Your Phone 1s My Proxy: Detecting and
Understanding Mobile Proxy Networks

Xianghang Mi*
University at Buffalo
xmi@buffalo.edu

Xiaojing Liao
Indiana University Bloomington
xliao@indiana.edu

Abstract—Residential proxy has emerged as a service gaining
popularity recently, in which proxy providers relay their cus-
tomers’ network traffic through millions of proxy peers under
their control. We find that many of these proxy peers are mobile
devices, whose role in the proxy network can have significant
security implications since mobile devices tend to be privacy-
and resource-sensitive. However, little effort has been made so
far to understand the extent of their involvement, not to mention
how these devices are recruited by the proxy network and what
security and privacy risks they may pose.

In this paper, we report the first measurement study on the
mobile proxy ecosystem. Our study was made possible by a novel
measurement infrastructure, which enabled us to identify proxy
providers, to discover proxy SDKs (software development Kits),
to detect Android proxy apps built upon the proxy SDKs, to
harvest proxy IP addresses, and to understand proxy traffic. The
information collected through this infrastructure has brought to
us new understandings of this ecosystem and important security
discoveries. More specifically, 4 proxy providers were found
to offer app developers mobile proxy SDKs as a competitive
app monetization channel, with $50K per month per 1M MAU
(monthly active users). 1,701 Android APKs (belonging to 963
Android apps) turn out to have integrated those proxy SDKs,
with most of them available on Google Play with at least 300M
installations in total. Furthermore, 48.43% of these APKs are
flagged by at least 5 anti-virus engines as malicious, which could
explain why 86.60% of the 963 Android apps have been removed
from Google Play by Oct 2019. Besides, while these apps display
user consent dialogs on traffic relay, our user study indicates
that the user consent texts are quite confusing. We even discover
a proxy SDK that stealthily relays traffic without showing any
notifications. We also captured 625K cellular proxy IPs, along
with a set of suspicious activities observed in proxy traffic such
as ads fraud. We have reported our findings to affected parties,
offered suggestions, and proposed the methodologies to detect
proxy apps and proxy traffic.

*Corresponding author

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual

ISBN 1-891562-66-5

https://dx.doi.org/10.14722/ndss.2021.24008
www.ndss-symposium.org

Siyuan Tang
Indiana University Bloomington
tangsi@iu.edu

Feng Qian
University of Minnesota Twin Cities
fenggian@umn.edu

Zhengyi Li
Indiana University Bloomington
zl11 @iu.edu

XiaoFeng Wang
Indiana University Bloomington
xw7@indiana.edu

I. INTRODUCTION

Residential proxy service is an emerging network infras-
tructure where customers’ network traffic is relayed through
millions of residential IP proxies. For example, Oxylabs [37]
claims to maintain 32M residential IP proxies and Smartproxy
has 10M [43]. Different from traditional web proxies (e.g.,
VPNs) which are typically deployed in data center networks,
residential proxies reside in residential or cellular networks,
and therefore can offer better anonymity and evasiveness
for proxy customers [32]. Those proxies can be personal
computers, mobile devices, and even IoT equipment [44] [22].
However, such a network infrastructure could be abused by
cybercriminals to cover their communication with the targets.
Indeed, a prior study [32] reports that ad clicking, fast fluxing,
and other malicious activities are observed in the traffic relayed
by residential proxy services. Another report [46] shows that
a residential proxy service was utilized to issue fraudulent
transactions on a large scale.

Mobile Devices as Proxy Peers. In recent years, major proxy
service providers started to offer proxy SDKs to popular
mobile systems (e.g., Android, iOS), and advertise their SDKs
as a monetization channel. Once app developers integrate a
proxy SDK into their apps, following the integration guidelines
from proxy service providers, mobile devices running those
apps (which we call proxy apps) will become proxy peers.
Such mobile proxy SDKs are promoted to benefit both proxy
service providers and app developers — the app developers
get paid for distributing proxy SDKs to mobile devices,
which in the meantime enables the proxy providers to offer a
large mobile proxy network to their customers. However, the
security implications of the proxy SDKs, both to the mobile
users who install the apps and to the Internet community,
have not been fully understood. Particularly, such proxy apps
could be considered illicit, as stated in Google Play’s developer
policy [17]: “Apps that facilitate proxy services to third parties
may only do so in apps where that is the primary, user-facing
core purpose of the app.”. Thus in our research, we focus on
such mobile proxy peers, which are characterized by relaying
traffic through mobile proxy SDKs, to provide an insider view
(e.g., proxy app) of mobile proxy networks and to understand
the impact of the networks on innocent mobile users.

Previous research [32] has looked into residential proxy

services with a focus on their architecture and scale. Specifi-
cally, it has also explored the recruitment of proxy peers with
some potentially unwanted programs (PUP) revealed to relay
traffic on Windows platforms. However, this is achieved by
collaboration with an anonymous security company and no
detection methodology is proposed to systematically identify
proxy peers and proxy SDKs on a large scale. Besides, while
coarse-grained traffic logs of those PUPs were analyzed in
[32] to understand the usage of residential proxy services, it
is unclear whether those traffic logs are indeed relaying traffic
since non-proxy components such as advertisement SDKs can
co-locate in a given PUP and thus contribute to the resulting
traffic. No solid methodology is available to exclude such
kind of non-proxy traffic, which undermines the findings in
[32]. Furthermore, little has been done so far to understand
the mobile proxy ecosystem of such services. One may ask:
who are the stakeholders of the ecosystem and how do they
interact with each other? Particularly to what extent has the
ecosystem influenced app monetization, and how important
is it to residential proxy services? Also unclear is whether
mobile device owners are aware of the relaying behaviors
through their devices, to what extent they are willing to
allow such operations, and whether their on-device resources
are abused by the traffic relay, e.g., incurring high cellular
data consumption. Answers to these questions are critical
for demystifying the mobile proxy ecosystem, which could
potentially help find an effective way to detect and mitigate
its security risks.

Our Study and its Challenges. In this paper, we report the
first measurement study to characterize the security and privacy
risks of utilizing mobile devices as proxy peers through mobile
SDKs. Our study faces several major challenges.

First, we need to discover mobile proxy SDKs and mobile
proxy apps “in the wild”. However, little pubic information
about such SDKs is available and it can only be acquired
from residential proxy providers, who often put restrictions
in place (e.g., background check to make sure that request
parties are indeed app developers). Thus, it is very difficult
to gather comprehensive information on mobile proxy SDKs.
Further complicating the identification effort is the observation
that some mobile proxy SDKs are heavily customized when
provided to app developers.

Second, given a proxy app, no existing techniques can
determine whether it integrates a proxy SDK or not, not to
mention any attempt to identify such proxy apps on a large
scale. Note that automated techniques serving such a purpose
are important, not only for our measurement study but also
for controlling the risks of the proxy apps, which have been
classified by Google Play as potential device and network
abuse [17] since June 2019.

Third, it is far from trivial to find out whether a mobile
proxy SDK is involved in illicit traffic relay activities. To
achieve that, we need an infrastructure to automatically run
proxy apps, trigger relaying behaviors, and capture the result-
ing network traffic. Then, a solution should be in place to
properly identify the traffic produced by mobile proxy SDKs
among other traffic incurred by the host proxy apps, the OS,
and other third-party libraries.

Fourth, from the end users’ perspective, understanding

mobile device owners’ attitudes towards mobile proxies is
also non-trivial, and it requires strategically designed user
studies. We also need well-designed experiments to profile
the potential security implications posed by mobile proxies
to mobile devices and their owners, e.g., abusing on-device
critical resources.

In our research, we addressed the above challenges through
a suite of effective techniques, which enabled us to perform
a large-scale study to understand the security implications
of mobile proxy networks in the wild. Specifically, we de-
velop a novel framework for semi-automated discovery of
mobile proxy SDKs from commercial residential proxy ser-
vices (§III-C). The key idea is that since proxy peers always
communicate with the service provider, we are able to utilize
passive DNS (PDNS) data to identify potential proxy programs
and further recover from them mobile proxy SDKs through
program analysis. The recovered mobile proxy SDKs are then
be used to generate robust signatures to find Android proxy
apps on a large scale. Next, the detected proxy apps are
efficiently executed on a custom proxy app profiling platform
developed by us. The platform captures relaying traffic (with
other traffic) in a configurable execution environment with
tunable settings such as the battery life, the network type as
detailed in §III-D. We then devise a robust relaying traffic
identification method, which effectively separates relaying
traffic from other irrelevant traffic (§III-E). Furthermore, to
obtain a complete picture of the mobile proxy ecosystem, we
also launch a user study to understand how willingly end users
would allow traffic relaying to occur (in exchange for free
services or fewer in-app ads), and how well normal users can
understand the traffic relaying agreement. Note that we have
taken strict measures to minimize potential ethical risks. We
filed several IRB applications for this study, and all of them
have been approved by our institution (§III-F).

Findings. Using the above framework, we analyzed 9 leading
residential proxy services and captured 625K unique cellu-
lar proxy IPs (as part of 8M residential proxy IPs) in 4
months, along with 1,701 unique Android APKs (963 Android
apps) that integrate mobile proxy SDKs from the four proxy
providers including MonkeySocks [33], Luminati [28], Oxy-
labs [37], and IPninja [23]. Our key findings are as follows.

First of all, we discovered an app monetization channel
never reported in the security community before: integrating
mobile proxy SDKs with mobile apps. It is found to be very
profitable for app developers, with a monthly payment of $50K
per IM MAU (monthly active users) per app on average as
in June 2020. We discovered 1,701 unique Android APKs
integrating proxy SDKs. Among them, 1,387 (963 Android
apps) have circumvented app vetting and been published in
Google Play. Also, 680 (48.43%) of those APKs were flagged
by at least five antivirus engines as malicious programs in
different categories. Examples include adware, PUP (poten-
tially unwanted program), trojan, fake app, virus, and clicker.
This may explain why 86.60% of the 963 Android proxy apps
have been removed from Google Play by Oct 2019. What’s
more, the mobile proxy SDKs were found to consume GBs
of WiFi data and tens of MBs of cellular data every day, and
we observed that 26 Android apps integrate multiple proxy
SDKs. Also, our user study indicates that the texts of user
agreements of the four SDKs are ambiguous about their traffic

relay behaviors and tend to cause misunderstanding among
users. We even found a previously unknown proxy SDK (not
belonging to the above four) stealthily relays network traffic
without user agreement at all.

Then, regarding proxy IPs and proxy traffic, our analysis
reveals that suspicious advertisement frauds contribute most to
relaying traffic, followed by search engine, traveling, shopping,
social network, and email services. We have also captured over
8M residential IPs, including 625K cellular IPs used by proxy
peers. Although most of them are clean (e.g., only 0.44% of
cellular IPs blacklisted), we did find that 46 IPs were involved
in large-scale botnets, such as Hajime and Mirai, actively
distributing attack payloads.

Contributions. The contributions of the paper are as follows.

e We report the first in-depth study on mobile devices as
proxy peers, an elusive app monetization method with few
details publicly available. Our findings highlight its security
and privacy implications.

e We developed novel techniques for identifying mobile SDKs
and Android proxy apps, profiling their behaviors, and analyz-
ing the traffic they relay. Our techniques can be integrated into
a system for detecting and monitoring Android proxy apps, as
well as for mitigating their potential security threats.

e More importantly, our study brought to light a set of
novel and inspiring findings, especially those highlighting the
security and privacy impacts of this mobile proxy ecosystem on
mobile users, app developers, app stores, and online services.

Responsible Disclosure. We have reported our findings to
Google (Anti-Abuse and Google Play Protect teams), who has
acknowledged the importance of the discoveries and appre-
ciated our effort. Through a series of emails and meetings,
we have also shared with them our methodologies, detection
signatures, and detected samples. Besides, we have responsibly
communicated our findings to relevant proxy service providers
and got their acknowledged to various extents. Some of them
are working to mitigate the identified security and privacy
issues. More details can be found in §VI.

II. OVERVIEW

In this section, we present an overview of the ecosystem
of mobile proxy services wherein residential proxy networks
are built upon mobile SDKs and mobile apps. Particularly, our
study reveals different stakeholders of the ecosystem and their
interactions such as SDK promotions and app monetization.

