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Abstract

Candida albicans, an opportunistic fungal pathogen, is a significant cause of human infec-
tions, particularly in immunocompromised individuals. Phenotypic plasticity between two
morphological phenotypes, yeast and hyphae, is a key mechanism by which C. albicans can
thrive in many microenvironments and cause disease in the host. Understanding the deci-
sion points and key driver genes controlling this important transition and how these genes
respond to different environmental signals is critical to understanding how C. albicans
causes infections in the host. Here we build and analyze a Boolean dynamical model of the
C. albicans yeast to hyphal transition, integrating multiple environmental factors and regula-
tory mechanisms. We validate the model by a systematic comparison to prior experiments,
which led to agreement in 17 out of 22 cases. The discrepancies motivate alternative
hypotheses that are testable by follow-up experiments. Analysis of this model revealed two
time-constrained windows of opportunity that must be met for the complete transition from
the yeast to hyphal phenotype, as well as control strategies that can robustly prevent this
transition. We experimentally validate two of these control predictions in C. albicans strains
lacking the transcription factor UMEG6 and the histone deacetylase HDA1, respectively. This
model will serve as a strong base from which to develop a systems biology understanding of
C. albicans morphogenesis.
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Author summary

Candida albicans is a pathogenic organism that commonly causes infection in humans,
particularly in immunocompromised individuals, and patients in hospitals. A key mecha-
nism mediating its infectiousness is a morphological change from single yeast cells into
branching cell collectives called hyphae. C. albicans cells undergo this transition in
response to multiple environmental signals, including pH, temperature, serum levels, or
other molecules. Understanding how the cells process these environmental signals is criti-
cal to understanding how C. albicans adapts to thrive in human hosts. Here, we built and
analyzed a mathematical model of the C. albicans yeast to hyphal transition, integrating
multiple environmental factors and regulatory mechanisms. Analysis of this model
revealed two time-constrained windows of opportunity that must be met for the complete
transition from the yeast to hyphal phenotype. We probed this model to identify interven-
tional control strategies that can block the transition. We experimentally validate two of
these control predictions: deletion of the transcription factor UMES6, and deletion of the
histone deacetylase HDA 1. This model can be used to identify alternative hypotheses,
enabling progress toward a systems biology understanding of C. albicans morphological
changes.

Introduction

Candida albicans is a pleiomorphic, opportunistic fungal pathogen and an important cause of
both superficial and systemic infections in humans, particularly in immunocompromised indi-
viduals. It is also responsible for 85-95% of all vulvovaginal infections resulting in doctor visits
in otherwise healthy patients [1]. C. albicans forms biofilms on mucosal surfaces (e.g., oral, gas-
trointestinal tract, genitourinary tract, and vaginal) of the host as well as on surfaces of
implanted medical devices (e.g., catheters, heart valves, and prosthetics), which are major res-
ervoirs for infections [2,3].

Transitions between the yeast and hyphal phenotypes enable C. albicans to adapt to and
persist in a wide range of environments. The yeast-form consists of single round cells that
grow by forming daughter cells that bud and separate from mother cells. The hyphal form con-
sists of long, multicellular branching tubular structures with parallel-sided walls, where the
tips proliferate to elongate the hyphae [4]. C. albicans can also form an intermediate filamen-
tous morphology called the pseudohyphal form, which consists of chains of cells with constric-
tions between mother-daughter cell pairs [4]. Transitioning from the yeast to hyphal
phenotype is required for mucosal invasion [2,5] and biofilm formation, which are important
mediators of infection [2,3,5,6]. The yeast to hyphal transition is regulated by many well-stud-
ied intracellular pathways that respond to external signals such as neutral or alkaline pH
(pH > 6), farnesol levels, and temperature. These pathways converge on a handful of key tran-
scription factors, defined as sequence-specific DNA-binding proteins, which regulate the tran-
scription of hyphal-associated genes (HAGs). Epigenetic effects such as histone acetylation
events at the promoters of HAGs also play important roles in the regulation of the expression
of HAGs. The key negative regulator of the transcription of HAGs is Nrgl. The pattern of
expression of Nrgl and of its ability to bind to the promoter region of HAGs determines two
phases of the yeast to hyphal transition. Hyphal initiation (the first cell division in the process
that forms hyphae) requires a transient downregulation of the Nrgl protein, whereas hyphal
maintenance requires preventing Nrgl from binding to the promoters of HAGs [7]. External
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signals initiate the downregulation of NRGI transcription, while Nrgl protein is prevented
from binding to the promoters of HAGs by histone deacetylases (HDACs) such as Hdal.

Here we build a Boolean model integrating multiple extracellular signals governing the
intracellular regulation of the yeast to hyphal morphological transition. We then use this
model to conduct a thorough analysis of phenotype control, considering multiple possible con-
trol objectives and side effects, to rank the best and most robust control strategies.

Results
Construction of the model

As a starting point to building a model of the intracellular network (decision-making process)
that controls the yeast to hyphal transition (YHT), we focused on the most studied transcrip-
tion factors that mediate hyphal initiation (Efgl and Brgl), hyphal maintenance (Ume6), or
inhibit these processes (Nrgl). The model includes four environmental cues known to regulate
the YHT, namely pH, farnesol, temperature, and serum. These environmental stimuli regulate
the activity of signaling pathways (e.g. cAMP/PKA and ESCRT) that inhibit the expression of
NRG1, encoding the major YHT transcriptional repressor, and/or induce the expression of
EFGI and BRGI, encoding YHT activators. The transcription factors Efgl and Brgl, aided by
histone modifications due to histone acetyltransferases (HATSs) and histone deacetylases
(HDAC:S) activate the transcription of downstream HAGs important for the hyphal morphol-
ogy (e.g., UME6, HGCI1, HWPI, ALS3, and ECE1) [8]. These HAGs encode other transcription
factors such as Ume6 that mediate hyphal maintenance, cyclins such as Hgcl that determine
polarized growth at the hyphal tips, and cell wall proteins such as Hwpl, Als3, and Rbt5 that
are important for adhesion [7].

The network underlying the model contains several types of nodes, including environmen-
tal signals, mRNAs, proteins (signaling proteins, transcription factors, and epigenetic modula-
tors), and processes. These node types are indicated with different symbol shapes and colors in
Fig 1. Nrgl and Efgl are divided into multiple forms. For Nrgl, the model separately includes
the NRG1 mRNA transcript (NRG1_T), as well as the Nrgl protein bound to the promoter
regions of hyphal-associated genes (Nrgl@HAGs). For Efgl, the model separately includes the
EFGI transcript (EFG1_T), the Efgl protein (Efgl), and the Efgl protein activated as a result
of signal transduction (Efgl_active). The latter allows us to encode the negative feedback that
active Efgl has on the transcription of its own gene [9]. We also include three nodes that
describe processes: hyphal_initiation, HAG_transcription, and hyphal _maintenance. Activa-
tion of the node hyphal_initiation indicates that external signals have impinged on the YHT
core network, suppressing yeast-associated nodes, and beginning transcription of hyphal
genes. Activation of HAG_transcription indicates that HAGs (e.g., HGCI and HWP]I) are tran-
scribed. Activation of hyphal_maintenance indicates that the cell has entered a state of sus-
tained hyphal growth and elongation as part of a multicellular hypha [7].

To describe the propagation of information in the network from external signals to the ulti-
mate phenotypic output, we formulated a Boolean model. In a Boolean model, each node can
be either ON or OFF (1 or 0), and the state of the whole system is given by the state of each
node in the network. In general, ON should be interpreted as present, expressed, or active,
while OFF indicates the opposite. Special cases include the signal nodes pH and Temperature.
The OFF state of the node “pH” indicates an acidic environment (pH < 6), while its ON state
indicates an alkaline or neutral environment. Temperature = 0 indicates an environment
cooler than 37°C, while Temperature = 1 indicates an environment at 37°C.

The regulatory interactions between nodes are given by Boolean regulatory functions
describing what the next state of the target node will become based on the current state of its
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Fig 1. A regulatory network model of the yeast to hyphal transition induced by extracellular signals. The shapes
and colors of the nodes indicate their function, as indicated in the key on the right. Dashed edges represent functional
relationships whose molecular mechanisms have not been determined. We translate this network into a Boolean
dynamic model by characterizing each node with a regulatory function (see Table 1).

https://doi.org/10.1371/journal.pcbi.1008690.g001

regulators. The regulatory functions were determined from the literature. In cases where
detailed knowledge was not available, we generally assumed inhibitory dominant regulatory
functions. This means that multiple activating edges are related by the “or” operator, while
inhibitory edges are related by the “and not” operator. Specific regulatory functions and evi-
dence in the literature for these functions are summarized in Table 1, and additional notes for
each function are provided in S1 Text.

