XiaoguangMao, and Panpan Li. 2019. CNN-FL: An Effective
Approach for Localizing Faults using Convolutional Neural Networks. In 26th
IEEE International Conference on Software Analysis, Evolution and Reengineering,
SANER 2019, Hangzhou, China, February 24-27, 2019, Xinyu Wang, David Lo, and
Emad Shihab (Eds.). IEEE, 445ś455. https://doi.org/10.1109/SANER.2019.8668002

[82] Wei Zheng, Desheng Hu, and Jing Wang. 2016. Fault localization analysis based
on deep neural network. Mathematical Problems in Engineering 2016 (2016).

[83] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on bug reports.
In 34th International Conference on Software Engineering, ICSE 2012, June 2-9, 2012,
Zurich, Switzerland, Martin Glinz, Gail C. Murphy, and Mauro Pezzè (Eds.). IEEE
Computer Society, 14ś24. https://doi.org/10.1109/ICSE.2012.6227210

[84] Qihao Zhu, Zeyu Sun, Xiran Liang, Yingfei Xiong, and Lu Zhang. 2020. OCoR: An
Overlapping-Aware Code Retriever. In 35th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2020, Melbourne, Australia, September
21-25, 2020. IEEE, 883ś894. https://doi.org/10.1145/3324884.3416530

[85] Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D. Ernst, and Lu Zhang.
2021. An Empirical Study of Fault Localization Families and Their Combinations.
IEEE Trans. Software Eng. 47, 2 (2021), 332ś347. https://doi.org/10.1109/TSE.2019.
2892102

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Spectrum-Based Fault Localization
	2.2 Learning-Based Fault Localization

	3 Motivating Example
	4 Approach
	4.1 Graph-Based Coverage Representation
	4.2 Proposed Model

	5 Experiment Design
	5.1 Research Question
	5.2 Benchmark
	5.3 Independent Variables
	5.4 Measurement
	5.5 Implementation
	5.6 Threats to Validity

	6 Result Analysis
	6.1 RQ1: Effectiveness of Grace
	6.2 RQ2: Impact Analysis
	6.3 RQ3: Integrating with Other Information
	6.4 RQ4: Cross-Project Prediction on Defects4J (V2.0.0)

	7 Conclusion
	References