A. The Ecosystem of Mobile Proxy Services

Figure 1 illustrates the mobile proxy service ecosystem.
At the center is proxy providers that serve proxy customers
through mobile/residential proxy as a service. These customers
subscribe to the services and relay their traffic through the
proxy networks where mobile devices are used as exit nodes
(Proxy Peers). The proxy customers have no knowledge or
control of the proxy peers, as proxy peers are hidden behind
the gateway servers and only the gateway servers are visible
to the proxy customers.

Unlike traditional proxy services, mobile proxy providers
build up their proxy network through two unique channels.

Proxy
com'""SS'
i
Ace, oo on
o OF'O'”GWS
<---> <---P Prox
y
Backend Frontend Customers
Gateways Gateways
)
A
2, 4
‘% 1
s *

Proxy Peers

3 - Traffic
JH -

B,
ro,

sddy Axoid

TProxy Apps
<4—> Information Flow
Device

QUi < - - P Proxy Traffic Flow

Fig. 1: The Ecosystem of Mobile Proxy Services.

TABLE I: Proxy SDKs from different proxy providers.

Proxy Provider Supported Platforms

Luminati Android, Windows, Mac OS
MonkeySocks Android

Oxylabs Android

IPninja Android, Windows, Chrome Extension

One is to distribute their self-operated mobile apps to mobile
devices. One such example is Luminati, which has control over
apps such as org.hola.gpslocation and org.hola.va. The other
more scalable channel is to provide Proxy SDKs on popular
mobile platforms such as Android to monetize 3rd-party apps.
Among all 38 proxy providers in our study, four were found
to have proxy SDKs as listed in Table I.

App Developers can interact with the proxy providers to
integrate the proxy SDK into their mobile apps. Once an
integrated app is published, the revenue is calculated based on
the number of installations and the scale of the active user base.
Note that app developers typically have no or little control over
a proxy SDK’s logic such as how much traffic to relay.

Proxy Apps. To serve as the exit nodes, mobile proxy peers
run proxy apps that are integrated with the proxy SDK. While
proxy apps may ask device owners to agree with their privacy
terms, it is difficult for the owners to learn that the app will
relay traffic through their devices (proxy peers), as shown in
our study (§IV-B). Even when device owners are aware of
the relaying behaviors, they typically have no control over the
relaying behaviors in terms of how much traffic to relay, what
traffic to relay, and when to relay.

B. Promotion & Monetization of Proxy SDKs

Promotion of Proxy SDKs. We found in our research that all
four proxy providers promote their SDKs in a very low-profile
but precise manner. Interestingly, instead of utilizing online ads
to promote themselves, they directly contact app developers
through emails or other unsolicited methods. In particular,
there are some online discussions among app developers
regarding their experience of being reached out by the proxy
providers [1] [12] [41].

Ident:fy Proxy Providers :"‘Detect Proxy Apps

Identify Potential Identify Proxy SDK
Proxy A

lentit otential jentif T0)
Labelling Xy AppS Signaturos
‘S " g &Profiling

Collect
Android Apps

Signature based
Prox) yAple cior

—_

Identlfy and Profile Proxy IPs

Profile Proxy Apps

eeeeee

-
Infiltration Traffic
&Proxy IPs —_—

eeeeee App mel ing

-
R Traffic & Logs ;

Fig. 2: Overview of Measurement Methodology.

Pricing Policy. We also looked into different proxy providers’
policies for the app developers to monetize the integration
of their proxy SDKs. We found that these providers tend
to offer similar prices, while their commissions appear to
be increasingly attractive over time. For example, in June
2019, the commission (across all four providers) was $300
for 10K users every month, in other words, $30K/1M users
every month, but since September 2019, it has been raised
to $500 for 10K users every month, or $50K/1M users every
month. Interestingly, such a price change was quickly followed
by most proxy providers, indicating their competitive nature.
We also discovered that the commission varies by platforms
and app user locations. An app developer may get more
revenue from a mobile proxy peer (e.g., $0.025/month per user)
compared to a PC proxy peer (e.g., $0.02/month per user) in
certain countries.

Proxy SDKs vs. Other Popular Monetization Options. Our
research shows that proxy SDK monetization has advantages
over the other two popular app monetization options including
ads and data monetization (collecting in-app data from apps
running on mobile devices). First, proxy SDKs are a better
choice for inactive apps. An app integrating a proxy SDK
only needs to run as a background service or execute periodic
tasks to generate revenue, incurring negligible user experience
overhead. This is very different from ad SDKs, which require
apps to run in foreground to display ads to users, with the
revenue depending on how frequently an app is used. Second,
proxy SDKs generate higher revenues compared to data mon-
etization. For example, Luminati offers $50K per IM MAU
(monthly active users), while a popular data monetization SDK
provider AppGrow only offers up to $6.6K for IM MAUs [7].

III. METHODOLOGY

In this section, we present our measurement infrastructure
as shown in Figure 2. We first explain how to find previously
unknown proxy providers as detailed in §III-A, and then how
to identify proxy IPs in §III-B. Further §III-C details how
we detect proxy apps with high confidence. Then §III-D and
SIII-E describe how we profile those detected proxy apps
leveraging a set of techniques including app instrumentation,
dynamic analysis, and traffic analysis. Lastly §III-F discusses
the methodology limitations and how we address potential
ethical concerns.

A. Identify Proxy Providers

We started with the identification of residential proxy
providers. Specifically, using proxy provider websites reported

in a prior study [32] as “seeds”, we then recursively collected
search results from similar website lookup services (Alexa
Find Similar Sites [2] and Similar Web [42]) until no new
website is returned. After that, we manually validated each
website to confirm that it indeed offers residential or mobile
proxy services.

To this end, we collected 38 proxy providers (see Ap-
pendix IX-B) — more than doubling the findings made by
the most recent study [32] in late 2018. Among these 38
proxy providers, many are large and previously unknown
proxy providers such as Oxylabs [37] (claiming to have 32M+
residential IPs and 2M+ data center IPs) and Smartproxy [43]
(claiming to have 10M+ IPs). Most importantly, four of them
support mobile proxy: Oxylabs, Luminati, MonkeySocks, and
IPninja. For example, Luminati [28] claims that all mobile
IPs are cellular IPs. Besides this, we find some other new
trends in the services provided by the 38 providers: (1) IPv6
proxy peers are offered by some providers [9]; (2) some
proxy providers [34] are found to collaborate with ISPs to
monetize their idle network resources by relaying traffic;
(3) some providers pay exit nodes through blockchain-based
currency [26]; (4) some providers (e.g., Intoli [21]) offer “add-
on” services such as helping proxy customers render retrieved
HTTP response in providers’ headless browsers to circumvent
websites’” bot detection.

B. Capture IP Addresses of Peer Proxies

Among the 38 proxy providers, we selected a representative
subset of 9 providers considering their scale, reputation, prices,
as well as whether they have mobile proxy SDKs. Most of the
selected providers claim to have the largest pool of proxy peers
on the order of millions, and they are frequently recommended
by proxy customers in various forums. Also some of them (e.g,
Luminati, Geosurf) have been studied in previous works [32].
As shown in Table II, we purchased from 7 providers for at
least one-month subscription, along with free trials of another
2 providers, due to our budget constraint. Table II lists also the
cost of purchasing these services as well as the period during
which we carried out the respective service infiltration. To
infiltrate these proxy providers, we adopted a “traffic milking”
strategy [32] wherein web clients under our control send
crafted infiltration probes through the proxy networks towards
our web servers (mpaas.site). In this way, public IP addresses
of the exit nodes (proxy peers) can be observed. To capture
both IPv6 and IPv4 peers, we assigned our web server with
both IPv6 and IPv4 addresses and configured corresponding A
and AAAA records in our authoritative DNS server. Once a
proxy peer was detected, we performed active fingerprinting by
sending network probes to its public IP address and utilized the
responding network banners to infer the proxy peer’s device
type with Nmap [35]. We also deployed pOf [38] on our web
server to passively fingerprint the OS type for each observed
proxy peer. Note that this device/OS fingerprinting process
was approved and guided by our institute’s IRB (see details in
SIII-F).

Leveraging the above infiltration system, we infiltrated 9
proxy providers as listed in Table II. Overall, we captured
8,188,438 IPs (7,181,557 IPv4, and 1,006,881 IPv6), through
42M successful infiltration probes. Further, 624,989 IPv4 ad-
dresses (8.70% of all IPv4) are found to be cellular IPs by

TABLE II: Proxy providers selected for service infiltration.

Proxy Provider Cost ($) Period Days
Luminati 500 05/29/2019 - 06/30/2019 33
GeoSurf 300 05/28/2019 - 07/28/2019 62

ProxyRack 30 07/11/2019 - 08/10/2019 31
Oxylabs 600 06/12/2019 - 07/25/2019 38
Smartproxy 225 04/23/2019 - 07/30/2019 92
COSMO:PROXY 100 04/23/2019 - 06/28/2019 63
Storm Proxies 35 07/11/2019 - 08/10/2019 31
Intoli Free Trial ~ 04/23/2019 - 04/24/2019 2
Netnut Free Trial ~ 04/29/2019 - 04/30/2019 2

IPinfo [24]. However, we do not know how many IPv6 proxies
are cellular IPs as IPinfo’s cellular dataset fails to cover IPv6.

C. Detect Proxy Apps

Here, we aim to detect the programs serving as proxy
apps for those aforementioned proxy providers. To our best
knowledge, we are the first to explore this problem space.

Assumptions. As shown in Figure 1, proxy peers need to con-
tact proxy gateway(s) to relay traffic. Therefore, if a program is
found to have communicated with some proxy gateway, we see
a good indicator that it is likely a proxy app. This assumption
underlies our detection methodology.

Identify Gateway Addresses. A prerequisite of our detec-
tion approach is to collect proxy gateway addresses (domain
names). For this purpose, we take the following “snowballing”
approach to obtain them. We first get a single “seed” domain
for each proxy provider, and then extend the set of proxy
domains using passive DNS data. Specifically, we look up IP
addresses using each domain to discover more domain names
by performing reverse-lookups on these addresses. We repeat
these steps until no new domain or IP is found.

This seed-extension process turns out to be more compli-
cated than it appears to be, as we discovered that those proxy
providers may have their domains resolved to an IP address
shared with some irrelevant domain names. For example, in
Nov 2019, proxyrack.com is resolved to 104.26.3.97, which,
however, is reversely resolved to irrelevant domains such as
delight.fit. To address this problem, we manually picked out
high-confidence domains as follows: a domain is selected only
if it is semantically similar to the “seed” domain. Taking Lu-
minati as an example, its gateway domains include luminati.io
(the seed domain name), luminatinet.com, lum-sdk.io, luminati-
china.io, and lum-cn.io, all of which demonstrate some level of
connections to Luminati. This selection process was performed
manually in our study given the relatively low workload of
inspecting only hundreds of domain candidates.

Identifying Apps Linked to Proxy Providers. We searched
the discovered gateway addresses of proxy providers on popu-
lar threat intelligence platforms including VirusTotal [48] and
Hybrid Analysis [20]. Reports returned from these platforms
include programs observed to be related to a given domain.
Here we consider a program to be linked to a proxy provider
given at least one of the following two observations: the
program embeds in its payload the gateway addresses of the
proxy provider (called referrer) or it communicates with the

TABLE III: Windows/Android programs linked to proxy
providers, through referrer (Ref) or communication (Comm).

Provid Android Windows

rovider Ref Comm Linked Ref Comm Linked
Luminati 547 612 1,108 257 0 257
MonkeySocks 154 115 269 1 0 1
IPninja 90 0 90 3 0 3
Oxylabs 125 0 125 10 0 10
Overall 983 741 1,673 589 14 603

provider. By Nov 20, 2019, for all 38 proxy providers, we
found 2,939 such programs, with most of them being Android
(56.92%) or Windows apps (20.52%). Also, most of these
Windows and Android programs are linked to the top 4 proxy
providers offering proxy SDKs, as listed in Table III. Another
interesting observation is that more such linked programs show
up over time, from 1,810 by Feb 2019 to 2,939 by Nov 2019,
with disproportional growth of Android apps, from 49.78% to
56.92% during that period. Note that the apps linked to proxy
providers may not integrate their SDKs. Examples include
browser apps and security apps that maintain lists of domain
names containing proxy gateway addresses. So in order to find
those carrying the proxy SDKs, we move on to identify a set
of SDK signatures as elaborated below.