Within the scope of the model, serum and temperature have identical downstream effects.
For the sake of simplicity, we merge these two environmental signals into a single node, and
refer to this node as “Temperature”. Experimental evidence suggests that high temperature
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Table 1. Boolean regulatory functions of each node in the model. Each function indicates the next state of the node as a function of the current state of its regulators.
For simplicity the state of each node is represented with the name of the node. The model is provided in BooleanNet (S1 File) and SBML qual (S2 File) file formats.

Node Boolean function F References
pH pH

Temperature Temperature

Farnesol Farnesol

Rim8 pH [11]
Cyrl Temperature and not Farnesol [12-14]
ESCRT Rim8 [11]
cAMP/PKA Cyrl

Efgl_active (ESCRT or cAMP_PKA) and Efgl [9]
Efgl T Brgl or not Efgl_active [9,15]
Efgl Efgl T [9]
NRGI_T not Brgl and not Ume6 and not (Efgl_active and (ESCRT or cAMP_PKA)) or hyphal_initiation [10,16]
Nrgl@HAGs NRGI1_T and (not HDACs or HATs) [10]
Brgl not Nrgl@HAGs [16]
Ume6 Brgl and not Nrgl@HAGs [17]
HDACs Brgl [10]
HATs Efgl_active and not HDACs [10,17]
hyphal_initiation (HATs and Brgl and not Nrgl@HAGs) or hyphal_initiation [10]
HAG_transcription (Brgl or Ume6) and not Nrgl@HAGs [18]
hyphal_maintenance (Ume6 and not Nrgl@HAGs) and hyphal_initiation [10]

https://doi.org/10.1371/journal.pchi.1008690.t001

and serum are both required to achieve sustained hyphal growth [10]. When comparing the
model’s results with experimental findings, we equate the ON state of the input “Temperature”
with 37°C and the presence of serum in the medium.

The model recapitulates the biological phenotypes and the trajectory of the
YHT

We describe the dynamics of the YHT model using two distinct methods: general asynchro-
nous update and stochastic propensity. With both methods, the system evolves until it reaches
a stationary state or a group of states that it oscillates within. The term for such final states is
“attractor”. Attractors represent stable biological differentiation states or phenotypes. See
Methods for more details about the update schemes and attractors.

When considering all eight combinations of the three input signals, the YHT network
model has 27 attractors (13 if the value of the input signals is not considered), which we
broadly categorized as one of four phenotypes: yeast, yeast-like, hyphal-like, and hyphal (Fig
2). Phenotype identification was based on the values of the hyphal_initiation, hyphal _mainte-
nance, and HAG_transcription nodes in the model, as well as on the expression of key tran-
scription factors. One group of attractors corresponds clearly to the yeast state based on the
activity of the YHT inhibitor Nrgl (expressed as the ON state of NRG1_T and Nrgl @HAGs),
the inactivity of Brgl and Ume6, and the lack of hyphal initiation, hyphal maintenance and
HAG transcription. The three attractors in this group, marked in blue in Fig 2, only differ in
the state of the input nodes Temperature and Farnesol, while the pH must be 0 (acidic envi-
ronment). We therefore named this group of attractors “yeast”. Another group of attractors
(marked by yellow color in Fig 2) has hyphal_initiation = hyphal_maintenance = HAG_tran-
scription = 1. The eight attractors in this group share the activation of hyphal-associated
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Fig 2. Visual summary of the 27 attractors of the YHT Boolean model. Each row corresponds to a network node and each column indicates an attractor.
White indicates active (ON) nodes, black indicates inactive (OFF) nodes, and beige indicates nodes that oscillate. Individual attractors have been assigned to
one of four phenotypes—yeast, yeast-like, hyphal-like, and hyphal—based on the status of the hyphal_initiation, hyphal_maintenance, and HAG_transcription
nodes (see text).

https://doi.org/10.1371/journal.pchi.1008690.g002

transcription factors and genes and differ only in the state of the signals and of five signal
transduction nodes. Therefore, we named this group of attractors “hyphal”.

The other two groups of attractors exhibit intermediate phenotypes. The group of attractors
marked in green exhibit active hyphal_initiation, but have active Nrgl and inactive Brgl and
Ume6, as well as inactive HAG_transcription. These are characteristics of yeast cells, and we
therefore named this group of attractors “yeast-like”. A subset of yeast-like attractors exhibits
oscillations in Efgl and HATs, observed for both update methods, which are driven by the
negative feedback loop between Efgl — Efgl_active —o EFG1_T. We could find no experi-
mental corroboration of this oscillation, although it has been speculated that oscillations
caused by this feedback may contribute to variation of EFG1I expression [19]. Consequently,
we do not make any special phenotypic distinction between oscillating and non-oscillating
yeast-like attractors.
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The group of attractors marked in orange in Fig 2 fail to activate hyphal_initiation and
hyphal_maintenance, yet they exhibit expression of BRG1 and UMES, as well as active HAG
transcription. Due to the presence of these hyphal characteristics we named this group of
attractors “hyphal-like”. These attractors may describe a pseudohyphal phenotype. Unlike
hyphae, which only grow at the tip, any cell within pseudohyphae can divide and branch, but,
unlike hyphae, the daughter cells remain attached to the mother cells. The formation of pseu-
dohyphae likely involves the same transcriptional core as the YHT, and involves transcription
of a subset of HAGs [4]. These features are recapitulated by the hyphal-like attractors of our
model.

Depending on the values of the external signals, we found up to four coexisting attractors.
For example, when pH = Farnesol = Temperature = 0, there are four possible attractors, which
belong to the yeast, yeast-like, hyphal-like and hyphal attractor groups, respectively. In general,
the yeast-like, hyphal-like, and hyphal attractor groups contain a stable attractor regardless of
the external signals while the stability of the yeast attractor requires pH = 0 and either Farne-
sol = 1 or Temperature = 0.

To simulate the YHT we started in a yeast attractor with pH = Temperature = Farnesol = 0,
then set pH = 1. We observed trajectories that converged to any of the three other attractor
groups: yeast-like, hyphal-like, and hyphal (Fig 3A-3C). A prominent trajectory of our model
reproduces the known features of complete YHT in response to alkaline pH: upregulation of
BRGI, hyphal initiation, HAG transcription, hyphal maintenance (Fig 3C). We verified that
setting Temperature = 1 could also induce the YHT, in agreement with the observation that
37°C induces the YHT [7]. We then undertook a systematic analysis of the outcomes of simu-
lations for every environmental setting using two update schemes (general asynchronous or
stochastic propensity). Table 2 indicates the probability of converging into each of the four
phenotypes (attractor groups) for every environmental setting when starting from an arbitrary
initial state that does not already have hyphal_initiation = 1 or hyphal_maintenance = 1 or
from a yeast attractor. In both update schemes, when pH = 0 and either Farnesol = 1 or Tem-
perature = 0 (top row of each table panel) only the yeast and hyphal-like phenotypes are reach-
able from an arbitrary state, and a system that starts in a yeast state stays in that state. Indeed,
yeast is the dominant growth form of C. albicans wildtype strains in an acidic environment
with temperature lower than 37°C [4]; in the following, we will refer to this environmental
condition as a yeast-favoring condition. When either pH = 1, or Farnesol = 0 and Tempera-
ture = 1, the yeast attractor is no longer stable, and the system converges into the hyphal-like
phenotype, the hyphal phenotype, or to the yeast-like phenotype.