Identify Proxy SDK Signatures. Given the linked An-
droid apps discovered, we further located proxy SDKs
and collected their signatures. Our key observation is that
proxy SDKs of different versions can be fingerprinted by
a set of robust signatures including URLs, Java names-
paces, as well as Android services and broadcast receivers.
For instance, many Luminati’s proxy SDKs share the same
namespace io.topvpn.vpn_api, a set of URLs (e.g., perr.lum-
sdk.io, and clientsdk.lum-sdk.io), and several Android Services
and BroadcastReceivers (e.g., io.topvpn.vpn_api.bcast_recv,
io.topvpn.vpn_api.svc). Also, proxy SDKs are observed to
keep evolving, which can potentially invalidate some SDK
signatures. Therefore, a signature may only cover a subset of
SDK versions while a specific SDK version may not match all
signatures but only a subset. Still taking Luminati’s proxy SDK
as an example, its latest SDK versions have replaced package
name io.topvpn.vpn_api with io.lum.sdk. However, URLs such
as clientsdk.lum-sdk.io are still there.

Hence, we designed and implemented an extractor to
automatically retrieve signature candidates from the linked An-
droid apps. Specifically, for each proxy provider, the signature
candidate extractor unpacks linked Android apps to identify
the Java packages where the corresponding gateway addresses
are located. From each such Java package, our approach then
retrieves all IPs and domains it contains, together with its
Android services and broadcast receivers. Given these signa-
ture candidates, robust signatures were selected out through a
combined process involving app instrumentation and executing
the linked apps, as elaborated in §III-D. In the meantime, we
contacted all proxy providers to seek their mobile proxy SDKs.
Two of them, Luminati and IPninja, gave us access to their
latest SDK payloads along with the integration documentation,
which helped us further verify that the SDK signatures selected
from linked apps are robust enough to uniquely fingerprint
the corresponding proxy SDKs. In our research, we identified

51 high-confidence SDK signatures (20 for MonkeySocks,
14 for Luminati, 14 for IPninja, and 3 for Oxylabs). Only
3 Oxylabs signatures were discovered since its SDKs have
different namespaces and only three URLs are found to be
consistent across all proxy apps.

High-Throughput Signature-Based Proxy App Detection.
Leveraging the discovered signatures, our approach automati-
cally detected proxy apps from Androzoo [3], a large reposi-
tory of Android apps. Androzoo periodically downloads APKs
from multiple app stores including Google Play, Anzhi [5],
and AppChina [6], etc. By Nov 2019, it contains almost
10M Android APKs. The detection is based upon signature
matching, which however is more complicated than it appears
to be. Specifically, not only should we match the signature
with the APK binary payload. but we also need to inspect
uncompressed files. Also, to speed up the matching, we skip
media files including images, videos, and audios. In this way,
we built up the detector and an APK will be detected as
a proxy app when it matches at least one signature. We
ran the detector on randomly sampled 2M Android APKs
downloaded from Androzoo. Although apps with multiple
APK versions can get higher chances to be picked out, due to
our large sampling size (2M) and the long-tailed distribution
of apps over their APK versions in Androzoo, we believe that
overselecting APKs from the same app should not be a major
concern. Specifically, the 2M APKs we analyzed are from
a diverse set of 1.3M different apps. In total, 1,378 APKs
were identified as proxy apps with each integrating one or
more proxy SDKs, as detailed in §IV. We then sampled 100
detected APKs for manual study and results show that all of
them are true proxy apps. The precision of our detector is
further verified by observing the relay traffic when running
these apps (§III-E).

D. Profile Proxy Apps

Here we introduce our toolchain for dynamic Android app
profiling, which serves the following three purposes. First, our
approach helps manual confirmation of the linked programs
(as identified in §III-C) to be indeed proxy apps, and further
identification of proxy SDKs and their signatures. Then it
supports dynamical verification of detected proxy APKs on
a large scale, by observing their relaying behaviors and traffic.
Finally, the toolchain enables us to set up control experiments
to understand how proxy SDKs adjust their relaying behaviors
to the evolving system environments such as battery life,
network types, and system idleness.

App Instrumentation. To collect detailed runtime logs for
a given APK, our approach hooks its API calls using Frida-
gadget [14], a dynamic instrumentation toolkit. This allows
us to log API calls (parameters and payloads) when running
a patched APK without interfering with the operations of
its hosting system and other co-located apps. In our study,
we developed hook scripts to log SQLite access, capture
shared preference read/write, disable SSL pinning (so that
we can access the TLS-secured control-plane communication
between proxy peers and proxy gateways through MITM), and
more importantly locate network API calls, etc. While our
MITM experiment is focused on control-plane communication
between proxy apps and proxy gateways, it may inadvertently

intercept or interrupt relaying HTTPS traffic depending on
whether TLS verification is enforced by proxy customers.
Thus, an IRB application has been filed and got approved for
this experiment. We will revisit this issue in more details in
SIII-F. Note that the app instrumentation component was only
used during our short-term manual study of linked Android
programs. For the other two scenarios (verifying detected
proxy apps, and understanding behaviors of proxy SDKs), we
skipped this step to run the original APKs.

Scalable App Profiling Platform. This component is at the
center of our toolchain, supporting all three scenarios men-
tioned earlier. As shown in Figure 2, it consists of a scheduler
and a pool of workers. The scheduler is used to schedule
app profiling tasks to available workers while the workers
are responsible for running a given app inside an Android
emulator. Each worker operates as a Docker container pre-
configured with a set of useful tools to achieve the following
goals: (1) running an app APK inside the Android emulator
with specific API levels and ABIs (armeabi-v7a, x86, etc.); (2)
dumping the network traffic with tcpdump; (3) interacting with
the emulator through the ADB tool so that we can change the
app running environments such as battery life, screen on/off,
and network types (WiFi or cellular).

E. Proxy Traffic Detector

The network traffic captured by the aforementioned app
profiling platform can come from multiple sources including
the proxy SDK, other components co-located in the proxy app,
apps pre-installed in the Android emulator, and the Android
system itself. Our proxy traffic detector takes two steps to
separate relaying traffic from the background noise. The first
is to identify network traffic (proxy connections) between the
proxy peers and the proxy gateway, and the second step is
to pick out the communication (relayed connections) between
proxy peers and traffic destinations.

Compose Groundtruth Dataset. We started with composing
a groundtruth dataset consisting of proxy (between proxy peers
and proxy gateways), non-proxy connections, and relayed
connections (between proxy peers and traffic destinations).
Specifically, non-proxy connections were collected through
running the Android emulators without proxy apps. To gather
proxy connections, we conducted a differential analysis on
the traffic generated from the emulators with different con-
figurations. For instance, to collect the proxy connections of
Oxylabs, we ran several Android emulators with the following
settings: without any proxy app, with proxy app 1 of Oxylabs,
with proxy app 2 of Oxylabs, etc. From the traffic logs
PTOdUCCd by the emulators (Twilhout proxy app» Tproxy app 1 of Oxylabs»
Throxy app 2 of Oxylabss €tC.), we recover the proxy traffic (proxy
connections and relayed connections) associated with Oxylabs
through mZ‘Lleproxy app-i of Oxylabs \Twithout proxy app» which allows
us to exclude traffic generated by the system, co-located apps,
as well as app components co-located inside the proxy apps
of Oxylabs. From the proxy traffic, the proxy connections can
be easily identified since they exhibit a strong correlation with
the relayed connections in terms of timing and volume. For
example, the relayed connections are established only after
incoming traffic arrives through the proxy connections. In this
way, we collected a dataset of 500 non-proxy connections, 50
proxy connections, and 500 relayed connections.

1e0
150 TCP SEQ 10° TCP SEQ
1.25 TCP ACK 108 TCP ACK

& 1.00 «n 107
S0.75 510
o o

0.50 10°

025 10¢

102 10° 10° 10° 10? 10° 10 10°
Time in Seconds Time in Seconds

(a) Y-axis: # of Bytes (b) Y-axis: Log-scaled # of Bytes

Fig. 3: TCP SEQ/ACK by Time for the Proxy Connection.

Detect Proxy Connections. To capture proxy connections,
we utilize their unique characteristics as observed from the
groundtruth dataset when comparing the proxy and non-proxy
connections. Specifically, a proxy peer usually maintains one
or more long-lived proxy connections to the proxy gateways
through the TCP protocol. Outgoing packets of such a proxy
connection are found to have a much larger TCP acknowledge-
ment number compared to their TCP sequence number, and the
gap grows as more traffic is transmitted. This indicates that
the proxy peer uploads more data to the proxy gateways than
downloads — much different from a typical mobile app that
usually serves as the clients and consumes more data from
the server-side than contributes data to the server. Figure 3
exemplifies how TCP SEQ/ACK of a proxy connection of the
Oxylabs SDK changes over time. This proxy connection lasted
almost 40 hours. When it terminated, the gap between the last
outgoing TCP packet’s SEQ and ACK becomes more than
1,200 MB. The observations allow us to accurately identify
proxy connections from the network traffic dump.

Based upon the observations, we design the following met-
rics to profile a proxy connection: 1) the gap in bytes between
TCP SEQ and TCP ACK, ie., ConnGap = Connggqg —
Connck; 2) the gap ratio between TCP SEQ and TCP ACK,
i.e., ConnGapRatio = Conngpg/Connsck; 3) the connection
lifetime in seconds, i.e., ConnLifetime = Conniermination —
Connpgndshake- Given those metrics, a lightweight threshold-
based methodology was found to be very effective when eval-
uating on our labeled dataset. We ran a script to automatically
explore different thresholds, seeking their combinations with
the best performance in terms of recall and precision. The
script reported that many combinations achieve both 100%
recall and 100% precision, which suggests the decision bound-
ary is wide and a threshold-based solution is good enough to
handle this task. For our detection, we selected ConnGAP >
1MB, ConnGAPRatio > 6, ConnLifetime > 1,000 as the
threshold combination, and it was found effective across proxy
apps and proxy SDKs, which is reasonable considering that
those proxy providers share the same service model.

Detect Relayed Connections. The next step is to identify
the network connections (relayed connections) between the
proxy peer and the traffic destinations. This step relies on
the observation that relayed connections must exhibit a strong
correlation with proxy connections, in terms of timing and
volume. For example, relayed connections will only be set up
following instructions from the proxy servers. Therefore, the
handshake of the relayed connection comes very closely after
the last incoming packets from the proxy connection. Also,
packets received from a destination will be quickly forwarded

to the proxy gateway, as the proxy peer acts as the bridge for
the communication between the gateway and the destinations,
leading to a strong correlation (timing and traffic size) in the
traffic from the two connections. Leveraging the observations,
we can effectively identify relayed connections and traffic by
examining whether they exhibit a strong correlation with proxy
connections reported in the first step.

Specifically, we define two metrics to identify relayed
connections, RelayedTiming and RelayedTrafficGapRatio. Re-
layedTiming profiles the timing gap between the handshake
of a connection and the last packet received from the proxy
connection. The shorter it is, the more likely the connection
is the relayed connection. RelayedTrafficGapRatio is defined
as Trafﬁc%’;;?ﬁ_c :Ljfzckel“ye“ to profile the traffic volume difference
between a giveyn connection and the proxy connection during
the lifetime of this connection. Still, the smaller it is, the more
likely the connection is a relayed one. Similar to the last step, a
threshold-based detector (RelayedTiming < 0.05 seconds, and
RelayedTrafficGapRatio < 7%) was found to work effectively
when evaluated on our labeled dataset.

Leveraging this two-step proxy traffic detector, we further
validated the proxy app detection results by sampling 50
flagged proxy apps and observing whether there is proxy traffic
when running the apps. The validation reported proxy traffic
from all 50 sampled apps, indicating that our signature-based
proxy app detector is of high precision. The identified relaying
traffic can also help us understand how this mobile proxy
ecosystem is used by proxy customers and for what purposes.
Detailed results can be found in §IV and §V.