Stable motif analysis reveals decision points for successful and failed YHT

To understand how the system makes decisions to evolve toward a specific attractor, we per-
formed stable motif analysis [20] on the YHT model (Fig 4). Stable motifs represent subsets of
the Boolean system that, once they achieve a certain state, become locked in that state [21].
They are thus the building blocks of attractors. Expressed more precisely, the fixed state of the
nodes of each stable motif determines a trap space, i.e. a region of state space that once entered
cannot be exited [22]. Notably, these trap spaces are independent of the update schedule. The
YHT network has a single stable motif, which does not depend on environmental conditions.
This stable motif consists of hyphal_initiation = 1, which expresses the irreversible nature of
hyphal initiation. In addition, there are six conditionally stable motifs. Conditionally stable
motifs are only stable motifs if some external condition is met, such as a fixed state of an envi-
ronmental source node or the stabilization of a parent stable motif [23]. Particularly, the condi-
tionally stable motif outlined in blue involves the activation of the main hyphal inhibitor Nrgl
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transcribed. This trajectory ends in the hyphal-like attractor. (B) A yeast cell achieves hyphal_initiation = 1, and transiently activates HAG_transcription;
however, the cell fails to lock in hyphal_maintenance, and the yeast program is reestablished. This trajectory ends in the yeast-like attractor. (C) A yeast cell
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before Brgl activates HDACs, the system reverts to a yeast-like phenotype. This window may be skipped entirely if HDACs have activated prior to hyphal
initiation.

https://doi.org/10.1371/journal.pcbi.1008690.9003

and the inactivation of the hyphal activators Brgl, Ume6 and HDACs (Fig 4). As can be seen
in Fig 1, there is a mutual inhibitory relationship between NRG_T and NRG1@HAGs, on one
hand, and Brgl, Ume6 and HDACs, on the other hand. This blue conditionally stable motif
expresses one of the two possible states of that mutual inhibitory relationship, and is condi-
tioned on the OFF state of both ESCRT and cAMP/PKA, which is true for the three yeast-
favoring environmental conditions described by (pH = 0) AND (Farnesol = 1 OR Tempera-
ture = 0). The conditionally stable motif hyphal_initiation = 0 can also lock in under the same
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Table 2. The probability of converging to each attractor from an arbitrary initial state with hyphal_initiation = 0 and hyphal maintenance = 0, or from a yeast
state. While three attractor groups are stable in any environment, their reachability depends on the environment and on the initial state. For example, in a yeast-favoring
environment (first row), if the system starts in a yeast state, it will remain in that state. The results are qualitatively the same whether general asynchronous update (top) or

stochastic propensity update (bottom) is used.

Initial Condition

General Asynchronous Arbitrary*
Yeast

Stochastic Propensity Arbitrary*
Yeast

https://doi.org/10.1371/journal.pcbi.1008690.t002

Environment Yeast Yeast-like Hyphal-like Hyphal
pH = 0 and (Farnesol = 1 or Temperature = 0) 30% 0% 70% 0%
pH =1 or (Farnesol = 0 and Temperature = 1) 0% 10% 63% 27%
pH = 0 and (Farnesol = 1 or Temperature = 0) 100% 0% 0% 0%
pH =1 or (Farnesol = 0 and Temperature = 1) 0% 13% 50% 37%
pH = 0 and (Farnesol = 1 or Temperature = 0) 26% 0% 74% 0%
pH =1 or (Farnesol = 0 and Temperature = 1) 0% 8% 53% 39%
pH = 0 and (Farnesol = 1 or Temperature = 0) 100% 0% 0% 0%
pH =1 or (Farnesol = 0 and Temperature = 1) 0% 12% 33% 55%

set of environmental conditions. In a yeast-favoring environment, if the system starts from an
initial condition in which hyphal_initiation = 0 (which is the typical case), then this value is
stable, and the yeast-like and hyphal phenotypes will be unreachable (this finding is also
reflected in Table 2).

A conditionally stable motif expressing the activity of Brgl and HDACs and the inactivity
of the hyphal inhibitor Nrgl@HAGs has two variants. The first variant, shown in brown out-
line, is a stable motif in the environmental conditions (pH = 0) and (Farnesol = 1 or Tempera-
ture = 0). The second variant, shown with a brown background, also includes the inactivity of
HATs. This variant is a stable motif in the environmental conditions (pH = 1) or (Farnesol = 0
and Temperature = 1). The conditionally stable motif outlined in green is a subset of the blue
conditionally stable motif and is conditioned on hyphal_initiation = 1. The conditionally stable
motif outlined in pink overlaps with the brown stable motif, and is conditioned on
hyphal_initiation = 0.

The sequence of which subsequent stable motifs may lock in after a given stable motif locks
in is shown in the stable motif succession diagram [21] (Fig 4). The succession diagram con-
firms the simulation results that the yeast attractor is only reachable when pH = 0, and either
Farnesol = 1 or Temperature = 0. The trajectory toward the yeast attractor involves the stabili-
zation of the blue conditionally stable motif and the hyphal_initiation = 0 conditionally stable
motif. These motifs are independent of each other and thus could activate in either order in an
arbitrary trajectory; this is indicated by the bidirectional arrow in Fig 4. The other three attrac-
tors are also reachable in these environmental conditions through the successive lock-in of two
conditionally stable motifs. The reason that the simulations reported in Table 2 only reach the
yeast or hyphal-like attractors is that those simulations have hyphal_initiation = 0 in the initial
condition, which is a stable motif under these environmental conditions, and thus is immedi-
ately locked in, restricting the allowed successions.

In the hyphal-inducing environmental conditions (pH = 1 or Farnesol = 0 and Tempera-
ture = 1) the locking in of the brown conditionally stable motif can be paired with either state
of hyphal_initiation. According to the regulatory function for hyphal_initiation (Table 1),
locking in the brown stable motif takes away the possibility of hyphal_initiation to turn ON if
it was initially OFF. If hyphal_initiation turns on prior to the locking-in of the brown stable
motif, the system converges into the hyphal phenotype. As soon as the brown stable motif
locks in, hyphal initiation is prevented from turning ON, and thus it will lock in the OFF state;
the system will converge to the hyphal-like attractor. The locking-in of hyphal_initiation = 1
can be followed up by the brown stable motif or the green conditionally stable motif, which
expresses the state opposite of the brown stable motif. The first succession leads to the hyphal
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https:/doi.org/10.1371/journal.pchi.1008690.9004

phenotype, while the second leads to the yeast-like phenotype. The yeast-like phenotype
achieved through the last succession differs from the yeast-like phenotype obtained under the
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yeast-favoring environmental conditions in that the EFGI transcript, Efgl protein and HAT's
oscillate. Efgl oscillations in C. albicans have previously been proposed as a mechanism of
maintaining cell to cell variability of Efgl within a population [19].

Stable motif decision points correspond to YHT windows of opportunity

In the stable motif succession diagram, when there are multiple edges emerging from a single
motif, the system taking one of these edges may represent an irreversible commitment to one
of two mutually exclusive trajectories. Fig 4 shows two branch points that determine commit-
ment relevant to the YHT: the edges emerging from the solid brown conditionally stable motif
to either the tan or orange motifs indicate commitment to either the hyphal or hyphal-like
attractor groups. Similarly, the edges emerging from the tan stable motif to either the solid
brown or green motif dictate commitment to the hyphal or yeast-like attractor groups. The
choice of one path versus another depends on the timing of specific events.

The first branch point depends on a sequence of events starting when Brgl turns ON.
While Brgl remains ON, deactivation of HATs will follow via the inhibitory path Brgl —
HDACs —o HATs. However, activity of HATS is a requirement for hyphal_initiation to turn
ON. If hyphal_initiation activates before the node HATSs turns OFF, then the system will fol-
low the path toward the hyphal attractor group. Conversely, if HATs turns OFF before hypha-
l_initiation activates, the system will proceed toward the hyphal-like attractor group. For
example, in the trajectory in Fig 3A, HATSs turn OFF before hyphal_initiation turns ON, caus-
ing the system to proceed to the hyphal-like phenotype. This corresponds to the small incoher-
ent feedforward loop illustrated in Fig 3D.

The second branch point depends on the timing of events following the activation of hypha-
L initiation. If the brown motif (which contains Nrgl@HAGs = 0) locks in, or has locked in
prior to the activation of hyphal_initiation, then the system will proceed to the hyphal attractor
group. Yet, NRG1_T returns once hyphal_initiation activates, and can lead to activation of
Nrgl@HAGs, which is part of the green motif. Nrgl@HAGs activity is sufficient to lock in the
green motif, which expresses the deactivation of the core hyphal program, leading to the yeast-
like attractor group. Thus the YHT depends on a race to exclude Nrgl from the promoter
region of HAGs following the reactivation of NRG1 transcription. This race corresponds to
multiple negative regulatory pathways between hyphal_initiation and hyphal_maintenance
(Fig 3E), mediated through Nrgl @HAGs.

These decision points, and their corresponding races, reflect the documented C. albicans
YHT “window of opportunity” [7,10]. This is a transient period, beginning with the downre-
gulation of NRGI and ending with the subsequent re-expression of NRGI, in which the hyphal
program may be established. If it does not establish prior to the window closing, the cells do
not complete the YHT. As described above, our model reproduces this behavior, resolving the
window of opportunity into two distinct decision points (one regarding hyphal initiation and
the other regarding hyphal maintenance), and describing the specific mechanisms by which
the window can be missed.

Network control predictions

Using the Boolean YHT model, we sought to identify interventions, such as controlling the
state of one or more nodes or deleting or activating an edge, that could prevent the YHT. Inter-
ventions were identified using several different control strategies and objectives, summarized
in Table 3. We have applied feedback vertex set (FVS) control, stable motif control, and alge-
braic edge control with canalizing function analysis to our network model, as well as system-
atic simulations of perturbations.
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Table 3. An overview of the control prediction approaches we apply to the C. albicans YHT network, their objec-
tives, and the types of interventions they require.

Control Method Objective Interventions

FVS Control [24] Force system into target pre- Permanently control source nodes, temporarily
existing attractor control other nodes

SM Control [20] Force system into target pre- Temporarily (and sequentially) control nodes
existing attractor

Simulation Block YHT Start from a yeast state, and permanently control

single node
Algebraic Edge Prevent hyphal states from being Permanently control single edge
Control [25] attractors

https://doi.org/10.1371/journal.pchi.1008690.t003

Feedback vertex set control

A feedback vertex set (FVS) is a collection of nodes in a network whose removal results in a
network with no cycles (no feedback loops). On a network with no feedback loops, dynamical
processes described by Boolean or differential equation models have a single attractor [24,26].
FVS control thus predicts that by fixing all nodes in a given FVS, as well as all source nodes, to
match a particular attractor, one can force the system from any state into that attractor [27].
Once the system achieves that target attractor, control of the FVS nodes may be relaxed,
though control of the source nodes must be maintained. Unlike the other control methods,
FVS only requires knowledge of the network’s topology (Fig 1), that is, the collection of nodes
and edges, as well as knowledge of the attractors, but it otherwise requires no specific details of
the regulatory functions.

The YHT network contains a strongly connected component (feedback-rich subgraph) of
10 nodes. The FVS of the network consists of three nodes: Nrgl@HAGs, at least one node
from the Efgl feedback loop, and hyphal_initiation (which has a self-loop). FVS control pre-
dicts that a control strategy for ensuring that the system converges into the yeast attractor is to
maintain Nrgl@HAGs = 1, Efgl = 1, and hyphal_initiation = 0 to eliminate feedback sets, as
well as ensure pH = 0 and either Farnesol = 1 or Temperature = 0 to control source nodes (see
panel A of S1 Fig). Conversely, FVS control into the hyphal attractor group requires setting
Nrgl@HAGs = 0, Efgl = 1, and hyphal_initiation = 1 (panel B of S1 Fig). As this attractor
group is reachable in any environmental condition, the source nodes do not need to be
controlled.

FVS control provides a sufficient condition to maintain a given attractor. Nevertheless, it
may be that a subset of nodes can still accomplish the control objective. This is especially
important to identify here, as fixing nodes such as hyphal_initiation may have no obvious bio-
logical implementation.

Stable motif based control

Stable motif control seeks to determine a sequence of driver nodes that, if transiently main-
tained in a fixed state, will lock in a sequence of stable motifs that will force the system into a
desired attractor from any initial condition [20,28]. A variation of stable motif control also
identifies sequential control of driver nodes that drives the system into one of multiple target
attractors [29].

Fig 5 shows driver sequences needed to drive the YHT network into an attractor with
hyphal_maintenance = HAG_transcription = 0 (corresponding to one of the yeast or yeast-
like attractor groups), or hyphal_maintenance = 1 (corresponding to a hyphal phenotype).
Unlike FVS control, stable motif control is able to force the system to specific attractor groups
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https://doi.org/10.1371/journal.pcbi.1008690.9005

by only controlling two nodes, whose identities depend on the control objective and environ-
mental conditions. This is because the trajectory to each attractor contains a succession of two
motifs (Fig 4), and each multi-node stable motif of the YHT network can be locked in by fixing
the state of one node. For example, temporarily controlling hyphal_initiation = 1 (after which
it locks in), followed by temporarily controlling Brgl = 0 (until the green stable motif in Fig 4
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locks in) is sufficient to achieve hyphal_maintenance = HAG_transcription = 0 in any envi-
ronment. Other alternatives for ensuring the lock-in of the green stable motif following hyphal
initiation are setting HDACs = 0 or Nrgl@HAGs = 1. In all three of these cases the system will
follow a trajectory toward a yeast-like attractor. Driving the system to a hyphal phenotype in
any environment and from any initial condition requires temporarily holding hyphal_initia-
tion = 1 (after which it locks in), followed by holding any node value of the brown-outlined
motif (NRG1@HAGs = 0, HDACs = 1, or Brgl = 1). The stable motif based control sets still
have the shortcoming of involving direct control of hyphal initiation, which is difficult to
implement experimentally.

Simulated perturbations

We systematically simulated permanent deletions (holding in the state 0) and activations (hold-
ing in the state 1) of the nine nodes that are not signals, signaling intermediaries, or phenotypic
outcomes using both general asynchronous and stochastic propensity updating schemes. To
identify interventions that block YHT, we began the simulations in a yeast state placed into an
environment with Farnesol = Temperature = 0, pH = 1. As indicated in Table 2, the unper-
turbed system undergoes the YHT in about 37% of trajectories for general asynchronous update
(53% for stochastic propensity update), otherwise missing one of the two windows of opportu-
nity. We found seven node interventions (when grouping all Efgl knockouts, and Nrgl knock-
outs together) that ensure none of the trajectories converge to a hyphal phenotype (Table 4).
Among these, the interventions Brgl = 0, HDACs = 0, Ume6 = 0, or Nrgl@HAGs = 1 led to the
complete elimination of the hyphal attractor. Indeed, it was found experimentally that deletion
of BRGI [30], HDAI [10], or UMEG6 [31] led to impairment of the YHT. These four states are
incompatible with both variants of the brown motif, whose locking-in is necessary for the
hyphal attractor. Instead, the trajectories starting from the yeast attractor converge into either a
hyphal-like or yeast-like attractor (in case of Ume6 = 0) or solely to a yeast-like attractor (in the
other three cases). In the remaining four cases the hyphal attractor exists but it is not reachable
from an initial condition corresponding to yeast. In the case of deletion of EFGI, the system
stays in the yeast attractor, and for HAT's = 0 it converges into a hyphal-like attractor. Indeed, it
was found experimentally that deletion of EFGI prevented hyphal formation [32] and deletion

Table 4. Probabilities of completing the YHT in the condition pH = 1 and Farnesol = Temperature = 0, under single-node interventions or WT. Transition probabil-
ities are estimated from 500 simulated trajectories starting from the yeast attractor corresponding to the given environment (see Fig 2). When a perturbed system’s attractor
is different from the WT attractor, it is classified into a phenotype (attractor group) by similar criteria as in Fig 2; see S2 Fig for more details.

Node Value

Brgl
Efgl_T, Efgl, Efgl_active
Efgl
EFG1_T
Efgl_active
HATs
HATs
HDAC:s
Nrgl_T, Nrgl@HAGs
Ume6
Ume6

— o= o= o~ = |~ oo

z
;%

https://doi.org/10.1371/journal.pchi.1008690.t004

YHT (General) YHT (Stochastic Propensity)
Complete (Hyphal) Partial (HL or YL) Complete (Hyphal) Partial (HL or YL)

0% 0% 0% 0%

0% 0% 0% 0%

54% 28% HL, 18% YL 69% 14% HL, 17% YL
51% 31% HL, 18% YL 68% 13% HL, 19% YL
55% 29% HL, 16% YL 71% 10% HL, 19% YL
0% 100% HL 0% 100% HL

0% 100% YL 0% 100% YL

0% 100% YL 0% 100% YL

0% 0% 0% 0%

0% 85% HL, 15% YL 0% 90% HL, 10% YL
25% 66% HL, 9% YL 36% 55% HL, 9% YL
37% 51% HL, 12% YL 53% 38% HL, 9% YL
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Table 5. Edge perturbations predicted by algebraic control to block the YHT. Total effect measures the percent change in the state transition graph, and time to absorp-
tion (TTA) measures how long it takes to reach an attractor, starting from the yeast state, setting pH = 1.