F. Discussion

Limitations. Our methodology for identifying proxy providers
(§III-A) may miss underground proxy providers due to their
low public visibility. Our proxy app detector (§III-C) signif-
icantly depends on robust signatures for proxy SDKs. Every
time a new proxy SDK emerges, signatures should be collected
before detecting. Also, it targets only the Android platform,
and extra work needs to be done before it can handle the apps
on other platforms such as iOS. Nevertheless, our experience
indicates that: (1) the methodology for deriving signatures
for one proxy SDK (e.g., Luminati) can be well generalized
to other proxy SDKs; and (2) most steps in the signature
generating process described in §III-C can be automated, such
as identifying linked apps, verifying proxy apps, and extracting
proxy SDK signatures. We therefore believe that manual efforts
can be minor when extending the detector to a new proxy
SDK. Another limitation is our threshold-based detectors for
proxy traffic (§III-E). While they serve our purpose well to
select out proxy connections and relayed connections, they
may suffer from a set of limitations when applying to some
real-world scenarios. First, the real-world traffic can be more
complex than that produced by Android emulators, since it
can be generated from many more apps and some traffic such
as live streaming may also have a larger TCP SEQ than TCP
ACK for outgoing packets. Also, proxy providers may keep
adapting their traffic behaviors. We leave it to our future work
to understand the problem and seek other solutions. Note that
those potential limitations do not affect our study since we
run proxy apps in emulated environments with much less
background noise traffic. Another concern resides in whether

proxy SDKs will distinguish emulated environments from
real devices and adapt their behaviors accordingly. However,
through controlled experiments on a small fraction of the apps
by running them in emulators and real devices, we did not
observe any proxy apps alter their behavior in an Android
emulator. And we did not find proxy SDKs change their logic
in an Android emulator either.

Ethical Concerns. In our research, we have filed 3 separate
IRB applications for the user study (§1V-B), host fingerprinting
(§II1-B), short-term MITM experiment and long-term passive
traffic logging (§III-D). All of them have been approved by
our institution. In addition, we have enforced strict protection
measures to minimize potential ethical risks in the host finger-
printing, the short-term MITM experiment, and the long-term
passive traffic logging, as elaborated below.

Our host fingerprinting was configured with low frequency
(at most once for each remote host per month) to avoid the
burden introduced to remote hosts. In the short-term MITM
experiment, relaying traffic may go through the proxy app.
Thus, relayed HTTPS connections are either interrupted or
intercepted depending on whether TLS verification is enforced
by proxy customers. In the case of interception, we could
inadvertently get access to the plaintext of relaying HTTPS
traffic. To protect the privacy of proxy users, we did not
look into the payload of any intercepted HTTPS connections
from the users and had permanently deleted the data after the
experiment. For the long-term traffic logging, we focused on
the categories of traffic destinations (IPs and domains) and did
not access the payload of HTTP traffic. Also, the traffic logs
are stored in the physical servers at our institution and only
privileged administrators have access. We plan to permanently
delete them once the project finishes.

IV. MOBILE PROXY PROGRAM ANALYSIS

In this section, we report our new findings and understand-
ings of mobile devices as residential proxy peers, a service at
the center of mobile SDK-based residential proxy networks.
We first present the measurement findings about the landscape
and maliciousness of proxy programs (i.e., Android APKSs)
on mobile devices. Then we describe our discoveries through
reverse engineering of proxy SDKs, and our investigation of
user awareness and willingness to relay traffic.

A. Analyzing Proxy Programs

Finding I: Proxy apps have hundreds of millions of installs
in total, but many have been unpublished from Google Play,
likely due to violation of Google Play’s developer policy.

Scope and Magnitude. Initially, through scanning the sampled
2M APKs from Androzoo, we discovered 1,378 Android
APKs belonging to 963 Android apps (an Android app can
have multiple APK versions), which have ever served as
proxy peers for at least one of the four residential proxy
service providers including MonkeySocks, Luminati, Oxylabs,
and IPninja. Among the 1,378 Android proxy APKs, 1,374
are downloaded from Google Play by Androzoo, while the
remaining 4 are from AppChina [6].

To understand how long Android apps have served as
proxy peers, we collected historical APK versions for each

TABLE IV: Detected Android proxy APKs and apps. GP
means Google Play, and app availability and installs were
captured from GP between Aug and Oct 2019.

Provider # APKs # Apps #in GP # Installs in GP
MonkeySocks 787 715 79 5,749,336
Luminati 801 204 59 229,187,000
Oxylabs 86 27 23 76,250,000
IPninja 25 18 11 2,410,075
Overall 1,701 963 171 308,596,411

app from Apkmonk and Google Play and discovered another
1,493 unique APKs. We then looked into whether those
APKs integrate proxy SDKs using the signature-based de-
tection (see §III-C). In total, we gathered a dataset of 963
Android proxy apps along with their 2,871 APKs, among
which, 1,701 were detected as proxy APKs. Table IV presents
the number of Android proxy APKs and proxy apps across
proxy providers, as well as the number of Android proxy
apps still available on Google Play by Oct 2019 and their
installations in total. Surprisingly, 2 proxy apps were found
to serve as proxy peers for multiple proxy providers. For
instance, com.plonkgames.apps.iq_test (5M installs) works for
both Luminati and Oxylabs.

Interestingly, 71 Android apps dropped out the proxy
networks during the observed lifetime. Examples include
com.appsomniacs.da2 with 100M installations on Google Play.
Among its 21 APK versions spanning 2017-07-13 and 2019-
09-12, only 6 were found to serve as proxy peers for Luminati
between 2017-07-13 and 2018-05-24. We also notice that
a proxy app can migrate from one proxy SDK to another.
One example is com.littlepako.opusplayer3, which migrated
from IPninja to Luminati. We further check the number of
installations of those proxy apps. For this purpose, we crawled
apps’ metadata (e.g., number of installation, category, etc.) in
Google Play in October 2019. Among 963 apps, 171 (79 for
MonekySocks, 203 for Luminati, 27 for Oxylabs and 18 for
IPninja) were found. The top 5 app categories are Education
(17.69%), Tools (11.54%), Personalization (7.69%), Music &
Audio (6.92%), Communication (6.15%). In total, these apps
were installed 300M times and 10% of them have more than
1M installations. Besides, while MonkeySocks has the largest
number of proxy Android apps found in Google Play, 90% of
them have less than 20K installations. Meanwhile, most apps
for Luminati and Oxylabs have more than 100K installations.

Delisted Proxy Programs. We further conducted a longitu-
dinal study of those Google Play apps to understand their
availability. Specifically, we checked each proxy app’s meta-
data from Google Play weekly from Aug 13, 2019, to Oct 26,
2019. Interestingly, we observed that 42 apps were delisted
from Google Play during our observation period and only 129
were left in the app store. Considering all 963 proxy apps
once existed in Google Play, the delisting rate is as high as
86.60%. While an app can get delisted for various reasons, it
still raises concerns regarding the maliciousness of proxy apps
and proxy SDKs. We further checked Google Play’s developer
policy [17] and found that the following behavior is considered
as a policy violation: “Apps that facilitate proxy services to
third parties may only do so in apps where that is the primary,
user-facing core purpose of the app”. This policy has been

violated by almost all detected proxy apps, since none of the
apps we sampled explicitly state their functionality to be a
proxy. Among the 129 apps still available in Google Play, 10
of them were still integrated with the proxy SDKs as in mid-
Nov 2019.

Finding II: Malicious mobile apps are abusing the proxy
ecosystem to monetize their user base while integrating
proxy SDKs can damage the reputation of benign mobile

apps.

Blacklisting. We further checked whether these proxy APKs
are credible. We downloaded the analysis reports if available
from VirusTotal [48] for those APKs. Among the 1,701
Android proxy APKs, 1,404 have been analyzed by VirusTotal.
Among these analyzed APKs, 166 (11.82%) were alarmed by
more than 10 anti-virus engines, 680 (48.43%) were hit by
at least 5 and 1,212 (86.32%) were flagged by at least one as
malicious. Interestingly, among 129 apps still active in Google
Play, 64 were analyzed, 18 of them were flagged by at least
one anti-virus engine, and one was even alarmed 15 times.
Also, MonkeySocks and Luminati have a much higher ratio of
malicious proxy apps, compared to Oxylabs and IPninja. One
explanation is that the first two providers fail to enforce strict
background checks when recruiting new proxy apps.

Table V shows the top 10 malicious categories given
by the anti-virus engines. As expected, the proxy category
comes as the first, which is aligned with our detection results.
Interestingly, besides commonly known malicious categories
such as PUP, adware, and trojan, 142 proxy APKs were
detected as fake apps (a.k.a., phishing apps). Examples in-
clude com.wChatApps_5759913 (a fake Wechat app), and
com.wWhatsUppMessenger_6689631 (a fake Whatsapp app).
All those fake apps are served as MonkeySocks’ proxy peers.
Also, some of Luminati’s proxy apps were reported as Tap-
core [45] and Fobus [13], both of which are recently emerging
malware families on the Android platform. Besides, 12 apps
(16 APKs), which integrate Luminati or Oxylabs proxy SDKs,
were found to be clickers (ad fraud).

To investigate whether the maliciousness stems from mo-
bile proxy SDK or other components of the proxy program,
for each proxy app, we compared the anti-virus scan results
of its historical APKs with and without mobile proxy SDK.
we found that 39.50% of the Android apps are blacklisted
even without mobile proxy SDK by at least one anti-virus
engine, while 15.75% has been alarmed by at least 5 engines.
Comparing different proxy providers, Oxylabs’s proxy apps
look most clean with only 1.54% non-proxy APKs alarmed at
least 5 times. Those results indicate that this proxy ecosystem
may be abused by malware operators as a profitable and
stealthy monetization channel. For those apps being flagged
after mobile proxy SDK is added, we observe that adding Mon-
keySocks and Oxylabs proxy SDK leads to a higher probability
for the apps to be flagged as malicious. In particular, 78.67%
proxy apps of MonkeySocks were alarmed at least 5 times after
integrating the SDK, while only 25.42% of these apps were
flagged before the integration. For Oxylabs, the ratio increases
from 1.54% to 15.79%.

TABLE V: Malicious categories of proxy APKs and apps,
wherein, L denotes Luminati, M for MonkeySocks, I for
IPninja, and O for Oxylabs.

Category % APKs % Apps # Providers # AV Engines
1 Proxy 76.21% 92.02% M-L-O 1
2 Adware 45.57% 74.02% M-L-O 7
3 PUP 45.36% 69.33% M-L 2
4 Trojan 45.14% 73.76% M-I-L 6
5 Riskware ~ 37.86% 63.50% M-I-L-O 3
6 Fakeapp 10.14% 17.49% M 4
7 Virus 8.29% 14.45% M 1
8 Tapcore 4.79% 7.73% L 3
9 Fobus 2.21% 1.27% L 1
10 Clicker 1.14% 1.52% L-O 2

B. Analyzing Proxy SDKs

Finding III: Proxy SDKs deploy various tricks to keep
relaying traffic in the background without users’ notice.

Workflow and Architecture. In our study, we identified proxy
SDKs for four proxy providers and then reverse engineered
those SDKs and some of their host APKs to understand their
workflow and architecture. The typical workflow of a proxy
SDK is as follows: when a proxy SDK is invoked for the
first time, a traffic relaying notice will be triggered. Once
users agree with the service terms, the SDK starts running
in the background, along with several broadcast receivers
registered to monitor device events. Those receivers allow the
SDK to adapt proxy behaviors to the device status such as
battery life, network type, and device idleness. Also, since a
background service can be killed when the system needs to
free resources, those SDKs try to restart their main services
by registering restarting jobs (usually, through Android Alarm-
Manager). Interestingly, after Android API 26, new restrictions
are introduced to background services if they are from the
apps with no active components running in the foreground [4].
We found that all SDKs implemented some countermeasures
to circumvent the restrictions, such as starting JobService
instead of Service. Below we elaborate on the user consent and
relaying constraints of those proxy SDKs to further understand
their impacts on device users.