Source Target Control type Description Total Effect TTA (WT = 16.8 steps)
Brgl Ume6 Deletion Equivalent to deletion of Ume6 12.5% 16.4
Nrgl@HAGS Ume6 Activation
HATSs Nrgl@HAGS Activation Blocks hyphal attractor with 75% YL, 25% HL. 6.25% 18.71
HDACs Nrgl@HAGS Deletion
Nrgl@HAGS Brgl Activation Equivalent to deletion of Brgl; makes the yeast state an attractor 25% 0
Brgl HDACs Deletion Equivalent to deletion of HDACs 25% 21.34
HDACs HATSs Deletion Blocks hyphal attractor with 100% YL 12.5% 24.12

https://doi.org/10.1371/journal.pchi.1008690.t005

of YNG2, encoding the Yng2 subunit of the HAT NuA4 complex, led to diminished HAG tran-
scription and significantly impaired hyphal formation [17].

In the case of simulated constitutive activation of Ume6, the YHT propensity decreased
compared to wildtype. This happens in the model because Ume6 inhibits Nrgl @HAGs,
decreasing the YHT window of opportunity. In contrast, simulated constitutive activation of
the EFGI transcript or Efgl protein increased the YHT propensity. This result is consistent
with the hyphal morphologies observed when EFGI is overexpressed [33].

Unlike the previous control methods, which by design force the system into a pre-existing
attractor, this method can introduce new attractors. For example, a simulated deletion of
BRGI prevented the YHT, consistent with experimental observations of defective hyphal elon-
gation in mutants lacking BRGI [30], and introduced a new yeast-like attractor in which
NRG1_T and Nrgl@HAGs oscillate. All attractors for each single-node perturbation are
shown in S3 File, and the new attractors observed for permanent deletions and activations of
single nodes are indicated in S2 Fig.

We also identified four perturbations that eliminate the yeast attractor even in yeast-favor-
ing environmental conditions, namely Brgl = 1, HDACs = 1, NRG1_T =0, and
Nrgl@HAGs = 0. These states are incompatible with the blue motif (Fig 4), whose locking in is
necessary for the yeast attractor. Any of these node states can ensure the locking in of both ver-
sions of the brown conditionally stable motif in Fig 4. When this motif locks in, the current
state of hyphal_initiation determines whether the system converges to the hyphal-like or
hyphal attractor groups. Hyphal initiation following a change in environment requires that
hyphal-inducing signals propagate through two parallel pathways: activating the brown motif
(via NRG1_T downregulation), and activating HAT's (via Efgl). Due to the proximity of the
controls to the brown motif, in all simulations the brown motif locked in before HAT's turned
on, causing the system to converge to a hyphal-like attractor. Thus, our model predicts that
these perturbations would lead to filamentation (likely pseudohyphae) even in yeast-favoring
environmental conditions. Indeed, experiments indicate that deletion of NRG1 leads to pseu-
dohyphae [34,35]. In contrast to the model prediction, C. albicans cells engineered to ectopi-
cally express BRG1 under yeast-favoring conditions stayed in a yeast phenotype [30]. One
potential explanation of this discrepancy is that Brgl translated from ectopically expressed
BRGI may not be able to recruit HDACs to the promoter region of HAGs to exclude
Nrgl@HAGs; indeed the same study found that in strains ectopically expressing BRGI, the
Brgl protein could not bind to the promoter region of HAGs.

Algebraic control with edge knockouts

Algebraic control [36] uses the polynomial form of the Boolean functions. Two types of control
objectives can be formulated: node control and edge control. The identification of control
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targets is achieved by encoding the nodes of interest as control variables within the functions;
edges of interest are encoded as control variables within the inputs of the functions. Then, the
control objective is expressed as a system of polynomial equations that is solved by computa-
tional algebra techniques. For node control, we considered the environmental condition

pH = Rim8 = 1, Temperature = Farnesol = Cyrl = cAMP_PKA = 0 and set the objective of
finding node knockouts or constitutive activations for which there is an attractor of the system
that has the hyphal_maintenance and HAG_T nodes OFF. Thus, we set our objective to find
controls such that F(x, i) = %,x, = 0,k € I, where the index set I corresponds to the indexes
of hyphal _maintenance and HAG_T. We found the following node controls: Brgl = 0,
HDACs = 0, and NRG1@HAGs = 1. These interventions were also identified by simulations to
block the YHT.

For edge control, we set the control objective of destroying (or blocking) the fixed point x,
corresponding to the hyphal state. Thus, our goal is to find controls u such that F(xq, u) # xo.
Using the edge control approach, we identified the following edge deletions and activations,
shown in Table 5, that are effective for blocking transition to the hyphal state.

For each edge control, we calculated the total effect (the total change in the state transition
graph) corresponding to stochastic propensity update, as described in the Methods. Interven-
tions with larger total effect induce greater systemic changes in the state transition graph of the
system, and therefore may be associated with more side effects [25]. We likewise calculated the
system’s time to absorption (TTA), which corresponds to how long it takes the system to reach
an attractor under stochastic propensity update, when starting from the yeast state and setting
pH = 1. Controls that have a lower TTA indicate that the system will quickly reach the attractor.
In the case when TTA = 0, the perturbed system has a stable yeast attractor even when pH = 1.
This is the case for constitutive activation of the inhibitory edge Nrgl@HAGs —o Brgl.

The edge interventions with smallest total effect (6.25%) are constitutive activation of the
HATSs — Nrgl@HAGs edge, or constitutive deletion of the HDACs —o Nrgl@HAGs edge.
The effect of these interventions ensures that if Nrgl is expressed, it will bind to HAGs, thus
under this intervention the system misses the second window of opportunity (Fig 3E). With
this intervention, the system converges preferentially into the YL attractor, or alternatively the
HL attractor, with a slightly longer convergence time than the WT system would converge to a
hyphal attractor.

Experimental verification of predicted control interventions

We performed two new experiments to test two model-predicted interventions that elimi-
nate the YHT: deletion of UME6 and deletion of the HDAC HDA1. The model predicts
both of these interventions make hyphal maintenance impossible, though it predicts differ-
ences in the final attractors. Setting Ume6 = 0 leads to a three-attractor repertoire: yeast,
yeast-like, and a novel attractor group named hyphal-like 2 (see S2 Fig). The attractors of
the Ume6 = 0 system do not achieve hyphal maintenance but do exhibit one or both of the
other hyphal-associated phenotypic outcomes. Setting HDACs = 0 in the model leads to
convergence to a yeast-like attractor, which is a much stronger departure from the unper-
turbed system’s outcome. We determined the morphology of cells of C. albicans strains
lacking UME6 and HDA 1 at 90 minutes after inoculation. By this time, cells of the wildtype
C. albicans strain have completed hyphal initiation and are in the elongation phase [7]. The
experimental condition was neutral (pH = 7.0) RPMI-1640 medium at 37°C; these mutant
strains were not tested under these conditions in any prior publications we found. As
shown in Fig 6A, compared to the wildtype strain at 90 minutes (0% yeast-form, 0% transi-
tional-form, 100% true hyphal-form), the ume6 A/A strain displayed a moderate
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Fig 6. Experimental validation of model predictions. (A) Representative images and quantification of the experimentally observed growth phenotypes of the
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PCR (qPCR) quantification of YWPI (yeast-wall protein) and HWPI (hyphal-wall protein) transcript levels in the WT, ume6 A/A, and hdal A/A strains at 90 mins.