User Consent. Among the four proxy service providers, we
found that all of them would ask for user consent before
relaying traffic, as shown in Figure 4. For instance, Luminati’s
proxy apps ask for user’s consent through a dialog with the
following statement as shown in Figure 4(a): Your use of “App
XX is free of charge in exchange for safely using some of your
device’s resources (WiFi and very limited cellular data). To
understand whether users can correctly interpret such requests
along with their attitudes towards traffic relaying through their
devices, we conducted a user study, which was approved by our
institution’s IRB. This user study involves an on-site survey. 50
participants were recruited through emails, posters and other
channels, with each given a shopping gift card of $10 after
participation. All of them have used mobile apps for more
than three years. Their age ranges from 18 to 65 (62% are
male and 38% are female), and their education level ranges
from high school to graduate degrees. Before the survey, 11
of them (22% of all participants) knew the concepts of web
proxy and relaying traffic. After reading our explanation hints,
49 of them understood the two concepts. Details of the survey

are presented in Appendix IX-A.

Finding IV: Proxy SDKs’ user consents are ambiguous as
most users cannot capture the intention of relaying traffic.

User awareness of traffic relaying consent. The survey is
designed to ask users to which extent they understand that
accepting user consent will lead to relaying traffic via their mo-
bile devices. Specifically, we first randomly selected one user
consent dialog from the proxy apps of all 4 proxy providers.
We then asked subjects to provide their understandings on
those dialogs as open-ended questions. Next if the subject
knew nothing about web proxy or relaying traffic, we provided
them with an explanation and asked again the readability of
the user consent dialogs (e.g., “do you think the user consent
dialog expresses clearly that it requests to turn your device
into a web proxy and relay unknown traffic”).

For the initial open-ended questions, most subjects mis-
understood those user consent dialogs and only 10% of the
participants expressed that the apps may want to relay traffic
through their mobile devices. For the rest of the subjects, 56%
mentioned that the app did nothing different from legitimate
apps: e.g., “It seems that the app is free to use and will
consume my cellular data, which is what every app does
in general”. Among all participants, 16% of them expressed
their concerns that this app may collect their non-personal
data: e.g., “It is free but it may collect some information
like device information (device ID) and network information
which is likely to be used in targeted advertising analysis and
market analysis.” After knowing the concepts of web proxy
and relaying traffic, 72% of the participants think the dialogs
are “Not at all clear” in expressing the intention of turning a
user’s device into a web proxy. We notice that the keywords
“proxy” or “traffic relaying” rarely appear in the user consent
dialogs. This may be because such apps try to circumvent app
vetting and hide their roles of being proxy peers.

Finding V: Most users are not willing to relay traffic
through their devices, not to mention using cellular data.

Users’ unwillingness of traffic relaying in exchange for
rewards. We also asked the participants to which extent they
are willing to relay traffic in exchange for rewards such as free
app functionality. Specifically, in the aforementioned survey,
we asked them another set of questions especially ones on the
acceptable traffic relaying constraint (e.g., “How much WIFI
data do you allow the proxy app to consume?’) and bonus
(e.g., “If provided with a small amount of money, are you
willing to relay traffic?”).

Results show that 34% of the participants are “not at all
willing” to relay traffic via their mobile devices, regardless
of rewards. Even for those who are willing to some extent,
69.7% would only allow the relaying activity to consume their
WiFi resource for less than 1 hour every day, and 87.9% do
not allow consuming their cellular data. We further asked the
participants for their concerns, no matter whether they are
willing or not. The top two concerns are privacy (82%) and
cellular data (62%). From participants’ feedback, we conclude
that a large fraction of mobile users do have concerns about
allowing apps to relay network traffic. This possibly explains
proxy SDKs’ vague user consent terms as described above.

10

nl%'ﬂltm

& weather =

Welcome to
Notepad

Privacy policy

Charter. To opt out of data sharing with Tutela, please

charge in exchange for safely using some of your
device's resources (WIFi and very imited cellular data).
further

m -UK.IAGREE

l DISAGREE

(a) Luminati (b) Oxylabs

Your use of this application is
free of charge in exchange for
safely using intemet connection

of your device's resources. Thanks for downloading

We have invested time and effort to
provide you with an optimal FREE
product. By clicking the 'l Agree"
button and accepting our

are becoming a part of the IP ni
VPN network and enabling Naruto
Craft to remain FREE

, you
inja

No

(c) MonkeySocks (d) IPninja

Fig. 4: Dialogs of Proxy SDKs to Ask for User Consent.

Finding VI: Proxy SDKs consume a non-negligible amount
of cellular data and it is out of device owners’ control.

Traffic Relaying Policies. The app profiling platform de-
scribed in §III-D enabled us to set up control experiments
wherein we selectively changed system configurations to study
how the relaying behavior of a proxy app adapts to the network
type (WiFi or cellular), battery life, and screen on/off, etc. By
combining those experiments along with reverse-engineering
of the proxy SDKs, we were able to acquire a comprehensive
understanding regarding how system environments affect the
relaying behaviors. Specifically, we observed that the proxy
SDKs tend to avoid abusing system resources to a certain
extent. Relaying is tuned to a lower frequency when the battery
life is low (e.g., for MonkeySocks, the threshold of the battery
life is below 50% when not on charge, or below 15% even
on charge), or the network type is cellular. Also, some proxy
SDKSs such as Luminati cease the relaying activities when users
are performing resource-consuming operations such as calling.
However, a fair amount of cellular data is still consumed to
relay traffic. While significantly lower than the consumption
of WiFi data, an average daily usage of 15 to 30MB cellular
data is found in the proxy SDKs for Oxylabs, Luminati, and
MonkeySocks. While for IPninja, reverse engineering reveals
that the provider configures the SDK to use up to 512MB
cellular data in a 30-day cycle before ceasing the relaying.
Also, these policies can be updated from the proxy gateways,
but cannot be configured by device owners. In our study,
we found that the SDKs periodically retrieve updates from
the server. This implies that the proxy providers have the
mechanism of making the replaying policies more aggressive
to serve more proxy customers. In contrast, device owners

o DNS Resolution & TCP Handshake

HTTP CONNECT

www.google.com:443 Visible to

Proxy Gateway & Peer

HTTP CONNECT
www.google.com:443

DNS Query
DNS Answers
TCP Handshake

TCP Connection

HTTP/1.1 200 OK Is Set UP

@ 7LS Handshake
Client Hello

Client Hello Client Hello

Server Hello

Server Hello
Server Hello «

Partially Visible to

Key Exchange Key Exchange Key Proxy Gateway & Peer

© HTTP Traffic

HTTP GET
www.google.com

Invisible to
Proxy Gateway & Peer

HTTP GET
www.google.com

HTTP GET
www.google.com

HTTP Response

www.google.com

HTTP Response
www.google.com

HTTP Response

www.google.com

(e.q., https://www.google.com)

Proxy Customer Proxy Gateway Proxy Peer Traffic Destinations

Fig. 5: The Process of Traffic Relaying.

of the proxy peers have no access to or visibility of those
policies, not to mention the capability to directly configure
them according to their preferences.

V. MOBILE PROXY TRAFFIC/IP ANALYSIS

By analyzing the identified proxy apps, we took a closer
look at the relaying protocol and relaying traffic, which reveals
important findings regarding the proxy mechanism and proxy
usage. Also, our infiltration of proxy networks (§II1-B) allows
us to capture and profile proxy peers attaching to cellular IPs.

A. Analyzing Mobile Proxy Traffic

Proxy Protocols. Identifying the proxy apps and SDKs enables
us to understand how mobile proxy peers operate. In particular,
we utilize the app profiling platform (see §III-C) to capture raw
traffic and reverse engineer the mobile proxy protocol (without
MITM) used by the proxy networks. Specifically, we observed
a typical relaying process (see Figure 5) starting with an SDK-
side DNS resolution for the destination domain name. Once
the DNS resolution is done, the SDK makes a TCP connection
with the destination IP, and notifies the proxy gateway. After
that, each HTTP request is then relayed to the destination, and
its response is forwarded back to the gateway. Underlying such
interactions is a proxy protocols in line with the well-known
HTTPS proxy protocol [19], which guarantees that MITM
cannot access the plain traffic as long as the proxy customer
has validated the TLS certificate. Once the TLS handshake is
set up, HTTP request data is then relayed.

Also, we found that to relay traffic, proxy SDKs (proxy
peers) need to make at least one long-term TCP connection
with proxy gateways. Multiplexing protocols are used to
handle multiple proxy tasks through a single TCP connection.
For instance, MonkeySocks deploys HTTP/2 while the other
three (Luminati, Oxylabs, and MonkeySocks) use WebSocket.
In our study, we observed concurrent relaying behavior when
running those SDKs. For example, more than 100 concurrent
proxy tasks were found when running the Oxylabs SDK.

Finding VII: Suspicious advertisement frauds contribute
most to relaying traffic, followed by search engines, trav-
eling, shopping, social networks, and email services.

11

TABLE VI: Top domains ordered by the TCP connection
count, for relay traffic of Oxylabs SDK.

Domain % Conns % Traffic % HTTP % HTTPS
www.gamepk.us 15.11% 1.31% 99.97% 0.00%
www.ltv-mob.com 3.59% 0.78% 69.87% 30.11%
www.finadvise.net 2.62% 0.20% 99.92% 0.00%
08j-0.tInk.io 2.48% 0.32% 94.90% 5.05%
u.newspro.info 2.13% 0.15% 99.78% 0.00%
cp.effoulanponta.com 1.52% 0.82% 23.41% 76.52%
ads.pulseradius.com 1.34% 0.78% 0.00% 99.97%
okr-1.tInk.io 1.30% 0.76% 0.24% 99.76%
adsperfection.imp2aff.com 1.27% 0.26% 65.17% 33.59%
imp.control.kochava.com 1.26% 0.70% 0.00% 100.00%

Proxy Traffic Analysis. In our research, we collected traffic
logs by running proxy apps for the aforementioned proxy
providers between Sept 2019 and Nov 2019, leveraging our
app profiling platform (§III-D). We then utilized our relaying
traffic detectors (§III-E) to recover the proxy traffic. Note that
IPninja’s proxy service was under maintenance during that
period; as a result, we did not see its proxy traffic. Interestingly,
we discovered a previously unknown proxy SDK (which we
call SDK X) from one of the MonkeySocks proxy apps. Later
we elaborate on this SDK as a case study.

For all four proxy SDKs (Oxylabs, MonkeySocks, Lumi-
nati, and SDK X), their traffic volumes vary across SDKs.
Specifically, the volume is around 1GB per day per proxy
app for SDK X and SDK Oxylabs, while it becomes much
smaller (less than 100MB) for Luminati and MonkeySocks.
For Luminati, this may be because its proxy apps run very
slowly on our x86 physical servers due to the native libraries
of Luminati SDK only supporting ARM architecture. For
MonkeySocks, there may be few traffic relaying demands in
our geolocations since it operates its proxy business mainly in
Russia and our profiling system is deployed in the US.

Access to proxy traffic helps us learn more about proxy
activities. When analyzing the destination domains of the
proxy traffic, we found that most such domains involving the
largest number of TCP connections carry out advertisement-
related activities (such as ad redirection, ad impression and
ad clicking), as shown in Table VI. For example, 08j-0.
tlnk.io and adsperfection.imp2aff.com are related to ad track-
ing and ad clicking. Another example is gamepk.us whose
URLSs are in the form of http://www.gamepk.us/XX, where
XX is a unique identifier, and it redirects its visitors to
clk.myiads.com/click or cpi-offers.com, both related to ad
clicking. Interestingly, although those top domains host the
largest number of connections, they produce disproportion-
ately less traffic volume, which is unusual as regular ad-
vertisement activities should incur a large traffic volume to
load advertisement media files. This observation, combined
with those domains’ impression/clicking URLs, indicates that
those advertisement activities are related to ad frauds where
instead of loading the advertisements, they only need to craft
and send impression/clicking requests to the advertisement
tracking system. Taking www.gamepk.us as an example, it
was involved in 38K TCP connections within a 24-hour
relaying period through Oxylabs’s SDK, but only generated
40MB traffic. In contrast, 248 requests/responses to Www.
bing.com incurred 110MB traffic. When ordering domains
by their traffic volumes, other categories stand out including

traveling (e.g., www.tripadvisor.com and www.expedia.com),
shopping (www.amazon.com, www.bestbuy.com, etc.), search-
ing (www.google.com and www.bing.com), and social media
(connect.facebook.net and profile.meetme.com). In addition to
regular web traffic, we also observed IMAP mailing traffic
to popular mailing services such as imap.mail.yahoo.com,
imap.gmail.com, and imap.aol.com.

Finding VIII: Proxy SDK X has been integrated into
multiple apps and stealthily relays network traffic without
any user consent.

Previously Unknown Proxy SDK. As mentioned earlier, we
found a previously unknown SDK, named SDK X, when
analyzing proxy traffic of MonkeySocks proxy app com.
zmobile.saveplan. Specifically, our traffic selection technique
(§III-E) identified an unknown proxy connection and its traffic,
along with those of MonkeySocks, in the traffic logs of com.
zmobile.saveplan. We found that while the SDK is obfuscated
with different package names for different host apps, its plain-
text server addresses (e.g., inputstreamreader.link, svc-host.net,
and dll-host.cf) are hardcoded in its variations. After searching
these server addresses in other apps, we found that 21 proxy
apps (60 proxy APKSs) for Luminati and 3 proxy apps (3 proxy
APKs) for MonkeySocks also integrate this SDK. Furthermore,
leveraging the technique introduced in §III-C, we identified
657 Android APKs and 34 Windows programs potentially
serving as proxy programs for this SDK X.

Further profiling proxy programs with SDK X shows that
it runs the WebSocket protocol as many other proxy SDKs
do. However, it does not ask for user consent before relaying
traffic, thus violating a set of privacy terms and regulations [15]
[10]. Also, SDK X relays traffic aggressively with around 1GB
of traffic volume per day per proxy app.

B. Analyzing Mobile Proxy IPs

Finding IX: A large amount of cellular proxies and IPv6
proxies are observed in our infiltration.

Landscape. As mentioned earlier in §III-B, we infiltrated the
9 proxy providers listed in Table II. Overall, 8,188,438 IPs
(7,181,557 1Pv4, and 1,006,881 IPv6) were captured through
42M infiltration probes. Among the IPv4 addresses, 624,989
(8.7%) are labeled as cellular IPs by IPInfo [24], an IP
metadata database. Due to the missing IPv6 information in
IPInfo, we do not know whether the IPv6 addresses are cellular
or not. Also, most of the identified cellular IPs are from five
proxy providers: Luminati, Oxylabs, Smartproxy, ProxyRack,
and Geosurf. The fact that Luminati and Oxylabs have mobile
proxy SDKs well explains the cellular IPs captured in their
proxy networks. We have also contacted the other three, trying
to find out whether they have mobile proxy SDKs and mobile
proxy apps; only ProxyRack was confirmed to have purchased
some 3rd-party apps and turned them into proxy peers. We
leave it as our future research to investigate how Geosurf and
Smartproxy have recruited so many cellular proxy IPs.

We found that the cellular proxy IPs are widely distributed,
though following a long-tail pattern. In particular, the top 5%
of IPv4 /24 entities contribute 50.64% of proxy IPv4 addresses.
Also, 31.57% of cellular proxy IPs come from the top 5

12

TABLE VII: Top device/OS types in activeFP for cellular IPs

Top Device Types Top OS Types
Name Probes 1Ps Name Probes 1Ps
WAP 1557% 22.59% | Linux 35.13% 45.46%
router 4.06% 243% | i0S 2.25% 0.29%
firewall 3.26% 0.63% | Windows 1.93% 1.06%
security-misc 0.81% 0.63% Unix 0.28% 0.36%
webcam 0.05% 0.10% Comware 0.14% 0.14%
broadband router 0.02% 0.07% VRP 0.02% 0.05%
Overall 18,299 4,152 | Overall 18,299 4,152

countries including Turkey (12.57%), India (5.52%), Indonesia
(5.39%), Russia (5.04%), and Malaysia (3.04%).

Fingerprinting Analysis. We also conducted passive fin-
gerprinting (passiveFP) and active fingerprinting (activeFP) to
infer device/OS types of proxy peers, as detailed in §III-B.
PassiveFP covered 48.28% of the 2,197,019 infiltration probes
(due to deployment delay between infiltration and fingerprint-
ing) and 72.06% of the 625K unique cellular proxy IPs. Also,
with the 0.85% response rate, activeFPs covered 4,152 cellular
proxy IPs (0.67%), among which the OS information of
47.11% and the device information of 26.06% were reported.

Table VII presents the top device types revealed by ac-
tiveFPs. The response rate of activeFPs on cellular IPs is only
0.85%, much lower than the 7.24% achieved for the overall 8M
proxy IPs. This is reasonable since cellular IPs are commonly
assigned to mobile devices that usually do not respond to
any incoming probing traffic. However, we were still able to
observe diverse device types. The most common ones are WAP,
router, and firewall, which is expected as most proxy peers are
likely sitting behind NAT to which cellular IPs are attached.
Table VIII and Table VII show the top OSes revealed by
passiveFP and activeFP. Here we can see that Linux accounts
for the majority of cellular IPs, especially by passiveFPs. This
is because Android is built upon Linux kernel, and therefore
is reported as Linux by pOf. Besides, other OS types such as
Windows, macOS, and iOS were also found.

Finding X: Cellular proxies are highly evasive and only a
negligible portion are alarmed by VirusTotal.

Evasiveness. We further checked whether these cellular proxy
IPs were ever blacklisted. For this purpose, we scanned these
IPs using VirusTotal. Overall, 0.44% of the cellular proxy
IPs were reported by at least one IP blacklist for either
malicious URLs or download samples. The portion of such
blacklisted IPs is fairly small across proxy providers, and no
providers have more than 1% of cellular IPs being blacklisted.
Among these services, Smartproxy has the most blacklisted
IPs (0.76%), which is followed by Oxylabs (0.66%) and
Luminati (0.45%). When analyzing the malicious activities
they were involved in, we found that malicious subdomains of
DDNS (dynamic DNS) and Trojan samples were two mostly
reported. Compared to the prior research [32] that reports
2.20% of blacklisted residential IP proxies, our study discovers
even fewer malicious indicators on cellular IP proxies. Also
interestingly, we found that 34 IPs (not cellular but among the
overall 8M IPs) were served to distribute 6 different payloads
in the IoT botnet campaign of Hajime while another 12 proxy
IPs were found to distribute 26 various Mirai (botnet) payloads.

TABLE VIII: Top OS types in passiveFP for cellular IPs

Top OS Types Probes 1Ps

Linux 2.2.x-3.x 71.12% 79.58%
Windows 7 or 8 8.79% 11.09%
Linux 3.1-3.10 6.08% 8.03%
Windows NT kernel 4.43% 5.10%
Linux 3.11 and newer 1.66% 0.12%
Linux 2.2.x-3.x (barebone) 0.71% 0.61%
FreeBDS 9.x or newer 0.56% 0.48%
Linux 2.2.x-3.x (no timestamps) 0.52% 0.95%
Linux 3.x 0.50% 0.50%
Mac OS X 0.25% 0.53%
Overall 1,060,771 450,375
VI. DISCUSSION

Responsible Disclosure. We have been actively communicat-
ing with Google since December 2019. Through a series of
meetings and emails, we shared with them our findings along
with the methodologies, detection signatures, and detected
Android APKs. Members from Google Anti-Abuse and Google
Play Protect teams have acknowledged our findings, and we
all agree that the mobile proxy ecosystem is incurring high
security and privacy risks to Android users. While providing
lists of detected APKs and apps, we didn’t get the details
regarding whether a specific app is PUP (potentially unwanted
program) or not. However, those apps have violated Google
Play’s developer policy, and Google is working on profiling
and detecting those proxy SDKs and apps, as learned from
our communication, which therefore strongly indicates that
Google considers them as PUPs. Also, we have contacted
proxy providers regarding the suspicious usage of their proxy
services, the ambiguity of their user notification, as well as
the malicious apps integrated with their proxy SDKs. While
varied by proxy providers, our findings have been well ac-
knowledged. We are pleased to learn that some proxy providers
are taking measures to mitigate the security and privacy risks.
Specifically, Luminati has redesigned its user consent dialog to
clearly explain the proxy function and traffic relay policies. It
also claimed a strict vetting of its partners. Besides, Oxylabs
claimed they had stopped offering proxy SDKs to 3rd-party
app developers concerning the security and privacy risks. We
haven’t yet received any response from the other two proxy
providers (MonkeySocks and IPninja) after contacting them
several times.

Mitigation of Residential Proxy Abuse. Our study uncovered
security and privacy risks incurred by the mobile proxy ecosys-
tem. However, there is no industry-wide guideline to allow a
trustworthy mobile proxy network. Through this study, with
better understandings of stakeholders (i.e., app developers,
app marketplace and proxy service providers), we recommend
specific guidelines as below to regulate this ecosystem.

For proxy providers, we suggest three practices related to
SDK development, proxy app review, and proxy customer ap-
provals. First, we suggest having the proxy SDK configurable
for app developers and device users, who can thus tune the
traffic relaying policies and limit the types of data collected
by the proxy SDK (e.g., geolocation, device identifiers). Also,
the user consent must be specific, informed and unambigu-
ous, considering the non-experts without the knowledge of
traffic relaying. Proxy providers may carry out user studies

13

as we did to profile and improve their user consent. Second,
a strict vetting of proxy app candidates is recommended.
In our study, malicious apps have been found to serve as
proxy peers (§IV-A), which not only lowers the reputation of
proxy providers, but also makes this ecosystem a monetization
channel for malware. Also, legitimate apps may evolve to
become malicious, and thus periodical inspection of vetted
proxy apps is necessary. Lastly, proxy providers should deploy
techniques to detect and prevent malicious traffic from being
relayed through their proxy networks, which, along with proxy
app vetting, will help mitigate the abuse of this ecosystem.

For the app marketplace, detecting proxy SDKs is rec-
ommended to be included in the app vetting procedure to
protect device users against the potential collusion between app
developers and proxy service providers. Our signature-based
proxy app detector can be leveraged for this process. Also,
since integrating a suspicious proxy SDK will compromise
apps’ reputation, app developers should carefully scrutinize a
proxy SDK before integrating, especially in terms of user data
access, traffic relaying policies, and user consent.

Datasets and Code Release. Relevant datasets and source
code can be downloaded from https://github.com/mixianghang/
mpaas. Our datasets include the proxy SDK signatures, proxy
app identifiers, and captured proxy IPs, while the source code
contains the signature-based proxy app detector and the proxy
traffic detectors.

VII. RELATED WORK

Studies on Web Proxies Numerous studies have looked into
the security issues on web proxy services. Several works [47]
[39] [30] conducted empirical studies on open web proxies to
understand their usage pattern and malicious activities (e.g.,
ad injection). Weaver et al. [49] conducted a measurement
study to understand the purpose of free proxy services based
on how they modify traffic. Chung et al. [11] studied a paid
proxy service to uncover content manipulation in end-to-end
connections. O’Neill et al. [36] measured the prevalence of
TLS proxies and identified thousands of malware intercepting
TLS communications. Reaves et al. [40] studied VoIP-GSM
gateways informally known as “simboxes” which are used to
bridge incoming international VOIP calls with a local cellular
voice network, aiming to evade costly interconnects. Some
other studies focus on web proxy detection. Zhang et al. [52]
proposed a proxy server detection technique leveraging the
distinctive characteristics of interactive traffic such as packet
size and timing. Other works [25] [49] developed techniques to
detect the presence of web proxies, such as a proxy localization
technique based on traceroutes of the SYN-ACK packets
responding to TCP connection requests.