Normalized relative gene expression is quantified with respect to WT using

2(=24¢) (C) Some ume6 A/A cells show constriction at sites of separation at 180 minutes,

which is consistent with a pseudohyphal phenotype.

https://doi.org/10.1371/journal.pcbi.1008690.9006

filamentation defect (4% yeast-form, 29% transitional-form, 67% true hyphal-form), while
the hdal A/A strain displayed a severe filamentation defect (60% yeast-form, 40% transi-
tional-form, 0% true hyphal-form). Quantification of the yeast-wall protein (YWPI) and
hyphal-wall protein (HWPI) transcript levels (markers of the yeast and hyphal phenotype,
respectively) at 90 minutes were consistent with WT cells expressing HWPI, and the hdal
A/A strain expressing YWPI (Fig 6B). The ume6 A/A cells expressed more YWPI and less
HWPI than WT cells. Further, at 180 minutes, many ume6 A/A cells show constriction at
the separation sites, which is a hallmark of pseudohyphal cells [4]. These results are consis-
tent with the model predictions, especially in terms of the relative severity of the two defects,
and provide evidence that the HL attractor may correspond to a pseudohyphal state.

Model validation by comparing to the published literature

As an additional verification of the model, we compared model-predicted outcomes of simu-
lated controls with published results of corresponding experimental interventions. As shown
in S1 Table, the model and experiments agree in 17 out of 22 cases. The five cases of disagree-
ment pertain to NRGI deletion and BRGI deletion under filamentation-inducing conditions,
Efgl constitutive activation under conditions favoring the yeast-form, and Brgl constitutive
activation.
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The model predicts that deletion of NRG1I leads predominately to a hyphal-like attractor in
every environment, while experimentally it was found that in hyphal-inducing conditions, dele-
tion of NRGI led to hyphal formation [34]. In the model, deletion of NRGI often leads to early
activation of HDACs, which precludes the temporary activation of HATSs, which in turn is nec-
essary for hyphal initiation (Fig 3D). This discrepancy could be mitigated by revising certain
assumptions of the model. Activation of Brgl may require the action of a specific activator in
addition to Nrgl@HAGs inactivity; indeed Brgl is documented to be part of a network of six
cross-activating transcription factors [32], which also includes Efgl. We tested a modified regu-
latory function, Brgl * = not Nrgl@HAGs and Efgl_active; however this change introduced a
discrepancy in capturing the phenotype of NRG1 KO in a yeast-favoring environment. Further
analysis of the functional requirement for the network in [32] and its relationship with Nrgl
may help to elucidate the regulatory function of Brgl. Another possibility is that the require-
ment for HAT' activity for hyphal initiation may be less strong than assumed in the model.

Constitutive activation of Efgl (simulated by maintaining Efgl_active = 1) in a yeast-favor-
ing environment leads to an attractor that exhibits a low level of Efgl_T and Efgl but other-
wise is the same as the unperturbed system’s yeast attractor. In contrast, a pseudohyphal
phenotype was observed experimentally [33]. The reason the model does not recapitulate this
result is the assumption that Nrgl_T downregulation requires active Efgl in collaboration
with cAMP/PKA or pH signaling. The discrepancy would be resolved by the alternative
assumption that the active Efgl is the mediator of the effect of the environment on Nrgl_T.
Indeed, a model version that omits the direct effects of the environment on Nrgl_T (by omit-
ting “or not (ESCRT or cAMP_PKA” from its update function) indicates a mixture of pheno-
types, 18% YL, 33% HL, and 49% H, in a yeast-favoring environment. This model version does
not introduce any significant deviations in results or any discrepancies with experimental
results.

The simulated deletion of Brgl leads to the system staying in a yeast state in hyphal-induc-
ing conditions, while experimentally it was found that a BRGI deletion strain exhibited com-
petent germ tube formation and defective hyphal elongation. The discrepancy stems from the
assumption that Brgl activity is required for hyphal initiation. It is possible that other tran-
scription factor(s) within the six transcription factor network mentioned above [32] could res-
cue hyphal initiation in the absence of Brgl. We tested adding a connection from Efgl_active
into hyphal_initiation, replacing Brgl with (Brgl or Efgl_active). In this case, in hyphal-
inducing conditions, the cells went to the YL attractor 98% of the time. This is because signal-
induced Efgl activation starts the second window of opportunity (Fig 3E) earlier, before Brgl
is in position to activate HDACs and Ume6. Thus, we learned that this putative transcription
factor is not Efgl_active, and it needs to activate hyphal_initiation at a similar time as Brgl.

Experimentally overexpressing BRGI in a yeast-favoring environment caused the cells to
remain in the yeast phenotype, while in a YHT-inducing environment led to sustained hyphal
growth [30]. In contrast, constitutive activation of Brgl in the model leads to a transition from
the yeast attractor to a hyphal-like attractor nearly 100% of the time, regardless of environ-
ment. The cause of this environment-independent outcome in the model is that ectopically
induced Brgl activates HDACs, which has two environment-independent effects: it prevents
HATS from activating, and it excludes Nrgl from the promoter region of HAGs. The first of
these effects obstructs hyphal initiation, while the second enables Brg1’s activation of HAG
transcription in the model. To restore agreement with experiments, ectopically induced Brgl
should not be able to activate HAG transcription in a yeast-favoring environment, and it
should not prevent hyphal initiation in a YHT-inducing environment. Both discrepancies
might be mitigated by a condition for the activation of HDACs that requires more than the
presence of Brgl, however candidates for this option are not immediately apparent.
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Discussion

Here we have developed a new Boolean model of the C. albicans yeast to hyphal transition
(YHT), and demonstrated that it recapitulates several known behaviors. Our model has attrac-
tors corresponding to the yeast and hyphal phenotypes, as well as two types of attractors that
correspond to different ways the system can fail to complete the YHT, by failing to pass so-
called “windows of opportunity” (Fig 2). The hyphal-like attractors exhibit expression of
BRG1, UMEG6 and hyphal-associated genes, but fail to activate hyphal initiation. Our model
predicts that the YHT can arrest if histone acetyltransferases (HATs) inactivate prior to the
transcription of hyphal-associated genes. This state is a point attractor in our model, which
may correspond to a pseudohyphal phenotype, or it may not be a stable biological state. Fur-
ther experimental investigation of this system may support or contradict the stability of this
state. It may also reveal the conditions under which the transition can resume or alternatively
the system can reset to a yeast state. The yeast-like attractors exhibit active hyphal initiation,
but have active Nrgl and inactive Brgl and Ume6, which are characteristic of yeast cells. We
interpret these states as the YHT arrested after hyphal initiation, followed by a resetting into
the yeast-like state of the transcriptional regulators.

Through stable motif analysis, we showed that the previously described YHT window of
opportunity corresponds to two branch points in stable motif succession (Fig 4). The choice of
which branch the system takes depends on the specific timing of events within two small sub-
networks we identified as the window of opportunity motifs (Fig 3). Both of these subnetworks
contain an incoherent feed-forward loop, which is the coexistence of two short paths of oppo-
site signs between a pair of nodes. The timing of the events in each path determines the out-
come. In the first window of opportunity (Fig 4D), hyphal_initiation must be activated before
HATs are silenced by HDAC:s to continue the YHT. In the second window of opportunity (Fig
4E), HDACs must be activated by the time the Nrgl_T expression starts to increase again, to
avoid the reactivation of Nrgl@HAGs, otherwise the YHT cannot be sustained. Further exper-
imental investigation of these epigenetic regulatory processes will be able to determine their
timing and regulation. For example, one may elucidate the timing requirement of the HAT
activity by engineering a deletion of YNG2 (encoding the active subunit of the HAT NuA4) or
by including an inducible promoter for a constitutively acetylated (and thus non-responsive to
HDACs) mutant (K175Q) YNG2 in a WT YNG2 strain.