The closest to our study is [32], which reports an empirical
study on five residential proxy services with a focus on
profiling their service models and proxy IPs. Different from
this work, we shift the focus to mobile proxy programs and
reveal the prevalence of mobile devices as proxy peers via
proxy SDKs. Also, our work achieves a series of novel findings
regarding proxy SDKs, proxy apps, proxy traffic, and human
factors, etc. Besides, we introduced new methodologies, such
as the techniques to automatically detect and profile mobile
proxy SDKs and apps, the user study that profiles users’

https://github.com/mixianghang/mpaas
https://github.com/mixianghang/mpaas

attitudes towards mobile proxies, as well as the methodology
to detect relaying traffic.

Android Malware Detection. There exists a plethora of works
on Android malware detection. To name a few, Grace et
al. [18] built up RiskRanker to analyze whether an app ex-
hibits malicious behaviors. Wu et al. [S0] proposed DroidMat
to cluster Android apps as malicious or benign, leveraging
static information such as app permissions. Yuan et al. [51]
extracted more than 200 features from Android apps and used
them to demonstrate the effectiveness of deep-learning-based
malware detection. Mclaughlin et al. [31] proposed a malware
detection system leveraging deep CNN (convolutional neural
network). Instead of hand-engineered features, the authors use
the static opcode sequence of dissembled programs as input
for learning the decision boundary. Gong et al. [16] reported
their experiences of developing, deploying, and maintaining
a machine-learning-based malware detection framework for a
commercial Android app marketplace.

Third-party SDK Detection and Analysis. Backes et al. [8]
proposed LibScout to identify and group third-party libraries
under different versions; they generate SDK profiles that can
be uniquely identified by their signature trees. Ma et al.
[29] proposed LibRadar, which detects libraries based on
stable API features that are obfuscation-resilient. Li et al. [27]
proposed LibD, which uses the internal code dependencies of
an app to recognize library candidates and further classify
them. In contrast to previous studies on generic third-party
SDKs, our work focuses on proxy SDKs provided by mobile
proxy service providers. We also investigate how these SDKs
interplay with the mobile proxy ecosystem.

VIII. CONCLUDING REMARKS

We conducted to our knowledge the first systematic re-
search on the mobile proxy ecosystem built upon mobile
proxy SDKs and mobile proxy apps. In this ecosystem, mobile
devices of normal end users are turned into proxy peers to
relay unknown or even malicious traffic. In our study, we
developed a measurement infrastructure consisting of several
novel components, such as the signature-based detector that
detects Android proxy apps on a large scale and the two-step
proxy traffic detector built upon robust heuristics.

Leveraging the measurement platform, we make several
important observations. We discover four proxy providers that
offer mobile proxy SDKs as a profitable app monetization
channel. The SDKs were found to have been integrated into
963 Android apps with $50K monthly payment per IM MAU
(monthly active users). However, most of those proxy apps
have violated the developer policy of Google Play. Also,
48.43% proxy APKs were flagged by at least 5 anti-virus
engines as malicious. Besides, our user study shows that their
user consent texts are ambiguous as most subjects cannot
tell the intention of relaying traffic from the consent texts.
Even worse, one proxy SDK stealthily relayed traffic without
showing any notifications. Furthermore, we observed a set of
suspicious activities incurred by proxy traffic such as ads fraud.
All the above findings highlight important security concerns
of the mobile proxy ecosystem, especially for mobile device
users. Moving forward, we suggest that critical stakeholders
(proxy providers, app developers, and app stores) take more

14

actions to address the security issues. We have reported our
findings to relevant parties such as Google Play. Relevant
datasets and source code can be accessed from https://github.
com/mixianghang/mpaas.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers and our
shepherd Prof. Christina Pépper for their insightful comments.
This project is jointly supported by the following NSF awards:
1917424, 1850725, 1618493, 1801432 and 1838083.

https://github.com/mixianghang/mpaas
https://github.com/mixianghang/mpaas

[1]

[2]
[3]

[4]

[5]
[6]
[7]
[8]

[9]
[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

(18]

[19]
[20]
[21]
[22]

(23]

[24]
[25]

[26]
[27]

(28]
[29]

[30]

REFERENCES

A Twitter message shows up Luminati’s proxy SDK promotion. https://
twitter.com/malwrhunterteam/status/902965922016714753?s=20, 2017.

Alexa Find Similar Sites. https://www.alexa.com/find-similar-sites.
Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves
Le Traon. Androzoo: Collecting millions of android apps for the
research community. In 2016 IEEE/ACM 13th Working Conference
on Mining Software Repositories (MSR), pages 468—471. IEEE, 2016.
Android Background Execution Limits. https://developer.android.com/
about/versions/oreo/background.html.

Anzhi. http://www.anzhi.com/.

AppChina. http://www.appchina.com/.

AppGrow. https://www.appgrow.com/.

Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party library
detection in android and its security applications. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 356-367. ACM, 2016.

Blazing Proxies. https://blazingseollc.com/proxy/ipv6-proxies/.

California Consumer Privacy Act.
California_Consumer_Privacy_Act.

https://en.wikipedia.org/wiki/

Taejoong Chung, David Choffnes, and Alan Mislove. Tunneling for
transparency: A large-scale analysis of end-to-end violations in the
internet. In Proceedings of the 2016 Internet Measurement Conference,
pages 199-213. ACM, 2016.

Discussion of Luminati’s SDK in an Android monetization forum.
http://forums.makingmoneywithandroid.com/advertising-networks/
47226-luminati-sdk.html.

Fobus, the sneaky little thief that could. https://blog.avast.com/2015/01/
15/fobus-the-sneaky-little- thief-that-could/.

Frida Gadget. https://frida.re/docs/gadget/.
General Data Protection Regulation. https://gdpr-info.eu/.

Liangyi Gong, Zhenhua Li, Feng Qian, Zifan Zhang, Qi Alfred Chen,
Zhiyun Qian, Hao Lin, and Yunhao Liu. Experiences of landing
machine learning onto market-scale mobile malware detection. In Pro-
ceedings of the Fifteenth European Conference on Computer Systems,
pages 1-14, 2020.

Google Play Developer Policy Center. https://play.google.com/about/
privacy-security-deception/device-network-abuse/.

Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian
Jiang. Riskranker: scalable and accurate zero-day android malware
detection. In Proceedings of the 10th international conference on
Mobile systems, applications, and services, pages 281-294. ACM, 2012.

HTTP tunnel. https://en.wikipedia.org/wiki/HTTP_tunnell.
Hybrid Analysis. https://www.hybrid-analysis.com/.
Intoli. https://intoli.com/.

IoT Devices as Proxies for Cybercrime. https://krebsonsecurity.com/
2016/10/iot-devices-as-proxies-for-cybercrime/.

IP Ninja. https://ipninja.io/.

IPinfo. https://ipinfo.io/developers.

Christian Kreibich, Nicholas Weaver, Boris Nechaev, and Vern Paxson.
Netalyzr: illuminating the edge network. In Proceedings of the 10th
ACM SIGCOMM conference on Internet measurement, pages 246-259.
ACM, 2010.

Lethean. https://lethean.io/.

Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu,
Rui Xue, and Wei Huo. Libd: scalable and precise third-party library
detection in android markets. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pages 335-346. IEEE,
2017.

Luminati. https://luminati.io/.

Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. Libradar: fast
and accurate detection of third-party libraries in android apps. In Pro-
ceedings of the 38th international conference on software engineering
companion, pages 653-656. ACM, 2016.

Akshaya Mani, Tavish Vaidya, David Dworken, and Micah Sherr. An
extensive evaluation of the internet’s open proxies. In Proceedings

15

[31]

[32]

[33]
[34]
[35]
[36]

[37]
(38]
[39]

[40]

[41]

[42]
[43]
[44]

[45]
[46]

[47]

[48]
[49]

[50]

[51]

[52]

of the 34th Annual Computer Security Applications Conference, pages
252-265. ACM, 2018.

Niall McLaughlin, Jesus Martinez del Rincon, BooJoong Kang,
Suleiman Yerima, Paul Miller, Sakir Sezer, Yeganeh Safaei, Erik
Trickel, Ziming Zhao, Adam Doupé, et al. Deep android malware
detection. In Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy, pages 301-308. ACM, 2017.
Xianghang Mi, Xuan Feng, Xiaojing Liao, Baojun Liu, XiaoFeng Wang,
Feng Qian, Zhou Li, Sumayah Alrwais, Limin Sun, and Ying Liu.
Resident evil: Understanding residential ip proxy as a dark service. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1185-1201.
IEEE, 2019.

MonkeySocks. https://monkeysocks.net/.

netnut. https://netnut.io/.

Nmap Service Probes. https://svn.nmap.org/nmap/nmap-service-probes.
Mark O’Neill, Scott Ruoti, Kent Seamons, and Daniel Zappala. TIs
proxies: Friend or foe? In Proceedings of the 2016 Internet Measure-
ment Conference, pages 551-557. ACM, 2016.

Oxylabs. https://oxylabs.io.

pOf. http://lcamtuf.coredump.cx/pOf3/.

Diego Perino, Matteo Varvello, and Claudio Soriente. Proxytorrent:
Untangling the free http (s) proxy ecosystem. In Proceedings of the
2018 World Wide Web Conference, pages 197-206. International World
Wide Web Conferences Steering Committee, 2018.

Bradley Reaves, Ethan Shernan, Adam Bates, Henry Carter, and Patrick
Traynor. Boxed out: Blocking cellular interconnect bypass fraud at the
network edge. In 24th {USENIX} Security Symposium ({USENIX}
Security 15), pages 833-848, 2015.

SDK for monetization of android installs - monkeysocks.net.

https://forum.xda-developers.com/monetization/general/
sdk-monetization-android-installs-t3814192, 2018.

SimilarWeb. https://www.similarweb.com/.

Smartproxy. https://smartproxy.com/.

SOCKS Proxy SDKs a New Risk for En-
terprises. https://securityboulevard.com/2018/04/

socks-proxy-sdks-a-new-risk-for-enterprises/, 2018.

Tapcore. https://tapcore.com/en.
The Rise of “Bulletproof” Residential Net-
works. https://krebsonsecurity.com/2019/08/

the-rise-of-bulletproof-residential-networks/, 2019.

Giorgos Tsirantonakis, Panagiotis Ilia, Sotiris Ioannidis, Elias Athana-
sopoulos, and Michalis Polychronakis. A large-scale analysis of content
modification by open http proxies. In NDSS, 2018.

VirusTotal APIs. https://developers.virustotal.com/reference.

Nicholas Weaver, Christian Kreibich, Martin Dam, and Vern Paxson.
Here be web proxies. In International Conference on Passive and Active
Network Measurement, pages 183—192. Springer, 2014.

Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-
Ping Wu. Droidmat: Android malware detection through manifest and
api calls tracing. In 2012 Seventh Asia Joint Conference on Information
Security, pages 62-69. IEEE, 2012.

Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. Droid-
sec: deep learning in android malware detection. In ACM SIGCOMM

Computer Communication Review, volume 44, pages 371-372. ACM,
2014.

Yin Zhang and Vern Paxson. Detecting stepping stones. In USENIX
Security Symposium, volume 171, page 184, 2000.