We probed the dynamics of the YHT using two stochastic update methods with parsimoni-
ous assumptions. General asynchronous update assumes that only one node can change state
at any given moment, and each node has the same probability of being updated. Stochastic
propensity update with propensity of 0.5 assumes that each node has an equal probability of
following its regulatory function or maintaining its current state. Notably, in this update
method multiple nodes can change state simultaneously. The emerging theoretical under-
standing of Boolean dynamical systems indicates that both perfect synchrony and complete
lack of synchrony can limit possible state transitions in a way that leads to artificial oscillations
[29,37]. These limitations are avoided in the recently proposed Most Permissive Boolean Net-
works [38]. We found very similar results for the two update methods: the phenotypes are the
same and the probabilities to converge into each phenotype are similar (see Tables 2 and 4).
More specifically, the point attractors are the same and the complex attractor possible in five
input combinations resides in the same trap space (i.e., in the same branch of the stable motif
succession diagram). The agreement of the two update methods on the complex attractor is
consistent with the fact that this complex attractor originates in a negative feedback loop. The
agreement of the two update methods on predicted control strategies increases the confidence
on the applicability of these control strategies for the biological system.
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We applied four methods to predict control strategies that might block the YHT in C. albi-
cans. Each method searches for different types of control strategies, with slightly different con-
trol objectives (Table 3). Based on a previous analysis of FVS and SM control [39], we expected
these methods to give similar control strategies, since they both have the same control objec-
tive (forcing the system into one of its natural attractors) and are based on the control of feed-
back loops in the network. Based on [40], we expected the node control simulations to give
interventions not found by the other methods, since the simulations use as an initial state—the
yeast state—while the other control methods do not have a way to use a given initial state to
make their predictions. It was not clear how much commonality algebraic edge control would
have with the other node control methods, since algebraic edge control distinguishes itself by
its ability to (1) disrupt individual edges and (2) destroy the target attractors. Nevertheless,
some common key driver nodes and interactions emerged across the different control strate-
gies. Nrgl@HAGs, for example, was identified as a key node in all 4 control methods. In FVS
control, all but two feedback loops were broken by controlling Nrgl@HAGs (S1 Fig).
Nrgl@HAGs was a participant in almost all predicted stable motif control sequences (Fig 5).
Further, simulations found that constitutive activity of Nrgl@HAGs could prevent the YHT,
while constitutive inactivity of Nrgl@HAGs eliminated the yeast attractor. Lastly, more than
half of the algebraic edge control predictions involved constitutive activity or silencing of
edges involving Nrgl@HAGs or NRG1_T, including the interventions that led to the lowest
total effect (Table 4). These control results agree with the well-known central gatekeeping role
that Nrgl plays in regulating the YHT [7].

Our edge control results predict effective parsimonious interventions that target interac-
tions as opposed to nodes. For example, we predict that intervening in the acetylation proper-
ties of the promoter regions of HAGs in such a way to decrease the ability of Nrgl to bind
there would decrease the YHT. Such intervention offers a potentially more practical alternative
than genetic deletion of NRGI. We predict that disabling the capacity of Brgl to recruit
HDAG:, or disabling the capacity of HDACs to block HATSs, would also disable the YHT.

While one may view these control predictions as possible targets for externally applied per-
turbations, they also reveal much about how the system may control its own repertoire of
behaviors in different environmental conditions. Our analysis reveals the importance of posi-
tive feedback loops containing an even number of inhibitory edges (i.e., inhibiting an inhibi-
tor); these feedback loops form conditionally stable motifs that can lock-in and restrict the
system’s repertoire. The other regulatory motif important in this system is the incoherent
feed-forward loop, which underlies both windows of opportunity discussed earlier. The most
unexpected result concerns the incoherent feedback-mediated role of HATs in the YHT. First,
HATSs are required for hyphal_initiation [17], whereas they must be degraded for sustained
hyphal maintenance [10]. The exact mechanisms mediating HAT activity, and their timing,
requires further study.

There remain some experimental observations our model does not recapitulate, revealing
gaps in knowledge regarding regulation of the YHT. For example, our current model does not
recapitulate certain experimental observations pertaining to Brg1’s ability to recruit HDACs
and to regulate HAGs, potentially questioning Brgl’s primacy among multiple interacting
transcription factors that co-regulate HAGs [32]. Future genetic epistasis experiments, for
example, that combine deletion of BRGI with deletion of genes encoding these interacting reg-
ulatory partners, may shed new light on the hierarchical roles of these transcription factors in
regulating HAGs. The discrepancy regarding the phenotype of Efgl constitutive activation
suggests that Efgl may be the mediator of the environment’s effect on NRGI transcription. We
hope that our model will lead to follow-up experiments that eliminate these gaps of knowledge.
Ultimately, given the importance of the yeast to hyphal transition in modulating C. albicans
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virulence, understanding how cellular decisions are made to undergo this morphological tran-
sition will ultimately allow us to better understand how C. albicans causes disease in humans
and how this process can be altered to prevent disease.

Methods
Update methods

The state of the system at time ¢ is given by an n-dimensional vector x, where n is the number
of nodes (15 in this case). For each node i in the network, there is a corresponding Boolean
function f,(x") that specifies the regulation of node i. To analyze the network, we used two dif-
ferent types of stochastic update for the Boolean functions: general asynchronous, and stochas-
tic propensity.

In general asynchronous updating, at each time step one node (i) is selected at random and
its value is updated as

7 = f(x)

while all other nodes (j # i) remain unchanged,

xj#iH»l — x]t
We also used the stochastic propensity framework described by Murrugarra et al [41]. Briefly,
for each node i, we consider two parameters p;, p; € [0, 1] called activation and degradation
propensities. p! is the probability that in a situation when f; calls for an update from 0 to 1 the
state change happens (the state will remain 0 otherwise, with probability 1 — p!) and p! is the
probability of an update from 1 to 0 according to f;. If applying f; has no effect on x;, then x;
keeps its current value with probability 1. In summary,

%" = 1 with probability p! whenever x,' = 0 and f,(x') = 1,

%" = 0 with probability p; whenever x;' = 1 and f,(x') = 0, and

™ = x' otherwise.

In the stochastic propensity framework, each node may have different propensities to change
from 0 to 1 (p}) versus changing from 1 to 0 (p;), and these propensities may be different for
different nodes. Unlike general asynchronous update, it is possible for multiple nodes to simul-
taneously change state in the stochastic propensity framework. Because of these differences,
the timescales for simulations using the two frameworks are different. Due to the lack of infor-
mation on the kinetic rates or timescales of the nodes in this network, we choose all the pro-
pensities to have value 0.5.

State transition graph and attractors

Both Boolean update methods described above define a state transition graph (STG). Each pos-
sible state of the system corresponds to a node of the STG, and each directed edge indicates a
possible next state after a single time step. In the general asynchronous update framework,
only a single variable is updated each time step, so only states that differ by the value of a single
variable can be connected in the STG. Conversely, in the stochastic propensity framework,
multiple variables may simultaneously update within a single time step, and so distant nodes
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may be connected in the STG. This difference is partly responsible for the different timescales
discussed above.

The state transition graph with all nodes and edges completely describes all possible dynam-
ics of the system. Of special interest are the attractors of the system, which are individual states,
or collections of multiple states, that have transition edges into them, but no transition edges
out of them. In graph theoretical terms attractors correspond to terminal strongly connected
components of the STG. Once the system enters an attractor, it cannot leave using the dynam-
ics of the network alone. However, perturbations to the regulatory network, such as fixing
node values or deleting edges, can change the underlying STG, possibly changing the set of
attractors.

The distance between any two states x,y € [0,1]" can be described using the Hamming dis-
tance, defined as

H(x,y) = [ilx; # v},

and which has the property that H(x,y) € {0,1,2,. . .,N}.

Given any state x, the state y = (fi(x), o(x),. . .,fn(x)) describes the state achieved by applying
each regulatory function f{(x) to each node i simultaneously. Let d,, = H(x,y) count the number
of nodes whose values can change by applying one of the regulatory functions f;(x). Each state
x then has d, possible transitions out under general asynchronous update. Specifically, the
probability of transitioning between a pair of states x and y = (f;(x), f2(x),. . .,fx(x)) under gen-
eral asynchronous update is

d. .
Px,y:1*N ifx=y,
1.
p"‘}’:N if H(x,y) = 1, and

p., = 0if H(x,y) > 1.

Conversely, under the stochastic propensity framework there are 2 — 1 possible transitions
out of each state x (the —1 accounts for the case when none of the nodes that contribute to d,

update, which by definition is not a transition out of x). Each transition has probability p, , =
H’;l Prob(x, — y,) where

Prob(x, — y,) = p! whenever x, < y, = f,(x),

1

Prob(x; — y;) = p! whenever x, > y, = f,(x),

i

Prob(x; — y,) = 1 whenever x, = y, = f,(x), and

i

Prob(x, — y,) = 0 whenever y, # f(x).

All transition edges present in the general asynchronous update STG are also present in the
stochastic propensity STG, though they may have different probabilities. Conversely, the sto-
chastic propensity STG may have many edges not present in the general asynchronous STG.
Nevertheless, the two frameworks share many common dynamical behaviors.