IX. APPENDIX

A. User Study Questions

1) What is your age group?

a) 18 ~ 24
b) 25 ~ 34
¢) 35~ 44
d) 45 ~ 54

https://twitter.com/malwrhunterteam/status/902965922016714753?s=20
https://twitter.com/malwrhunterteam/status/902965922016714753?s=20
https://www.alexa.com/find-similar-sites
https://developer.android.com/about/versions/oreo/background.html
https://developer.android.com/about/versions/oreo/background.html
http://www.anzhi.com/
http://www.appchina.com/
https://www.appgrow.com/
https://blazingseollc.com/proxy/ipv6-proxies/
https://en.wikipedia.org/wiki/California_Consumer_Privacy_Act
https://en.wikipedia.org/wiki/California_Consumer_Privacy_Act
http://forums.makingmoneywithandroid.com/advertising-networks/47226-luminati-sdk.html
http://forums.makingmoneywithandroid.com/advertising-networks/47226-luminati-sdk.html
https://blog.avast.com/2015/01/15/fobus-the-sneaky-little-thief-that-could/
https://blog.avast.com/2015/01/15/fobus-the-sneaky-little-thief-that-could/
https://frida.re/docs/gadget/
https://gdpr-info.eu/
https://play.google.com/about/privacy-security-deception/device-network-abuse/
https://play.google.com/about/privacy-security-deception/device-network-abuse/
https://en.wikipedia.org/wiki/HTTP_tunnell
https://www.hybrid-analysis.com/
https://intoli.com/
https://krebsonsecurity.com/2016/10/iot-devices-as-proxies-for-cybercrime/
https://krebsonsecurity.com/2016/10/iot-devices-as-proxies-for-cybercrime/
https://ipninja.io/
https://ipinfo.io/developers
https://lethean.io/
https://luminati.io/
https://monkeysocks.net/
https://netnut.io/
https://svn.nmap.org/nmap/nmap-service-probes
https://oxylabs.io
http://lcamtuf.coredump.cx/p0f3/
https://forum.xda-developers.com/monetization/general/sdk-monetization-android-installs-t3814192
https://forum.xda-developers.com/monetization/general/sdk-monetization-android-installs-t3814192
https://www.similarweb.com/
https://smartproxy.com/
https://securityboulevard.com/2018/04/socks-proxy-sdks-a-new-risk-for-enterprises/
https://securityboulevard.com/2018/04/socks-proxy-sdks-a-new-risk-for-enterprises/
https://tapcore.com/en
https://krebsonsecurity.com/2019/08/the-rise-of-bulletproof-residential-networks/
https://krebsonsecurity.com/2019/08/the-rise-of-bulletproof-residential-networks/
https://developers.virustotal.com/reference

= Business (e.g., manager)
= Computer engineer or IT
|0 Education (e.g., teacher)
Retired

Scientist (e.g., researcher)

® Student

(a) Q4: Which of the following best
describes your primary occupation?

TN O 1 do not know both

\
\ BT know both

&I know relaying
network traffic

® 1 know web proxy

(c) O8: Do you know what is web
proxy? Do you know what is relay-
ing network traffic?

= Not at all willing
= Somewhat willing
& Strongly willing

Willing

(e) Q10: To what extent you are will-
ing to turn your mobile device into a
web proxy, if the bonus is using that
app without ads or subscriptions?

E<1 hour
0>15 hours
©1~5 hours

i 5~10 hours

(g) QI2: How long do you prefer
to allow that app to proxy network
traffic everyday?

@ Clear
®E Not at all clear

) Somewhat clear

(i) QI16: Do you think the popup
expresses clearly that it requests to
turn your device into a web proxy
and relay unknown traffic?

® Several times
every day

CSeveral times
every week

(b) Q6: How often do you use mo-
bile apps on your phone?

\ O Kind of

\\ understand

® Understand

(d) Q9: After reading the hints, do
you understand what is web proxy
and what is relaying network traffic?

® Not at all willing

) Somewhat willing

(f) Ql11: If the bonus is providing
you with a small amount of money,
to what extent you are willing to do
so?

ENO

OYES

(h) Q13: Would you allow proxy to
consume your cellular data when
you are surfing the cellular network?

1 want to learn
more before
making decision

=No

OYes

(j) Q19: Do you agree to share your
data with this app and its third-party
partners?

Fig. 6: Distributions of the user perspectives to part of user
study questions

16

e)
f)

95 ~ 64
65+

2) What is your gender?

a)
b)
c)

Male
Female
Decline to answer

3) What is the highest education level you have completed?

a)
b)
¢)
d)
e)
f)
)

Under high school

Some high school

High school graduate
Some college - No degree
Associates / 2-year degree
Bachelor / 4-year degree

Graduate degree - Master, PhD, professional, medicine,
etc

4) Which of the following best describes your primary
occupation?

a)
b)

¢)
d)

e)
f)
2)
h)
i)
j)
k)
1)
m)
n)
0)
P

Administrative support (e.g., secretary, assistant)
Art, writing, or journalism (e.g., author, reporter, sculp-
tor)

Business, management, or financial (e.g., manager,
accountant, banker)

Computer engineer or IT professional (e.g., systems
administrator, programmer, IT consultant)

Education (e.g., teacher)

Legal (e.g., lawyer, law clerk)
Homemaker

Retired

Medical (e.g., doctor, nurse, dentist)
Service (e.g., retail clerks, server)
Scientist (e.g., researcher, professor)
Student

Skilled labor (e.g., electrician, plumber, carpenter)
Unemployed

Decline to answer

Other (Please specify)

5) Approximately how long have you been using mobile
apps on your phone?

a)
b)
c)
d)
e)

0-31 days

1-6 months

6-12 months

1-2 years

3 and more years

6) How often do you use mobile apps on your phone?

a) Several times every day
b) Several times every week

c¢) Several times every month
d) A few times a year
e) Very rare

7) Suppose Figure 7(a) is a mobile app’s pop-up request
screen. The name “app name” is the specific app you want
to use. Please describe your idea/understanding regarding
the descriptive words in this pop-up using your own

words.!
8) Do you know what is web proxy? Do you know what is
relaying network traffic? Choose all that apply.
O I know web proxy
O I know relaying network traffic
0J I do not know web proxy
[J I do not know relaying network traffic

Hints.

Web proxies: web proxies are used to send web requests
on behalf of web clients, to web servers. Web proxies can
serve various purposes such as identity anonymization and
circumventing censorship. For instance, China blocks access
to Google Search. However, a user in China can send the web
request through a web proxy outside China to access Google
Search.

Relaying network traffic: web proxies serve to relay network
traffic, sourcing from web clients, to web servers.

9) After reading the hints, do you understand what is web
proxy and what is relaying network traffic?
a) Understand
b) Kind of understand
¢) Still don’t understand at all
10) Suppose you install a mobile app on your phone, and that
app requests to turn your mobile device into a web proxy
and relay network traffic of unknown third parties. If that
app also provides you with some bonuses, such as using
that app without ads or subscriptions, to what extent are
you willing to do so?
a) Strongly willing.
b) Willing.
¢) Somewhat willing.
d) Not at all willing.
11) If the bonus is providing you with a small amount of
money, to what extent you are willing to do so?
a) Strongly willing.
b) Willing.
¢) Somewhat willing.
d) Not at all willing.
12) How long do you prefer to allow that app to proxy
network traffic everyday?
a) < 1 hour.
b) 1 ~ 5 hours.
¢) 5 ~ 10 hours.
d) 10 ~ 15 hours.
e) > 15 hours.
13) Would you allow proxy to consume your cellular data
when you are surfing the cellular network?
a) Yes.
b) No.
14) How much data do you allow the app to use?
a) <1 MB.

IThis question is designed as an open-ended question.

17

Welcome to
App name

Your use of "App name" is free of charge in
exchange for safely using some of your
device's resources (WiFi and very limited

cellular data)

Please see our TOS for further information

| DISAGREE | AGREE
Don't use my resources Use my idle resources

Data Protection Consent

We care about your privacy and data security. We
keep this app free by using third party services.

We use ads, analytics reporting, sending
notifications, VPN service, a cloud database
and crash reporting in this app. Those
vices (including their partners) collect
2 identifiers and other personal data.
n change your choice ny time in
the app settings. Learn more about those
services and your personal data

Can we continue to use your data for
these purposes?

By agreeing, you are confirming that you are
over the age of 16.

NO, THANK YOU
Iunderstand that | still see ads, but they may not be

ant to my interest

(a) Luminati pop-up

Your privacy is our top
priority

This app uses and shares your data
(including location data, advertising ID,
MAC and IP address) with its partners
(including geomarketing partners) for the
purposes described hereafter. This list
also specifies the partners that have
access to your data through our partner.
This list will be constantly updated in our
application. We are also partnering with
other 3rd parties that might use a portion
of your device routing resources. You
may, at any time, exercise your rights
(access right, rectification right etc.) and
withdraw your consent.

(c) Ipninja policy

(b) Ipninja pop-up

Marketing and business

studies
Show more

Customization of ads
Show more

Join 3rd party network

AAA

Show more
Accept all
[Learn more J

BT

(d) Ipninja customerization

Fig. 7: Dialogs and setting figures used in user study

b) 1~ 10 MB.
¢) 10 ~ 50 MB.
d) 50 ~ 100 MB.
e) > 100 MB.

all that apply.

O Traffic rate.

O My cellular data.
O Privacy.

O Legal issues.

15) What are your concerns regarding turning your device
into a web proxy and relaying unknown traffic? Choose

0O This may consume my phone battery.

O Others (Please specify).

16) Do you think Figure 7(a) expresses clearly that it requests
to turn your device into a web proxy and relay unknown

traffic?

a) Extremely clear.
b) Clear.

¢) Somewhat clear.
d) Not at all clear.

17) Have you ever met with similar kind of apps requesting
turning your device into a proxy and relaying traffic?
a) Yes.

b) No.

18) Please specify the name of those apps.”

19) Figure 7(b) is another mobile app’s pop-up request screen.
Comparing with the previous app example, this app is
requesting other privileges. Based on its description, do
you agree to share your data with this app and its third-
party partners?

a) Yes.
b) I want to learn more before making decision.
¢) No.

20) What unique identifiers and other personal data do you
think they may collect?’

21) Suppose you want to learn more about those services and
data the app and its partners collect. Figure 7(c) provides
such information. Based on figure above, choose data and
services that you would allow this app and third-party
partners to use. Choose all that apply.

O Location data.
O Ads that I am interested in.
O My physical device number and IP address.

O Some routing resources (including but not limited to
proxy network traffic, cellular data).

[J None above.

22) For each choice above, please explain why you would
allow or not allow.*

23) Figure 7(d) provides services that you could customize
whether you agree to use or not. All those services turn
ON by default. Which would you like to turn OFF?
Choose all that apply.

O Marketing and business studies.
O Customization of ads.

O Join 3rd party network.

O I agree to use all.

24) Since you can rectify your choice whenever you want, do
you think you will change your choices in question above
after beginning to use the app?

a) Yes.
b) Maybe.
¢) No.

B. List of Proxy Providers

As introduced in §III-A, we have identified 38 residential
proxy providers, as listed in Table IX.

2This question is designed as an open-ended question.

3This question is designed as an open-ended question.

4This question is designed as an open-ended question. Four fields mentioned
in question 21 are given

18

TABLE IX: The list of residential proxy providers.

Provider Website Provider Website
Airsocks airsocks.in Anonymous anonymous- proxies.net
Apify apify.com Atcproxys atcproxys.com
Blazingseollc blazingseollc.com Blitzproxies blitzproxies.com
Buyproxies buyproxies.org Cloudproxies cloudproxies.com
Cosmoproxy COSMOProxy.com Dropclub dropclub.io
Geosurf geosurf.com Gimmeproxy gimmeproxy.com
Hprox hprox.com Icedoutproxies icedoutproxies.com
Infatica infatica.io Intoli intoli.com
IPninja ipninja.io Lethean lethean.io
Localproxies localproxies.com Luminati luminati.io
Microleaves microleaves.com MonkeySocks monkeysocks.net
Netnut netnut.io Oxylabs oxylabs.io
Penguinproxy penguinproxy.com Privatix privatix.network
Proxies proxies.online ProxyRack proxyrack.com
Proxyrotator proxyrotator.com Residentialips residentialips.io
Resvpn resvpn.com Rotatingproxies rotatingproxies.com
Smartproxy smartproxy.io Sockshub sockshub.net
Soleproxy soleproxy.com StormProxies stormproxies.com
Surgeproxies surgeproxies.com Tuxler tuxler.com

	Introduction
	Overview
	The Ecosystem of Mobile Proxy Services
	Promotion & Monetization of Proxy SDKs

	Methodology
	Identify Proxy Providers
	Capture IP Addresses of Peer Proxies
	Detect Proxy Apps
	Profile Proxy Apps
	Proxy Traffic Detector
	Discussion

	Mobile Proxy Program Analysis
	Analyzing Proxy Programs
	Analyzing Proxy SDKs

	Mobile Proxy Traffic/IP Analysis
	Analyzing Mobile Proxy Traffic
	Analyzing Mobile Proxy IPs

	Discussion
	Related Work
	Concluding Remarks
	References
	Appendix
	User Study Questions
	List of Proxy Providers