If a state x is a point attractor (i.e., an attractor comprising a single state) of the system
under general asynchronous update, then by definition of an attractor, d, = 0. Thus there are
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2°-1 = 0 transitions from x under stochastic propensity updates, indicating x is an attractor of
the stochastic propensity system. Conversely, if x is a point attractor of the system under sto-
chastic propensity updates, then 2% — 1 = 0, so d, = 0. Thus, point attractors are preserved
between both update orders. Indeed, point attractors are independent of the implementation
of time [42].

In contrast, complex attractors are update-dependent [43], thus they are not guaranteed to
be preserved between the two update methods. The C. albicans YHT network has five related
complex attractors under general asynchronous update (one for each hyphal-inducing envi-
ronmental condition) (Fig 2). Simulations of these attractors using stochastic propensity
reveals that all nodes oscillating in the general asynchronous attractor also oscillate in the sto-
chastic propensity attractor. Thus, for the YHT network, all attractors of each method are also
attractors of the other.

Stable motif analysis

Stable motifs correspond to positive feedback loops in the network that, once they achieve a
certain state, become locked in. A stable motif succession diagram describes paths that may
be taken once a given stable motif has locked in. Edges indicate subsequent stable motifs or
conditionally stable motifs that may become locked in after the edge’s source stable motif is
established. We created a stable motif succession network using the StableMotifs python
package [29]. Several branches of the stable-motif network contained redundant informa-
tion that enabled simplifications. For example, the network has three inputs: pH, tempera-
ture, and Farnesol, each of which forms both ON and OFF stable motifs (e.g., pH=11isa
stable motif, as is pH = 0). However, many of these lead to identical successions. Such
redundancies were removed to derive a parsimonious version containing all the informa-
tion (Fig 4).

The total effect of deleting an edge

We implement the activation or deletion of a directed edge from node s to node ¢ by replacing
X, in the regulatory function of node ¢ by 1 or 0, respectively. To define the total effect of delet-
ing an edge for stochastic propensity, we compute the number of changes in the state space
before and after an edge deletion. If an update function f,(x) is written in canalizing layers for-
mat [44], that is,

fi(x) =M (My(... M, (M, +1)4+1...)+ 1+ bwhere M, = 1—Lk:1 (y; + 1) and y; € {x;, %},

then the percentage of change from the initial state space upon the deletion of the edge from

node s to node t is at most:
1 ky+.. Ak 41
A=(p;+p) (5)

Computation of the time to absorption

Consider the transition matrix of the Boolean network (as a Markov chain) in canonical form
P = [2Y], where 0 is the zero block matrix and I is the identity submatrix. The fundamental
matrix N is defined as the inverse of (I-Q). That is, N = (I - Q). The time to absorption for a
transient state j is defined as the expected number of steps before absorption and can be calcu-
lated as the sum of the jth row of N (see Theorem 11.5 of [45]).
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C. albicans strains

The C. albicans ume6 A/A a/a strain (TF179) [46] and the hdal A/A a/a strain (gift from K.
Kuchler) were constructed using the fusion PCR method described in [47]. The isogenic wild-
type a/a strain used for comparison was SN250 [48].

Filamentation assay

C. albicans cells were grown at 30°C on yeast extract peptone dextrose (YPD) agar plates (2%
Bacto peptone, 2% dextrose, 1% yeast extract, 2% agar) for two days. Single colonies were
picked and inoculated into YPD liquid medium (2% Bacto peptone, 2% dextrose, 1% yeast
extract) and grown at 30°C overnight. Strains were inoculated from the overnight YPD culture
into RPMI-1640 medium at pH = 7.0 (with glutamine and phenol red and without bicarbon-
ate, buffered with MOPS) (MP Biomedicals, catalog# 0910601) at an OD600 = 0.2. RPMI-1640
cell cultures were incubated at 37°C for 90 minutes and imaged by light microscopy. A mini-
mum of 70 cells were counted to quantify the percentage of cells categorized as yeast-form
cells, transitional cells (including pseudohyphal cells), and true hyphal cells for each strain.

Gene expression analysis by quantitative real-time PCR (qPCR)

RNA was extracted using the RiboPure Yeast RNA Purification Kit (Thermo Fisher Scientific,
catalog# AM1926). cDNA was synthesized using the High-Capacity cDNA Reverse Transcrip-
tion Kit (Thermo Fisher Scientific, catalog# 4368814). Expression levels of YWPI and HWPI
were measured in the WT, ume6 A/A and hdal A/A strain backgrounds by real-time quantita-
tive PCR (qPCR) with the following primer pairs: CINO3815 (5 ACAAATGTCAAGAAAC
CACCGT 3’) and CJNO3816 (5 ATCGCAAGCAACAACAGTGATA 3’) for YWPI; CJN
03813 (5 GGTCAAGGTGAAACAGAGGAAG 3’) and CJNO3814 (5 AATCACAAGGT
TCTTCCTGCTG 3’) for HWPI. Expression levels were assessed under the filamentation assay
conditions described above. Normalized relative gene expression values were calculated by the
AACr method using ADE? as a reference gene and normalized with respect to the WT strain.
Results are the means of two determinations.

Supporting information

S1 Fig. Feedback vertex set control. FVS control strategies to drive the system into a target
attractor (group). Bold edges participate in feedback loops that are broken by controlling the
values of the FVS. Nodes and edges that are irrelevant to feedback vertex control are shown in
light grey, while nodes of the FVS are shown with a blue outline, and the nodes are colored
based on the values they require for FVS control. (A) FVS control predicts fixing environmen-
tal conditions as pH = 0 and either Farnesol = 1 or Temperature = 0, and then fixing
Nrgl@HAGs = Efgl = 1 and hyphal_initiation = 0 will force the system into the yeast attractor.
Instead of Efgl, EFG1_T or Efgl_active would also be suitable targets. (B) FVS control predicts
fixing Nrgl@HAGs = 0, and Efgl = hyphal_initiation = 1 will force the system into a hyphal
attractor.

(TIF)

S2 Fig. Novel attractors following single-node control. Single-node deletions or activations
lead to new attractors. All attractors reached under YHT inducing conditions (pH =1,
Temperature = Farnesol = 0) are shown. Phenotype classification was performed as before,
except the values of environment source nodes (pH, Farnesol, and Temperature), signaling
intermediaries (Rim8, ESCRT, Cyrl, cAMP/PKA), and the individual perturbed node are
ignored. One attractor emerged which did not fit the phenotype classifications defined
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previously, which we here call hyphal-like 2 (HL2). It corresponds to deletion of UMES, and
has hyphal_initiation = 1, HAG_transcription = 1, and hyphal maintenance = 0.
(TIF)

S1 Table. Model validation by comparison with literature. Compilation of published experi-
mental intervention results and comparison with the relevant model results. The first column
describes the intervention. The second column indicates the environmental condition used in
the experiments. The composition of the various media is the following: YPD (also denoted
YEPD) medium: yeast extract-peptone dextrose, pH = 7 at the beginning of culture (it
decreases as the yeast breaks down dextrose); B-medium: 0.67% yeast nitrogen base, 2% Na-
succinate, pH = 6.5; RPMI-1640 supplemented with L-glutamine and buffered with morpholi-
nepropanesulfonic acid (MOPS), pH = 7.0; Spider medium: nutrient broth, mannitol, K2PO4,
agar, pH = 7.2. Because all of these experiments start with a dilution of cells into fresh medium,
the farnesol level is expected to be very low (equivalent with Farnesol = 0 in the model). The
experimental conditions that lead to successful YHT in wildtype cells are shown in blue font;
the rest are expected to be yeast-favoring environments. The third column summarizes the
experimental result and the fifth column indicates the reference. The fourth column indicates
the attractor repertoire of the model in the simulated intervention and environmental condi-
tion closest to the experiment. The model results that deviate from experimental observations
are shown in red font. The rest of the model results are consistent with experimental observa-
tions.

(DOCX)

S1 Text. Explanation of the regulatory functions of the model. Justification for the choice of
regulatory functions, along with relevant citations.
(DOCX)

S1 File. The YHT model in BooleanNet format. BooleanNet format file of update functions
from Table 1. BooleanNet files are plain text format.
(TXT)

S2 File. The YHT model in SBML qual file format. SBML qual model file generated by
bioLQM v0.6.1. SBML is an XML-style file format.
(Z1P)

$3 File. Attractors following single-node control. All attractors of the YHT network follow-
ing single-node knockout or constitutive activation of each node in the core network.
(XLSX)
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